
UNIVERSITY OF CALIFORNIA,

IRVINE

Low Power Division and Square
Root

DISSERTATION

submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Engineering

by

Alberto Nannarelli

Dissertation Committee:
Professor Tomás Lang, Chair
Professor Nader Bagherzadeh

Professor Rajesh Gupta
Professor Fadi J. Kurdahi

1999

c©1999 by Alberto Nannarelli
All Rights Reserved

The thesis of Alberto Nannarelli is approved

and is acceptable in quality and form

for publication on microfilm:

Committee Chair

University of California at Irvine
1999

ii

To Chiara Elisa and Tanja,

for their patience.

”E quindi uscimmo a riveder le stelle.”

”And we walked out to see again the stars.”

La Divina Commedia - Inferno XXXIV, 139.

Dante Alighieri (1265-1321)

iii

Contents
List of Figures . vii
List of Tables . ix
Acknowledgement . xi
Curriculum Vitae . xii
Abstract of the Dissertation . xiv

Introduction 1

1 Background 8
1.1 Metrics . 8
1.2 Energy Dissipation in CMOS . 9
1.3 Approaches to Energy Dissipation Reduction 11
1.4 Asynchronous Systems . 13
1.5 Tools for Low-Power Design . 14

1.5.1 Transistor Level . 15
1.5.2 Gate Level . 16
1.5.3 Architectural Level . 16

1.6 Floating-Point Division and Square Root 17
1.6.1 IEEE Floating-Point Standard 17
1.6.2 Division and Square Root 17

2 Algorithms 19
2.1 Division Algorithm . 19
2.2 Conversion and Rounding Algorithm 21
2.3 Example of Division . 25
2.4 Division by Overlapping Stages . 26
2.5 Very High Radix Division . 28
2.6 Square Root Algorithm . 30
2.7 Combined Division and Square Root Algorithm 33

3 Techniques to Reduce Energy Dissipation 36
3.1 Radix-4 Division Algorithm and Basic Implementation 36
3.2 Classification of Techniques . 37
3.3 Retiming the Recurrence . 40

3.3.1 Reducing the Transitions in the Multiplexer 43
3.4 Changing the Redundant Representation 44
3.5 Using Gates with Lower Drive Capability 45
3.6 Dual Voltage . 47
3.7 Equalizing the Paths to Reduce Glitches 48
3.8 Partitioning and Disabling the Selection

Function . 49

iv

3.9 Glitch Filtering and Suppression . 51
3.10 Reductions in Conversion and Rounding 52

3.10.1 On-the-fly Conversion Algorithm Modification 52
3.10.2 Disabling the Clock . 56
3.10.3 Gating the Trees . 59
3.10.4 Dual Voltage . 60

3.11 Switching-off Not Active Blocks . 62
3.12 Optimization by Synthesis for Low-Power 62

4 Implementations 64
4.1 Design Flow, Tools and Libraries 64

4.1.1 Design Flow and Tools . 64
4.1.2 Standard Cell Libraries . 68
4.1.3 Presentation of Results . 70

4.2 Radix-4 Division . 70
4.2.1 Algorithm and Basic Implementation 70
4.2.2 Low-Power Implementation 71
4.2.3 Dual Voltage Implementation 77
4.2.4 Optimization with Synopsys Power Compiler 78
4.2.5 Summary of Results for Radix-4 79

4.3 Radix-8 Division . 82
4.3.1 Algorithm and Basic Implementation 82
4.3.2 Low-Power Implementation 86
4.3.3 Dual Voltage Implementation 90
4.3.4 Optimization with Synopsys Power Compiler 90
4.3.5 Summary of Results for Radix-8 92
4.3.6 Comparison with Scheme with Overlapped Radix-2 Stages . 95

4.4 Radix-16 Division . 96
4.4.1 Algorithm and Implementation 96
4.4.2 Low-Power Implementation 100
4.4.3 Dual Voltage Implementation 103
4.4.4 Optimization with Synopsys Power Compiler 103
4.4.5 Summary of Results for Radix-16 104

4.5 Radix-512 Division . 107
4.5.1 Algorithm and Basic Implementation 107
4.5.2 Low-Power Implementation 111
4.5.3 Dual Voltage Implementation 114
4.5.4 Summary of Results for Radix-512 117

4.6 Radix-4 Combined Division and Square Root 120
4.6.1 Algorithm and Implementation 120
4.6.2 Low Power Implementation 125
4.6.3 Dual Voltage Implementation 128
4.6.4 Optimization with Synopsys Power Compiler 129
4.6.5 Summary of Results for Combined Unit 129

v

4.6.6 Energy Comparison with Radix-4 Divider 133
4.7 Summary of Estimation Error . 133

5 Evaluation of the Designs 136
5.1 Impact of the Energy Reduction Techniques 136
5.2 Results and Comparisons among Radices 141

6 Conclusions 147

Bibliography 149

A Implementation of Blocks Common to Most Radices 153
A.1 Register . 153
A.2 Carry-Save Adder . 153
A.3 Selection Function . 153
A.4 Multiple Generator . 154
A.5 Sign-and-Zero Detection Unit (SZD) 155
A.6 Voltage Level Shifter . 158

B CAD Tools 160
B.1 PET: Power Evaluation Tool . 160

B.1.1 PET Energy and Power Models 160
B.1.2 PET Implementation . 163
B.1.3 PET Testing . 166

B.2 ACC: Automatic Cell Characterization 166
B.2.1 ACC Energy Views . 167
B.2.2 ACC Implementation . 169

B.3 Synopsys Power Compiler . 169
B.3.1 Gate transistor dimensions 172
B.3.2 Composition . 172
B.3.3 Pin swapping . 173
B.3.4 Sizing and buffering . 173

vi

List of Figures
0.1 FP-unit stall time distribution. 3
0.2 Breakdown of energy in FP-unit. 5

1.1 CMOS inverter loaded with CL. 10

2.1 Block diagram of radix-r division. 22
2.2 Convert and round unit. 23
2.3 Selection function with overlapped stages. 28
2.4 Block diagram of radix-512 divider. 31
2.5 Combined division/square root unit. 35

3.1 Implementation of radix-4 divider. 38
3.2 Critical path for radix-4 implementation in Figure 3.1. 39
3.3 Retiming of recurrence. 41
3.4 Change in the critical path. Before a) and after b) retiming. . . . 42
3.5 Removing buffers from MSBs. a) before, b) after. 43
3.6 Skewing of the select signal. 44
3.7 Replacing CSAs with radix-r CSAs. 45
3.8 b MSBs assimilated in selection function. 46
3.9 Low-drive cells in the recurrence. 46
3.10 Low-voltage cells in the recurrence. 48
3.11 Equalizing paths in CSA. 49
3.12 Partitioned selection function. 50
3.13 Glitch suppression using multiplexers. 51
3.14 Registers C and Q in the new converter. 53
3.15 Use of register T. 55
3.16 Gated flip-flop enabling function. 57
3.17 Two consecutive bits in the ring counter. 58
3.18 Clock enabling function and loading in register Q. 59
3.19 Gated tree. a) before, b) 50% reduction, c) 25% reduction. 61
3.20 Disabling SZD during recurrence iterations. 62

4.1 Design flow and tools. 65
4.2 Delay (normalized) with different VDD. 69
4.3 Critical path in ns. 71
4.4 Retiming of recurrence. 72
4.5 Radix-4 implementation in the carry-save adder. 73
4.6 Block diagram of l-p unit. 74
4.7 Convert-and-round unit for radix-4 divider. 76
4.8 Critical path for implementations with Passport/COMPASS and

CB45000/Synopsys. 78
4.9 Percentage of energy dissipation in radix-4 divider. 81

vii

4.10 Implementation of the radix-8 divider. 84
4.11 Retiming and critical path. a) before retiming, b) after retiming, c)

after retiming and skewing the clock. 87
4.12 Radix-8 carry-save adder (lower). 88
4.13 Partitioned selection function. 89
4.14 Convert-and-round unit for radix-8 divider 91
4.15 Low-power implementation of the radix-8 divider. 93
4.16 Percentage of energy dissipation in radix-8 divider. 94
4.17 Selection function for radix-16. 98
4.18 Basic implementation radix-16. 99
4.19 Retiming and critical path. a) before retiming, b) after retiming, c)

after retiming and skewing the clock. 101
4.20 Radix-16 CSA. 101
4.21 Low-power radix-16 divider. 105
4.22 Percentage of energy dissipation in radix-16 divider. 106
4.23 Block diagram of modified divider. 109
4.24 Cycles and operations. 110
4.25 Critical path (ns) for basic implementation. 111
4.26 Percentage of energy dissipation in basic radix-512 divider. 111
4.27 Retiming of the recurrence. 115
4.28 Retimed recurrence with Mux-R. 116
4.29 Critical path (ns) after retiming. 117
4.30 Percentage of energy dissipation in radix-512 divider. 119
4.31 Radix-4 combined division/square root unit. 121
4.32 Retiming of the recurrence. a) before retiming. b) after retiming. 126
4.33 Digit forwarding. 127
4.34 Low-power combined division/square root unit. 130
4.35 Percentage of energy dissipation in radix-4 combined unit. 132

5.1 Reduction in Ediv. Ratio to std implementation. 143
5.2 Energy-per-division: summary. 145
5.3 Energy-per-cycle: summary. 145
5.4 Energy-per-cycle and scaled average power for l-p implementations. 146

A.1 Implementation of full-adder. 154
A.2 Selection function. 154
A.3 One bit of the multiple generator. 155
A.4 Dual voltage: C1 is not cut-off. 158
A.5 Voltage level shifter. 159

B.1 Structure of PET. 164
B.2 Structure of ACC. 171

viii

List of Tables
0.1 Instruction mix. 3
0.2 Data on implementations [5] and [6]. 4
0.3 Instruction mix in program spice. 5

2.1 Example of radix-4 conversion. 24
2.2 Values of p in the rounding step. 25
2.3 Selection function for radix-4 division. 26
2.4 Example of radix-4 division. 27
2.5 Example of radix-512 division. 32

3.1 Selection function for radix-4 division. 37
3.2 Retiming does not increase number of cycles. 42
3.3 Modified algorithm. 53
3.4 Example of radix-4 modified conversion. 54
3.5 Example of radix-8 recoding. 55

4.1 Energy consumption per division for radix-4. 80
4.2 Radix-8: summary selection function. 83
4.3 Selection function for radix-8 and a = 7. 83
4.4 Energy-per-division for radix-8. 92
4.5 Area comparison. 96
4.6 Critical path through qL and qH . 98
4.7 Bit arrangement in two-level adders. 102
4.8 Paths in MSBs and LSBs in the recurrence. 102
4.9 Energy-per-division for radix-16. 104
4.10 Operations and signal values in retimed unit. 116
4.11 Energy-per-division for radix-512. 118
4.12 DSMUX operations. 122
4.13 Bits of A used in SEL. 123
4.14 Selection function for radix-4 combined division/square root. 123
4.15 Generation of F [j]. 124
4.16 Generation of F [j] with rearranged bit-string. 125
4.17 Bits of A used in SEL (retimed). 127
4.18 Paths for MSBs and LSBs in retimed recurrence. 128
4.19 Summary of reductions for division and square root operations. . . 131
4.20 Comparison radix-4 divider/combined unit. 134
4.21 The 10 random vectors. 135
4.22 Percentage error in energy estimation. 135

5.1 Costs and benefits in the application of reduction techniques. 137
5.2 Energy-per-division, area, execution time and speed-up. 142

ix

A.1 Result digit encoding. 155
A.2 Carry-look-ahead tree for 64-bit SZD. 157
A.3 Delay and energy comparison between level shifter and inverter. . . 159

B.1 ACC working flow. 170

x

Acknowledgement

I am indebted to Professor Tomás Lang for his insight and direction during these

years at UCI. I am grateful for his confidence in me, and for having had the oppor-

tunity to work with him. Our work was partially funded by the National Science

Fundation (grant MIP 9314172) and by the state of California with the industrial

support of Sun Microsystems Inc., through UC MICRO 97-084.

I also wish to thank the members of my thesis committee, Professors Nader

Bagherzadeh, Nikil Dutt, Rajesh Gupta, and Fadi Kurdahi, for their helpful com-

ments and recommendations regarding my work.

A special thank you goes to Professor Enrico Macii from Politecnico di Torino,

Italy, for providing me with a cell library suitable for synthesis for low-power.

xi

Curriculum Vitae

Alberto Nannarelli

1988 Eng. Degree in Electrical Engineering, Universita’ ”La Sapienza”,

Roma (Italy).

1989 Military Service in the Italian Army.

1990-91 Design Engineer, SGS-Thomson Microelectronics, Agrate (Italy).

1991-93 System and Software Engineer, Ericsson Telecom, Roma (Italy),

Stockholm (Sweden).

1994-99 Research Assistant, Dept. of Electrical and Computer Eng.,

University of California, Irvine.

1995 M.S. in Engineering, University of California, Irvine.

1995 Summer Intern, Rockwell Semiconductor Systems, Newport Beach.

1999 Ph.D. in Engineering, University of California, Irvine.

Dissertation: Low Power Division and Square Root

Professor Tomas Lang, Chair

FIELD OF STUDY

Numerical Processors and VLSI Design

Professor Tomas Lang

xii

PUBLICATIONS

A. Nannarelli and T. Lang. ”Low-Power Radix-4 Divider”. Proc. of Interna-
tional Symposium on Low Power Electronics and Design, pages 205-208, Monterey,
CA. August 1996.

A. Nannarelli and T. Lang. ”Power-Delay Tradeoffs for Radix-4 and Radix-8
Dividers”, Proc. of International Symposium on Low Power Electronics and De-
sign, pages 109-111, Monterey, CA. August 1998.

A. Nannarelli and T. Lang. ”Low-Power Radix-8 Divider”, Proc. of Interna-
tional Conference on Computer Design, pages 420-426, Austin, TX. October 1998.

A. Nannarelli and T. Lang. ”Low-Power Divider”, IEEE Transactions on Com-
puters, pages 2-14, January 1999.

A. Nannarelli and T. Lang. ”Low-Power Division: Comparison among imple-
mentations of radix 4, 8 and 16”. Proc. of 14th Symposium on Computer Arith-
metic, pages 60-67, Adelaide (AUS), April 1999.

A. Nannarelli and T. Lang. ”Low-Power Radix-4 Combined Division and Square
Root”, to appear in Proc. of International Conference on Computer Design, Austin,
TX. October 1999.

xiii

Abstract of the Dissertation

Low Power Division and Square Root

by

Alberto Nannarelli

Doctor of Philosophy in Engineering

University of California, Irvine, 1999

Professor Tomás Lang, Chair

The general objective of our work is to develop methods to reduce the energy

consumption of arithmetic modules while maintaining the delay unchanged and

keeping the increase in the area to a minimum. Here, we present techniques for

dividers and square root units realized in CMOS technology. The energy dissipation

reduction is carried out at different levels of abstraction: from the algorithm level

down to the implementation, or gate, level. We describe the use of techniques such

as switching-off not active blocks, retiming, dual voltage, and equalizing the paths

to reduce glitches. Also, we describe modifications in the on-the-fly conversion and

rounding algorithm and in the redundant representation of the residual in order to

reduce the energy dissipation. The techniques and modifications mentioned above

are applied to several division and square root schemes, realized with static CMOS

standard cells, for which a reduction in the energy dissipation of about 40 percent

is obtained with respect to the standard implementation optimized for minimum

delay. This reduction is expected to be even larger if low-voltage gates, for dual

voltage implementation, are available.

xiv

Introduction

In recent years the demand for low-power electronic systems has increased due to

both the massive advent of portable devices, which require small and light batteries,

and the increased densities on chip and the consequent necessity of reducing the

energy dissipated.

In digital systems the number of transistors on a chip doubles every two years

and the smaller device size allows the use of faster clocks. As a consequence, the

charging and the discharging of many devices due to more frequent transitions

of the signals causes an increase of energy dissipation. This increase in energy

consumption results in many side effects that can increase the cost of the system

or even compromise its functionality.

It is reported that current microprocessors, such as the Pentium or the Alpha,

dissipate about 30 W [1]. A system that dissipates more than 2 W cannot be placed

in a plastic package and the use of ceramic packaging, heat sinks, and coolant fans

raises significantly the cost of the product. Moreover, a chip that dissipates 30 W

at 3.3 V requires wires on the circuit board that can deliver a current of about

10 A.

More serious problems can arise in case of large current densities, since electro-

migration, caused by large currents flowing in narrow wires, might produce gaps or

bridges in the power-rails of the chip with a consequent permanent damage of the

system.

The possibility to put entire systems on a chip and the miniaturization of I/O

devices (displays, sensors, etc...), brought on the market a variety of portable prod-

ucts such as cellular phones, laptop computers, personal digital assistants (PDA),

1

2

GPS receivers, and medical devices. The critical resource of these systems is the

battery lifetime, which can be lengthened by reducing the energy dissipation. This

reduction also enables the use of smaller, and lighter, batteries. A cellular phone

that requires a battery recharge every hour or a laptop computer powered by a car

battery are not very practical. For this reason it is essential that portable systems

be designed for low-power.

This work investigates the implementation of low-power double-precision float-

ing point division and square root units compliant with the IEEE standard [2].

These units are common in general-purpose processors, but the results obtained

can be extended also to units with a different number of bits implemented in DSP

cores or other application-specific processors.

Although division and square root are not very frequent ignoring their imple-

mentations can result in system performance degradation [3]. We briefly summarize

some facts stated in [3]. Table 0.1 shows the average frequency of floating-point

(FP) operations in the SPECfp92 benchmark suite. By assuming a machine model

of a scalar processor, where the FP-adder and FP-multiplier have both a latency of

3 cycles and the FP-divider has a latency of 20 cycles, a distribution of the excess

CPI (cycles per instruction) due to stalls in the FP-unit is shown in Figure 0.1.

The stall time is the period during which the processor was ready to execute the

next instruction, but the dependency upon an unfinished FP-operation prevented

it from continuing. This excess CPI reduces the overall performance by increasing

the total CPI. Figure 0.1 shows that, although division is less frequent than ad-

dition and multiplication, its longer latency accounts for 40% of the performance

degradation. For this reason, many general-purpose microprocessors implement di-

vision in hardware and try to make it fast enough not to compromise the overall

performance.

3

Percent of all FP instructions
division 3 %
square root 0.3 %
multiplication 37 %
addition 38 %
other 21 %

Table 0.1: Instruction mix.

0

5

10

15

20

25

30

35

40

45

FP-div FP-add FP-mul

FP excess CPI (%)

Figure 0.1: FP-unit stall time distribution.

4

FP-adder FP-multiplier
technology CMOS 0.5 µm, 3.3 V CMOS 0.5 µm, 3.3 V
fMAX 164 MHz 286 MHz
Area 2.5× 3.5 mm2 4.2× 5.1 mm2

n. pipeline stages 5 5
Energy per 3.24 mW/MHz 5.10 mW/MHz
operation Eadd = 16 nJ Emul = 25 nJ

Table 0.2: Data on implementations [5] and [6].

As for the energy dissipation, no data on the comparison of division with other

FP operations are available in literature. In [4] (pages 194-198), a quite coarse

evaluation is done using only the number of transitions to estimate the energy

dissipation of a radix-2 and a radix-4 divider, without an actual implementation.

Because this evaluation did not take into account the switching capacitance and only

the recurrence part of the low radices 2 and 4 is evaluated, the results obtained do

not illustrate very well the design issues of low-power dividers. The implementations

of a FP-adder and FP-multiplier, realized by the same group of people with the

same technology, are described in [5] and [6], respectively. Table 0.2 summarizes

the data of the two implementations.

In order to evaluate what percentage of the energy consumption is dissipated in

the divider, we implemented with our library the 54 × 54-bit multiplier described

in [7] and determined the energy consumed per multiplication which resulted to

be Emul = 15 nJ . By assuming the same ratio Emul

Eadd
as in Table 0.2, we estimated

the energy consumed in a FP addition as Eadd = 10 nJ . Finally, we computed

the energy dissipation for the radix-4 divider of Section 4.2, which resulted to be

Ediv = 40 nJ . Combining these values with the instruction mix of the program

spice (see Table 0.3 [8]), we obtained the breakdown for the energy dissipated in

the FP-unit shown in Figure 0.2.

Figure 0.2 shows that although division is less frequent than addition and mul-

5

Instruction Percent Unit
division 8 % FP-div
multiplication 26 % FP-mul
addition 14 %
subtraction 22 %
comparison 7 %
move 2 %

45 % FP-add
other 20 % -

Table 0.3: Instruction mix in program spice.

0

5

10

15

20

25

30

35

40

FP-div FP-add FP-mul

Espice in FP-unit (%)

Figure 0.2: Breakdown of energy in FP-unit.

6

tiplication, because of its longer latency, it dissipates about 30% of the total energy

consumed in the floating-point unit when running the program spice. Consequently,

it is important that division unit be designed for low-power. For these reasons, we

explore the possibilities of reducing the energy dissipated in division and square root

units. Our main objective is to reduce the energy consumption without increasing

the execution time. However, we also consider tradeoffs between delay and energy

in some cases. Furthermore, we study the relation between energy dissipation and

the radix of division and square root implementation.

The research is carried out by implementing, with a static CMOS standard cell

library, a set of division and square root units, and by applying several techniques

aiming to reduce the energy dissipation. Since the energy dissipated in CMOS cells

is proportional to the number of transitions, to the output load, and to the square

of the operating voltage [9], we reduce the number of transitions, the capacitance

and estimate the impact of using a lower voltage. For the energy reduction, we

separate the units into two portions, the recurrence and the on-the-fly conversion

and rounding [10]. In the first portion, we retime the recurrence to reduce the

glitches and to constrain the critical path to the most-significant slice. This allows

the replacing in the non-critical slice of the radix-2 carry-save adder cell by a radix-

r version to reduce the number of flip-flops. Moreover, in the non-critical slice we

use low-drive and low-voltage cells. Finally, we equalize the signal paths to reduce

the glitches. For the on-the-fly conversion and rounding, we modify the algorithm

to reduce the number of flip-flops and their activity. For these low-activity flip-

flops, we use individual gated clocks to reduce the energy of the flip-flops that

do not change. In addition, we implement gated trees to reduce the energy in

the distribution of signals. The energy dissipation is computed from the actual

implementations in most cases, and estimated in others.

7

Results show that the energy dissipated to complete one operation is almost

constant for several radices, and that in most cases it is possible to reduce the

energy dissipation between 40 and 60 percent without increasing the latency.

This work is organized as follows. Chapter 1 introduces background concepts

related to energy dissipation and the standards used in the number representa-

tion. Chapter 2 presents the algorithms used to perform division and square root.

Chapter 3 describes the techniques and methodologies used to reduce the energy

dissipation. Chapter 4 presents the actual implementations of the units and the

application of the techniques of Chapter 3. Chapter 5 summarizes the results ob-

tained and discusses some of the tradeoffs among different implementation. Finally,

Chapter 6 draws the conclusions.

Chapter 1

Background

Introduction

The main purpose of this chapter is to provide the necessary background for the

concepts and the methods presented in this work. First, we introduce the metrics

used to evaluate the energy and power dissipation and illustrate the main sources

of energy consumption in VLSI circuits based on static CMOS technology. Then,

we discuss different approaches aiming to reduce the energy dissipation, and a list

of simulation and optimization tools, at different levels of abstraction, is presented.

In the last part of the chapter, the IEEE format for floating-point and its utilization

for division and square root are briefly described.

1.1 Metrics

In this work a common measure of the energy dissipation is required in order to

evaluate and compare different approaches in low-power design. Because the algo-

rithms are in general different and the latency of the operations varies from case

to case, it is convenient to have a measure of the energy dissipated to complete an

operation. This energy-per-operation is given by

Eop =
∫

top

vi dt [J]

where top is the time elapsed to perform the operation. The energy-per-operation

is computed on a cell basis as the sum of the energy Ei dissipated in the ith-cell

during top

Eop =
N
∑

i=1

Ei [J] with Ei =
∫

top

vii dt [J].

8

9

Operations are usually performed in more than one cycle and the expression of top

is typically

top = Tcycle × (no. of cycles) [s].

By dividing the energy-per-operation by the number of cycles we obtain the energy-

per-cycle

Epc =
Eop

no. of cycles
[J].

The average power dissipation is the product of Epc and the clock frequency

Pf = Epcf =
Eop

top
= VDDIave [W] (1.1)

where VDD is the supply voltage and Iave is the average current.

1.2 Energy Dissipation in CMOS

Over the past decade, CMOS technology has played a dominant role in the market

of digital integrated circuits, and it is expected to continue in the near future. For

this reason, this work is focused on CMOS systems. Two components characterize

the amount of energy dissipated in a CMOS circuit [9]:

• Dynamic dissipation due to the charging and discharging of load capacitances

and to the short-circuit current.

• Static dissipation due to leakage current and other current drawn continuously

from the power supply.

The total energy dissipation for a CMOS gate can be written as

Egate = Eload + Esc + Eleakage . (1.2)

The quantity Eload is the energy dissipated for charging and discharging the

capacitive load CL when ni output transitions occur. If in a gate (like the one in

10

input output

VDD

SSV

LC

Figure 1.1: CMOS inverter loaded with CL.

Figure 1.1) one transition from the logic level ”low” (VSS = 0 V) to ”high” (VDD)

occurred1 at time t, we can write

Et =
∫ t

0
vi dt =

∫ t

0
v CL

dv

dt
dt = CL

∫ VDD

0
v dv =

1

2
CLV

2
DD . (1.3)

Consequently, for ni output transitions we have:

Eload =
1

2
CLV

2
DDni . (1.4)

The energy due to the short-circuit current is Esc. In a CMOS inverter (Fig-

ure 1.1), during a transition both the n and the p-transistors are on for a short

period of time. This results in a short current pulse from the power supply voltage

(VDD) to ground (VSS). With no loading the short-circuit current is quite relevant,

while by increasing the output loading the current drawn for charging or discharg-

ing the capacitance, becomes dominant. Esc depends on VDD, the transition time,

the gate design, the load CL and ni ([11] pages 92-97).

The energy due to leakage currents Eleakage is small and usually neglected, unless

the system spends a large amount of time in stand-by or sleep status.

1One transition from VDD to VSS produces identical results.

