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Abstract—Sometimes reducing the power dissipation of re-
source constrained electronic systems, such as those built for
deep-space probes or for wearable devices is a top priority. In
signal processing, it is possible to have an acceptable quality of
the signal even introducing some errors. In this work, we analyze
two methods to degrade the precision of arithmetic operations
in DSP to save power. The first method is based on disabling the
lower (least-significant) portion of the datapath by clock-gating
and forcing zeros. The second method is based on lowering the
supply voltage and re-designing the carry-chains in the datapath
to adapt to the increased delays.

I. INTRODUCTION

It might be desirable in some cases to decrease the pre-
cision of a Digital Signal Processing (DSP) system to save
power/energy when a given level of quality is sufficient for
the application.
The power dissipated in a circuit composed of N CMOS

cells (gates) is

PTOT =
N∑

i=1

(
V 2

DDCLi + Ei
int

)
aifclk

︸ ︷︷ ︸
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+
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i

︸ ︷︷ ︸
static

(1)

where VDD is the power supply voltage, CLi is the capacitive
load connected to the output of each gate, Ei

int (internal
energy) accounts for the short-circuit currents in the transistors
and the power dissipated in the switching of the internal
nodes, ai is the cell’s switching activity and fclk is the
clock frequency. In addition to the dynamic part, static power
dissipation due to device leakage (I leak is device’s leakage
currents) must be accounted in deep sub-micron CMOS tech-
nologies.
Expression (1) suggests a number of ways to reduce the

power dissipation. Some of the parameters of (1) are cell
library dependent and cannot be modified at design time:
Eint and I leak . In this work, we focus on reducing the
power dissipation by lowering the supply voltage VDD , and
by reducing the switching activity ai in some nodes of the
circuit.
The idea to disable part of the logic to reduce the switching

activity for low power by having a variable word-length or
processing adapted to the characteristics of the signal is not
new [1], [2], [3].

On the other hand, by reducing the supply voltage the power
dissipation decreases quadratically, but circuits get slower. By
carefully designing the carry propagation logic in adders, it
is possible to obtain accurate results at lower supply voltages
[4], [5].
In our DSP system, we assume fixed-point numbers nor-

malized in [0, 1.0) represented in two’s complement by n
bits and with dynamic range 2n. In such systems, degrading
the precision means to reduce the dynamic range to 2n−k by
introducing an (additional) error in the representation.
This low-power driven degradation can be obtained in two

ways:

I DPA-I – By disabling the logic in the arithmetic opera-
tions producing the lower part (least-significant bits) of
the dynamic range.

II DPA-II – By lowering the supply voltage, and con-
sequently increasing the circuit delays, and causing a
limited carry-propagation (error) into the most significant
part (reduced dynamic range).

We illustrate the two methods in the next sections.

II. DPA-I: DISABLED LOGIC IN LEAST-SIGNIFICANT BITS

Here we show the tradeoffs between loss of precision and
power dissipation for two schemes applied to FIR filters.
We can reduce the switching activity by either clock-gating
paths starting from a register or by forcing zeros, or ones, in
combinational logic.
By considering a FIR filter in transposed form (Fig. 1), we

can consider two different approaches:

1) To use clock gating in the registers holding the least-
significant (LS) portion of x(t) and y(t−k) (delay line)
to ”freeze” the LS part. The value of coefficients ak

does not change unless a different filter mask is loaded.
2) To force zeros, for example by driving the asynchronous
reset of the LS part of the flip-flops.

In both cases the level of degradation can be changed by
setting the clock-gating (individual flip-flop resets) control
signals.
First, we show the bit detail in the two filter operations

(addition and multiplication) for the two cases above.
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Fig. 1. FIR filter in transposed form.