11

In the analysis of more complex gates, especially in standard cells libraries, the

energy is usually split into two contributions:

• energy dissipation due to the loading of the cell, which coincides with Eload

• energy dissipated internally, which is the sum of Esc and the energy dissipated

in charging and discharging the internal capacitances.

Therefore, the expression of the average energy dissipated in a cell is

Ei = Eload + Eint = (
1

2
CLV

2
DD + Eint) ni . (1.5)

in which Eint is the energy dissipated internally per transition and the term between

parenthesis represents the energy per transition.

For a circuit composed of several cells, the energy dissipation can be computed

as the sum of the energy dissipated in each cell. That is,

Etotal =
N
∑

i=1

Ei =
N
∑

i=1

(
1

2
CLi

V 2
DD + Eint

i) ni . (1.6)

1.3 Approaches to Energy Dissipation Reduction

Several techniques have been developed to reduce the energy dissipation of CMOS

systems. By expression (1.2) and expression (1.4), the minimization can be carried

out by reducing the supply voltage, the capacitance, the number of transitions (e.g.

the activity in the circuit), and by optimizing the timing of the signals and the

design of the gate to reduce the energy due to short-circuit currents.

A large impact on energy is made by the supply voltage. By reducing VDD the

energy dissipation decreases quadratically, but the delay increases and the perfor-

mance is degraded. A possible solution is that of using different supply voltages in

different parts of the circuit [12]. The parts not in the critical path are supplied by

12

lower voltages, while the critical one by the higher voltage [13]. Another technique

is to compensate the loss of performance by replicating the hardware (parallelism)

to keep the throughput [14].

Capacitance can be reduced at different levels. At transistor, or layout, level

by keeping the size of the device small and by optimizing the wire interconnection

capacitance during the floor-planning and the routing. At gate level, by using gates

specially designed for low-power and by merging a set of gates into a more complex

cell eliminating the interconnection capacitance [15]. It is important to note that by

reducing the capacitance, not only the energy dissipation, but also the performance

will be improved.

The number of transitions can be reduced at transistor level, by equalizing

the delay of the different paths to avoid the generation of glitches [16], and at

register-transfer (RT) level, by disabling both combinational and sequential blocks

not used at a particular time [17]. Combinational logic can be disabled by forcing

a constant logic value at its inputs, while in sequential circuits this can be obtained

by disabling the clock [18]. This last technique, known as clock gating, can be

also implemented at gate-level by gating the clocks to individual flip-flops [19].

Retiming is the circuit transformation that consists in re-positioning the registers

in a sequential circuit without modifying its external behavior [20]. By retiming it

is possible to stop the propagation of glitches reducing the activity in the system.

A combined optimization of number of transitions and capacitance is obtained by

swapping a pin whose activity is high with a pin with lower capacitance [15].

Further reduction are achieved by changing the data encoding and the algorithm

[21], [13].

The energy dissipation due to short-circuit currents can be reduced by careful

design at gate level and by buffering in order to avoid long transition (rise/fall)

13

times [11].

Finally, energy dissipation can be reduced by changing the fabrication process to

support very low-voltages, copper interconnects, and insulators with low dielectric

constants [1].

In this work, we reduce the energy by applying minimization technique at RT-

level and gate-level. Optimization of short-circuit energy dissipation and transistor

level techniques are not covered.

1.4 Asynchronous Systems

Recently there has been a renewed interest in asynchronous circuits due to the

potential better power efficiency over the traditional synchronous (clocked) systems

([11] pages 461-492).

Clocked circuits waste energy by clocking all parts of the chip whether or not

they are doing useful work. Clock trees are also responsible for a significant por-

tion of the energy dissipated in the chip. In asynchronous circuits the number of

transitions is reduced, but the self-timing requires the use of additional logic for

control signals. There is a tradeoff between number of transitions and capacitance

(extra logic).

In this work, the research on low-power division and square root is limited to

synchronous circuits.

Examples of a self-timed divider and of a self-timed shared division and square

root unit are presented in [22] and [23], respectively. The area of the latter unit, as

stated in [23], is about 1.7 larger than the corresponding synchronous implemen-

tation. However, no information on power or energy dissipation is provided in the

articles in question, and a comparison with the corresponding synchronous units

is undoable because of unknown parameters such as circuit activity and switching

14

capacitance.

1.5 Tools for Low-Power Design

Computer-aided design (CAD) tools are used to speed-up the design process and

improve the productivity. As mentioned above, techniques for low-power integrated

circuits (IC) design can be applied at every level of abstraction and some CAD tools

that take into account power constraints, in addition to the traditional delay and

area constraints, start to be available [11].

In the design of a system two fundamental aspects are analysis and optimization.

CAD tools analyze a system to extract information on performance, area and power

dissipation. This information is then used to evaluate if the designed system met the

constraints and/or to optimize the design. Estimators for average energy dissipation

can be either based on simulation or on probabilistic models of the energy dissipated

in a circuit, or on statistical estimation techniques [24].

Methods based on simulation give good accuracy and are straightforward to

implement. Simulations at transistor level monitor the power supply current wave-

form, at higher level the number of transitions is counted and energy is estimated

by expression (1.6), or equivalent. However, simulation methods are pattern-

dependent and in an early phase of the design, patterns generated by several func-

tional blocks might be still unknown. Furthermore, the simulator and the energy

estimator can either be tightly-coupled or loosely-coupled [25]. In tightly-coupled

systems the estimation is done at run time, while in loosely-coupled systems the

simulator outputs the transition statistics on a file for the energy estimator. The

main advantage of the latter is the flexibility: different simulators can be used in

different design stages.

The estimation using probabilities alleviates the pattern-dependency problem.

15

Instead of simulating the circuit for a large number of patterns and then averaging

the result, one can assume a distribution of the probability of the inputs and use

that information to estimate how often internal nodes switch. Signal probabilities

are propagated into the circuit assuming different timing, probability propagation

and energy models that, depending on the specific tools, take into account tempo-

ral and spatial correlation of the signals, short-circuit energy and so on. To some

extent, the process is still pattern-dependent because the user has to supply the

probabilities of the inputs. However, this information might be more readily avail-

able than specific input patterns. The drawback of these estimators is that they

use simplified models, so that they do not provide the same accuracy as circuit sim-

ulations. Better accuracy can be obtained at expenses of more complicated models

and longer execution times. There is a tradeoff between accuracy and speed.

Statistical methods do not require specialized models. They use traditional sim-

ulation models and simulate the circuit for a limited number of randomly generated

input vectors while monitoring the energy. Those vectors are generated from user-

specified probabilistic information about the circuit inputs. Using statistical esti-

mation techniques, one can determine when to stop the simulation once a specified

estimation error is obtained. Details of these methods are given in Section 4.1.1.

In general, it is not clear which is the best approach, but statistical methods

offer a good mix of accuracy, speed and ease of implementation [24].

CAD tools can be differentiated by the level of abstraction at which they operate.

We describe below, tools to perform analysis and synthesis for low-power.

1.5.1 Transistor Level

Tools for estimation at transistor level achieve the best accuracy, but require the

longest run time. At this level, energy evaluation is done by simulations and SPICE

16

is the reference among the simulators. However, other commercial tools claim

an accuracy within 5% of SPICE and execution times up to x1000 faster [25].

Transistor level estimators are typically used to characterize cells and modules for

use at the higher abstraction levels.

Optimization at this level is done by tools which resize the transistors according

to given power/delay/area constraints [25].

1.5.2 Gate Level

Energy estimation at gate level is less accurate than energy estimation at the tran-

sistor level, but it is faster and can be done in an earlier stage of the design with

good accuracy (10-15%). Energy values can typically be reported by signal, gate

or blocks of gates.

Optimization is done by using several techniques (refer to Section 1.3) to reduce

the energy under given timing constraints. One popular commercial tool with power

optimization capability is Synopsys Power Compiler [26].

1.5.3 Architectural Level

At this level estimation is mainly done with probabilistic models by analyzing

VHDL or Verilog descriptions of the system. The accuracy is in the range 20-

25%, but large circuits can be analyzed in a short time at an early stage of

the design [1]. A commercial tool available for estimation at this level is Sente

WattWatcher/Architect [27].

Optimization at this level is currently an interactive process, consisting in the

evaluation of various design alternatives and the subsequent choice of the design

that best fits the project constraints [1].

17

1.6 Floating-Point Division and Square Root

1.6.1 IEEE Floating-Point Standard

The IEEE floating-point standard 754 defines formats for binary representation

of floating-point numbers [2]. The two basic formats are the single-precision 32-

bit format and the double-precision 64-bit format. We now, briefly describe the

double-precision format which is the one used in the rest of this work.

The 64 bits of the double-precision format are divided into three fields: 1-bit

field representing the sign S, a 11-bit field representing the biased exponent E, and

a 52-bit field f which represents the fractional part of the significand (1.f). Thus,

the floating-point number F is represented by the following expression

F = (−1)S1.f 2E−1023 .

Because the significand is normalized in the range 1 ≤ 1.f < 2, its integer bit

is always 1 and is omitted (hidden bit) in the binary representation. The IEEE

standard also describes rounding schemes that are necessary when the number of

bits required for the representation of a number exceeds the total allowed by the

format. The round-off schemes are the following: truncation, round-to-nearest-

even, round to +∞, and round to −∞ [28].

1.6.2 Division and Square Root

When performing the division of two floating-point numbers X and D, such as:

X = (−1)Sx x 2Ex−1023 and D = (−1)Sd d 2Ed−1023

three different operations have to be performed on sign, exponent, and significand

to produce the quotient of the division Q

Q =
X

D
= (−1)Sq q 2Eq−1023 .

18

The sign ofQ is Sq = Sx⊕Sd, its exponent is given by the subtraction Eq = Ex − Ed,

and the significand by the division q = x/d. The quotient q produced by the division

of the two significands is not normalized, but in the range 1
2
< q < 2, and a step of

post-normalization is required when x < d. This post-normalization step consists

in shifting q one position to the left and decrementing the exponent Eq by one.

An alternative to post-normalization is pre-shifting. Pre-shifting is done be-

fore performing the division by shifting one of the operands to obtain x ≥ d and

consequently, q is already normalized in [1, 2).

In square root,

S =
√
X = s 2Es−1023 ,

the sign of the radicand is always positive, the exponent must be halved and the

square root operation has to be performed on the significand. The operation to

perform on the exponent is the following:

Es =
⌊

Ex − 1023

2

⌋

+ 1023

and the significand x must be shifted one position to the right (pre-shifting) if Ex

is even. For the significand, we compute:

s =

√
x if Ex is odd

√

x
2

if Ex is even.

In the rest of this work, we describe only the operations (division and square

root) to be performed on the significands and we treat rounding assuming that the

operands are pre-shifted.

Chapter 2

Algorithms

Introduction

In this chapter the division and square root algorithm are summarized. In the

first part of the chapter, we describe the digit-recurrence algorithm for division,

the on-the-fly conversion and rounding algorithm and give an example of division

performed with the two algorithms. Then two modifications to the division algo-

rithm are discussed to make it suitable for high radices. Finally, the square root

algorithm and its combination with division are described.

2.1 Division Algorithm

Digit-recurrence algorithms for division and square-root give probably the best

tradeoff delay-area [29], and are the focus of this work. Digit-recurrence algorithms

produce a fixed number of result bits every iteration, determined by the radix.

Higher radices reduce the number of iterations to complete the operation, but

increase the cycle time and the complexity of the circuit.

The division algorithm, described in detail in [10], is implemented by the residual

recurrence

w[j + 1] = rw[j]− qj+1d j = 0, 1, . . . ,m− 1 (2.1)

with initial value w[0] = x, where r is the radix, x the dividend, d the divisor, and

qj+1 the quotient digit at the j-th iteration, such that the quotient is

q =
x

d
=

m
∑

j=1

qjr
−j (2.2)

19

20

where m is the number of iterations needed to produce the n + 1 bits of the con-

ventional representation (53 for IEEE double-precision format + one rounding bit).

Both d and x are normalized in [0.5, 1) and x < d1.

The quotient digit is in signed-digit representation {−a, . . . ,−1, 0, 1, . . . , a} and

the residual w[j] is stored in carry-save representation (wS and wC). The quotient

digit is determined, at each iteration, by a selection function

qj+1 = SEL(dδ, ŷ)

where dδ is d truncated after the δ-th fractional bit and

ŷ = rwSt + rwCt

where rwSt and rwCt refer to the carry-save representation of the shifted residual

truncated after t fractional bits. The quotient digit is selected so that

− a

r − 1
d < w[j] <

a

r − 1
d (2.3)

Since expression (2.3) is the condition for convergence for the algorithm, x might

need to be shifted one bit to the right to have a bounded residual w[0] in case

a < r − 1. Moreover, for simplicity of implementation, it is convenient to have the

rounding bit produced in the least-significant bit of the quotient digit (i.e. in the

last iteration we compute both bits of the quotient and the bit to be rounded), and

to achieve this, x is shifted to the right accordingly. A correction step is required at

the end if the final residual is negative. In addition, rounding to the nearest-even is

done by adding 1 in the last bit of the partial quotient. To perform this correction

and rounding, we need to determine the sign of the final residual and if it is zero

(necessary for the round-to-nearest-even scheme).

1Because in IEEE standard floating-point quantities are normalized in [1, 2) it is necessary to
right-shift the operands one position. Furthermore, if x ≥ d, x is right-shifted an extra position
(pre-shifting).

21

The signed-digit representation of the quotient must be converted to the con-

ventional representation in 2’s complement; the on-the-fly convert-and-round algo-

rithm performs this conversion as the digits are produced and does not require a

carry-propagate adder.

A possible scheme to perform the division algorithm is shown in Figure 2.1.

The recurrence is implemented with the selection function (SEL), the multiple

generator (MULT), the carry-save adder (CSA) and two registers (REG) to store

the carry-save representation of the residual. The number of bits in the recurrence

(s), depends on the radix r and on the redundancy factor ρ = a
r−1

. Because of

the carry-save representation of the residual, the selection function in Figure 2.1 is

composed by a b-bit carry-propagate adder and a logic function.

The conversion block performs the conversion from the signed-digit quotient

and the rounding according to the sign of the final residual and the signal that

detects if it is a zero, which are produced by the sign-zero-detection block (SZD).

The scheme is completed by a controller (not depicted in the figure).

This algorithm is used effectively for radix 2, 4 and 8. For higher radices the

selection function is too complex and its delay too high.

2.2 Conversion and Rounding Algorithm

We summarize the on-the-fly convert-and-round algorithm described in full detail

in [10]. Three registers are needed to store Q, QM, and QP (Figure 2.2). However,

as explained later, when the rounding is done in the least-significant position, and

a < r − 1 two registers Q and QM are sufficient.

The rounding is done using the round-to-nearest-even scheme, which is manda-

tory in the IEEE standard [28]. The other rounding schemes are not discussed here,

but they can be realized with the same unit used for the round-to-nearest-even case.

22

Sel. Function

Multiple gen.

d x

delta

53

q

53

2a−1

2a−1

53

b b

ss

s s

s

s

s

s

2

Sign−Zero Detection

Carry Save Adder

Mux

Conversion & Rounding

Register Ws

Register Wc

Figure 2.1: Block diagram of radix-r division.

23

log r
2co

nv
er

te
r

si
gn

ed
−

di
gi

t

+

−

1

1

n

n

n

shift−register Q

shift−register QM

shift−register QP

Figure 2.2: Convert and round unit.

After iteration j the three registers contain

Q[j] = q[j] rj−m , QM [j] = (q[j]− 1) rj−m , and QP [j] = (q[j] + 1) rj−m

with

q[j] =
j
∑

k=1

qkr
−k.

Registers Q and QM are updated every iteration by the following rules:

Q[j] ⇐ (shl(Q[j − 1]), qj) if qj > 0

QM [j]⇐ (shl(Q[j − 1]), qj − 1)

Q[j] ⇐ (shl(Q[j − 1]), 0) if qj = 0

QM [j]⇐ (shl(QM [j − 1]), r − 1)

Q[j] ⇐ (shl(QM [j − 1]), r − |qj|) if qj < 0

QM [j]⇐ (shl(QM [j − 1]), (r − 1)− |qj|)

where, for example, Q[j] ⇐ (shl(Q[j − 1]), qj) means that the register Q at

iteration j is shifted one digit to the left and the last digit is loaded with qj. In

24

j qj Q QM
1 1 xxxxxxxx1 xxxxxxxx0
2 2 xxxxxxx12 xxxxxxx11
3 0 xxxxxx120 xxxxxx113
4 -1 xxxxx1133 xxxxx1132
5 0 xxxx11330 xxxx11323
6 0 xxx113300 xxx113233
7 2 xx1133002 xx1133001
8 -2 x11330012 x11330011
9 -1 113300113 113300112

Table 2.1: Example of radix-4 conversion.

QM, the current digit is given by qj − 1 (mod r). Table 2.1 shows an example of

conversion for radix-4 and a = 2.

Register QP is updated every iteration by the following rules:

QP [j] ⇐ (shl(QP [j − 1]), 0) qj = r − 1

QP [j] ⇐ (shl(Q[j − 1]), qj + 1) −1 ≤ qj ≤ r − 2

QP [j] ⇐ (shl(QM [j − 1]), r − |qj|+ 1) qj < −1

In the last iteration the rounding of the bit in the least-significant position is

performed as follows. First the quotient digit qm is converted into

gm = qm (mod r) .

Then, the rounded digit p is computed according to Table 2.2, where SIGN = 0

if the final residual is positive, ZERO = 1 if it is zero, and G1 represents the

bit before the least-significant in gm. Two operations have to be performed in the

rounding step:

1. If the remainder is negative, the quotient must be decremented by 1 (in round-

ing position).

2. To round-to-the-nearest 1 has always to be added in rounding position.

25

qm SIGN ZERO p case

r − 1 0 0 0 1
0 1 0 1
1 - r − 1 2

0 ≤ qm < r − 1 0 0 gm + 1 2
0 1 gm +G1 2
1 - gm 2

-1 0 - 0 2
1 - r − 1 3

qm < −1 0 0 gm + 1 3
0 1 gm +G1 3
1 - gm 3

Table 2.2: Values of p in the rounding step.

Finally, the quotient is obtained by

q =

shl(QP [m− 1]), pt) if case 1

shl(Q[m− 1]), pt) if case 2

shl(QM [m− 1]), pt) if case 3

(2.4)

where

pt =
⌊

p

2

⌋

.

2.3 Example of Division

We now show an example of application of the division algorithm for the case of

radix-4 with a = 2. The selection function is given in Table 2.3. The quotient digit h

selected is the one satisfying the expressionmh ≤ ŷ < mh+1. The example, shown in

Table 2.4, is for the division x/d with x = 0.5 and d = 0.6 = 0.10011001... (binary)

which produces q = 0.83. The binary value of dδ (δ = 3) is 001. The bit of weight

2−1 is always omitted because it is always 1 for the normalization 1/2 ≤ d < 1.

Values in table, except qj+1, are given as hexadecimal vectors.

26

mh dδ
8/16 9/16 10/16 11/16 12/16 13/16 14/16 15/16

m2 0C 0E 0F 10 12 14 14 18
m1 04 04 04 04 06 06 08 08
m0 7C 7A 7A 7A 78 78 78 78
m−1 73 71 70 6E 6C 6C 6A 68

Values in table (multiplied by 16) are in hexadecimal

Table 2.3: Selection function for radix-4 division.

2.4 Division by Overlapping Stages

As the radix increases the number of iterations needed to compute the quotient of

the division are reduced, but the selection function becomes more complicated.

Higher radices can be obtained by executing several recurrence iterations in

the same cycle. This produces more bits of the result per cycle. However, the

cycle time is lengthened and its longer delay offsets the benefit of having a reduced

number of cycles. The only reduction in time is due to register loading that is

done once for cycle. As an alternative, lower radices stages can be overlapped to

reduce the cycle time and the latency of division [10, 30, 31]. When the delay

in the selection function is dominant over the delay of the other components of

the recurrence (carry-save adders, multiple generators, multiplexers) it might be

convenient to replicate and overlap more selection functions.

In the case shown in Figure 2.3, two stages are overlapped. The first stage

produces qj+1 which is used to select qj+2 among all the possible combination of

ŷj+1 = trunc (rw[j]− qj+1d). Because only a few bits of the carry-save represen-

tation of w are needed in the selection function, all ŷs can be obtained by small

CSAs at the input of the selection functions (one for each possible value of qj+1).

For example, for a = 2 five selection functions and four small CSAs are required

to generate qj+2. The resulting quotient digit, for the scheme of Figure 2.3, is

27

j ŷ qj+1 −qj+1d ws[j] wc[j] q

0 00 0 000000000000000 020000000000000 000000000000000 00000000000000

1 08 1 366666600000000 1E66665FFFFFFFF 000000000000001 00000000000001

2 79 -1 099999A00000000 100000DFFFFFFF8 133332400000008 00000000000003

3 0C 1 366666600000000 1AAAAC20000003F 088886BFFFFFFC1 0000000000000D

4 0C 1 366666600000000 1EEECC200000007 044465BFFFFFFF9 00000000000035

5 0C 1 366666600000000 1CCCC0200000007 06666DBFFFFFFF9 000000000000D5

6 0C 1 366666600000000 1CCCD0200000007 06664DBFFFFFFF9 00000000000355

7 0C 1 366666600000000 1CCC10200000007 0666CDBFFFFFFF9 00000000000D55

8 0C 1 366666600000000 1CCD10200000007 0664CDBFFFFFFF9 00000000003555

9 0C 1 366666600000000 1CC110200000007 066CCDBFFFFFFF9 0000000000D555

10 0C 1 366666600000000 1CD110200000007 064CCDBFFFFFFF9 00000000035555

11 0C 1 366666600000000 1C1110200000007 06CCCDBFFFFFFF9 000000000D5555

12 0C 1 366666600000000 1D1110200000007 04CCCDBFFFFFFF9 00000000355555

13 0C 1 366666600000000 111110200000007 0CCCCDBFFFFFFF9 00000000D55555

14 77 -1 099999A00000000 1EEEEFDFFFFFFF8 022221400000008 00000003555553

15 03 0 000000000000000 13333A7FFFFFFC0 11110A000000040 0000000D55554C

16 10 2 2CCCCCC00000000 04440D4000001FF 1999D17FFFFFE01 00000035555532

17 77 -1 099999A00000000 1EEEE95FFFFFFF8 02222B400000008 000000D55554C7

18 03 0 000000000000000 1333087FFFFFFC0 11114A000000040 0000035555531C

19 10 2 2CCCCCC00000000 0445C54000001FF 1998517FFFFFE01 00000D55554C72

20 77 -1 099999A00000000 1EEFC95FFFFFFF8 02222B400000008 000035555531C7

21 03 0 000000000000000 1337887FFFFFFC0 11104A000000040 0000D55554C71C

22 10 2 2CCCCCC00000000 0453C54000001FF 1998517FFFFFE01 00035555531C72

23 77 -1 099999A00000000 1EB7C95FFFFFFF8 02922B400000008 000D55554C71C7

24 04 1 366666600000000 06F1EE20000003F 149C4ABFFFFFFC1 0035555531C71D

25 6D -2 133333400000000 1A85A13FFFFFFF8 06E675800000008 00D55554C71C72

26 05 1 366666600000000 07E934A0000003F 142D8CBFFFFFFC1 035555531C71C9

27 6F -2 133333400000000 1C21D33FFFFFFF8 076C65800000008 0D55554C71C722

28 0D 1 366666600000000 1B50BCA0000003F 094E8CBFFFFFFC1 35555531C71C89

29 rounding step: sign (ws + wc) = 0 --> add 1 1

35555531C71C8A

hex 35555531C71C8A trunc. in last bit = 1AAAAA98E38E45 = 0.83 decimal

Table 2.4: Example of radix-4 division.

28

SEL mult. gen. CSA

SEL mult. gen. CSA

SEL

SEL

sh. CSA

SEL

sh. CSA. . . .

. . . .

mux

r w [j]

q
j+1

q j+2

r w [j] −ad adŷ ŷcs

to mult. gen and conversion

Figure 2.3: Selection function with overlapped stages.

rqj+1 + qj+2.

Because of the replication of the selection function, which number is proportional

to a, the radices which are suitable to be overlapped are 2 and 4. The drawback

of this scheme is the use of hardware duplication and, therefore, a resulting larger

area.

2.5 Very High Radix Division

Another division unit studied is the digit-recurrence algorithm radix-512 with scal-

ing and quotient-digit selection by rounding, presented in [10, 32]. The unit, imple-

mented in [33], showed a speed-up of about 2.0 over the radix-4 divider. Although

radix-512 belongs to the category of the digit-recurrence algorithms, the implemen-

tation is quite different from the ones for lower radices and some structures such as

recoders and trees of adders are present.

For radix-512 nine bits of the quotient are produced every iteration. To apply

the quotient-digit selection by rounding, the divisor must be within a determined

range. To achieve this, both operands are scaled by a quantity M ≈ 1
d
so that:

z = Md

29

and

w[0] = Mx

and the condition to be satisfied is:

1− r − 2

4r(r − 1)
< z < 1 +

r − 2

4r(r − 1)

that for the specific case of radix-512 is

0.9995127 < z < 1.0004873 .

The recurrence to be executed, for r = 512, is:

w[j + 1] = rw[j]− qj+1z j = 0, 1, . . . 5

with initial value w[0] = Mx and quotient-digit selection:

qj+1 = bŷ + 1/2c

where qj+1 = {−511, . . . , 0, . . . , 511} is the quotient digit generated in iteration j

and ŷ = {rw[j]}2, that is rw[j] truncated to its 2nd fractional bit. The quantity M

can be calculated with different methods. By using linear approximation we obtain

M = −γ1d15 + γ2

where M is truncated to its 13th fractional bit and the two coefficients

γ1 =
1

d6
2 + d62−6 + 2−15

γ2 =
2d6 + 2−6

d6
2 + d62−6 + 2−15

are also truncated to their 13th fractional bit and in the range:

1 < γ1 < 4 2 < γ2 < 4 .

Moreover, d15 and d6 are the divisor d truncated to its 15th and 6th bit respectively.

30

The residual w[j] is in carry-save representation to avoid carry-propagation in

the addition and the quotient-digit qj+1 is also in carry-save representation be-

fore the recoding. The multiplication qj+1z is performed by recoding one of the

operands. This recoding is done from the carry-save representation of the shifted

residual and the recoder also produces the quotient-digit obtained by the rounding

of two fractional bits of the shifted residual [32]. The recoded operand is in signed

digit representation and each digit can assume the values {−2,−1, 0, 1, 2}.

The algorithm, represented by the block diagram in Figure 2.4, is divided into

four parts:

1. M calculation (1 iteration),

2. scaling of the two operands (2 iterations),

3. execution of the recurrence (6 iterations),

4. final rounding (1 iteration),

for a total of ten iterations needed to perform one division.

An example of application of the radix-512 division algorithm is shown in Ta-

ble 2.5, The division of x = 0.5 and d = 0.6 produces q = x/d = 0.83. Values in

table, except qj+1 and z, are given as hexadecimal vectors.

2.6 Square Root Algorithm

The algorithm to compute the square root is quite similar to the division one. It is

implemented, as described in [10], by the recurrence

w[j + 1] = rw[j]− (2S[j]sj+1 + s2
j+1r

−(j+1)) j = 0, 1, . . . m (2.5)

31

gamma table

MUX

Recoder

Carry Propagate Adder
z

q

M

q
j+1

rw

2 x (10+2)

67

2 x 15

2 x 15

/

/

/

/

/ 67 /

53/

/

53/

d

/
5

/ 15

M
_b

lo
ck

M_multadd

4 x 8

2 x 67

MUX

Conversion & Rounding

Register Z

Register W

Register M

53/

x

sign zero

Multiple Generator

Accumulator

(carry−save adder)

Figure 2.4: Block diagram of radix-512 divider.

32

j qj+1 ŷs ws[j] ŷc wc[j] q z

- Ms = 7557 Mc = 5550

- - 379B|262DD97FFFFFC0 1065|66A44900000040 00000000000000 1.0002595 dec

0 - 3540|DFFFFFFFFFFFC0 116A|40000000000040 00000000000000

1 427 3A2A|E07F0B7FFFF000 032A|3D016900001000 000000000001AB

2 -341 2D66|FEF9F4807FFFF0 1532|124C16FF800010 00000000035555

3 166 3E30|F52F5EFFFFFFC0 0396|46A54200000040 00000006AAAAA6

4 114 3986|89595CFFFFFFE0 04B2|6A554600000020 00000D55554C72

5 -398 3DD5|C83612FFFFFF80 0450|4AA34A00000080 001AAAAA98E38E

6 136 3D05|A1B2768003FFF0 06D4|B49312FFFC0010 35555531C71C89

rounding step: sign (ws + wc) = 0 --> add 1 1

35555531C71C8A

hex 35555531C71C8A trunc. in last bit = 1AAAAA98E38E45 = 0.83 decimal

Table 2.5: Example of radix-512 division.

33

with initial value w[0] = x−1 and S[0] = 1.0. The quantity S[j] is the partial result

and sj+1 is the result digit chosen at the j-th iteration by the selection function

sj+1 = SEL(S[j]δ, brw[j]ct) .

The condition for convergence is

−2ρS[j] + ρ2r−j < w[j] < 2ρS[j] + ρ2r−j .

In general, it is not possible to have single selection function for all values of j. For

a more accurate description, refer to [10].

By comparing expression (2.5) with expression (2.1), the term inside () in

expression (2.5) substitutes qj+1d in expression (2.1). Because of these similarities

in the recurrence, it is convenient to implement division and square root in the

same unit as discussed next.

2.7 Combined Division and Square Root Algo-
rithm

Because of the similarities in the algorithm, division and square root can be effec-

tively implemented in the same unit [31, 10, 34]. The combined division and square

root, described in detail in [10], is implemented by the residual recurrence

w[j + 1] = rw[j] + F [j] j = 0, 1, . . . ,m (2.6)

in which

F [j] =

−qj+1d (division)

−(S[j]sj+1 +
1
2
r−(j+1)s2

j+1) (square root)
(2.7)

Since the partial result is initialized to Q[0] = 1.0 and S[0] = 1.0,

w[0] =

x− d (division)

1
2
(x− 1) (square root)

34

where x is the dividend/radicand, and d the divisor. Both d and x are normalized

in [0.5, 1) and x < d for division, while x is normalized in [0.25, 1) for square root.

The result digit (qj+1 for division and sj+1 for square root) are determined, at each

iteration, by a selection function

qj+1 = SELC(dδ, ŷ) (division)

sj+1 = SELC(Ŝ[j], ŷ) (square root)

where dδ and Ŝ[j] are respectively d and S[j] truncated after δ fractional bits, and

ŷ is an estimate of rw[j]. The result digit is in signed-digit representation and

the residual w[j] is stored in carry-save representation (wS and wC) to reduce the

iteration time. In order to use S[j] in the iterations, we need to convert the result

digits from signed-digit to conventional representation. The on-the-fly conversion

algorithm is used to perform this conversion. In the on-the-fly conversion, two

variables A and B are required. They are updated, in every iteration, as follows:

A[j] = S[j] and B[j] = S[j]− r−j

The recurrence is implemented, as shown in Figure 2.5 with the selection func-

tion (SEL), the block to form F (FGEN), a block (DSMUX) which provides FGEN

with the appropriate bit vectors2 (depending on the operation selected by signal

OP), a carry-save adder (CSA), and two registers to store the carry-save representa-

tion of the residual. The conversion block performs the conversion from signed-digit

to conventional representation and the rounding. The result is rounded in the last

iteration according to the sign of the final residual and the signal that detects if it

is zero, which are produced by the sign-zero-detection block (SZD).

2In special cases, such as for radix-2 and 4, one bit vector is sufficient.

35

Sel. Function

d x

53

53

53

2

Sign−Zero Detection

Mux

Conversion & Rounding

Register Ws

Register Wc

F generator

Carry−save Adder

DS Selector − DSMUX

A

A

OP

OP

Q, S

B

B

delta

2a−1

2a−1

b b

53 53

s

ss

s
s

s

s

s

Figure 2.5: Combined division/square root unit.

Chapter 3

Techniques to Reduce Energy
Dissipation

Introduction

In this chapter we describe the techniques used to reduce the energy consumption.

The radix-4 divider is presented in this chapter to establish a ”standard” imple-

mentation of the digit-recurrence algorithm and better explain the application of

energy reduction techniques to the unit. More detail on the implementation of the

blocks is given in Appendix A.

3.1 Radix-4 Division Algorithm and Basic Imple-
mentation

For radix-4 the recurrence is

w[j + 1] = 4w[j]− qj+1d j = 0, 1, . . . , 28

with the initial value w[0] = x and with the quotient-digit selection

qj+1 = SEL(d4, ŷ) qj = {−2,−1, 0, 1, 2}

where d4 is d truncated after the 4-th fractional bit, but only 3 bits are needed

for the selection, being the most-significant bit (MSB) 1 because d is normalized.

The estimated residual, ŷ = 4wS4 + 4wC4, is truncated after 4 fractional bits and

with the 3 integer bits gives a total of 7 bits required by the selection function.

The selection function for radix-4 and ρ = 2
3
is shown in Table 3.1. The quotient

digit h selected is the one satisfying the expression mh ≤ ŷ < mh+1. To have the

36

37

mh dδ
8/16 9/16 10/16 11/16 12/16 13/16 14/16 15/16

m2 12 14 15 16 18 20 20 22
m1 4 4 4 4 6 6 8 8
m0 -4 -6 -6 -6 -8 -8 -8 -8
m−1 -13 -15 -16 -18 -20 -20 -22 -24

Values in table are multiplied by 16

Table 3.1: Selection function for radix-4 division.

divider compliant with IEEE standard for double-precision while operating with

fractional values, 1-bit shifts are performed on the operands. Furthermore, to have

a bounded residual in the first iteration (expression (2.3) with w[0] = x), we shift

x one position to the right obtaining 54 bits for the representation of its mantissa.

Since it is convenient to have the extra bit required for the rounding produced

in the last position of the last digit, we shift x by an extra position to the right,

obtaining a total of 55 fractional bits and 1 sign bit for the recurrence (w[j]). Each

division requires 28 cycles to compute the quotient digits plus one cycle to initialize

the recurrence and one cycle to perform the rounding.

The block diagram of the basic radix-4 divider is shown in Figure 3.1. The

datapath shown in Figure 3.1 is completed by a controller and by a tree to distribute

the clock signal (not depicted in the figure). The critical path, shown in Figure 3.2,

is 7.0ns. The energy dissipation of the unit is shown in the first column of Table 4.1

at page 80. The largest part of the energy is consumed in the registers and in the

convert-and-round unit.

3.2 Classification of Techniques

In our approach to the reduction of the energy dissipated in the division or square

root unit, we consider two main portions: the recurrence and the conversion and

38

Sel. Function

Multiple gen.

d x

53

q

53

53

2

Sign−Zero Detection

Carry Save Adder

Mux

Conversion & Rounding

Register Ws

Register Wc

4 x 1

7

56

3

56

56
56

56

56

56

56

4 x 1

7

Figure 3.1: Implementation of radix-4 divider.

39

Selection Function Multiple gen. CSA Registers W

Figure 3.2: Critical path for radix-4 implementation in Figure 3.1.

rounding. The following techniques are applied to the recurrence part:

• retiming the recurrence

• changing the redundant representation to reduce the number of flip-flops in

the registers

• using gates with lower drive capability for gates not in the critical path

• applying dual voltage to portions of the circuit not in the critical path

• equalizing the paths to reduce glitches

• partitioning and disabling the selection function

• glitch filtering and suppression.

For the conversion and rounding part, the following techniques are applied:

• on-the-fly conversion algorithm modification

• disabling the clock in not changing flip-flops

• gating the trees to distribute signals

• applying dual voltage.

In addition we switch off not active blocks, when possible.

Most of the techniques described above do not alter the critical path and there-

fore do not increase the execution time of the operation performed. However, the

following techniques affect the critical path:

40

• partitioning and disabling the selection function

• glitch filtering and suppression.

For those techniques, tradeoffs between delay and energy consumption are consid-

ered.

3.3 Retiming the Recurrence

The position of the registers in a sequential system affects the energy dissipation.

Retiming is the circuit transformation that consists in re-positioning the registers

in a sequential circuit without modifying its external behavior [20]. By retiming

the recurrence we reduce the number of spurious transitions, reduce the switching

activity in some blocks, and change the critical path. The retiming is done by

moving the selection function from the first part of the cycle to the last part of

the previous cycle (see Figure 3.3). We have to introduce a new register to store

the quotient digit, but the register qj is quite small, a few bits, and it does not

compromise the energy saving obtained by retiming.

Since now the quotient digit is stored in a register, this has the effect of reducing

the glitches in the multiple generator and in the carry-save adder.

After the retiming, the critical path is limited to a few most-significant bits in

the recurrence. Since the path through the least-significant bits of the multiple

generator and the CSA does not include the selection function (Figure 3.4), these

bits can be redesigned for low-power, as discussed in the next sections.

As shown in Table 3.2, the retiming does not increase the number of cycles

needed to complete the operation.

Furthermore, by eliminating buffering for the few most-significant bits in the

critical path in MULT, we can reduce the critical path (Figure 3.5).

41

Sel. Function

d

53

x

Mux

53

to conversion

2

3

Multiple gen.

Carry Save Adder

1

Register Ws

Register Wc

q j+1

Sel. Function

j
Register q

to conversion

d x

Mux

53 53

1

2 Register Ws

Register Wc

Multiple gen.

Carry Save Adder

3

q j+1

b MSBs s−b LSBs

b

b

delta

ss

delta

bb

s s

Figure 3.3: Retiming of recurrence.

42

Selection Function Multiple gen. CSA

Multiple gen. CSA

Selection FunctionMultiple gen. CSA

Multiple gen. + CSA

j
Register q

Registers W

Registers W

s−b LSBs

b MSBs

b MSBs

s−b LSBs

a)

b)

Figure 3.4: Change in the critical path. Before a) and after b) retiming.

j cycle before retiming after retiming
0 1 w[0] = x w[0] = x

q1 = SEL(dδ, rx̂)
1 2 q1 = SEL(dδ, rx̂)

w[1] = rw[0]− q1d w[1] = rw[0]− q1d
q2 = SEL(dδ, rŵ[1])

.
j + 1 j + 2 qj+1 = SEL(dδ, rŵ[j])

w[j + 1] = rw[j]− qj+1d w[j + 1] = rw[j]− qj+1d
qj+2 = SEL(dδ, rŵ[j + 1])

.
m m+ 1 qm+1 = SEL(dδ, rŵ[m])

w[m+ 1] = rw[m]− qm+1d w[m+ 1] = rw[m]− qm+1d
qm+2 = not used

Table 3.2: Retiming does not increase number of cycles.

43

M U L T

mux mux mux mux

j
Register q

M U L T

mux mux

j
Register q

mux mux : : : : : :

: : : : : :

b MSBs s−b LSBs

: : :

a)

b)

Figure 3.5: Removing buffers from MSBs. a) before, b) after.

3.3.1 Reducing the Transitions in the Multiplexer

In this modified unit, the retiming allows the re-positioning of the multiplexer out

of the recurrence (Figure 3.3). In the first iteration the input x of the multiplexer

is selected, while the input d is selected in the remaining iterations. The operations

in the first cycle are modified by resetting register qj to 1 and allowing the input x

to be stored in registers W as the first residual w[0] = 1 · x.

The multiplexer is now in the critical path because it provides the value of

either x or d to the multiple generator, which inputs are otherwise connected to

44

mux

select

0

1

select

time

to MULT

from x

from d

clock

skew

Figure 3.6: Skewing of the select signal.

the registers. However, because the output of the multiplexer is changed once per

division, its delay can be masked by earlier switching. In fact, the mux-select is

the only signal sent from the controller to the recurrence and it can be skewed

(anticipated) at the end of the first cycle masking the delay of the multiplexer.

The mux-select signal can be skewed by adding the appropriate delay (e.g. some

buffers) in the distribution tree as shown in Figure 3.6.

3.4 Changing the Redundant Representation

Since the contribution of flip-flops to both energy dissipation and area is significant,

it is useful to change the redundant representation of the residual (wS and wC) to

reduce the number of flip-flops in the registers. By using a radix-r carry-save

representation with log2r sum bits and one carry bit for each digit, we can reduce

the number of flip-flops. With this modification we only need to store one carry bit

for each digit, instead of log2r.

The change in the redundant representation requires a redesign of the carry-

save adder to propagate the carry inside the digit (Figure 3.7). In Figure 3.7,

each radix-2 CSA (left in figure) is actually a full-adder (FA) implemented with

two half-adders (HA). The propagation of the carry increases the delay so that this

modification cannot be made for those cells (digits of w) that are in the critical

45

Cout

Cin

012

to reg. Ws

radix−r Adder
(lg r)−1

to reg. Wc

from prev. stagefrom mult. gen.from prev. stagefrom mult. gen.

SC

CSA

SC

CSA delay

to reg’s Wc & Ws

de
la

y

Figure 3.7: Replacing CSAs with radix-r CSAs.

path. After the recurrence has been retimed, the critical path is limited to the b

MSBs. The difference between the paths through the MSBs and the LSBs is

MSBs: MULT HA SEL REG

LSBs: MULT HA REG

For the LSBs in the recurrence we can redesign the CSA into a radix-r carry-save

adder (r-CSA) that satisfies the following condition on delays:

tr−CSA ≤ tHA + tSEL .

Furthermore, because the b MSBs of the residual are assimilated in the selection

function, in the retimed scheme these bits can be stored in register wS and the

corresponding b flip-flops in register wC eliminated (Figure 3.8).

3.5 Using Gates with Lower Drive Capability

Another reduction in the energy dissipation is achieved by minimizing the energy

in the gates not in the critical path by using cells with lower drive capability. In

the retimed recurrence, this is done for the least-significant bits (not in the critical

path) of the multiple generator and the carry-save adder (Figure 3.9).

46

Carry Save Adder

j
Register q Register Ws

Register Wc

to conversion to recurrence

delta

b

b s

s

s−bb

b MSBs s−b LSBs

SELadder

logic function

(s−b)/lg r + b

(s−b)/lg r

(s−b)/lg r

Figure 3.8: b MSBs assimilated in selection function.

q

MSB LSB

c
y

c
l e

 t

i m
 e

S
e

l e
 c

 t
i o

 n

F
u

n
c

t i
 o

 n

Register q R e g i s t e r s W

low−drive cells

b s − b

M u l t i p l e G e n e r a t o r

C a r r y − S a v e A d d e r

j+1

Figure 3.9: Low-drive cells in the recurrence.

47

3.6 Dual Voltage

The energy dissipated in a cell depends on the square of the voltage supply (VDD)

and a significant amount of energy can be saved by reducing it [14]. However,

by lowering the voltage the delay increases, so that to maintain the performance

this technique is applied only to cells not in the critical path. Different power

supply voltages require level-shifting circuitry that contribute to the total energy

dissipation. As a consequence, it is convenient to apply this technique only if the

number of cells not in the critical path is quite large, and the energy increase in the

level-shifting circuitry does not offset the reduction due to voltage scaling. However,

by using two voltages we only need to level-shift when going from the lower to the

higher voltage [35]. A more complete description of the level shifter for dual voltage

is presented in Appendix A.

In the case of the divider, as shown in Figure 3.10, the s − b least-significant

bits, can be redesigned for low-voltage. The voltage-level shifters are not needed

until a specific digit moves towards the b-MSBs, by shifting across iterations, and

into the critical path. By placing the voltage-level shifters in the digit immediately

before the b-MSBs the cycle time is not increased. In order to evaluate the possible

lower voltage V2 to be used in a dual voltage implementation we need to determine

the time slack available for the LSBs. The time slack is the difference between the

delay in the paths through the MSBs and LSBs, and it gives the amount of time

available for the delay of gates whose voltage is scaled to V2.

The delay of the least-significant portion depends on the type of CSA adder

used, since the delay of the radix-r CSA is larger than that of the radix-2 CSA.

Since the reduced voltage can be lower for radix-2 CSA, this might result in a

reduction of the total energy. There is a tradeoff between the following:

48

MSB LSB

c
y

c
l e

 t

i m
 e

low−voltage cells

S
e

l e
 c

 t
i o

 n

F
u

n
c

t i
 o

 n

Register q

level

shift

R e g i s t e r s W

b s − b

M u l t i p l e G e n e r a t o r

C a r r y − S a v e A d d e r

q
j+1

2
log r

Figure 3.10: Low-voltage cells in the recurrence.

• The voltage can be lower for radix-2 CSA

• There is a reduction in the number of flip-flops by using the radix-r CSA.

3.7 Equalizing the Paths to Reduce Glitches

By equalizing the paths of the input signals of the blocks we reduce the generation

of glitches [16]. Because of different delays, both gate and interconnection delay,

the input signals to the carry-save adder (CSA) arrive at different times, creating

spurious transitions inside the adders. For instance, Figure 3.11 shows, in the

upper part, a possible implementation of one of the full-adders composing the

carry-save adder. Pins a and b are directly connected to the registers, whereas

pin d is connected to the output of the multiple generator. If the input signals a

and b arrive at different times, glitches might be produced in e and f . Also, if there

is a difference between the arrival times of d and e, glitches might be produced in

S, g and C.

49

a
b

d

e

f

g

S

C

e d

time

time

1)

2)

e d

ba

ba

delay XOR

delay XORdelayed W

Figure 3.11: Equalizing paths in CSA.

Time diagram 1) in Figure 3.11 shows an example of the distribution of the

arrival times for signal a, b, d, and e. In order to eliminate the spurious transitions,

we delay the clock to the Ws and Wc registers (which produce a and b) so that the

signals e and d, overlap, as shown in time diagram 2) in Figure 3.11. However, it

is impossible to eliminate all the glitches because due to the different delays of the

XOR and NAND gates, signals at nodes f and g always arrive at different times.

3.8 Partitioning and Disabling the Selection
Function

The quotient-digit selection is a function of a few bits of the divisor and of the

residual. Since the divisor is fixed for the whole division operation, from the point

of view of energy consumption it is convenient to decompose the function into

50

adder

demux

. . . .

. . . .

d ŷ ŷs c

/

/

/

/

q
j

3

OR array

b b

b

q0 q1 q6 q7

Figure 3.12: Partitioned selection function.

subfunctions and to enable only the subfunction corresponding to the actual value

of the divisor. This is specially convenient for higher radices, because the quotient-

digit selection is more complex and therefore is responsible for a significant portion

of the energy.

Figure 3.12 shows an example (δ = 3 bits of the divisor are required) in which

the selection function is partitioned in 2δ = 8 parts (all the possible values of

d3). The demultiplexer transmits the assimilated value of ŷ to the selected pair of

selection tables and forces to zero the output of the others. Finally an array of OR

gates concentrates again the value of the quotient-digit.

Experimental results showed that the partioned selection function dissipates less

51

mux

from CSA

to SEL

select

0

1

from CSA

select

to SEL

time

Figure 3.13: Glitch suppression using multiplexers.

energy, but because of the demux and the OR gates the critical path increased.

3.9 Glitch Filtering and Suppression

In the retimed implementation, the selection function is connected to the output

of the carry-save adder, instead of directly after the registers (Figure 3.3). As

a consequence of its repositioning, there is an increase in the number of glitches

in the selection function. One way to filter those glitches is to buffer the selection

function with multiplexers acting as latches, as described in Figure 3.13. The select

signal is driven by a different clock (same period, different phase) that enables the

multiplexers to transmit the value from the CSA when it is stable, and hold the

current value otherwise. However, in this case the delay of the multiplexer affects

the critical path. More precisely, the additional delay in the critical path is due to

two contributions:

1. the intrinsic delay of the multiplexer (from input to output),

2. the delay of the select signal with respect to the time the output of the CSA

is stable.

This second contribution can be eliminated by triggering the select signal before

the output of the CSA is stable. However, in this case, some glitches might not be

suppressed.

52

3.10 Reductions in Conversion and Rounding

3.10.1 On-the-fly Conversion Algorithm Modification

In the conversion and rounding part of the divider, we both modified the algorithm

and applied gate-level energy reduction techniques.

We now describe the modifications in the conversion algorithm for the two cases:

a < r − 1 and a = r − 1.

When a < r−1, in the original algorithm, two registers (n bits each) are needed

to store Q and QM. The registers are filled with digits starting from the least-

significant position and then shifted towards the most-significant position. The

large number of flip-flops used and the shifting result in a large energy consumption

in the convert-and-round unit.

As a first step to reduce the energy dissipated, we load each digit in its final

position. In this way we avoid the need to shift digits along the registers. To

determine the load position we use an m-bit ring counter. The algorithm starts the

computation from the most-significant digit. In iteration j

• If qj ≥ 0 then load qj in Q and qj − 1 in QM, both in position i = m− j.

• If qj < 0 then load r− | qj | in Q and r− | qj | −1 in QM, both in position i.

As a second step, we eliminate register QM. When qj < 0 it is necessary to

propagate a borrow. In the original algorithm, QM is used to avoid this propa-

gation. Instead of the register, to propagate this borrow (without actually doing

the subtraction) the digits which change because of this propagation are marked.

These digits correspond to the last sequence of zeros plus the last nonzero digit

before this sequence. These are marked by the same ring counter by keeping a 1

for those digits that might be changed by a borrow.

53

i i+1 i i−1

C

Q

.

1
bi

t
1

bi
t

1 digit

m−1

C (m−1)

Q [m−1]

C (i)

Q [i]

C (i+1)

Q [i+1]

C (i−1)

Q [i−1]

Figure 3.14: Registers C and Q in the new converter.

If qj > 0 then Q[i] ⇐ qj
AND set C(i−1) ⇐ 1 AND reset all other bits in C

If qj = 0 then Q[i] ⇐ 0
AND set C(i−1) ⇐ 1 /∗ no resetting in C ∗/

If qj < 0 then Q[i] ⇐ r− | qj |
AND

{

Q[k] ⇐ Q[k] if C(k−1) = 0 k = i+ 1, . . . ,m
Q[k] ⇐ [Q[k] − 1]mod r if C(k−1) = 1 k = i+ 1, . . . ,m

AND set C(i−1) ⇐ 1 AND reset all other bits in C

Table 3.3: Modified algorithm.

We refer with Q[i] to the digit position in the register Q and with C(i) to the

bit position in the ring counter (Figure 3.14). The modified algorithm is shown in

Table 3.3.

The updating expression for the ring counter is

C(i) ⇐ C(i+1) C(i) + Z C(i) (3.1)

where Z = 1 if qj = 0.

Table 3.4 shows how the conversion is modified, for the example presented in Ta-

ble 2.1.

In the final rounding, the last digit is loaded with pt as in expression (2.4). If

the last digit is negative the update (to propagate the borrow) is done as in the

other iterations. The only exception is when qm = −1, and by rounding it p = 0 is

54

j qj Q C
1 1 1xxxxxxxx 010000000
2 2 12xxxxxxx 001000000
3 0 120xxxxxx 001100000
4 -1 1133xxxxx 000010000
5 0 11330xxxx 000011000
6 0 113300xxx 000011100
7 2 1133002xx 000000010
8 -2 11330012x 000000001
9 -1 113300113 100000000

Table 3.4: Example of radix-4 modified conversion.

obtained. In this case, the register Q is not updated.

When a = r−1 three registers Q, QM and QP are needed for the conversion and

rounding (Section 2.2). The register QP is eliminated by recoding the quotient digit

into the digit set {−(r − 1), . . . ,−1, 0, 1, . . . , r − 2}. The value r−1 is recoded into

−1 and the previous digit incremented by one. This recoding requires to store the

current quotient digit in a temporary register T (log2 r bits + 1 sign bit) as sketched

in Figure 3.15. No additional cycle is needed since the conversion of the last digit

is done together with the rounding. Table 3.5 shows an example of conversion, for

radix-8 and a = 7, using this recoding.

With the implementation of the new algorithm we reduce the number of flip-

flops in the convert-and-round unit from 2n to (1 + 1
log

2
r
)n when a < r − 1 and

from 3n to (1 + 1
log

2
r
)n+ log2 r + 1 when a = r − 1.

Summarizing, the algorithm is modified by eliminating the shifting of the digits

previously loaded and by replacing registers QM and QP with two additional, but

smaller registers: C, which is introduced to keep track of the digits to update, and

T, which is used for the recoding.

55

I0

I1
S

j
q

incr. 1
muxreg.