A. DPA-I Addition

As an example, we use an 8-bit adder in which the dynamic
range is reduced to 4 bits. The error-free 8-bit addition A +
B = S is reported below

A : .a a a a a a a a +

B : .b b b b b b b b =

S : .s s s s s s s s

By disabling the logic by forcing zeros we obtain the same
effect as truncation:

A : .a a a a 0 0 0 0 +

B : .b b b b 0 0 0 0 =

S : .s s s σ 0 0 0 0

where σ indicates the sum bit that might be affected by the
error1. The maximum error is

εmax =

∣∣∣∣
2 · (2k − 1)

2n

∣∣∣∣

where k is the number of bits disabled in the addends out of
n. In the specific example the maximum error is | 30

256 |.
If we freeze the 4 LSBs, the frozen bits (marked χ in the

following) preserve the last value before the freezing. In this
case, we obtain

A : .a a a a χ χ χ χ +

B : .b b b b χ χ χ χ =

S : .s s s σ σ σ σ σ

and the error is constant until the LSBs of both addends are
frozen.

B. DPA-I Multiplication

For the multiplication X ·Ak we consider a 4×4 multiplier
in which two bits of multiplicand X and multiplier Ak are
disabled. The error-free scheme is

X · a0 : x x x x

X · a1 : x x x x

X · a2 : x x x x

X · a3 : x x x x

P : p p p p p p p p

1Clearly a carry which is propagated to the bits marked s might be
generated in bit σ.

freezing forcing-to-0
k Psave [%] |εmean| Psave [%] |εmean|

1 3 562 < 210 4 573 < 210

2 8 550 < 210 9 1780 < 211

3 13 1871 < 212 14 4414 < 213

4 18 2419 < 212 20 10414 < 214

5 24 12486 < 214 26 25463 < 215

6 30 34985 < 216 32 67887 < 217

7 37 39819 < 216 39 199108 < 218

|εmean| is divided by 221.

TABLE I
ERROR/POWER SAVING TRADEOFFS BETWEEN FREEZING AND

FORCING-TO-0 METHODS.

By forcing zeros on the 2 LSBs of X and Ak, we have

X · 0 : 0 0 0 0

X · 0 : 0 0 0 0

X · a2 : x x 0 0

X · a3 : x x 0 0

P : p ρ ρ ρ 0 0 0 0

Example: 15 × 15 = 225 = (1110 0001)2
⇒ [12 × 4 + 12 × 8] = 144 = (1001 0000)2
⇒ εmax = 81 = (0101 0001)2

For this case the error is

εmax =

∣∣∣∣
(2k − 1) · [2(2n − 1) − (2k − 1)]

22n

∣∣∣∣

On the other hand, if the 2 LSBs of X are frozen (all bits of
Ak are constant - frozen - during filtering), we have

X · a0 : x x χ χ

X · a1 : x x χ χ

X · a2 : x x χ χ

X · a3 : x x χ χ

P : p ρ ρ ρ ρ ρ ρ ρ

where bits marked ρ show the positions affected by errors.
Example: 4 × 15 = 60 = (0011 1100)2.

Last X before freezing X = 15
⇒ [4 + (11)2] × 15 = 105 = (0110 1001)2
⇒ ε = 45 = (0100 0101)2

C. DPA-I Filter Experiment

To compare the two DPA-I methods (freezing, and forcing-
to-0), we implemented a 16-tap low-pass FIR filter with 10-bit
input x and coefficients ak, and output dynamic range of 20
bits which ensures error-free processing. For the two methods,
we disable bits with granularity k for x and ak, and 2k for
the y delay line.
The results in terms of power saving and mean error with

respect to the error-free filter are reported in Table I. The
power savings are similar for the two methods and the error
is better for the bit-freezing solution.
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Fig. 2. Example of 8-bit adder.

III. DPA-II: LOWER SUPPLY VOLTAGE

By reducing the supply voltage the power dissipation de-
creases quadratically, but the delay increases. By keeping the
system clocked at the nominal rate and by lowering the supply
voltage errors might appear in the datapath degrading the
precision.