T

clock

to reg. Q

fr
om

 c
on

ve
rs

io
n

detect
r−1

Figure 3.15: Use of register T.

qj T Q C
4 4 xxxxxxxx 10000000
7 -1 5xxxxxxx 01000000
-1 -1 47xxxxxx 00100000
7 -1 470xxxxx 00110000
0 0 4677xxxx 00001000
7 -1 46771xxx 00000100
7 -1 467710xx 00000110
7 -1 4677100x 00000111

Final rounding
add 1 x 46771000 00000111
add 0 x 46770777 00000111

Table 3.5: Example of radix-8 recoding.

56

3.10.2 Disabling the Clock

As a further step to reduce the energy dissipation in the convert-and-round unit,

we switch off the clock signal for the flip-flops in the register that do not have to

be updated. Figure 3.16 shows an application of the gated flip-flop technique [19].

We introduce the activation function F , that enables the clock of the flip-flop only

when it is needed. As described in [19], F must be ANDed with the clock signal

(clk) for trailing-edge-triggered flip-flops. For leading-edge-triggered (rising edge)

flip-flops an AND gate cannot be used, to avoid a malfunctioning of the circuit if

the delay (d) of F is shorter than the period the clock is high (h), as shown in

Figure 3.16.a (d < h). By making the flip-flop clock signal

cp = F + clk (3.2)

we obtain the desired result for leading-edge-triggered flip-flops (Figure 3.16.b).

Note that the problem is still present if F changes when clk is low, but in the case

of the converter the delay d is shorter than the clock pulse width h.

With this technique, in the ring counter (refer to Figure 3.14) the clock of flip-flop

C(k) is enabled when

• the normal update of the ring counter that occurs when C(k+1) = 1 and

C(k) = 0.

• the reset which occurs when C(k) = 1 and Z = 0.

The resulting enabling function is

F(k) = C(k+1) C(k) + C(k) Z

By De Morgan’s theorem we can write expression (3.2) as

cp = F + clk = F clk

57

a)

d

clk

F unwanted

h

F clk.

cp
Q

D

clk
F

b)

clk

F
_

F + clk
_

cp
Q

D

clk
F
_

Figure 3.16: Gated flip-flop enabling function.

58

CP

D Q

QN

I0

I1
S

CP

D Q

QN

I0

I1
S

C

Z
clk

(i+1)

C(i)
C(i−1)

_

Figure 3.17: Two consecutive bits in the ring counter.

and substituting F we get the expression for the clock of the k-th flip-flop

cpC(k) = (C(k+1) C(k) + C(k) Z) clk

Because of the selective activation of the clock, the updating for C(k) is reduced

from expression (3.1) to

C(k) ⇐ C(k)

Figure 3.17 shows the implementation for two consecutive flip-flops.

In register Q, the current digit is presented to the input of all the flip-flops, but

only the digits modified at that iteration are loaded, by enabling the clock signal

of the corresponding flip-flops. If at start-up register Q is initialized to 0, no load

is needed when qj+1 is zero. The clock signal of digit Q[i] is enabled when

• the current digit qj 6= 0 and it must be loaded in the i-th position. In this

situation C(i) = 1, C(i−1) = 0, and Z = 0.

• the current digit qj < 0 (qSIGN = 1) and the borrow must be propagated. In

this case, all the digits whose corresponding bit C(k−1) = 1, for k > i, must

be updated.

The enabling function E[k] is

E[k] = P[k] Z + C(k−1) q
SIGN with P[k] = C(k) C(k−1)

59

CP

D Q

QN

clk

Z

cpP[k]

C(k−1)

qSIGN

I0

I1
S

1
1...

decr. 1

1
... 1

1
... 1

inout

j
q

lg rlg r

lg r

_

Figure 3.18: Clock enabling function and loading in register Q.

the expression for the clock of the k-th digit of Q is

cpQ[k] = (C(k−1) qSIGN + P[k] Z) clk (3.3)

and the value to be loaded is

Q[k] ⇐

qj if P[k] = 0

Q[k] − 1 (mod r) if P[k] = 1

Its implementation is shown in Figure 3.18.

3.10.3 Gating the Trees

The modified conversion algorithm requires that the converted quotient digit be

presented to the full array of flip-flops in register Q, and then, only log2 r of them

are loaded with this digit. To distribute the digit and the clock we need a tree

(Figure 3.19.a) that dissipates a significant amount of energy. Because of the par-

ticular structure of the algorithm, by dividing the register Q into two portions,

60

upper (m/2 most-significant digits) and lower (m/2 least-significant digits), we can

switch-off a part of the tree for half the number of the iterations. This is obtained

by dividing the tree into two halves and by propagating the signal to the upper

array of flip-flops when executing the first m/2 iterations and to the lower array

in the rest as shown in Figure 3.19.b. Signals AU and AL = AU select the half

array to feed and g represent a generic bit to be loaded in the flip-flops. To keep

track of which part of the array is computed we use an additional flip-flop that is

set after the m/2-th iteration. By implementing this gated-tree we can save about

50% of the energy dissipated to distribute the signals (the gates introduce extra

capacitance, and also the number of transitions are not equally distributed in the

two portions of the array).

On the other hand, when computing the digits in the lower portion we might

need to update the digits in the upper array, for this reason we cannot switch-off

the clock (for example) for the upper part. But the clock can be disabled for the

lower part in the first m/2 iterations. In this case the reduction is about 25%

(Figure 3.19.c).

As a further refinement, we can switch-off the clock and digit-sign in the upper

part after a digit different from 0 has shown up in the lower array. This requires an

additional flip-flop to mark the state ”second part of the array and digit different

from zero occurred”.

3.10.4 Dual Voltage

Because the convert-and-round unit is not in the critical path, we can use low-

voltage cells to realize it. The number of level-shifter required is n: one for each

bit of the final quotient that must be raised from the lower voltage to the higher

(VDD). Note that in the last cycle of the division, when the result is produced, the

larger delay of the low-voltage flip-flops will produce q at a later time than in the

61

a)

g to whole array

b)

AU

AL

g

to upper array

to lower array

g

AL

to upper array

to lower array

c)

Figure 3.19: Gated tree. a) before, b) 50% reduction, c) 25% reduction.

62

q

Conversion

Register Ws Register Wc

53

2
Sign−Zero Detection

AND arrayenable

from / to recurrence

Figure 3.20: Disabling SZD during recurrence iterations.

non-reduced voltage implementation.

3.11 Switching-off Not Active Blocks

The modification consists in switching-off blocks which are not active during several

cycles. This is the case for the sign-zero-detection block (SZD), which is only used

in the rounding step to determine the sign of the final remainder and if it is zero.

The SZD can be switched off by forcing a constant logic value at its inputs during

the recurrence steps (Figure 3.20).

3.12 Optimization by Synthesis for Low-Power

Logic synthesis provides the automatic synthesis of gate-level netlists, optimizing

the design for various constraints. The solution of an optimization problem is

measured in terms of a cost function [36]. The cost measures the extent to which

a constraint has been met. If the constraint has been satisfied, the corresponding

cost is zero. A different priority is given to the constraints, for example:

63

1. maximum delay

2. maximum energy dissipation

3. maximum area.

This means that timing constraints will not be violated to save power, but available

time slack will be used to reduce it. A transformation is accepted if it decreases

one of the cost functions, without increasing higher priority costs.

In order to minimize the energy, or power dissipation, determined either by prob-

abilistic estimation algorithms or by gate-level simulation, circuit transformations

that try to reduce one of the main factors contributing to the energy consumption

(gate capacitance, net switching activity, net transition times and net capacitive

loading) are applied to the design.

In our case, we used Synopsys Power Compiler, which performs synthesis at

gate-level with optimization capability for power dissipation. The main features of

the tool, derived from [15], are briefly discussed in Appendix B Section B.3. The

synthesis is performed on relatively small blocks as explained in Chapter 4.

Chapter 4

Implementations

Introduction

The techniques presented in Chapter 3 are applied to double-precision division/

square root units, which implement the algorithms described in Chapter 2. First,

we give an overview of the design flow and the tools and the libraries of standard

cells used. Then, we present the implementations of division for radix-4, 8, 16, and

512, and the implementation of a radix-4 combined division and square root unit.

For each scheme, we provide the energy consumption for the basic, or standard,

and low-power implementations and an estimate of a possible implementation with

dual-voltage and by optimizing some blocks with Synopsys Power Compiler. In the

presentation of the units, we highlight the differences from the implementation of

the radix-4 divider, set as the reference. However, for sake of clarity and complete-

ness, some repetitions of concepts and figures occur. Detail of the implementation

of blocks, which are common to many units, is given in Appendix A.

4.1 Design Flow, Tools and Libraries

4.1.1 Design Flow and Tools

The most convenient way of describing the units under investigation is to use a

hardware description language, in this case VHDL which allows the description

and simulation of the system at different level of abstraction and the use of hi-

erarchy. The design flow we used is depicted in Figure 4.1. The behavioral and

RT-level are handled by Synopsys Tools [37]. Synopsys provides a number of tools

to generate, maintain and simulate a VHDL description of the circuit. The inter-

64

65

Behavioral
Model

Model
Structural (RTL)

Synopsys simulator

Synopsys simulator

Test−Vectors
Synopsys

Manual
Design Synthesis

Gate−level Model
(Compass Schematic)

Compass simulator

Compass simulator

Test−Vectors
Compass

S
yn

o
p

sy
s

C
o

m
p

as
s

S
tr

uc
tu

ra
l

 le
ve

l
P

hy
si

ca
l

le
ve

l
B

eh
av

io
ra

l l
ev

el

Algorithm
Description

Delay

Area

netlist extraction

Layout

P E TLibrary
energy views

Power

ok ?

yes

no
goto

3

2

1

123 oror

Done

Figure 4.1: Design flow and tools.

66

face between the RT-level and the physical level is handled by COMPASS Tools

[38]. COMPASS provides ASICSynthesizer a logic synthesizer that maps the VHDL

behavioral description of a block into gates. However, ASICSynthesizer performs

synthesis by optimizing only delay and area. COMPASS also provides an automatic

floor-planner for the layout generation and a simulator at gate-level (Qsim), for the

simulation of pre-layout and layout-extracted netlists. The design can be divided

into the following steps (or levels):

Behavioral level A behavioral model of the divider was developed from the algo-

rithm. Using Synopsys, some simulations were carried out on this model to

test the functionality and the correctness of the results.

RT-level The unit was manually divided into functional blocks. Each block rep-

resents a different functionality of the system. A block could be either a

combinational or a sequential circuit, and a controller was introduced in or-

der to have the correct sequencing of the operations. Then, part of these

functional blocks were expanded into sub-blocks containing logic functions,

adders, multiplexers and registers.

Gate-level The VHDL description of the RTL-model, obtained with Synopsys,

was imported into the COMPASS environment for the physical design and

the layout generation. The gate netlists of each block were generated either

by COMPASS ASICSynthesizer (relatively small and irregular blocks) or by

manual design (large and regular blocks).

Physical level The layout was generated (cell placement and routing) in a totally

automatic way and the netlist of the whole unit, including the interconnection

capacitance, was extracted from the layout.

67

In addition, synthesis using Synopsys Power Compiler was performed. As ex-

plained later in Section 4.2, the results of the synthesis of large blocks are not

completely satisfactory. For this reason, we limit the synthesis with Power Com-

piler to the selection function, which is a small and irregular block. First the design

with the shortest delay is synthesized, and then, incrementally, a new compilation

is done to optimize the design for power dissipation trying not to increase the delay.

As explained in Section 1.5, in order to compute the energy dissipated in a cir-

cuit, information on the capacitance (layout) and on the circuit activity (simulation

or statistics) are required. This computation is done by PET: Power Evaluation

Tool (Appendix B Section B.1), which computes the energy dissipated in a circuit

from the layout-extracted netlist, the standard cell library characteristics, and the

results of a logic-level simulation run on a given set of test vectors.

The average energy/power dissipation can be determined by applying random-

generated input patterns (test vectors) and monitoring the energy dissipated using

a simulator. This approach belongs to the Monte Carlo methods [39]. Monte Carlo

simulations give an accurate estimate of the expected value with a limited number

of trials (test vectors) [40].

The estimation error, derived from [41], for a normal distribution of the energy

values can be written as:

| Eop − η |
η

=
t s

η
√
N

. (4.1)

where Eop is the expected value of the average energy dissipation, η and s are

measured average and standard deviation of the N random samples of energy,

and t is obtained from the t-distribution with (N − 1) degrees of freedom [41].

Consequently, the percentage error ε, in a given confidence level (1− α)× 100%, is

ε =
tαs

η
√
N

(4.2)

68

The same approach to estimate the total average power dissipation on a set of

benchmark circuits is presented in [42]. For those benchmark circuits, simulations

on about 10 random vectors are sufficient to have an estimation error smaller than

5%. Moreover, according to [42], the validity of expression (4.2) can be extended

to any distribution for small values of s.

At the end of the chapter, in Section 4.7 at page 133 we summarize the error

obtained for the estimation of the energy dissipated in the units presented in this

work.

4.1.2 Standard Cell Libraries

The units were realized using the Passport 0.6µm, 3.3 V , three-metal layers, stan-

dard cell library [43] and the layout was obtained by automatic floor-planning. The

percent reductions in the energy dissipation indicated below might vary for differ-

ent technologies and layout styles. The critical path, unless otherwise specified, is

computed post-layout and takes into account the RC-effect of interconnections.

The Passport library was designed to operate with VDD = 3.3 V and COMPASS

tools cannot implement more than one supply voltage. In order to evaluate the

application of dual voltage, we performed SPICE simulations on a 4-bit carry-ripple

adder to determine the dependency of the delay with respect to VDD (Figure 4.2).

The delay is normalized to the one for VDD = 3.3 V . The plot shows that for

VDD = 2.0 V the delay is doubled, and that for voltages below 1.7 V the delay

increases in excess.

The energy consumption for dual voltage was estimated on a block basis, by

using the following expression:

Ed−v = EV DD

[

b

s
+
(

V2

VDD

)2
(

1− b

s

)]

(4.3)

where EV DD is the energy dissipated in the block when the power is supplied by

69

1

2

3

4

5

6

7

8

1 1.5 2 2.5 3 3.5

delay
(norm.)

VDD [V]

spice data 3

3333
3

3

3

3

3

Figure 4.2: Delay (normalized) with different VDD.

VDD only, b are the bits in the block not to be scaled and s is the total number of

bits (refer to Figure 3.10 in page 48). Expression (4.3) is based on the following

assumptions:

1. the number of transitions are uniformly distributed from the MSB to the LSB,

2. no variations in neither load capacitance nor activity due to the scaling.

The first assumption was verified by counting the actual number of transitions

detected by the logic simulator at the input of the blocks in question, while SPICE

simulations on a 4-bit slice of the recurrence showed that the second assumption

leads to an over-estimation because the value provided by expression (4.3) is about

10% larger than the actual energy dissipation for values of V2 from 3.3 V to 2.0 V .

The library of standard cells used in Synopsys Power Compiler is different from

the one used in COMPASS. This is due to the fact that the Passport library, used

in COMPASS, is not characterized, both timing and power, for Synopsys. The

70

library used in Synopsys is the ST CB45000 Standard Cell, 0.35 µm 5 layer metal

HCMOS6 process, with power supply voltage of 2.7 V [44].

Databook comparisons and testing on small circuits showed that the CB45000

library at 2.7 V is about 33% faster than the Passport library at 3.3 V .

4.1.3 Presentation of Results

For each of the units below, we present four implementations. The first imple-

mentation is the one obtained with the only constraint of minimum delay. This

implementation is also indicated as standard and abbreviated std in the tables.

The second implementation is the low-power implementation obtained by applying

the techniques described in Chapter 3. This implementation is indicated as l-p in

the tables. With our library and tools it is not possible to realize layouts which

use dual voltage (Section 3.6). For this reason we can provide just estimates of

dual voltage implementations, which are abbreviated d-v in the tables. Estimates

of the energy dissipation after to optimization with Synopsys Power Compiler are

indicated as syn in the tables.

4.2 Radix-4 Division

The techniques presented in Chapter 3 are applied to the case of a double-precision

radix-4 division unit, which is typical of those found in many floating-point proces-

sors.

4.2.1 Algorithm and Basic Implementation

The algorithm and the basic implementation of the radix-4 division has been already

presented in Section 3.1.

We indicate with std the implementation of the basic radix-4 divider shown

in Figure 3.1 at page 38. The critical path, shown in Figure 4.3, is 7.0ns. It

71

Selection Function Multiple gen. CSA Reg. W

4.1 1.4 0.6 1.0

Figure 4.3: Critical path in ns.

is computed post-layout and takes into account the RC-effect of interconnections.

This first implementation, optimized for minimum delay, has the energy dissipation

characteristics shown for std in Table 4.1 in page 80 at the end of this section. The

largest part of the energy is consumed in the registers and in the convert-and-round

unit.

4.2.2 Low-Power Implementation

Retiming the recurrence

The retiming is done by moving the selection function from the first part of the cycle

to the last part of the previous cycle (Figure 4.4). The reduction in the number of

transitions in the recurrence for the retimed implementation is 15% with respect to

the std.

The critical path is now limited to the 8 most-significant bits, so that the 48

least-significant can be redesigned for lower power dissipation by changing the re-

dundant representation of the residual, using low-drive gates and dual voltage.

Note that, although only 7 bits are required for the selection function, since the

representation is in carry-save form, the eighth bit in the recurrence produces the

least-significant carry to go in the selection function.

Furthermore, by eliminating buffering for the 8 most-significant bits in the crit-

ical path in MULT, we can reduce the critical path (see Figure 3.5 at page 43).

However, the load connected to the output of register qj+1 is larger (320%) and the

delay in the register is increased by about 30% reducing the benefits of this modi-

72

Sel. Function

d

53

x

Mux

53

to conversion

2

3

Multiple gen.

Carry Save Adder

3

1

56 56

Register Ws

Register Wc

q j+1

7 7

Sel. Function

j
Register q

to conversion

d x

Mux

53 53

1

2 Register Ws

Register Wc

Multiple gen.

Carry Save Adder

3

q j+1

56 56
7

7

3

8 MSBs 48 LSBs

Figure 4.4: Retiming of recurrence.

73

b a

c s

b a

c s

WS 2i−2

M 2iM 2i+1

WS

2i−2WC

WS 2iWS2i+1WC

d

d

2i+2

2i−2

Figure 4.5: Radix-4 implementation in the carry-save adder.

fication. The overall improvement in delay is 0.3 ns corresponding to less than 5%

of the critical path.

After the retiming, the multiplexer can be moved out of the recurrence.

Changing the redundant representation to reduce the num-
ber of flip-flops

The change in the redundant representation is done using a radix-4 carry-save

representation with two sum and one carry flip-flops for each two bits (Figure 4.5).

Since this requires a redesign of the carry-save adder to propagate the carry of the

even bit-slice to the next bit-slice, in order not to increase the critical path this

is done only in the 48 least-significant bits of w[j]. This modification results in a

reduction of 25% in the number of flip-flops for the bits not in the critical path.

Figure 4.6 shows that the 7 MSBs of the carry-save representation of w[j + 1] are

assimilated in qds adder, and by storing the assimilated value for these 7 bits, we

can eliminate the corresponding flip-flops in register Wc. The number of flip-flops

in register Wc decreases from 56 to 25.

74

8 MSBs 48 LSBs

Multiple gen.

d x

53

q

53

53

2

Sign−Zero Detection

Carry Save Adder

Mux

Conversion & Rounding

Register Ws

Register Wc

4 x 1

3

56

56

56

56

56

4 x 1

7

qds adder

qds table

7

j
Register q

7

49 24

31

24

24

8 MSBs 48 LSBs

SZDenable

Figure 4.6: Block diagram of l-p unit.

75

Using low-drive gates and equalizing the paths

In the retimed recurrence, we can use lower drive capability gates for the 48 least-

significant bits (LSBs) of the multiple generator and the carry-save adder.

By equalizing the paths of the input signals of the blocks we reduce the genera-

tion of glitches. The equalization is done by delaying the clock to registers Ws and

Wc, as previously explained in Figure 3.11 at page 49.

The use of automatic floor-planning in the placement and routing of standard

cells limits the control on the interconnection delay, and the difference in the delays

generates glitches. Therefore, the reduction of the spurious transitions is quite

small, and this reflects on the energy dissipation that is reduced by less than 5%.

The combination of these techniques results in implementation rec. The actual

reduction in the recurrence is about 20% with respect to std (Table 4.1 in page 80).

Reductions in the SZD unit

As mentioned in Section 3.11, the SZD is only used in the rounding step and it can

be switched off by forcing a constant logic value at its inputs during the recurrence

steps.

Reductions in the convert-and-round unit

The total energy dissipated in the convert-and-round unit is 30% of rec.

In the implementation of the modified algorithm (Figure 4.7), described in Sec-

tion 3.10, we obtained a reduction of the energy dissipation for the convert-and-

round unit of about 55%, However, more than 50% of the total energy in the unit

was dissipated in the trees to distribute the clock, and the other signals to the array

of flip-flops. By implementing gated-trees we obtained a reduction of about 65% in

the block.

76

co
nv

er
te

r

si
gn

ed
−

di
gi

t

clock
ring counter C

sign
zero

from SZD

.

CP

D Q

QN

clk

Z

cpP[k]

C(k−1)

qSIGN

I0

I1
S

CP

D Q

QN

I0

I1
S

clk

Z
_

CP

D Q

QN

I0

I1
S

__

j
q 0

1j
q

Q0

Q1

C (k)

C (k)

C(k−1)

=C(k−1)

.

CZ

qSIGN
j

qZ ,,

27

4
register Q

Figure 4.7: Convert-and-round unit for radix-4 divider.

77

This final implementation of the convert-and-round unit and its integration in

the whole divider corresponds to l-p. With respect to the basic implementation std

we reduced the energy dissipation by 40% (Table 4.1 in page 80).

4.2.3 Dual Voltage Implementation

In order to evaluate the possible lower voltage V2 to be used in a dual voltage

implementation we need to determine the time slack available for the LSBs in the

recurrence. The delay of the least-significant portion depends on the type of CSA

adder used, since the delay of the radix-4 CSA is larger than that of the radix-2

CSA. By implementing the LSBs of the recurrence with radix-2 CSAs, the delay

in the LSBs is 3.1 ns, resulting in a time slack of 3.9 ns. In this case V2 = 2.0 V

can be chosen without affecting the latency of the divider. On the other hand,

by opting for the use of radix-4 CSAs, the time slack is reduced to 3.0 ns and,

consequently, V2 can be lowered to 2.2 V . The same estimated values for Ediv are

obtained by applying expression (4.3), so that the radix-4 CSA solution might be

preferred because of the smaller area. Only two level-shifters (low to high) are

needed (Figure 3.10, page 48).

In the convert-and-round unit, unlike in the case of the recurrence, the number

of required level shifters is quite high (53), but each bit can switch at most twice.

Furthermore, the additional delay due to the low-voltage cells in the rounding cycle

might increase the critical path. However, we roughly estimated that the energy

dissipated could be halved with respect to l-p. Entry d-v in Table 4.1 represents

an estimation of a possible implementation with low-voltage gates. The energy

reduction with respect to the basic divider is about 60%.

78

Selection Function Multiple gen. CSA Reg. W

4.1 1.4 0.6 1.0

3.9 1.4 0.6 1.0

Passport/
COMPASS

CB45000/
Synopsys

Figure 4.8: Critical path for implementations with Passport/COMPASS and
CB45000/Synopsys.

4.2.4 Optimization with Synopsys Power Compiler

Recurrence in radix-4 divider

The first approach was to synthesize with Synopsys Design Compiler the RT-

level VHDL description of a fairly complex circuit as the recurrence portion of

the radix-4 divider. The timing constraints were set accordingly to the relation

between the critical path obtained for the implementation of Section 4.2 with Pass-

port/COMPASS (7.0 ns) and the ratio between the speed of the two libraries (0.67).

The resulting timing constraint of 5.0 ns for the critical path was not met (7.0 ns)

in the synthesis with Design Compiler. The critical path of the resulting circuit

is compared in Figure 4.8 with the one obtained with Passport/COMPASS. Note

that the critical path for the implementation with Passport/COMPASS was not ob-

tained by synthesis of the whole RT-level model, but by manual design of the blocks

in the recurrence with the exception of the selection function that was synthesized

stand-alone using COMPASS ASICSynthesizer.

After having obtained the fastest possible circuit with Synopsys we optimized

the power with Power Compiler. Results showed a reduction in the power dissipated

of about 7% with a small increase in the critical path (2%).

Then, we synthesized the RT-level VHDL description of the retimed recurrence

and we got a better reduction in power dissipation (about 10%) and a shorter

79

critical path (5.9 ns), but still the timing constraints were not met.

In conclusion, for larger and fairly complex circuits not only the power is not

reduced much, but also the initial design, optimized for smaller delay, is not as good

as attainable by manual design. For this reasons, we decided to use Synopsys Power

Compiler only to optimize the energy dissipation of small blocks, as described next.

Selection function of radix-4 divider

The second approach was to use the same methodology used for the design with

COMPASS: manual design of the large regular blocks and synthesis of selection

function and other small irregular blocks.

The synthesis of the selection function stand-alone was more satisfactory and

showed a critical path of 3.0 ns (critical path for SEL in Passport/COMPASS im-

plementation is 4.0 ns). The power reduction, obtained by incremental compilation

with power dissipation constraints, was of about 20%, without affecting the delay.

In Table 4.1, the columns labeled syn represent an estimate of the units derived

from l-p and d-v in which the selection function was optimized with Power Compiler.

4.2.5 Summary of Results for Radix-4

Table 4.1 summarizes the result obtained in the low-power optimization of the radix-

4 divider. Each column represents a different implementation. Values in boldface

indicate a variation from the previous value. Entry std refers to the standard

implementation, optimized for speed, entry rec is obtained from std by applying low-

power techniques to the recurrence portion, and entry l-p is rec with the low-power

conversion and rounding. Entry d-v is an estimate of a possible implementation with

dual voltage, and entries syn indicate the improvements attainable with Synopsys

Power Compiler optimization. In columns syn only variations in SEL are indicated.

80

std rec l-p syn d-v syn
blocks nJ nJ nJ (est.) (est.) (est.)
control 1.1 1.1 1.1 1.1 1.1 1.1
clk tree 0.9 0.9 0.9 0.9 0.9 0.9

mux 1.1 0.3 0.3 0.3
mul. gen. 3.6 2.8 2.8 1.9
CSA 5.9 4.8 4.8 2.2
sel. func. 1.3 1.6 1.6 1.2 1.6 1.2
register Ws 6.4 6.4 6.4 ∗4.0
register Wc 6.2 3.5 3.5 2.0
register q - 0.3 0.3 0.3
total recur. 24.5 19.5 19.5 19.0 12.0 11.5

SZD 5.7 5.7 0.6 0.6
conv-round unit 13.2 13.2 3.9 ∗1.4
total C&R 19.0 19.0 4.5 4.5 2.0 2.0

Total divider 45.5 40.5 26.0 25.5 16.0 15.5
Ratio 1.00 0.90 0.60 0.55 0.35 0.33

Values marked ∗ include level shifters

Table 4.1: Energy consumption per division for radix-4.

The delay of the divider is not changed because the retiming did not increase

the critical path and other modification that affected delay were done for parts in

the unit not in the critical path. As for the area, we have a reduction of about

20% between std and l-p. This is mainly due to the change in the redundant

representation of w[j] and in the new convert-and-round unit. In both cases we

eliminated flip-flops, about 25% of the total. We estimated that an optimization

with Synopsys Power Compiler could reduce the energy dissipation by an additional

5%.

Figure 4.9 shows the breakdown, as a percentage of the total, of the energy

dissipated in the main blocks composing the unit.

81

0

5

10

15

20

25

30

35

40
std

ctrl. tree mux SEL MULT CSA REGs SZD C&R

0

5

10

15

20

25

30

35

40
l-p

ctrl. tree mux SEL MULT CSA REGs SZD C&R

0

5

10

15

20

25

30

35

40
d-v

ctrl. tree mux SEL MULT CSA REGs SZD C&R

Figure 4.9: Percentage of energy dissipation in radix-4 divider.

82

4.3 Radix-8 Division

4.3.1 Algorithm and Basic Implementation

The radix-8 division algorithm is implemented by the residual recurrence

w[j + 1] = 8w[j]− qj+1d j = 0, 1, . . . m

with initial value w[0] = x, where x is the dividend, d the divisor, and qj+1 the

quotient digit at the j-th iteration. Both d and x are normalized in [0.5, 1). The

quotient digit is in signed-digit representation {−a, . . . ,−1, 0, 1, . . . , a} with redun-

dancy factor ρ = a/7. The residual w[j] is stored in carry-save representation

(wS and wC). The quotient digit is determined, at each iteration, by the selection

function

qj = SEL(dδ, ŷ)

where dδ is d truncated after the δ-th fractional bit and ŷ = 8wS + 8wC truncated

after t fractional bits.

In order to avoid the implementation of a complicated multiple generator,

the quotient digit is split into two parts qH with weight 4 and qL with weight

1 (qj = 4qH + qL) and the digit set of each part is reduced to {−2,−1, 0, 1, 2}.

Since the selection function (SEL) is in the critical path, to have the minimum

latency we have to minimize its delay. We explored the implementation of three

possible values of a: 6, 7, and 10 (the maximum value possible with the above men-

tioned representation). Table 4.2 shows a summary of the results. The gate-level

implementation was obtained by synthesizing the VHDL description of the selection

function with COMPASS ASICSynthesizer. This includes both the assimilation of

the carry-save representation of ŷ and the actual digit-selection function.

From Table 4.2, we can see that SEL for a = 7 is as fast as for a = 6, but

83

bits of delay [ns]
a d ŷ qL qH gates
10 3 6 4.0 3.0 325
7 3 8 3.8 3.0 370
6 5 7 3.8 2.7 420

Table 4.2: Radix-8: summary selection function.

mh dδ
8/16 9/16 10/16 11/16 12/16 13/16 14/16 15/16

m7 27 30 34 36 40 44 48 48
m6 23 26 28 32 34 36 40 40
m5 18 20 24 24 28 28 32 32
m4 14 16 18 20 20 24 24 24
m3 10 12 12 12 16 16 16 16
m2 6 8 8 8 8 8 8 8
m1 0 0 0 0 0 0 0 0
m0 -4 -4 -4 -4 -4 -4 -4 -4
m−1 -8 -8 -8 -8 -8 -8 -12 -12
m−2 -12 -12 -12 -16 -16 -16 -16 -20
m−3 -16 -16 -20 -20 -24 -24 -24 -28
m−4 -20 -22 -24 -26 -28 -32 -32 -36
m−5 -24 -26 -30 -32 -36 -36 -40 -44
m−6 -28 -31 -34 -38 -40 -44 -48 -52

Values in table are multiplied by 16

Table 4.3: Selection function for radix-8 and a = 7.

its area is smaller1. Surprisingly, the delay for the over-redundant case a = 10 is

larger. Therefore, the SEL for a = 7 is chosen, which results in a redundancy factor

ρ = 1. The selection logic function is described in Table 4.3.

A first implementation of the divider is shown in Figure 4.10. The scheme is

completed by a controller (not depicted in the figure).

To have the divider compliant with IEEE standard for double-precision while

operating with fractional values, 1-bit shifts are performed on the operands. More-

1Smaller area implies smaller capacitance and usually reduced energy dissipation.

84

Sel. Function Mux

3

4 x 1 4 x 1

xd

Register Ws

Register Wc

Carry Save Adder

Carry Save Adder

q hl q

88

5453

q

53

Sign−Zero Detection

2

56

56

56

56

56

56 56

56 56

5656

Multiple gen.

Multiple gen.

Conversion & Rounding

Figure 4.10: Implementation of the radix-8 divider.

85

over, to have a bound residual in the first iteration (w[0] = x < d), when x ≥ d we

shift x one bit to the right obtaining a fractional quotient. To compute the 53 bits

of the quotient and an additional bit to perform rounding, 54/3 = 18 iterations are

required. An additional cycle is required to load the value x as first residual w[0].

However, for the proposed architecture and selection function, the simplest way to

accomplish this is to do as follows:

• Clear the registers for w (this is done at the end of the previous division).

With the selection function we have implemented, this produces a q1 = 1.

• Compute w[1] = x − d using the hardware for the recurrence. This requires

a multiplexer, which is not on the critical path.

• For q1 to be 1, we shift the dividend three bits to the right. As a consequence,

it is necessary to shift the final quotient accordingly,

In conclusion, the load cycle is substituted by an extra iteration for a total of 20

iterations: 19 to compute the digits and one for the rounding. Finally, the quotient

is normalized in [1, 2) by shifting it four positions to the left. Note that all shifts

are done by wiring and do not affect the latency of the operation. In the recurrence

(w[j]) we need 54 fractional bits and 2 integer bits: one to hold the sign and the

other to avoid the overflow in the CS-representation (being ρ = 1).

There are two possible critical paths, one going through qH and the other

through qL. Since the delay of qH is smaller than that of qL, but the number

of adders to traverse is larger, a good design tries to equalize the delays of both

paths. The resulting critical paths are

86

SEL(qL) + mult + HA + reg

4.5 + 1.4 + 0.6 + 1.5 = 8.0 ns.

SEL(qH) + mult + HA + FA + reg

3.6 + 1.4 + 0.6 + 0.9 + 1.5 = 8.0 ns.

In conclusion, the post-layout critical path is 8.0 ns. The energy dissipated by this

basic implementation is Ediv = 47.5 nJ and the contributions of the blocks is shown

in Table 4.4 in column ”standard”.

4.3.2 Low-Power Implementation

For the recurrence, the retiming is done by moving the selection function of Fig-

ure 4.10 from the first part of the cycle to the last part of the previous cycle (see

Figure 4.11.a and Figure 4.11.b). Two new registers (qH and qL) are needed to

store the quotient digit.

However the retiming alters the critical path because the two paths through qH

and qL have different delays, and now the delay of qL is added to the delay of the

two CSAs (see Figure 4.11.b). To reduce the critical path to the previous value we

skew the clock of register qL by the delay difference of the two paths, which, in this

case, corresponds to the delay of the CSA, as shown in Figure 4.11.c. The clock

can be skewed by adding the appropriate delay (e.g. some buffers) in the clock

distribution tree.

After the retiming the multiplexer is moved out of the recurrence, as shown in

Figure 4.15. Consequently, the operations in the first cycle are modified by resetting

registers qH and qL to 0 and −1 respectively and by storing x in w[0] = 0− (−x).

By using a radix-8 carry-save representation as shown in Figure 4.12, we only

need to store one carry bit for each digit, instead of three. This can be done for

the 50 LSBs that, after the retiming, are not on the critical path. The eight MSBs,

87

CSA
SEL

qH
qL

CSAmult

mult reg. qL

reg. qH

wait

wait

SEL
qH

qL

CSA
reg. W

mult CSA

mult
a)

b)

t 2

t 1

CSA
SEL

qH
qL

CSAmult

mult reg. qL

reg. qH
c)

t 1

t 1

Box size is proportional to the delay.

Figure 4.11: Retiming and critical path. a) before retiming, b) after retiming, c)
after retiming and skewing the clock.

88

012

to
 r

eg
.

W
c

to reg. Ws
Wc Ws

Cout Cinradix−8 Adder

WsWs
(3i)(3i+1)(3i+2)(i+1)

from upper CSA
from mult. gen.

012

Figure 4.12: Radix-8 carry-save adder (lower).

assimilated in the adder inside the selection function block (Figure 4.15), can be

stored in wS eliminating another eight flip-flops in wC . By retiming and changing

the representation, the reduction in l-p with respect to std is about 10%.

The quotient-digit selection is a function of three bits of the divisor and eight of

the residual. In the radix-8 case, Figure 4.13 shows the partitioning in eight parts

(all the possible values of d3) for both the higher and lower parts. By partitioning

the selection function, we could obtain a reduction of 40% in the energy dissipated in

SEL, but at the expense of a larger clock cycle (about 10%), due to additional delay

of the demultiplexer and the OR gates, and area. For this reason, the corresponding

value is not included in Table 4.4.

In the original formulation of the on-the-fly conversion algorithm, three registers

(Q, QM, and QP) are necessary to store the partial quotient for ρ = 1. As explained

in Section 3.10, the algorithm is modified by eliminating the shifting of the digits

previously loaded, the two registers QM and QP, and by recoding. Two additional

registers are introduced: the ring counter C to keep track of the digits to update

and the temporary register T used in the recoding (Figure 4.14). In this way, we

89

qL0 qL7qH0 qH7

adder

demux

. . . .

. . . .

d ŷ ŷs c

/

/

/

/

q
j

3

8 8

8

OR array

Figure 4.13: Partitioned selection function.

90

reduce the number of flip-flops in the convert-and-round unit from 171 (registers

Q, QM, QP) to 81 (registers Q, C, T).

4.3.3 Dual Voltage Implementation

For the radix-8 divider, the 50 least-significant bits in the recurrence can be re-

designed for low voltage. We can apply the dual-voltage technique also to the

convert-and-round unit which is not in the critical path.

When applying dual voltage to the recurrence, the two cases with radix-2 and

radix-8 CSA must be considered. As explained in Section 3.6, the time slack is

longer for the radix-2 CSA implementation and the possible voltage V2 is lower. In

particular for the radix-8 divider (critical path is 8.0 ns), we obtain the following

values:

radix-2 CSA tslack = 3.5 ns ⇒ V2 = 2.0 V ⇒ Ediv = 20 nJ .

radix-8 CSA tslack = 1.2 ns ⇒ V2 = 3.0 V . ⇒ Ediv = 26 nJ .

The values of Ediv indicated above take into account both the different number of

flip-flops in register Wc and the voltage scaling in the convert-and-round unit.

It is clear that the implementation with radix-2 CSA is the most convenient for

dual voltage. The reduction in d-v is about 30% with respect to l-p.

4.3.4 Optimization with Synopsys Power Compiler

Because the synthesis of large circuits does not give results as good as manual

design, we synthesized only the selection function using Synopsys Power Compiler.

The synthesis of the selection function showed a critical path (through qL) of 3.0 ns

(critical path for SEL in Passport/COMPASS implementation is 4.5 ns), while

the path through qH was of 2.6 ns (3.6 ns for Passport/COMPASS). The energy

91

ring counter C

register Q

sign
zero

from SZD

co
nv

er
te

r

si
gn

ed
−

di
gi

t

clock

reg.
T

.

CP

D Q

QN

I0

I1
S

clk

Z
_

C (k) C(k−1)

.

CP

D Q

QN

clk

Z

cpP[k]

C(k−1)

qSIGN

__

1j
q

I0

I1
S

CP

D Q

QN

Q1

C (k) =C(k−1)

I0

I1
S

CP

D Q

QN

I0

I1
S

Q0

j
q 0

j
q 2

Q2

a1
a2

a1

a2

Q0

5 5

18CZ

,,Z j
q

qSIGN

Figure 4.14: Convert-and-round unit for radix-8 divider .

92

reduction in the selection function, obtained by incremental compilation with power

dissipation constraints was very little, about 5%.

4.3.5 Summary of Results for Radix-8

Figure 4.15 shows the implementation of the low-power radix-8 divider and Ta-

ble 4.4 summarizes the results obtained by applying the low-power techniques de-

scribed above. We did not include in the table the estimation of a possible imple-

mentation with Synopsys Power Compiler because the reduction of energy in the

selection function is less than 1% of the total.

Figure 4.16 shows the breakdown, as a percentage of the total, of the energy

dissipated in the main blocks composing the unit.

standard low-power dual voltage
blocks nJ nJ (est.) nJ
control 0.6 0.6 0.6
clk tree 0.4 0.4 0.4
mux 1.4 0.2 0.2
mul. gen. H 3.1 2.2 1.1
CSA H 4.4 4.4 2.2
mul. gen. L 2.6 2.2 1.1
CSA L 6.0 4.8 2.4
sel. func. 3.6 4.6 4.6
register Ws 4.2 4.0 ∗2.2
register Wc 4.2 1.2 ∗2.0
register qH - 0.2 0.2
register qL - 0.2 0.2
SZD 3.8 0.6 0.6
C&R unit 13.4 2.8 ∗1.0
Total [nJ] 47.5 28.5 19.0
Ratio 1.00 0.60 0.40

Area [mm2] 2.2 1.8 -

Values marked ∗ include level shifters.

Table 4.4: Energy-per-division for radix-8.

93

Sel. Function 8

adder

table
q L

table
qH

reg q L
reg qH

8

18

18

SZD enable

26

Mux

3

x

54

d

53

56

48

4 x 1

4 x 1

Register Ws

Register Wc

q

53

Sign−Zero Detection

2

56
56

56

56

56

45 LSBs11 MSBs
Multiple gen.

Conversion & Rounding

CSA radix−8CSA
45 LSBs11 MSBs

CSA radix−8CSA
45 LSBs11 MSBs

45 LSBs11 MSBs
Multiple gen.

8

26

18

Figure 4.15: Low-power implementation of the radix-8 divider.

94

0

5

10

15

20

25

30

35

40
std

ctrl. tree mux SEL MULTs CSAs REGs SZD C&R

0

5

10

15

20

25

30

35

40
l-p

ctrl. tree mux SEL MULTs CSAs REGs SZD C&R

0

5

10

15

20

25

30

35

40
d-v

ctrl. tree mux SEL MULTs CSAs REGs SZD C&R

Figure 4.16: Percentage of energy dissipation in radix-8 divider.

95

In the l-p implementation the largest part of the energy is dissipated in the

CSAs (more than 30%), while in the d-v estimate the largest portion is equally

distributed (about 25% of the total for each block) among the two CSAs, the two

registers W and the selection function.

4.3.6 Comparison with Scheme with Overlapped Radix-2
Stages

In [34] a radix-8 divider is implemented by overlapping three radix-2 stages and

computing the quotient digits in parallel. Moreover, the next partial remainder (ws

and wc) is calculated speculatively for each possible quotient digit. This scheme,

indicated here as r8overlap, is implemented in the Sun UltraSPARC FP-unit. As

described in [34], the critical path is: 1× SEL+ 2× CSA+ 3×MUX

In order to compare the r8overlap division unit with our radix-8 divider, we

made the following assumptions:

• The CSA (or FA) has the same delay (0.8 ns) in both implementations.

• The multiple generator is equivalent to the 3:1 MUX of r8overlap.

• We implemented the radix-2 selection function of [34] with our library and

obtained a delay of 1.9 ns.

• Buffering of one of the MUXes is required.

With these assumptions, we can reasonably estimate the pre-layout critical path of

r8overlap as:

SEL + 2 CSA + 3 MUX + buff. + reg.

1.9 + 1.6 + 1.5 + 0.7 + 1.3 = 7.0 ns

This is similar to the critical path (pre-layout) of the radix-8 unit described here:

96

SEL(qL) + mult + HA + reg

3.8 + 1.2 + 0.5 + 1.3 = 6.8 ns.

SEL(qH) + mult + HA + FA + reg

3.0 + 1.2 + 0.5 + 0.8 + 1.3 = 6.8 ns.

As for the area, Table 4.5 shows a comparison of the number of the wider

(bitwise) blocks. Register QN in r8overlap can be eliminated by introducing register

C. However it is not possible to change the representation of wC (e.g. reducing the

size of register Wc) without penalizing the performance. Moreover, the resulting

selection function of the overlapped implementation is about twice as large as the

radix-8 SEL. In conclusion, it is reasonable to assume that the area of our divider

is significantly smaller.

r8overlap radix-8
no. CSAs 6 2
no. mux/mult 6 2
no. registers 4 (Ws, Wc, Q, QN) 2.7 (Ws, Wc/3, Q, C)

Table 4.5: Area comparison.

We don’t have data available on the energy consumption of the r8overlap di-

vision unit, but considering the larger area (larger current drawn) and roughly

the same operation latency, we conclude that the energy dissipation is smaller in

our implementation. Furthermore, the energy reduction techniques applied in the

radix-8 divider might not be effective in the r8overlap scheme.

4.4 Radix-16 Division

4.4.1 Algorithm and Implementation

The radix-16 division algorithm is implemented by the residual recurrence

w[j + 1] = 16w[j]− qj+1d j = 0, 1, . . . 13

97

with initial value w[0] = x, and quotient given by

q =
14
∑

j=1

qj16
−j (4.4)

Two additional cycles, for initialization and rounding, are required to produce the

quotient in conventional representation (53 bits for IEEE double-precision) for a

total of 16 cycles. As usual, both d and x are normalized in [0.5, 1) and x < d.

The radix-16 division unit is obtained by overlapping the computation of two

radix-4 digits [30]. Consequently, the quotient digit is split into two parts qH and

qL such that qj = 4qH + qL with digit set {−2,−1, 0, 1, 2} in each part, resulting

in the digit-set [−10, 10] for qj (a = 10). The quotient digit is determined, at

each iteration, by the selection function depicted in Figure 4.17. Once the digit

qH is chosen, its value is used to select among all the possible combinations of

qHd. The redundancy factor is ρ = a
r−1

= 2
3
. The residual w[j] is stored in carry-

save representation (wS and wC). The signed-digit representation of the quotient

is converted to conventional two’s complement representation and rounded by the

on-the-fly convert-and-round unit.

The implementation of the standard divider, optimized for shortest latency, is

shown in Figure 4.18. Table 4.6 shows the delay through the two parts of SEL.

Note that the larger delay of SELqL is compensated by the additional carry-save

adder in the recurrence (Figure 4.18) in the path from SELqH .

The critical path post-layout is 9.2 ns and 16 cycles are required to complete

the operation, corresponding to a latency of 150 ns. The energy dissipated by this

basic implementation is Ediv = 46.0 nJ and the contributions of the blocks is shown

in Table 4.9 in column ”standard”.

98

SEL

R−4

SEL

R−4

CSA

SEL

R−4

CSA

SEL

R−4

SEL

R−4

CSA

SEL

R−4

CSA

M U X

10 10

7 7

3

8

8 8 8 88

d rws rwc −2d d−d 2d

q
H

q
L

4 x 14 x 1

5

Figure 4.17: Selection function for radix-16.

path delay [ns]
qL SELqL - MULT - HA - REG

5.7 + 1.4 + 0.6 + 1.5 = 9.2
qH SELqH - MULT - HA - FA - REG

4.0 + 1.4 + 0.6 + 1.1 + 1.5 = 8.6

Table 4.6: Critical path through qL and qH .

99

Sel. Function

Mux

3

4 x 1

4 x 1

d

Carry Save Adder

Carry Save Adder

53

q

53

Sign−Zero Detection

2

q
L

q
H

57 57

57 57

57

57 57

57

57

57

<< 2

<< 2

1010

Conversion & Rounding

Multiple gen.

Multiple gen.

Register Wc

Register Ws

x

54

Figure 4.18: Basic implementation radix-16.

100

4.4.2 Low-Power Implementation

The retiming of the recurrence is done by moving the selection function from the

first part of the cycle to the last part of the previous cycle. Two 4-bit registers are

needed to store the quotient digit. After the retiming the critical path is limited to

the 10 most-significant bits of the recurrence. As shown in Figure 4.19, in order not

to increase the cycle delay in the retimed unit, the clock of register qL is skewed.

Since in the retimed implementation the selection function is placed after the

second CSA, instead of directly after the registers, there is a large increase in

the number of glitches, which are responsible for the increased dissipation of the

selection function. One way to filter those glitches is to buffer the selection function

with multiplexers acting as latches, as described in Figure 3.13 at page 51. The

select signal is driven by a different clock (same period, different phase) that enables

the muxes to transmit the value from the CSA when it is stable, and hold the

current value otherwise. However, in this case the delay of the mux affects the

critical path. For radix-16 the energy dissipated in the selection function is halved,

but the critical path is increased by about 5%. For this reason, the value is not

included in Table 4.9.

For the 44 least-significant bits the radix-2 CSA is replaced by a radix-16 CSA

(R16 CSA) that for each digit of the radix stores only one carry bit. Figure 4.20

shows the radix-16 CSA and Table 4.7 explains how the two level of adders are

connected to produce the correct residual. The number of flip-flops in register Wc

is reduced from 57 to 25.

In order not to increase the cycle time when using radix-16 CSA the two paths

shown in Table 4.8 should have the same delay. Therefore, the condition to be

satisfied is:

tR16 CSA ≤
tHA + tSELqL

2
= 3.15 ns

101

CSA
reg. W

mult CSA

mult
a)

b)

t 2

t 1

c)

t 1

t 1

Box size is proportional to the delay.

SEL
qH
qLCSA mux

CSACSAmult

mult reg. qL

reg. qH

wait

wait
SEL

qH
qLCSA mux

CSACSAmult

mult reg. qL

reg. qH
SEL

qH
qLCSA mux

Figure 4.19: Retiming and critical path. a) before retiming, b) after retiming, c)
after retiming and skewing the clock.

Cout

Cin

012

to reg. Wsto reg. Wc

from prev. stagefrom mult. gen.

3

radix−16 adder

Figure 4.20: Radix-16 CSA.

102

iter. j iteration j + 1

first level second level

ws0 0 maS ma0 S0 0 mbS mb0 ws0

ws1 0 ma1 S1 0 mb1 ws1

ws2 wc2 4ws0 ma2 S2 4S0 mb2 ws2 wc2

ws3 4ws1 ma3 S3 4S1 mb3 ws3

ws4 4ws2 4wc2 ma4 S4 C4 4S2 mb4 ws4

ws5 4ws3 ma5 S5 4S3 mb5 ws5

ws6 wc6 4ws4 ma6 S6 4S4 4C4 mb6 ws6 wc6

ws7 4ws5 ma7 S7 4S5 mb7 ws7

ws8 4ws6 4wc6 ma8 S8 C8 4S6 mb8 ws8

ws9 4ws7 ma9 S9 4S7 mb9 ws9

ws10 wc10 4ws8 ma10 S10 4S8 4C8 mb10 ws10 wc10

ws11 4ws9 ma11 S11 4S9 mb11 ws11

......

Table 4.7: Bit arrangement in two-level adders.

The easiest way to implement this R16 CSA is by using a 4-bit carry-ripple adder.

The corresponding delay, in our library, is

tSn = tC1
+ 3tripple + tHA = 0.8 + 3(0.35) + 0.5 ns ' 2.0 ns .

MSBs: MULT HA SEL QL REG
LSBs: MULT R16 CSA R16 CSA REG

Table 4.8: Paths in MSBs and LSBs in the recurrence.

Furthermore, the 7 most-significant bits assimilated in the selection function

could be stored in the register Ws, saving 7 additional flip-flops. However, in

the radix-16 case, the assimilated value must be selected among the 5 possible

alternatives (see Figure 4.17) and this requires an additional multiplexer driven by

qH that increases the load both on qH and qL. For this reason the 7 MSBs bits are

stored in carry-save representation.

In the original on-the-fly conversion and rounding algorithm the partial quotient

is stored in two registers (Q and QM). By implementing the modified algorithm,

103

with ρ = 2
3
, only register Q (54 bits) and register C (14 bits) are needed. With the

implementation of the modified algorithm the number of flip-flops in the convert-

and-round unit is reduced from 108 to 69 and the power dissipated from 10.7nJ to

2.4nJ , resulting in a reduction of about 20% in the whole divider.

4.4.3 Dual Voltage Implementation

When applying dual voltage to the recurrence, the two cases with a radix-2 and a

radix-16 CSA must be considered. As explained in Section 3.6, the time slack is

longer for the radix-2 CSA implementation and the possible voltage V2 is lower. In

particular, for the radix-16 divider (critical path is 9.2 ns), we get the following

values:

radix-2 CSA tslack = 4.6 ns ⇒ V2 = 2.0 V ⇒ Ediv = 22 nJ .

radix-16 CSA tslack = 1.8 ns ⇒ V2 = 2.7 V . ⇒ Ediv = 27 nJ .

The values of Ediv indicated above take into account both the different number of

flip-flops in register Wc and the voltage scaling in the convert-and-round unit.

It is clear that the implementation with radix-2 CSA is the most convenient for

dual voltage.

4.4.4 Optimization with Synopsys Power Compiler

The synthesized selection function showed a delay of 4.0 ns through qL, and 3.0 ns

through qH with delay constraints met. In addition the reduction in energy dis-

sipation, obtained by incremental compilation with power dissipation constraints

resulted to be about 25%.