A. Adder Example

We illustrate the method with an example of a 8-bit carry-
propagate adder A + B = S. By splitting the 8-bit adder into
two 4-bit portions as shown in Fig. 2, we can represent the
bit-level addition algorithm as

A : a7 a6 a5 a4 a3 a2 a1 a0 +

B : b7 b6 b5 b4 b3 b2 b1 b0 +

c4 c0 =

S : s7 s6 s5 s4 s3 s2 s1 s0

where c4 is the carry-out of the least-significant portion on the
adder. By disconnecting c4, for S we get an error 24 for the
combinations of input which generate c4 = 1. Generalizing,
if the n-bit adder (n even) is split into two equal parts, by
disconnecting cn

2
the error is either 0 or 2

n

2 .
By considering the propagation delays of the adders in

Fig. 2, the delay of c4 is close to the delay of the most-
significant bit of the 4-bit adder s4. We assume that the
maximum delay of the 4-bit adder is the delay of c4: tCPA4b.
Because the two 4-bit adders are identical, the maximum delay
of the 8-bit adder is

tCPA8b = tCPA4b + tCPA4b � 2 · tCPA4b .

If the supply voltage is reduced from VDD to V2 such that the
delay doubles

tV2

CPA4b
= 2 · tVDD

CPA4b

in the 8-bit adder of Fig. 2 there is not enough time to
propagate c4 through the 4-bit adder of the most significant
portion. In other words, there is time only to propagate the
carry inside a 4-bit adder. This is equivalent to disconnecting
c4 in Fig. 2. A timing diagram is shown in Fig. 3.
Summarizing, if the circuit is clocked at Tclk = tVDD

CPAnb
,

the adder is error-free when operating at VDD , while it might
have an error ε ≈ 2

n

2 when operating at V2 < VDD .

CPA8b

VDDt

tCPA4b
VDD

tCPA8b2V

tCPA4b
VDD

2VtCPA4b 2VtCPA4b
4c

4c

Fig. 3. Delay of adder for supply voltage at VDD (top) and V2 (bottom).

B. SPICE Characterization

To test the DPA-II method, we consider a 20-bit adder
implemented as

• A regular 20-bit carry-propagate adder, called CPA20b
in the following, which is synthesized to obtain the
maximum speed.

• A scheme with two cascaded 10-bit adders, similar to
the adder of Fig. 2, called CPA2×10b, in which the two
identical 10-bit adders (CPA10b) are also synthesized to
obtain the maximum speed.

The adders are synthesized by Synopsys Design Compiler in
a 90 nm library of standard cells with nominal supply voltage
VDD = 1.0 V . The synthesized netlist is then converted into
a SPICE netlist and simulated with Synopsys Nanosim. Data
in Table II show the dependency VDD-delay for the adders.

CPA20b CPA2×10b CPA10b
VDD tMAX tMAX tMAX

[V ] [ps] ratio [ps] ratio [ps] ratio
1.0 240 1.00 350 1.00 195 1.00
0.9 295 0.81 435 0.80 245 0.80
0.8 380 0.63 540 0.65 300 0.65
0.7 495 0.48 725 0.48 400 0.49

TABLE II
MAXIMUM DELAYS FOR DIFFERENT VDD .

Table II shows that at VDD = 0.7 V the delay is more
than doubled for all adder schemes. By comparing the delays
of CPA2×10b and CPA10b, we notice that the total delay in
CPA2×10b (two cascaded CPA10b stages as in Fig. 2) is about
10% shorter than two times the delay of CPA10b.