104

standard low-power synopsys dual voltage synopsys
blocks nJ nJ (est.) nJ (est.) nJ (est.) nJ
control 0.5 0.5 0.5
clk tree 0.5 0.5 0.5
mux 2.6 0.4 0.4
mul. gen. H 2.5 1.6 0.8
CSA H 3.3 3.3 1.9
mul. gen. L 2.7 1.8 1.0
CSA L 5.0 4.3 2.5
sel. func. 5.9 8.2 6.1 8.2 6.1
register Ws 4.4 4.3 ∗2.1
register Wc 4.2 1.6 ∗1.9
register qH - 0.2 0.2
register qL - 0.2 0.2
SZD 3.7 0.6 0.6
C&R unit 10.7 2.4 ∗0.9
Ediv [nJ] 46.0 30.0 28.0 22.0 20.0
Ratio 1.00 0.65 0.60 0.50 0.45

Area [mm2] 2.2 1.8 - - -

Values marked ∗ include level shifters.

Table 4.9: Energy-per-division for radix-16.

4.4.5 Summary of Results for Radix-16

Table 4.9 reports the average energy dissipation and area for the standard and the

low-power implementation, which is shown in Figure 4.21.

Figure 4.22 shows the breakdown, as a percentage of the total, of the energy

dissipated in the main blocks composing the unit.

In the std the largest part of energy is dissipated in the convert-and-round unit

(about 25%). With the application of the energy reduction techniques, the energy

dissipated in C&R unit is reduced to less than 10% of the total for l-p and less than

5% for d-v. On the other hand the contribution of the selection function to the

total energy dissipation increases up to 35% of the total in d-v. By optimizing the

selection function with Synopsys Power Compiler, a reduction of 25% in the block

105

Mux

3

4 x 1

4 x 1

53

q

53

Sign−Zero Detection

qL

qH

reg q L
reg qH

SZD enable

x

54

d

CSA

Sel. Function

53

57

57

57

25

25

2557

5710

10

57

2557

44 LSBs13 MSBs
CSA radix−16

CSA
44 LSBs13 MSBs

CSA radix−16

2

Conversion & Rounding

Multiple gen.
44 LSBs13 MSBs

Multiple gen.
44 LSBs13 MSBs

Register Ws

Register Wc

Figure 4.21: Low-power radix-16 divider.

106

0

5

10

15

20

25

30

35

40
std

ctrl. tree mux SEL MULTs CSAs REGs SZD C&R

0

5

10

15

20

25

30

35

40
l-p

ctrl. tree mux SEL MULTs CSAs REGs SZD C&R

0

5

10

15

20

25

30

35

40
d-v

ctrl. tree mux SEL MULTs CSAs REGs SZD C&R

Figure 4.22: Percentage of energy dissipation in radix-16 divider.

107

would reflect in a contribution of about 30% of the total in d-v.

4.5 Radix-512 Division

4.5.1 Algorithm and Basic Implementation

We now refresh some of the expressions of the radix-512 division algorithm pre-

sented in Chapter 2, The recurrence is implemented by

w[j + 1] = 512w[j]− qj+1z j = 0, 1, . . . 5 (4.5)

with w[0] = Mx, z = Md, and quotient-digit selection

qj+1 = bŷ + 1/2c .

The scaling factor M is determined by

M = −γ1d15 + γ2 . (4.6)

All the details of the implementation of the radix-512 divider are given in [33].

Here we briefly summarize the main features of the unit and determine the energy

dissipated.

As for the other radices, d is normalized in [0.5, 1) and x < d. According to [32]

the scaling factor M is in the range:

0 < M < 2

with 13 fractional bits. A total of 15 bits is required to store M . Because the

scaled operands can be greater than 1, for the z and w[j] representation we need

one sign bit, one integer bit and 54 + 13 = 67 fractional bits for a total of 69 bits.

To have the correct recoding, as explained in [33], an extra integer bit is added. In

conclusion, the number of bits needed to store the partial remainder w[j] (bits in

the recurrence) is 70.

108

A first implementation of the divider is shown in Figure 2.4 on page 31. Since

the operations indicated in expression (4.5) and expression (4.6) are similar, they

can be executed in the same unit. In [33] in order to reduce the area, the multiplier-

accumulator required for the computation of M is eliminated, and the operation

of expression (4.6) is executed in the main multiplier-accumulator. The modified

block diagram is shown in Figure 4.23.

Figure 4.24 shows the operation performed in the divider and the values stored in

the registers during the different cycles.

Block gamma-table is a logic function which produces the two quantities −γ1

and −γ2 according to

γ1 =
1

d6
2 + d62−6 + 2−15

γ2 =
2d6 + 2−6

d6
2 + d62−6 + 2−15

where d15 and d6 are d truncated to its 15th and 6th fractional bit respectively.

The block was synthesized with standard cells using COMPASS ASICSynthesizer.

The recoder is used to recode the multiplier into radix-4 representation with

digits in the set {−2,−1, 0, 1, 2}.

Block MultAdd in Figure 4.23 executes both the multiplication and the addition

in the recurrence. The multiple generator produces the partial products t0, t1, . . . , t7

and the adder reduces the number of the partial products to the final carry-save

representation (9:2 adder). Summarizing, the MultAdd operations are:

• In M calculation, the recoded multiplier is d15 (15 bits) which produces 8

partial products (t0, t1, . . . , t7). In addition, −γ2 must be added.

−M = −(−γ1d15 + γ2) = t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7 + (−γ2)

109

gamma table

Recoder

MULTIPLIER

ACCUMULATOR

Carry Propagate Adder

z

M

q
j+1

rw

2 x 15

/

/

/

/

/

/

/

/

/

5

15

53

/

/ 54

2 x 16

2 x 14

4 x 8 14 68//

/ 68/ 15

/ 2 x 15

68

mux2

MultAdd

2 x 70

Register M

Register W

q

53

2

Conversion & Rounding

d x

mux1

Register Z

mux3

/ 68

Figure 4.23: Block diagram of modified divider.

110

cycle 1 2 3 4 5 6 7 8 9 10

d x z

M

w[0] w[1] w[2] w[3] w[4] w[5] w[6]MdM

Md w[0] w[1] w[2] w[3] w[4] w[5] w[6]

Reg. Z

Reg. M

Reg. W

MultAdd

Figure 4.24: Cycles and operations.

• In the scaling, the recoded multiplier is −M (15 bits).

Md, Mx = t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7

• In the recurrence, the recoded multiplier is qj+1 that is 11 bits (10 + 1 for

sign) bits. In this case only 6 partial products are generated (t0-t5) and t6

and t7 are used to add the carry-save represented shifted residual rw[j].

w[j + 1] = 512 w[j]− qj+1z = t0 + t1 + t2 + t3 + t4 + t5 + rws + rwc

The conversion block performs the conversion from the signed-digit quotient

and the rounding. The carry-propagate adder is used to assimilate the carry save

representation of Md = z and the final remainder. In addition, hardware to detect

if the sum is zero (needed for the rounding) is provided in the carry-propagate

adder.

The first implementation of the divider, which corresponds to the scheme of

Figure 4.23, has a critical path of 10.5 ns (Figure 4.25) and a total execution time

tdiv = 10.5× 10 = 105 [ns] .

The energy dissipated by this standard implementation is reported in Table 4.11

and indicated in the column ”standard”. Figure 4.26 shows the percentage of energy

dissipated in the blocks for the basic implementation of Figure 4.23.

111

mux2 recoder AdderMult Reg. M

2.0 1.9 4.4 1.20.9

Figure 4.25: Critical path (ns) for basic implementation.

0

5

10

15

20

25

30

35

ctrl. γ tab. muxs rec. Mult Add REGs CPA C&R

Figure 4.26: Percentage of energy dissipation in basic radix-512 divider.

4.5.2 Low-Power Implementation

For energy reduction in radix-512, we used a different approach than for the lower

radices. From Figure 4.26, it is clear that most of the energy (about 60% of the

total) is dissipated in the MultAdd block. This is not unexpected because MultAdd

is the largest block and consists of several levels of CSAs. As a consequence, the

distribution of the energy consumption is quite different from the dissipation in

lower radices where, for example, the energy dissipation in the corresponding blocks

(MULT and CSA) for radix-4 is less than 25% of the total. For this reason, many

of the techniques presented in Chapter 3, which were developed for lower radices,

112

are not very effective for the radix-512 divider.

Retiming by itself only reduces glitches at the input of MULT for lower radices,

and in case of radix-512 retiming by itself is not much beneficial for MultAdd

because the several levels of the tree of adders produce many glitches anyway.

Changing the redundant representation is a technique designed to reduce the

energy dissipation in the registers by eliminating some flip-flops. Because it requires

the propagation of the carry within a digit, this technique increase the energy dissi-

pation in the adder, that however, for lower radices, does not offset the reductions

obtained in the register. For radix-512, there is not sufficient time to propagate

the carry in a log2 512 = 9 bit adder without increasing the critical path. The

use of a radix-8 CSA (a radix-512 CSA could be decomposed in 3 radix-8 CSAs)

might reduce the energy dissipated in the registers by about 2% of the whole energy

consumption. But this reduction in the registers will be offset by the increase of

glitches for the propagation of the carry in MultAdd.

Techniques such as equalizing the paths and using low-drive cells are not very

effective for lower radices and are impractical for radix-512.

The techniques that can reduce significantly the energy dissipation in the radix-

512 are the modification in the convert-and-round unit, disabling the CPA when

not used, and using dual voltage in the recurrence to reduce the energy dissipated

in MultAdd.

In addition to the techniques presented in Chapter 3, some work has been done

in [45] to reduce the power dissipation in trees of adders. In [45], by using the

redundancy in a 4:2 CSA (compressor), different configurations of the compressors

are used to reduce the probability of transitions in the tree. However, experimental

results in [45], showed that for a large tree of adders such as the one used in a

54 × 54 multiplier [7], the power savings are about 5%.

113

Disabling the clock in registers

The first modification applied to the radix-512 divider is to disable the clock in

flip-flops that do not change. This is particularly advantageous in register M and

Z which change once and three times respectively, per division (Figure 4.24). The

reduction in the energy dissipated is about 2.0 nJ corresponding to 3% of the total

divider.

Reductions in the CPA unit

The carry-propagate adder (CPA) is used twice during the division. A first time to

assimilate the value of z in the third cycle, and a second time in the last cycle to

determine the sign of the remainder (and if it is zero). The CPA is switched off by

forcing a constant logic value at its inputs when it is not used. The reduction in

energy with respect to the basic implementation is about 5%.

Reductions in the convert-and-round unit

In the basic implementation of the radix-512 divider, three registers (Q, QM, and

QP) are necessary to store the partial quotient (ρ = 1). As explained in Sec-

tion 3.10, the algorithm is modified as for lower radices, by eliminating the shifting

of the digits previously loaded, the two registers QM and QP, and by recoding.

Two additional registers are introduced: the 6-bit ring counter C to keep track of

the digits to update and the temporary register T (10 bits) used in the recoding.

The digit-decrementer, implemented both for the digits of Q and for register T, is

a 9-bit ripple decrement-by-one circuit and its delay is about 4.0 ns. Note that the

delay of the decrementer does not affects the critical path.

By implementing the modified algorithm in the convert-and-round unit, we

reduce the number of flip-flops in the unit from 162 (registers Q, QM, QP) to 70

114

(registers Q, C, T). The energy consumption in the divider is reduced by about

10%.

4.5.3 Dual Voltage Implementation

Retiming the recurrence

As mentioned above, for radix-512 the purpose of retiming is to limit the critical

path to a few bits and use dual voltage. In order to do so, we have to move the

operations done on the MSBs (selection in mux2 and recoding) from the beginning

of the cycle to the end of the cycle. This can be done as sketched in Figure 4.27.b by

introducing an extra register to store the carry-save representation of the recoded

operand.

However, the scheme of Figure 4.27 requires an additional initialization cycle to

store in register R the recoded value of d15 (dREC). An alternative to the addition

of the extra cycle is to take advantage of the fact that in cycles 2 and 3 the value

to be recoded is the same (−M). In this case we can use a multiplexer to divert

to MultAdd either the output or register R or directly the output of the recoder,

as shown in Figure 4.28. This multiplexer (Mux-R) is controlled by a new signal

DIVERT, set by the controller, that routes the MultAdd input signals. Table 4.10

shows the values of the signals in the unit in the first 4 cycles. Note that blocks

Mux2 and Rec are replicated in the table for clarity.

The new multiplexer Mux-R is now on the critical path and the clock cycle

must be lengthed to accommodate the additional 0.5 ns of its delay. The new

critical path is shown in Figure 4.29. However, the solution with Mux-R is still

advantageous over the solution with an extra cycle. In fact, the number of cycles

for the radix-512 division (10) is quite small and the longer clock cycle increases

the execution time by about 5 ns that is still a shorter time than one extra clock

cycle required for the first solution.

115

Mux 2

Recoder

MultAdd

register W

register M

d ŷ−M

w [j]

70

70

15

1

2

3

4

Mux 2

Recoder

d ŷ−M

MultAdd

register W

register M
w [j]

70

15

1

2

3

4 register R

b)

a)

Figure 4.27: Retiming of the recurrence.

116

cycles
1 2 3 4

REG M - −M −M −M
REG W - - Md w[0]
Mux2 d −M
Rec dREC −MREC

REG R - - −MREC ŷ[1]REC

Mux-R dREC −MREC −MREC ŷ[1]REC

MultAdd −M Md w[0] = Mx w[1]
Mux2 ŷ[1] ŷ[2]
Rec ŷ[1]REC ŷ[2]REC

DIVERT 0 0 1 1

Table 4.10: Operations and signal values in retimed unit.

Mux 2

Recoder

d ŷ−M

15

1

2

3

4

register R

MultAdd

register W

register M
w [j]

70

Mux−R
01

5

DIVERT

Figure 4.28: Retimed recurrence with Mux-R.

117

mux2 recoderAdderMult

2.0 1.24.41.80.6

Reg. R

m
ux

R

0.9

Figure 4.29: Critical path (ns) after retiming.

Dual Voltage

After the retiming the 52 LSBs of MultAdd and register W can be redesigned for

dual voltage. The time slack for those 52 LSBs is 4.3 ns that allows a minimum

dual voltage V2 = 2.3 V .

Furthermore, voltage can be also scaled in the convert-and-round unit resulting

in reduction of energy dissipated of 40% with respect to the basic implementation

of the divider.

4.5.4 Summary of Results for Radix-512

For the radix-512 divider, the retiming increases the critical path by about 5%. Be-

cause we want to reduce the energy without penalizing the performance, in this case,

there is a tradeoff between smaller energy and longer delay. Since, as previously

discussed, the only technique which reduces significantly the energy consumption

in the recurrence is the use of dual voltage, we decided not to apply the other

techniques (change redundant representation, using low-drive cells, etc.) and give

up performance for small energy reductions. Table 4.11 reports the energy values

for the three implementations:

1. standard is the basic implementation of Figure 4.23.

2. low-power is the implementation with reduced energy dissipation, but same

delay as the basic. It is obtained by applying the low-power techniques men-

tioned above with the exception of retiming.

118

3. dual-voltage is the estimation of the implementation with retiming and dual

voltage, but longer execution time.

Optimization with Synopsys Power Compiler was not performed because in the

radix-512 divider the selection of the quotient digit is done by rounding.

Figure 4.30 shows the breakdown, as a percentage of the total, of the energy

dissipated in the main blocks composing the unit.

standard low-power dual voltage
blocks nJ nJ (est.) nJ
control 1.0 1.0 1.0
clk tree 0.5 0.5 0.5
γ table 0.4 0.4 0.4
mux 1 1.1 1.1 1.1
mux 2 0.6 0.6 0.8
mux 3 1.1 1.1 1.1
recoder 2.0 2.0 3.8
Mult 14.5 14.5 8.0
Add 22.5 22.5 12.5
registers W 6.6 5.5 ∗3.6
register M 0.5 0.3 0.3
register Z 2.3 1.5 1.5
reg. R + mux-R - - 1.1
CPA 4.5 1.5 1.5
C&R unit 8.7 2.7 ∗1.3
Total [nJ] 66.5 55.0 38.5
Ratio 1.00 0.85 0.60

Area [mm2] 6.0 6.4 -
Tcycle [ns] 11.0 11.0 11.5
tdiv [ns] 110 110 115

Values marked ∗ include level shifters.

Table 4.11: Energy-per-division for radix-512.

119

0

5

10

15

20

25

30

35

40
std

ctrl. γ tab. muxs Rec. Mult Add REGs CPA C&R

0

5

10

15

20

25

30

35

40
l-p

ctrl. γ tab. muxs Rec. Mult Add REGs CPA C&R

0

5

10

15

20

25

30

35

40
d-v

ctrl. γ tab. muxs Rec. Mult Add REGs CPA C&R

Figure 4.30: Percentage of energy dissipation in radix-512 divider.

120

4.6 Radix-4 Combined Division and Square Root

4.6.1 Algorithm and Implementation

For radix-4, expression (2.6) and expression (2.7) are rewritten as

w[j + 1] = 4w[j] + F [j] j = 0, 2, . . . 26 (4.7)

and

F [j] =

−qj+1d (division)

−(S[j]sj+1 +
1
2
4−(j+1)s2

j+1) (square root)
(4.8)

The selection function is

qj+1 = SEL(dδ, ŷ) (division)

sj+1 = SEL(Ŝ[j], ŷ) (square root)

where d and S[j] are truncated after 4 fractional bits, and ŷ = 4wS + 4wC is trun-

cated after 4 fractional bits. The result digit is in signed-digit representation

{−2,−1, 0, 1, 2} with redundancy factor ρ = 2
3
and the residual w[j] is stored in

carry-save representation (wS and wC) to reduce the iteration time. The value S[j]

is obtained by the on-the-fly conversion algorithm. In the on-the-fly conversion, two

variables A and B are required. They are updated, in every iteration, as follows:

A[j] = S[j] and B[j] = S[j]− r−j

The number of bits required in the recurrence is 55 fractional plus 1 integer for

a total of 56 bits. To execute the operation 28 cycles are required for the iterations

plus one additional cycle for the rounding, for a total of 29 clock cycles. The block

diagram of the basic implementation is shown in Figure 4.31.

Implementation of block DSMUX

Block DSMUX selects the inputs to block FGEN according to the operation (di-

vision or square root) under execution. If the operation is a division, the value

121

Sel. Function

d x

53

53

53

2

Sign−Zero Detection

Mux

Conversion & Rounding

Register Ws

Register Wc

F generator

Carry−save Adder

DS Selector − DSMUX

A

C

A C

OP
562855

56

56
56

56 56

5656

4

4

8 8

Q, S

4

K register

OP

28

Figure 4.31: Radix-4 combined division/square root unit.

122

operation AOUT B

division d d

square root A
CiA2i+1 + Ci(A2i+1 ⊕ A2i) (odd bits)
CiA2i + CiA2i (even bits)

i = m, . . . , 1, 0

Zi refers to bit in position i in vector Z, being i = 0 the LSB.

Table 4.12: DSMUX operations.

to provide to FGEN is d, while for square root the value to provide to FGEN is

the partial result S[j], which coincides with A[j]. If in the conversion block we

implement the algorithm described in Chapter 3 Section 3.10, the value of B can

be derived from A and the state in register C. In conclusion, in block DSMUX we

utilize the inputs (d, A, and C) to obtain the desired outputs (AOUT , B) according

to Table 4.12.

Implementation of Selection Function SEL

The selection function can be divided into two parts: an adder and a logic function.

The adder is an 8-bit carry-propagate adder whose addends are the 8 MSBs of the

carry-save representation of W. The 7 MSBs of the sum are used to generate the

result digit at each iteration, along with 3 bits of either d or A chosen as follows:

• if the operation is division the 3 bits of d are those with weight 2−2, 2−3, and

2−4.

• If the operation is square root, the 3 bits are chosen from A, as explained in

[10], according to Table 4.13.

The selection logic function is described in Table 4.14. The digit h selected is

the one satisfying the expression mh ≤ ŷ < mh+1. The result digit is in the set

{−2,−1, 0, 1, 2}. This representation makes the F-generator block (FGEN) simpler.

123

1 0 - first iteration (j = 0)
1 1 1 if (A<0> = 1) and (j > 0)

A<−2> A<−3> A<−4> if (A<0> = 0) and (j > 0)

A<−k> refers to bit in A with weight 2−k. A<−k> = A55−k

Table 4.13: Bits of A used in SEL.

mh dδ, Ŝ[j]
8/16 9/16 10/16 11/16 12/16 13/16 14/16 15/16

m2 12 14 15 16 18 20 20 22
m1 4 4 4 4 6 6 8 8
m0 -4 -5 -6 -6 -6 -8 -8 -8
m−1 -13 -15 -16 -17 -18 -20 -22 -23

Values in table are multiplied by 16

Table 4.14: Selection function for radix-4 combined division/square root.

Implementation of block FGEN

Block FGEN generates the signal F [j] as described in expression (2.7):

F [j] =

−qj+1d (division)

−(S[j]sj+1 +
1
2
r−(j+1)s2

j+1) (square root)

For square root the generation of F is quite complicated [10]. Table 4.15, where

a...aa and b...bb represent bits of A[j] and B[j] respectively, shows the values of

the bit-string for the different result digits. To keep track of the position, a 28-bit

register (K) is used. The register K is initially loaded with 1 in the MSB and 0 in

the remaining positions. At each iteration the 1 is replicated one position to the

right according to the following expression.

Ki[j + 1] = Ki+1[j], K27[j] = 1 i = 0, 1, . . . , 27

At the end of the square root all bits of K are 1. To simplify the implementation

of F[j], the bit string of Table 4.15 is rearranged as shown in Table 4.16. As can be

124

seen, three zones are defined by the variables

K1i = KiKi−1 , K2i = KiKi−1 , K3i = Ki+1Ki

and the relation between i and the bit h is i = bh/2c. In terms of these variables

we obtain

Fh(odd h) = K1i(P2Ah−1 + P1Ah +M1Bh +M2Bh−1)

+ K2i(P2 + P1Ah +M1Bh +M2) + K3i(P1 +M1)

Fh(even h) = K1i(P2Ah−1 + P1Ah +M1Bh +M2Bh−1)

+ K2i(P2 + P1 +M1 +M2) + K3i(P1 +M1)

For division by setting all the bits of register K to 1 (all K1i = 1 and K2i =

K3i = 0), F [j] can be generated by the same expression as for square root. This

corresponds to

Fh = P2Ah−1 + P1Ah +M1Bh +M2Bh−1 h = 0, 1, . . . , 55

with d = A = B. Note that for division, when qj+1 is positive (subtraction), the

carry-in in the adder must be set to 1.

sj+1 F [j] bit-string
0 j-1 j j+1 j+2 27

0 0 00 ... 00 00 00 00 ... 00
1 −A[j]− 2× 4−(j+2) aa ... aa aa 11 10 ... 00
2 −2A[j]− 8× 4−(j+2) aa ... aa a1 10 00 ... 00
-1 B[j] + 14× 4−(j+2) bb ... bb bb 11 10 ... 00
-2 2B[j] + 24× 4−(j+2) bb ... bb b1 10 00 ... 00

Table 4.15: Generation of F [j].

Minimum delay implementation

The minimum delay implementation, also referred as standard, is the one obtained

with the constraint of minimum delay. The post-layout critical path is 7.3 ns.

125

sj+1 F [j] bit-string
27 i+ 1 i i− 1 i− 2 0

0 0 00 ... 00 00 00 00 ... 00
1 −A[j]− 2× 4−(j+2) aa ... aa a1 11 00 ... 00
2 −2A[j]− 8× 4−(j+2) aa ... aa 11 00 00 ... 00
-1 B[j] + 14× 4−(j+2) bb ... bb b1 11 00 ... 00
-2 2B[j] + 24× 4−(j+2) bb ... bb 11 00 00 ... 00

K 1 ... 1 1 0 0 ... 0
K1 1 ... 1 0 0 0 ... 0
K2 0 ... 0 1 0 0 ... 0
K3 0 ... 0 0 1 0 ... 0

Table 4.16: Generation of F [j] with rearranged bit-string.

The critical path for the combined unit is 5% longer than the critical path for the

division only unit of Section 4.2. This is mainly due to the more complicated FGEN

block. The energy dissipated by this basic implementation is shown in Table 4.19

in column ”standard”.

4.6.2 Low Power Implementation

In this section we apply the techniques described in Chapter 3 to the standard

implementation. Because of the different conversion algorithm required for square

root, in the combined unit a low-power conversion and rounding unit, as the one

described in Section 4.2, is already in place in the standard implementation. In

addition to the techniques of Chapter 3, we reduce the energy dissipation in register

K by gating the clock in the flip-flops.

Retiming the recurrence

The retiming is done by moving the selection function of Figure 4.31 from the first

part of the cycle to the last part of the previous cycle (see Figure 4.32). The new

4-bit register is initialized to q0 = 1 for division and s0 = 1 for square root.

This retiming causes a problem for the square root operation. The result digit

126

adder

selection

function

SEL

Register W

Register W

FGEN

CSA

A B

A

DSMUX
OP

s,q

1.2

3.5

1.8

0.6

0.2

7.3 ns

(set−up)

a)

Reg. q, s

Reg. q, s

DSMUX
OP

FGEN
s,q

CSA

adder

SEL

Register A (Conv−round−unit)

selection

function

1.1

0.6

0.9

0.6

4.1

7.3 ns next cycle

b)

Figure 4.32: Retiming of the recurrence. a) before retiming. b) after retiming.

127

DSMUX
FGEN

CSA SEL

conv. REG AREG A

cycle iprev. cycle

wait
forward digit

REG q,s REG q,s

Figure 4.33: Digit forwarding.

j Ŝ[j]
1,2 A<0> A<−3> A<0>

3 s<0> 0 0
4 A<−2> ⊕ sSIGN s<1> s<0>

5 A<−2>(A<−3> A<−4>sSIGN) f1 A<−4> ⊕ sSIGN

others A<−2> A<−3> A<−4>

f1 = A<−3>sSIGN + (A<−3> ⊕ A<−4>)sSIGN

Table 4.17: Bits of A used in SEL (retimed).

sj+1 is converted in the next clock cycle and, as a consequence, in the first few

iterations the value Ŝ[j] is not available for the selection function (Figure 4.33).

However, because the digit-selection is done in the last part of the cycle and the

conversion of the previous digit is a short delay operation, we can forward the value

of the converted digit from the digit-converter to the the selection function and

determine the correct value for Ŝ[j]. By indicating with s<1>s<0> the converted

digit and with sSIGN its sign, Table 4.17 shows the modifications in the selection

function.

After the retiming, we change the representation of the residual to reduce the

number or flip-flops and use low-drive gates in the non critical portion of the re-

currence as explained for the radix-4 divider in Section 4.2.

128

Reduction in register K

Register K is used to generate F[j]. In division the register is initialized to 1 in

each bit, and the configuration is not changed for the whole operation. In square

root the register is initialized to 1 in the MSB and to 0 in the remaining bits.

Every iteration the 1 is propagated to the next bit, for a total of two transitions

per flip-flop (one to set the bit to 1, one to reset at the end of the operation). It is

convenient to disable the clock for those flip-flops that do not need to be changed

in a specific cycle. This is the same modification done for registers A and C in the

convert-and-round unit implemented by gating the clock of the flip-flops not used

(Section 3.10.2). The enabling function (for the i-th flip-flop) is

fi = OP Ki+1 Ki i = 27, . . . , 0

where OP = 1 for square root and OP = 0 for division. By implementing this

technique the energy dissipation in K is reduced virtually to zero for division and

to about one third for square root.

MSBs: DSMUX FGEN CSA SEL REG
0.6 0.9 0.6 4.1 1.1 = 7.3 ns

LSBs: MUX FGEN CSA REG
1.2 0.9 0.6 1.1 = 3.8 ns

Table 4.18: Paths for MSBs and LSBs in retimed recurrence.

4.6.3 Dual Voltage Implementation

The critical path in the retimed implementation is 7.3 ns. By implementing the

LSBs of the recurrence with radix-2 CSAs, the delay in the LSBs is 3.8 ns, resulting

in a time slack of 3.5 ns. In this case V2 = 2.0 V can be chosen without affecting

the latency of the unit. On the other hand, by opting for the use of radix-4 CSAs,

the time slack is reduced to 2.6 ns and, consequently, V2 can be lowered to 2.5 V .

129

Our estimation showed that the lowest energy is obtained by implementing

radix-2 CSAs and V2 = 2.0 V for the dual voltage implementation.

4.6.4 Optimization with Synopsys Power Compiler

The synthesized selection function met the set delay constraints (3.0 ns). the

reduction in energy dissipation, obtained by incremental compilation with energy

dissipation constraints resulted to be about 25%, without increasing the delay.

4.6.5 Summary of Results for Combined Unit

The implementation that consumes a reduced amount of energy is shown in Fig-

ure 4.34. Table 4.19 reports the average energy dissipation and area for the standard

and low-power implementation. In the table, entry std refers to the standard im-

plementation, optimized for speed, entry l-p is the low-power implementation with

the same delay, entry d-v is an estimate of a possible implementation with dual

voltage, and entry sym is an estimate of l-p with selection function optimized by

Synopsys Power Compiler.

The energy dissipation for the square root operation is about 10% lower than

for the division, on average. This is due to the fact that for square root in every

iteration we add F [j], which initially contains many zeros, to the residual w[j].

Some of the low-power techniques used, such as the changed redundant repre-

sentation, reduce the number of flip-flops in the registers and, consequently, the

area.

Figure 4.35 shows the breakdown, as a percentage of the total, of the energy

dissipated in the main blocks composing the unit.

130

Sel. Function

d x

53

53

53

2

Sign−Zero Detection

Mux

Conversion & Rounding

Register Ws

Register Wc

F generator

Carry−save Adder

DS Selector − DSMUX

A

C

A C

OP

562855

56

56

56

4

4

8

Register s j+1

8

8
4

3

fo
rw

ar
de

d
di

gi
t

24

24

24

Q, S

enable

8MSBs

8MSBs

8MSBs

8MSBs

4

K register

OP

28

Figure 4.34: Low-power combined division/square root unit.

131

division sqr. root
blocks std l-p syn d-v std l-p syn d-v

nJ nJ nJ nJ nJ nJ nJ nJ
control 0.9 0.9 0.9 0.9 0.9 0.9
clk tree 0.8 0.8 0.8 0.8 0.8 0.8
mux 1.9 1.9 0.9 1.7 1.7 0.8
DSMUX 0.1 0.1 0.1 0.3 0.3 0.3
FGEN 7.3 4.9 2.4 5.8 4.3 2.0
CSA 8.8 5.2 3.8 4.7 3.9 2.3
sel. func. 1.5 2.0 1.5 2.0 1.2 1.8 1.4 1.8
register Ws 6.7 6.4 ∗3.7 6.3 6.1 ∗3.6
register Wc 6.7 2.7 ∗3.1 5.1 2.2 ∗2.5
register q - 0.3 0.3 - 0.3 0.3
register K 1.3 0.0 0.0 1.6 0.5 0.2
SZD 5.8 0.6 0.6 4.6 0.6 0.6
C&R unit 3.7 3.7 ∗1.4 3.7 3.7 ∗1.4
Eop [nJ] 46.0 29.5 29.0 20.0 37.0 27.0 26.5 17.5

Ratio to std 1.00 0.65 0.63 0.45 1.00 0.75 0.70 0.50
Esqrt/Ediv - - - - 0.80 0.90 0.90 0.90

Area [mm2] 1.9 1.8 - - 1.9 1.8 - -

Values marked ∗ include level shifters.

Table 4.19: Summary of reductions for division and square root operations.

132

0

5

10

15

20

25

30

35

40
std

ctrl. muxs SEL FGEN CSA REGs reg K SZD C&R

0

5

10

15

20

25

30

35

40
l-p

ctrl. muxs SEL FGEN CSA REGs reg K SZD C&R

0

5

10

15

20

25

30

35

40
d-v

ctrl. muxs SEL FGEN CSA REGs reg K SZD C&R

Figure 4.35: Percentage of energy dissipation in radix-4 combined unit.

133

4.6.6 Energy Comparison with Radix-4 Divider

In this section we compare the results obtained for the radix-4 combined division

and square root with those obtained for a radix-4 divider.

Table 4.20 summarizes the results for the implementation l-p when performing

division. Similar blocks are put in the same row. The combined unit dissipates 15%

more than the divider, on average. The largest differences are for the blocks FGEN

and ”mux”. The implementation of FGEN is considerably more complicated than

the corresponding unit in the divider and gates with large number of inputs (8-input

NAND) have been used to keep the number of levels of logic (and the delay) low.

As for the multiplexer, in the retimed implementation of the divider, it is moved

out of the recurrence. However, in the divider an extra cycle is required because

the first iteration is only used for initialization and no quotient-digit is produced.

In the combined implementation in the first iteration we perform the subtraction

x− d using two inputs of the CSA and produce the first digit of the result.

4.7 Summary of Estimation Error

The simulations to determine the energy dissipation were carried out on the set of

10 random-generated test vectors shown in Table 4.21. In Table 4.22 we report the

percentage errors for the energy estimation of the units presented above and the

number of transistors for each implementation. The error is computed by expres-

sion (4.2) with confidence level of 99%. Table 4.22 also shows that the accuracy of

the estimation is independent of the size of the circuit (number of transistors). This

confirms the dimension independence property of this approach which is a common

feature of the Monte Carlo methods.

134

blocks divider combined
control 1.1 0.9
clk tree 0.9 0.8
mux 0.3 1.9
DSMUX - 0.1
FGEN 2.8 4.9
CSA 4.8 5.2
sel. func. 1.6 2.0
register Ws 6.4 6.3
register Wc 3.5 2.7
register q 0.3 0.3
register K - 0.0
SZD 0.6 0.6
C&R unit 3.9 3.7
Ediv [nJ] 26.0 29.5
Ratio 1.00 1.15
Area [mm2] 1.2 1.8
Ratio 1.0 1.5

Table 4.20: Comparison radix-4 divider/combined unit.

135

n. vectors
1 x 10100101111110100101011011000111010010111111010010110

d 10100001100111000110110101001001010000110011100011100
2 x 10011001010001101111110010110111001100101000110111111

d 10001010110110011011011011111110000101011011001101110
3 x 10111110100010110000101111111101011111010001011000011

d 10011110011101001110011101011011001111001110100111010
4 x 11000101100101010100101101000000100010110010101010011

d 11000011101101000011110101110110100001110110100001111
5 x 11011001101010000101011001010110101100110101000010110

d 10110001100101111010011101100100011000110010111101010
6 x 11110110100110110111010101011001111011010011011011101

d 11000000001110110111011001000100100000000111011011110
7 x 11100011111001001000111010100011110001111100100100100

d 11111010101100011011001110011100111101010110001101101
8 x 10110111101100001101010101000010011011110110000110110

d 10100110101011000011111000000111010011010101100010000
9 x 10000110010001100001001111011101000011001000110000101

d 10001010101011001001001111000010000101010101100100101
10 x 10101111010011101111101010110110010111101001110111110

d 10110010100000011000011001000111011001010000001100010

Table 4.21: The 10 random vectors.

standard low-power
unit Eop [nJ] ε % FETs Eop [nJ] ε % FETs

radix-4 45.5 2.1 21000 26.0 1.7 16400
radix-8 47.5 4.1 31000 28.5 4.2 24900
radix-16 46.0 2.8 30400 30.0 3.3 25600
radix-512 66.5 2.1 83600 55.0 2.4 68300
comb. div/sqrt 46.0 3.6 25100 29.5 2.7 23800

Table 4.22: Percentage error in energy estimation.

Chapter 5

Evaluation of the Designs

Introduction

In this chapter we provide an overview of the implementations presented in Chap-

ter 4 and comment on the results obtained and on the effectiveness of the techniques.

5.1 Impact of the Energy Reduction Techniques

The impact of the techniques used in the design of low-power division and square

root units is summarized in Table 5.1, where they are evaluated in terms of costs

and benefits on the three main design constraints: delay, energy and area. For

the delay, the cost represents an increase in the critical path and the benefit a

reduction in it. For the area the cost and benefits are increase and reduction in

the area, whereas for the energy, Table 5.1 lists only the benefits: reduced energy

dissipation. The symbol ”-” in table means that the corresponding cost/benefit is

not affected by that technique. In addition to the traditional design constraints,

Table 5.1 also reports the cost in terms of ”man-power”, which is a measure of the

design time needed to implement the technique in question.

It is worth reminding the reader that the results presented in this work are de-

rived from experience in the design of arithmetic units using static CMOS standard

cell libraries and automatic floor-planning. By implementing the units in question

with different technologies (dynamic CMOS, GaAs, etc.) or using full-custom lay-

out styles, results may be different.

A description of the tradeoffs for each of the techniques presented in Chapter 3

follows.

136

137

technique delay area man-power energy
cost benefit cost benefit cost benefit

retiming - low low - high low
red. in mux med. - - - low high
change repr. - - - high med. high
low-drive gates - - - low low med.
dual voltage - - high - med. high
paths equaliz. - - - - high low
SEL partition high - med. - med. high
glitch filter high - med. - med. med.
C&R algo mod. - - - high high high
gated clock - - med. - high med.
gated tree - - low - med. med.
disable blocks - - high - low high

Table 5.1: Costs and benefits in the application of reduction techniques.

Retiming the Recurrence

The retiming the recurrence is probably the most important and effective technique.

Although the benefits of the retiming in itself are moderate, especially for high

radices when the increased glitches in the selection function offset the reductions in

the multiple generator and carry-save adder, the retiming allow the ”decoupling”

of the most-significant bits which are on the critical path from the rest of the bits

that can be redesigned for low power by applying the other techniques.

The design effort is quite high especially for high radices (radix 8, 16 and 512)

in which the retiming alters the critical path.

Reducing the Transitions in the Multiplexer

This modification is relatively easy to implement and gives good reductions in

the multiplexer, although it has a smaller impact on the whole unit. However,

additional work has to be done by skewing the select signal to avoid that the delay

of the multiplexer becomes a part of the critical path.

138

Changing the Redundant Representation

Changing the redundant representation has a high impact on both the energy dis-

sipated and the area. The higher the radix, the higher is the benefit. The tradeoff

is that propagating the carry inside the digit increases the number of transitions

in the CSA. However, if registers are implemented with edge-triggered flip-flops

the extra transitions in the CSA do not offset the reductions in the registers. The

critical path is not affected by this techniques unless the delay of the radix-r CSA

is too long (e.g. for radix-512).

Using Gates with Lower Drive Capability

Replacing gates not in the critical path with gates which consume less power is

relatively easy and can achieve high reductions in the overall energy dissipation.

Unfortunately the application of this technique depends highly on the library used.

In our library (Passport) the cells with low-drive capability were very limited and

the use of this technique not very effective.

Dual Voltage

The use of dual voltage gives probably the highest reduction in the energy consump-

tion because by reducing the voltage the energy decreases quadratically. However,

each library is guaranteed to work properly in a given range of power supply voltage

(for example library ST CB45000 can operate with voltage between 3.6 − 2.7 V)

and sometimes the optimal lower voltage V2 cannot be implemented. Dual volt-

age requires level-shifters to interface the lower voltage parts with the portions

of the circuit at higher voltage. Moreover, in a dual voltage unit the power grid

must accommodate three different voltage levels (VDD, V2 and VSS) and this might

complicate the layout of the chip.

139

Equalizing the Paths to Reduce Glitches

This technique was only adopted in the implementation of the radix-4 divider. It

was abandoned in the realization of the other units because the design effort was

too high in relation to the benefits. We used automatic floor-planning for the layout

to have a fast turn-around time in the realization of many versions, incrementally

improved, of the same unit. With automatic floor-planning the cells are placed

randomly and the delay due to interconnections is different for each layout. As a

consequence, it is impossible to really equalize the paths and the glitches cannot

be completely eliminated.

Partitioning and Disabling Selection Function

As already mentioned in Section 3.8, the partitioning of the selection function affects

the critical path. However, if the clock period is long enough to accommodate the

additional time required, the energy reduction is quite significant especially for high

radices.

Glitch Filtering and Suppression

This modification affects the critical path if filtering is positioned at the input of

the selection function. This is done for high radices in the retimed implementation.

The filtering devices (multiplexers) always increase the area and an extra signal to

enable the filter (select input in the multiplexer) has to be generated. Moreover,

the technique can be applied to any part of the circuit not in the critical path,

where a large number of glitches have to be suppressed, without any penalty on

the latency on the unit. However, many select signals require a fine-tuning of the

timing of the circuit that could result very hard to implement.

140

On-the-fly Conversion Algorithm Modification

The modification in the on-the-fly conversion and rounding algorithm brought sig-

nificant reductions in energy in the convert-and-round unit. The latency of the unit

increases with the radix because a digit might be decremented and this is done with

a carry-propagate decrementer within a digit. But because the convert-and-round

unit is not in the critical path, the modified algorithm can be applied to all the

radices (4 through 512) without affecting the performance of the division or square

root unit.

Disabling the Clock

This technique is used in the convert-and-round unit not only to reduce the energy

dissipated in the flip-flops, but also to allow the loading of the digit in the correct

position without the use of a multiplexer. In general, the addition of one or more

gates to the clock pin of a flip-flop increases the latency of the circuit. However, in

our designs this is only done for registers not in the critical path.

Gating the Trees

For this technique apply the same considerations done for the clock-gating: if the

tree is on the critical path, adding a gate increases the latency of the unit. This

is not the case of the trees to distribute the signals in the convert-and-round unit,

where a significant reduction of the energy dissipated in the unit is achieved.

Switching-off Not Active Blocks

Switching off a block not used for several cycles is probably the easiest modification

to implement. However, the block has to be disabled by introducing additional logic

gates which increase the area and affect the delay of the unit if the block is on the

critical path. The reductions in the energy dissipated are higher for units in which

141

the ratio

cycles block is enabled

total cycles per operation

is smaller. For the SZD block, the ratio is smaller for lower radices.

Synthesis for Low-Power

The experimental results presented in [15] claim that synthesis with Synopsys Power

Compiler reduces the power dissipated by about 11% on the average (peak of 66%)

for some industrial benchmarks and all the delay constraints are met.

In our small experiment the results obtained are good for relatively small circuits

(case of selection functions), while for larger and more complex circuits (radix-4

divider recurrence) not only the power is not reduced much, but also the initial

design, optimized for smaller delay, is not as good as attainable by manual design.

For these reasons, we conclude that the use of Synopsys Power Compiler is

helpful in solving optimization problems of small functional blocks, but not very

effective in reducing delay and power in larger and more complex blocks, such as a

divider.

Conclusions

Table 5.1 shows that the modifications done at an higher level of abstraction, such

as algorithm modification or change of the encoding, have a larger impact on the

energy dissipated than techniques applied a lower level, such as path equalization

or glitch filtering. Furthermore, modifications done at higher level of abstraction

are more independent of the technology and tools used.

5.2 Results and Comparisons among Radices

Table 5.2 summarizes the results obtained for energy-per-division, area and execu-

tion time (tdiv = Tcycle× cycles) for the implementations of Chapter 4. Note that

142

Ediv [nJ] Area [mm2] Tcycle cycles tdiv
std l-p d-v std l-p [ns] [ns]

radix-4 45.5 26.0 16.0 1.4 1.2 7.0 30 210
ratio 1.00 0.60 0.35 speed-up 1.0

combined 46.0 29.5 20.0 1.9 1.8 7.3 29 210
radix-4 ratio 1.00 0.65 0.45
radix-8 47.5 28.5 19.0 2.2 1.8 8.0 20 160

ratio 1.00 0.60 0.40 speed-up 1.3
radix-16 46.0 30.0 22.0 2.2 1.8 9.2 16 150

ratio 1.00 0.65 0.45 speed-up 1.4
radix-512 66.5 55.0 38.5 6.0 6.4 10.5 10 105

ratio 1.00 0.85 0.60 speed-up 2.0

Table 5.2: Energy-per-division, area, execution time and speed-up.

for the combined division/square root unit the number of cycles is one less than

for the division only unit. This is due to the different initialization cycle in the

two implementations. However, it is possible to change the initialization in the

radix-4 divider and reduce the number of cycles to 29. For the implementations

of Table 5.2, as the radix increases the cycle time Tcycle is longer, but the number

of cycles is reduced, and the resulting execution time is shorter. The speed-up,

relative to the radix-4 implementation, is the ratio of the execution times

speed-up =
tr4
tdiv

.

The radix-512 divider is the fastest unit and it is about twice as fast as the radix-4

divider.

The main goal of this research work is to reduce the energy consumption in

division and square root units without penalizing the performance. Figure 5.1

shows, for each radix, the reductions in the energy dissipation with respect to the

”standard” (std; symbol 3 in figure). Label c4 in tables indicates values obtained

for the radix-4 combined division and square root unit. For all the radices, with

the exception of radix-512, the reduction in energy is around the 60% level for the

143

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 c4 8 16 512
radix

std

3 3 3 3 3

3
l-p

4 4 4 4

4

4
d-v

2

2
2

2

2

2

Figure 5.1: Reduction in Ediv. Ratio to std implementation.

low-power implementation (l-p; symbol 4 in figure), and about 40% for a possible

implementation with dual voltage (d-v; symbol 2 in figure). However, also for the

radix-512 divider there is a reduction, although it is smaller.

We now briefly comment on the percentage of energy dissipated in the blocks

composing the units, which were presented in Chapter 4. In blocks such as control

unit (ctrl) and clock distribution tree (tree), in which energy is not reduced going

from the std to the d-v implementation, although the values of energy in nJ are not

changed, the percent contribution to the overall energy dissipation increases. For all

radices and schemes, the reductions obtained in the convert-and-round (C&R) unit

and by disabling the sign-and-zero detection (SZD) block are quite evident. Blocks

in the critical path tend not to reduce their percent contribution to the overall

dissipation. In the case of the selection function (SEL), because no techniques are

effective to reduce energy without penalizing the critical path, for all the radices

there is a percent increase going from the std to the d-v implementation. This is

144

particularly evident for radix-16 (Figure 4.22 at page 106) where the same energy

value for SEL contributes to the 27% of the total of l-p and to the 37% of d-

v. Moreover, for the selection function, due to the increased complexity of the

function, the percent contribution to the total grows with the radix: from 11% for

d-v radix-4 to 37% for d-v radix-16. As the radix increases the larger contribution

migrates from the registers to the selection function and the hardware to perform

the addition (CSAs for radix-8 and 16, Mult and Add for radix-512).

Figure 5.2 and Figure 5.3 show the values of energy-per-division (Ediv) and

energy-per-cycle (Epc), respectively, expressed in nJ . It is interesting to note

that, with the exception of radix-512, the units dissipate roughly the same en-

ergy to perform a division (Figure 5.2). On the other hand, Figure 5.3 shows that

the energy-per-cycle increases with the radix. As it happens for the execution

time, the smaller number of cycles for higher radices compensates the higher Epc in

Ediv = Epc× cycles. However, while for the latency there is a speed-up for higher

radices, for energy dissipation there is no improvement. Dividing the values of Epc

by Tcycle (see expression (1.1)) we obtain the average power dissipation

P =
Epc

Tcycle

= VDDIave [W].

Because Tcycle is larger for higher radices, the average power dissipation increases

at a slower rate than Epc with the radix (Figure 5.4).

If for a processor low energy is the priority, like for portable electronics where

the life time of batteries depends on Ediv, a high-radix divider with a lower power

supply voltage (VDD) and a reduced speed can be used in place of a lower radix

divider with same latency. For example, using the data of Table 5.2, a divider with

latency of 210 ns can be implemented either with a radix-4 (Ediv = 26 nJ), or with

a radix-16 powered at VDD = 2.5 V which dissipates about Ediv = 18 nJ , reducing

by one third the energy consumption.

145

10

20

30

40

50

60

70

4 c4 8 16 512

Ediv

[nJ]

radix

std

3 3
3

3

33
l-p

4
4 4 4

4

4
d-v

2

2
2

2

2

2

Figure 5.2: Energy-per-division: summary.

0

1

2

3

4

5

6

7

4 c4 8 16 512

Epc

[nJ]

radix

std

3 3

3

3

33
l-p

4 4
4

4

4
4

d-v

2
2

2
2

2

2

Figure 5.3: Energy-per-cycle: summary.

146

0

1

2

3

4

5

6

4 c4 8 16 512

Epc [nJ], P [140×mW] radix

Epc

3 3

3

3

3
3

P

4 4 4 4

4

4

Figure 5.4: Energy-per-cycle and scaled average power for l-p implementations.

Chapter 6

Conclusions

This work investigated the implementation of low-power double-precision floating-

point division and square root units. Although division and square root are not

very frequent operations ignoring their implementations can result in system per-

formance degradation. In addition, although division is less frequent than addition

and multiplication, because of its longer latency, it dissipates a not negligible por-

tion of the total energy consumed in floating-point units.

Our main objective was to reduce the energy consumption without increasing

the execution time and to study the relationship between the radix of the algo-

rithm and the energy consumption. The energy dissipated in CMOS cells can be

reduced by applying a number of techniques at different level of abstraction. We

both applied already known techniques to the specific case of division and square

root, and developed some algorithm-specific modifications that reduce the energy

dissipation in the units.

To evaluate the effectiveness of these techniques, we presented the implemen-

tation of four different schemes of division and one combined division and square

root unit. All the units were implemented with a static CMOS standard cell library.

We obtained, for all the radices except radix-512, an overall energy reduction of

40% and estimated that if gates for dual voltage were available in our library we

could have reached a reduction of about 60%. Moreover, the energy per operation

is roughly the same for radix-4, 8 and 16, and the energy per cycle increases with

radix. Because the average power is proportional to the energy per cycle, also the

average power dissipation increases with the radix, but to a smaller extent because

147

148

the cycle time is longer for higher radices. The use of dual voltage is more effective

for simple datapaths in which the time slack between the delay of different portions

of the circuit is larger.

The results obtained showed that the most effective techniques to reduce the

energy dissipation are those applied at a higher level of design abstraction, such as

modification in the conversion and rounding algorithm, disabling not active blocks,

and the use of dual voltage.

Bibliography
[1] J. Frenkil. A multi-level approach to low-power IC design. IEEE Spectrum

magazine, pages 54–60, Feb. 1998.

[2] ANSI/IEEE Std 754-1985. IEEE standard for binary floating-point arithmetic,
1985.

[3] S. Oberman and M. Flynn. Design issues in division and other floating-point
operations. IEEE Transactions on Computers, pages 154–161, February 1997.

[4] J. M. Rabaey, M. Pedram, et al. Low Power Design Methodologies. Kluwer
Academic Publishers, 1996.

[5] H. Suzuki, H. Morinaka, H. Makino, Y. Nakase, et al. Leading-zero anticipa-
tory logic for high-speed floating point addition. IEEE Journal of Solid-State
Circuits, pages 1157–1164, Aug. 1996.

[6] H. Suzuki, H. Morinaka, H. Makino, Y. Nakase, et al. A 286 MHz 64-b floating
point multiplier with enhanced CG operation. IEEE Journal of Solid-State
Circuits, pages 504–513, Apr. 1996.

[7] N. Okhubo, M. Suzuki, T. Shinbo, T. Yamanaka, A. Shimizu, K. Sasaki, and
Y. Nagakome. A 4.4 ns CMOS 54 × 54 Multiplier using Pass-Transistor Mul-
tiplexer. IEEE Journal of Solid-State Circuits, pages 251–257, Mar. 1995.

[8] J. L. Hennessy and D. A. Patterson. Computer Architecture: a Quantitative
Approach. Morgan Kaufmann Publishers Inc., 2nd edition, 1995.

[9] N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI Design.
Addison-Wesley Publishing Company, 2nd edition, 1993.

[10] M.D. Ercegovac and T. Lang. Division and Square Root: Digit-Recurrence
Algorithms and Implementations. Kluwer Academic Publisher, 1994.

[11] W. Nebel and J. Mermet editors. Low Power Design in Deep Submicron Elec-
tronics. Kluwer Academic Publishers, 1997.

[12] J. M. Chang and M. Pedram. Energy minimization using multiple supply
voltages. Proc. of International Symposium on Low Power Electronics and
Design, pages 157–162, Aug. 1996.

[13] E. Macii, M. Pedram, and F. Somenzi. High-level power modeling, estimation
and optimization. Proc. of 34th Design Automation Conference, pages 504–
511, June 1997.

149

150

[14] A. P. Chandrakasan and R. W. Brodersen. Low Power Digital CMOS Design.
Kluwer Academic Publishers, 1995.

[15] B. Chen and I. Nedelchev. Power compiler: A gate-level power optimization
and synthesys system. Proc. of International Conference on Computer Design
(ICCD), pages 74–78, Oct. 1997.

[16] A. P. Chandrakasan and R. W. Brodersen. Minimizing power consumption in
digital CMOS circuits. Proceeding of IEEE, pages 498–523, Apr. 1995.

[17] V. Tiwari, S. Malik, and P. Ashar. Guarded evaluation: pushing power man-
agement to logic synthesis/design. Proc. of International Symposium on Low
Power Design, pages 221–226, Apr. 1995.

[18] L. Benini, P. Siegel, and G. De Micheli. Automatic synthesis of gated clocks for
power reduction in sequential circuits. IEEE Design and Test of Computers,
pages 32–40, Dec. 1994.

[19] T. Lang, E. Musoll, and J. Cortadella. Individual flip-flops with gated clocks
for low-power datapaths. IEEE Transactions on Circuits and Systems, June
1997.

[20] J. Monteiro, S. Devadas, and A. Ghosh. Retiming sequential circuits for low
power. Proc. of 1993 International Conference on Computer-Aided Design
(ICCAD), pages 398–402, Nov. 1993.

[21] G. Hachtel, M. Hermida, A. Pardo, M. Poncino, and F. Somenzi. Re-encoding
sequential circuits to reduce power dissipation. Proc. of 1994 International
Conference on Computer-Aided Design (ICCAD), pages 70–73, Nov. 1994.

[22] T. E. Williams and M. A. Horowitz. A zero-overhead self-timed 160-ns 54-b
CMOS divider. IEEE Journal of Solid-State Circuits, pages 1651–1661, Nov.
1991.

[23] G. Matsubara, N. Ide, H. Tago, S. Suzuki, and N. Goto. 30-ns 55-b shared radix
2 division and square root using a self-timed circuit. Proc. of 12th Symposium
on Computer Arithmetic, pages 98–105, 1995.

[24] F. Najm. A survey of power estimation techniques in VLSI circuits. IEEE
Transactions on VLSI Systems, pages 446–455, Dec. 1994.

[25] O. Coudert, R. Haddad, and K. Keutzer. What is the state of the art in
commercial EDA tools for low power? Proc. of International Symposium on
Low Power Electronics and Design, pages 181–187, Aug. 1996.

[26] Synopsys Inc. Power Compiler. http://www.synopsys.com/products/power/.

[27] Sente Inc. WattWatcher/Architect. http://www.powereda.com/.

151

[28] Israel Koren. Computer Arithmetic Algorithms. Prentice-Hall, Inc. , 1993.

[29] S. Oberman and M. Flynn. Division algorithms and implementations. IEEE
Transactions on Computers, pages 833–854, August 1997.

[30] G.S. Taylor. Radix-16 SRT dividers with overlapped quotient selection stages.
Proc. of 7th Symposium on Computer Arithmetic, pages 64–71, 1985.

[31] J. Fandrianto. Algorithm for high-speed shared radix-8 division and radix-8
square root. Proc. of 9th Symposium on Computer Arithmetic, pages 68–75,
Sept. 1989.

[32] M.D. Ercegovac, T. Lang, and P. Montuschi. Very-high radix division with
prescaling and selection by rounding. IEEE Transactions on Computers, pages
909–918, August 1994.

[33] A. Nannarelli. Implementation of a radix-512 divider. Master’s thesis, Univ.
of California, Irvine, June 1995.

[34] A. Prabhu and G. Zyner. 167 MHz radix-8 divide and square root using
overlapped radix-2 stages. Proc. of 12th Symposium on Computer Arithmetic,
pages 155–162, July 1995.

[35] K. Usami and M. Horowitz. Clustered voltage scaling technique for low-power
design. Proc. of International Symposium on Low Power Design, pages 3–8,
Apr. 1995.

[36] G. De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill,
Inc., 1994.

[37] Synopsys. Synopsys User’s Manual. Synopsys Inc., 1992.

[38] Compass Design Automation. User Manuals for COMPASS VLSI. Compass
Design Automation, Inc., 1992.

[39] R. Y. Rubinstein. Simulation and the Monte Carlo method. John Wiley &
Sons, 1981.

[40] C. Z. Mooney. Monte Carlo simulation. Sage Publications, 1997.

[41] I. Miller, J. E. Freund, and R. Johnson. Probability and Statistics for Engineers.
Prentice Hall, 1990.

[42] R. Burch, F. Najm, P. Yang, and T. Trick. A Monte Carlo approach for power
estimation. IEEE Transactions on VLSI Systems, pages 63–71, Mar. 1993.

[43] Compass Design Automation. Passport - 0.6-Micron, 3-Volt, High-
Performance Standard Cell Library. Compass Design Automation, Inc., 1994.

152

[44] ST Microelectronics. CB45000 series standard cells - databook. ST Microelec-
tronics, 1997.

[45] P. Larsson and C. Nicol. Transition reduction in carry-save adder trees. Proc.
of International Symposium on Low Power Electronics and Design, pages 85–
88, Aug. 1996.

[46] A. Nannarelli. Report on Error of PET vs. SPICE. Technical Report, Oct. 1997.
Available at http://www.eng.uci.edu/∼alberto/pscripts/an tech9710.ps.Z.

[47] A. Nannarelli. Short-circuit current modeling for CMOS standard cells en-
ergy consumption estimation. Technical Report, Feb. 1997. Available at
http://www.eng.uci.edu/numlab/archive/pub/nl97p-01/.

[48] K. Anshumali. ACC: automatic cell characterization. Proc. of Euro ASIC ’91,
pages 204–209, May 1991.

[49] A. Nannarelli. Short-Circuit Current Modeling for CMOS Standard Cells
Power Characterization. Technical Report, Dec 1996. Available on the WWW
at http://www.eng.uci.edu/∼alberto/pscripts/an tech9612.ps.Z.

[50] A. Nannarelli. ACC: Automatic cell characterization. Web pages at URL
http://www.eng.uci.edu/numlab/ACC/.

Appendix A

Implementation of Blocks
Common to Most Radices

Introduction

The functional blocks described in this appendix are those blocks common to most

of the implementations presented in this work.

A.1 Register

All the registers are implemented by using arrays of flip-flops. The flip-flops are

D-type edge-triggered on the rising edge and include either SET pin, or RESET

pin, or both.

A.2 Carry-Save Adder

The radix-2 carry-save adder is implemented as an array of full-adders. Each full-

adder (FA) is implemented as depicted in Figure A.1 and it can be decomposed

into two half-adders (HA). Its maximum delay is the delay of the two XOR gates,

or half-adders (tFA = tHA + tHA).

A.3 Selection Function

The selection function (SEL), except for radix-512, is usually composed by a small

carry-propagate adder, because of the carry-save representation of the residual,

and by a function implemented with logic gates as depicted in Figure A.2. The

implementations of SEL are obtained by synthesis of the VHDL description of the

153

154

a
b

d

e

f

g

S

C

Figure A.1: Implementation of full-adder.

delta

adder

logic function

bb

2a+1

Figure A.2: Selection function.

selection function. SEL includes both the assimilation of the carry-save represen-

tation of ŷ and the actual digit-selection function.

A.4 Multiple Generator

The multiple generator (MULT) perform the following operation for division:

−qj+1 d .

In order to avoid the implementation of a complicated multiple generator, the quo-

tient digit is represented in a 1-out-of-h code. In this work, most of the result-digits

are represented as signed-digit numbers with values in the set {−2,−1, 0, 1, 2}. Four

signals (h = 4) are used to represent these five values with the code given in Ta-

155

digit M2 M1 P1 P2
-2 1 0 0 0
-1 0 1 0 0
0 0 0 0 0
1 0 0 1 0
2 0 0 0 1

Table A.1: Result digit encoding.

M2

M1

P2

P1
id

i−1
d

q
j+1 i

d

Figure A.3: One bit of the multiple generator.

ble A.1. This representation makes the multiple generator simple, as shown in

Figure A.3.

A.5 Sign-and-Zero Detection Unit (SZD)

To perform the rounding, it is necessary to detect the sign of the residual from its

redundant representation and to determine if the residual is zero. In [10], a network

to detect the two conditions: sign of residual, and residual is zero, is described. We

now summarize its implementation. Let wS and wc be the values of the (h+1)-bit

carry-save representation of the last residual. We introduce two quantities aS and

aC such that

aS + aC = wS + wC − 2−h

and consequently, the condition wS + wC = 0 results in

aS + aC = 2−h

156

Therefore, the final residual is zero when:

zero =
h
∏

i=0

Pi =
h
∏

i=0

aSi ⊕ aCi (A.1)

where aSi and aCi, which assume either value 1 or 0, represent the bits in position

i in the carry-save representation. The sign can also be detected by using aSi and

aCi by observing that:

aS + aC ≥ 0 ⇒ wS + wC > 0

and

aS + aC < 0 ⇒ wS + wC ≤ 0

Therefore:

sign = (aS0 ⊕ aC0 ⊕ cMSB) zero

where cMSB is the carry into the most-significant bit.

The subtraction of 2−h to the carry-save representation of w is done by adding

a (h+1)-bit vector of 1s. The resulting expression for the bits of aS and ac are

aSi = (wSi ⊕ wCi) and aCi+1 = wSi + wCi (A.2)

The Pis of expression (A.2) are generated in a hierarchical way using a carry-

look-ahead structure. For example, for a 64-bit sign-and-zero detection unit using

groups of 4 bits we have the scheme of Table A.2. And the two corresponding

expressions for zero and sign are:

zero = PG

and

sign = (G⊕ p63)P .

157

Level 0
gi = aSiaCi and pi = aSi + aCi i = 0, 1, . . . , 63

Level 1
for each j = b i

4
c and corresponding gk, pk with k = i (mod 4)

Gj = g3 + g2p3 + g1p2p3 + g0p1p2p3 j = 0, 1, . . . , 15
Pj = p0p1p2p3

Level 2
for each l = b j

4
c and corresponding Gk, Pk with k = j (mod 4)

G∗
l = G3 +G2P3 +G1P2P3 +G0P1P2P3 l = 0, 1, 2, 3

P ∗
l = P0P1P2P3

Level 3
G = G∗

3 +G∗
2P

∗
3 +G∗

1P
∗
2P

∗
3 +G∗

0P
∗
1P

∗
2P

∗
3

P = P ∗
0P

∗
1P

∗
2P

∗
3

Table A.2: Carry-look-ahead tree for 64-bit SZD.

158

V

SSV

VDD

SSV

2

N1

MP1

MN1

static current

C2 C1

Figure A.4: Dual voltage: C1 is not cut-off.

A.6 Voltage Level Shifter

In this section we describe the voltage level shifter presented in [35]. Voltage level

shifters are needed in circuits that operate with dual voltage (VDD regular supply

voltage and V2 reduced supply voltage). Level shifters are necessary when a portion

of the circuit at voltage V2 is connected to a portion at voltage VDD. As shown

in Figure A.4, if the output of a circuit operating at V2 (C2) is connected directly

to the input of a circuit operating at VDD (C1), static current flows in C1 at the

input level ”high”. Since the voltage of node N1 is not raised higher than V2,

the p-transistor MP1 cannot be cut-off if V2 < VDD − Vthreshold,p. Therefore, static

current flows from VDD to VSS through MP1 and MN1. In order to block this static

current a voltage level shifter is inserted at node N1. No level shifting is necessary

when, in the reversed case, the output of a VDD operated circuit is connected to the

input of a V2 circuit. The voltage level shifter is realized as depicted in Figure A.5.

Table A.3 indicates the input-output delays and energy consumption for a level

shifter operating at VDD = 3.3 V and V2 = 2.0 V , and its comparison with an

inverter of the Passport library. The values in Table A.3 were obtained by SPICE

simulation.

159

input

output

V
VDD

SSV

2

Figure A.5: Voltage level shifter.

level shifter inverter
delay [ns] Etran delay [ns] Etran

tLH trise tHL tfall [nJ] tLH trise tHL tfall [nJ]
SL1 0.144 0.13 0.042 0.11 0.7 0.097 0.20 0.094 0.16 0.3
SL4 0.245 0.17 0.087 0.22 1.2 0.164 0.32 0.163 0.27 0.8
SL16 0.670 0.45 0.271 0.69 3.4 0.459 0.98 0.476 0.86 2.1

SL = standard load = 22 fF for Passport library

Table A.3: Delay and energy comparison between level shifter and inverter.

Appendix B

CAD Tools
Introduction

In this appendix we describe the features of some CAD tools used in the realization

of this work. A brief description of COMPASS tools is given in Chapter 4. First,

the two tools developed in our laboratory (PET and ACC) are presented. Then, the

main features of the commercial tool Synopsys Power Compiler are summarized.

B.1 PET: Power Evaluation Tool

PET belongs to the category of power estimators loosely-coupled with the simulator.

It is coupled with COMPASS Qsim and it was developed internally for two main

reasons:

• to have a flexible tool which could be tailored for specific issues.

• because when the project started there were no commercial tools adaptable

to COMPASS without a considerable effort.

PET computes the energy and power dissipation by reading the energy views for

the cells in the library, the layout-extracted netlist and the trace file generated by

Qsim. The energy views are computed once for a given library, by characterization

using ACC (Section B.2), and then stored in a database.

B.1.1 PET Energy and Power Models

As discussed in Section 1.2, the energy consumption in a cell is proportional to

the output load, the supply voltage, the number of output transitions in a given

160

161

time window and the energy dissipated internally. This is summarized by expres-

sion (1.5), which is rewritten below

Ei = (
1

2
V 2
DDCL + Eint) ni

where:

VDD is power supply voltage.

CL is the total load applied to the output.

Eint is the internal energy dissipated in the cell during one transition.

ni is the number of transitions at the output of the i-cell in the time window.

The term between parenthesis

Etran =
1

2
V 2
DDCL + Eint [J]

represents the energy per transition. The average power dissipated in a cell can be

computed from the energy, by introducing the following quantities:

f0 is the circuit main frequency (clock frequency),

ai is the activity factor:

ai =
nr. of output transitions (in time window)

nr. of clock cycles (in time window)
=

ni

nT

as

Pi = (
1

2
V 2
DDCL + Eint) aif0 = Ei

f0

nT

[W]

In a sequential cell also the internal switching, not affecting the cell’s output,

dissipates energy. To take into account this contribution we can write the energy

and power expressions in the following way:

Ei = (
1

2
V 2
DDCL + Eint) ni + Eclni

cl [J]

162

Pi = (
1

2
V 2
DDCL + Eint) aif0 + Eclfi

cl [W]

where :

Ecl is the energy dissipated internally per transition due to clock switching.

fi
cl = ni

cl

nT
f0 is the frequency of the transitions of the cell’s clock1.

Now we consider a large circuit containing N cells, NS of which are sequential. The

total energy consumption in the time window is given by:

Etotal =
N
∑

i=1

(
1

2
V 2
DDCLi + Ei

int)ni +
NS
∑

i=1

Ei
clni

cl [J] (B.1)

Summarizing, in order to calculate the energy dissipated, given by expres-

sion (B.1) we need to determine the value of the following parameters:

• VDD is the power supply voltage.

• CLi is the load at the output of the i-cell.

• Ei
int is the energy per transition dissipated inside the i-cell.

• ni is the number of transitions seen at the output of the i-cell.

• Ei
cl is the energy dissipated internally in the sequential i-cell due to clock

switching.

• ni
cl is the number of the clock transitions seen at the input of the sequential

i-cell.

To compute the power dissipation

Ptotal =
f0

nT

N
∑

i=1

(
1

2
V 2
DDCLi + Ei

int)ni +
f0

nT

NS
∑

i=1

Ei
clni

cl =
f0

nT

Etotal [W]. (B.2)

we need the two additional values

1There are 2 transitions per clock period. Therefore, fi
cl is twice the frequency of the cell’s

clock.

163

• f0: the clock frequency.

• nT : the number of clock cycles in the time window we are considering.

The quantities VDD, E
int and Ecl depend on the library that we are using. CL

depends on the design and layout (type of cell connected and wire capacitance) and

the number of transitions depends on the design and on the set of input vectors

used.

The procedure to determine the energy and power dissipation is the following:

1. For the chosen library determine the quantities E int and Ecl for each cell.

These values can be provided directly by the silicon vendors or obtained by

cell characterization.

2. From the layout, extract the capacitance (output load plus interconnection

capacitance) at each node and associate them as output load (CL) to each

cell.

3. Run a simulation on a set of random chosen test vectors using a tool that is

able to detect transitions (i.e. a logical level simulator).

4. Calculate energy and power using expression (B.1) and expression (B.2).

B.1.2 PET Implementation

The procedure described above was implemented in PET. It consists of three C

routines (analyze, ttgen and calpot) and the use of two COMPASS tools: Qsim

(logic-level simulator) and extract (COMPASS Interconnect layout to netlist extrac-

tor) [38]. The latter is used to determine the capacitance (including wires) at each

node of the circuit while Qsim is used to determine the logic values of the nodes

164

analyze

calpot

ttgen

Compass

netlist
stimuli

capacitance label/node
reference

node/cell
reference

monitors

sim cmd
file

sim output

node/tran
reference

energy view
library

library pin
mapping [nle]

[cap]
[lab] [acn] [mon]

[trc]

[trn][evl]

configuration
file
.pet

+

configuration
file
.pet

power

[sim]

Qsim

Figure B.1: Structure of PET.

165

used later to determine the number of transitions. PET is structured as depicted

in Figure B.1.

analyze reads the extracted netlist and determines the output load for each

cell of the circuit. It also provides to Qsim the labels of the nodes to monitor. The

files read are:

• a configuration file containing general parameters such as: power supply volt-

age (VDD), clock frequency, time window of the simulation.

• the netlist [nle] extracted by extract.

• a file containing the mapping of cell’s pins for the library. It is needed to

associate the capacitance of node x to the output of cell i.

The files produced are:

• a list of the labels (file [mon]) corresponding to the nodes to be monitored by

Qsim.

• the reference capacitance-node (file [cap]).

• the reference cell’s output-node (file [acn]).

• the reference label-node (file [lab]).

All these references are resolved later by calpot. The [mon] file is incorporated

with the input stimuli in the simulation file [sim] to be used along with the netlist

[nle] in the simulator.

ttgen (transitions table generator) reads the simulation output file [trc] and

creates a transitions table [trn]. In this table each label/node is associated with

the number of transitions occurred at that node during the simulation.

166

Finally, calpot calculates energy and power dissipation according to expres-

sion (B.1) and expression (B.2). The files read are:

• the three files generated by analyze: [cap], [acn], [lab].

• the transitions table file [trn] produced by ttgen.

• the configuration file containing library parameters.

• a file containing the values Eint and Ecl (energy views) for each cell of the

library.

B.1.3 PET Testing

PET was tested on a limited set of benchmarks comparing the results with those

obtained using SPICE and calculating the power as the product of the voltage and

the average current over a time window of the same size of that used for PET [46].

The error was never greater than 10% (the largest benchmark circuit contained

about 3,000 transistors).

The main drawback of PET is that it accounts for a fixed amount of short-

circuit current for each cell, determined independently of the transition time. This

can lead to a lack of accuracy in some situations, for example the power dissipation

of blocks not in the critical path where signals could have slow ramps. An approach

to include a more accurate evaluation of the short-circuit current is described in

[47]. However the improvement in the results obtained is not good enough to justify

a significantly greater modeling effort.

B.2 ACC: Automatic Cell Characterization

As an increasing number of transistors is packed in a single chip, the design tools

(CAD tools) have to handle larger circuits. Because it is unrealistic to simulate the

167

behavior of a complete system with an electrical-level simulator, such as SPICE,

design tools are shifting toward higher levels of abstraction. These levels of ab-

straction are organized in a hierarchical structure with circuit/electrical level at

the bottom of the hierarchy. Circuit characterization is necessary to provide infor-

mation of the electrical properties of small functional parts of the system to higher

hierarchical levels. In general, cell characterization provides capacitance, timing

and power values for all the cells in the library to CAD tools operating at gate-

level. In our specific case, we characterize the standard cell library to extract the

energy views necessary for PET.

B.2.1 ACC Energy Views

ACC (Automatic Cell Characterization) is a tool that performs library character-

ization by automatically running several SPICE simulations on all the cells of the

library. It is derived from the tool presented in [48], and can characterize cells

for timing, capacitance and energy. However, in this appendix, we only focus on

characterization for energy.

As described in Section B.1, the PET energy model for a single cell is

E = (
1

2
V 2
DDCL + Eint) ni + Eclncl

i

where:

VDD is power supply voltage.

CL is the total load applied to the output.

Eint is the internal energy dissipated in the cell during one transition.

ni is the number of output transitions in the time window.

Ecl is the energy dissipated internally due to clock switching.

168

ncl
i is the number of clock transitions, if the cell is sequential.

Of all the quantities indicated in the above expression, the ones obtained by char-

acterization are Eint and Ecl (energy views).

It is convenient to characterize a cell over a period of time in which two output

transitions occur (one low-to-high and one high-to-low). The value of energy is

computed as the product of VDD and the value obtained by numerical integration

of the current i(t) over a time window [t1, t2] in which two transitions occur:

Ecy =
∫ t2

t1

v(t) i(t) dt ' VDD

N
∑

k=0

i(t1 + k∆t) with ∆t =
t2 − t1
N

The graph of the current i(t1+k∆t) is obtained by SPICE simulation with resolution

step ∆t. By simulating the cell with different loads we determine different values

of Ecy. The value Eint can be obtained, as follows:

1. By linear curve fitting of the values of CL and Ecy, we obtain the two coeffi-

cients x1 and x0

Ecy = x1CL + x0 .

2. From expression (1.5), we get:

Ecy = (
1

2
V 2
DDCL + Eint) ni = 2 (

1

2
V 2
DDCL + Eint)

3. By combining the two expressions above:

V 2
DDCL + 2Eint = x1CL + x0

we obtain:

V 2
DD = x1 and Eint =

x0

2

Note that the value of x1 could be used to evaluate the accuracy of the linear

curve fitting, being the actual value of VDD known.

169

For sequential cells, the contribute due to the clock switching Ecl is measured,

independently of the output load, by applying an input pattern that causes no

output transitions (i.e. ni = 0).

Note that the internal energy includes the energy due to short-circuit current

which depends on the slope of the transitions. In our characterization for PET, we

assumed the input slope to be constant for the library and chosen as the response

time af a gate with drive strength of one [43], [49]. This assumption leads to accurate

energy values when the circuit is optimized for timing. In fact, longer transition

times reflect on longer delays. More detailed information on the characterization

of energy due to the short-circuit current is provided in [47].

B.2.2 ACC Implementation

The structure of ACC is shown in Figure B.2. ACC reads three databases containing

the SPICE netlists of the cells in the library, a set of loads (CapLib), and different

waveforms to be applied as input stimuli (WaveLib). In addition, ACC reads three

files containing the simulation specifications, the global paramenters for SPICE,

and the SPICE models for the transistors.

ACC was implemented by routines written in C and scripts in UNIX C-shell,

for further details see [50]. The flow of ACC is described in Table B.1

B.3 Synopsys Power Compiler

We summarize below the main features of Synopsys Power Compiler. In particular

we discuss the power model, the cost function and some techniques used to reduce

the power dissipation. Most of the information and data are derived from those

presented in [15].

Power Compiler is built on the synthesis environment of Design Compiler and

170

Source configuration file containing library paths and global parameters.

For each cell in library

{

Create a working directory $CELLNAME.

Copy in $CELLNAME the simulation specifications (sim.specs).

Copy in $CELLNAME the SPICE subcircuit ($CELLNAME.sub).

For each line in sim.specs (e.g. each specification)

{

Create SPICE netlist ($CELLNAME.spi).

Write file containing simulation variables (var).

For each capacitance value CL in var

{

For each input stimuli set specified in var

{

Run SPICE.

Extract value (e.g. Etran) specified in var.

}

}

Elaborate results (polynomial fitting).

}

Write energy view.

}

Table B.1: ACC working flow.

171

SPICE
subcirc.

CapLibWaveLib

SPICE
Models

Simulation
Specs

Global
Specs

Energy
Views

A C C

Figure B.2: Structure of ACC.

allows power optimization to be performed with delay and area optimization. Power

Compiler obtains its power estimates from Design Power. The power dissipated is

divided into 3 contributes:

Switching power: 1
2
CV 2f depends on pin and wire capacitance, which values are

available in the synthesis technology libraries, and transition count informa-

tion described by toggle rates obtained either from Design Power’s probabilis-

tic estimation algorithm or from gate-level simulation.

Internal power: power consumed internally to the gate. The internal power

model is not linear and provided by ASIC vendors as a look-up table de-

rived from SPICE characterization. This energy table is indexed by the cell’s

input edge rates (slopes) and output loads to produce an energy value that

is then multiplied by the toggle rate of the output.

172

Static or leakage power: This is a single constant value for the cell specified by

the ASIC vendor.

In Power Compiler the cost function is prioritized as follows:

1. maximum delay

2. minimum delay

3. maximum dynamic power

4. maximum leakage power

5. maximum area.

This means that timing constraints will not be violated to save power, but available

time slack will be used to reduce it. A transformation is accepted if decreases one

of the cost functions, without increasing higher priority costs.

The circuit transformations that try to reduce one of the main factors contribut-

ing to the power dissipation: gate transistor dimensions, net switching activity, net

transition times and net capacitive loading are described next.

B.3.1 Gate transistor dimensions

The dimensions of the transistors that compose a CMOS gate can influence a num-

ber of factors that determine the power consumption of a design. Sizing of a cell

is done by choosing different implementations of the same logic function. These

implementations might differ in their parasitic capacitance and internal power.

B.3.2 Composition

In order to reduce the switching power, Power Compiler merges or composes sets

of cells into a more complex one. The switching power of the enclosed net is

173

completely eliminated, however the internal power of the new cell is higher because

of the increased gate size.

B.3.3 Pin swapping

Some cells can have input pins that are symmetric with respect to the logic function

(for example, in a 2-input NAND gate the two input pins are symmetric), but have

different capacitance values. Power can be reduced by assigning a higher switching

rate net to a lower capacitance pin.

B.3.4 Sizing and buffering

The power due to the net transition time can be reduced by decreasing the transition

times at the inputs. Power Compiler substitutes the driver of a net with a higher

driver to sharpen the edge of the transition. In alternative the use of buffers can

also reduce the transition time. The drawback is that the added capacitance (larger

transistors in the driver, or extra gates to implement buffers) might offset the

reductions obtained.