C. Power-Precision Trade-off

The next step is to characterize the error when VDD is
lowered to 0.9, 0.8 and 0.7 V . This is done by operating
the two adder schemes at the maximum frequency (1/tMAX)
under reduced VDD and evaluating the error at the output.
The histograms of the error distribution are shown in Fig. 4.
In the histograms, the bar in position k indicates the occur-
rences of errors with magnitude 2k−1 < ε < 2k. For example,
ε = 2000 < 211 will contribute to bar ’11’.
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Architecture: ADDER 1x20 bit @ 240ns, Supply Power: 0.9V
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Architecture: ADDER 1x20 bit @ 240ns, Supply Power: 0.8V
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Architecture: ADDER 1x20 bit @ 240ns, Supply Power: 0.7V
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Architecture: ADDER 2x10 bit @ 350ns, Supply Power: 0.9V
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Architecture: ADDER 2x10 bit @ 350ns, Supply Power: 0.8V
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Architecture: ADDER 2x10 bit @ 350ns, Supply Power: 0.7V
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Fig. 4. Trade-off Error-VDD (at max speed). a) CPA20b. b) CPA2×10b.
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Architecture: ADDER 1x20 bit @ 350ns, Supply Power: 0.8V
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Architecture: ADDER 1x20 bit @ 350ns, Supply Power: 0.7V
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Fig. 5. Trade-off Error-VDD for CPA20b at rate of 350 ps per operation.

For implementation CPA20b from Fig. 4.a, it is clear (bars
are clustered in most-significant bits) that even for a small
reduction of VDD the error becomes unacceptable. From
Table II for VDD = 0.9 V , the delay is incresed by 55 ps
(22%) and 240 ps is not enough time to propagate the carry
in the most-significant part.
On the other hand, for CPA2×10b (Fig. 4.b) most of the

errors occur because the carry between the two cascaded 10-
bit adders c10 is not propagated in the upper 10-bit adder for
VDD = 0.9− 0.8 V . For VDD = 0.7, the carry propagation is
limited within both portions of CPA2×10b. This experimental
result confirms the theoretical analysis of Section III-A.
However, because CPA20b is faster than CPA2×10b, we

can compare the error distribution for both schemes when
clocked at the same rate (the delay of CPA2×10b, 350 ps).
The histograms for CPA20b clocked at 350 ps are shown in
Fig. 5. The histogram for VDD = 0.9 V produced no errors
and it has been omitted in the figure.

The data of Fig. 4.b and Fig. 5 together with the respective
power dissipation figures are reported in Table III.
Table III shows the average power dissipation for the given

VDD values, the number of vectors with errors (# ε) for
each experiment out of the 1,000 tested input combinations
(randomly distributed), the maximum error (εmax), and the
average error εmean) for the 1,000 combinations.
From the data in Table III, we can derive the following

conclusions:

1) Scheme CPA20b is error-free at VDD = 0.9 V with
power savings of about 15%.

2) For VDD = 0.8 V the average error in CPA2×10b is
significantly smaller although the power dissipated by
CPA20b is slightly lower.

3) For VDD = 0.7 both schemes give high average error
and both are practically unusable at the rate of one
addition per 350 ps.
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CPA20b CPA2×10b
TC VDD Power Error Power Error
[ps] V [mW ] ratio # ε εmax εmean [mW ] ratio # ε εmax εmean

350 1.0 2.94 1.00 0 - - - 3.08 1.00 0 - - -
350 0.9 2.43 0.83 0 - - - 2.56 0.83 131 22,528 454 < 29

350 0.8 1.84 0.63 30 524,288 2,851 < 212 1.95 0.63 427 2,012 481 < 29

350 0.7 1.35 0.46 974 786,428 157,676 < 218 1.42 0.46 952 525,424 32,926 < 216

Total number of vectors is 1,000
Note: ratio � V 2

DD

TABLE III
SUMMARY OF TRADE-OFFS FOR CPA20b AND CPA2×10b SCHEMES.

Moreover, for the CPA2×10b scheme, the average error for
VDD = 0.8−0.9 V is the same although the number of errors
is much higher (three times) in the 0.8 case. This result can be
explained as at VDD = 0.8 V most of the input combinations
fail in propagating the carry in the upper 10-bit adder and
the errors are clustered around the least-significant bits of the
upper part (210, 211) as shown in Fig. 4.b. At VDD = 0.9 V
on the other hand, the circuit is faster (about 25%) and there
is time to propagate the carry beyond the least-significant bits
of the upper adder.
This last result shows that by designing the carry-

propagation chain according to the available time slack (due
to the reduction of VDD) we can control the error propagation
in the bits of different weight. This result also confirm, that
having a faster adder under reduced supply voltage does not
guarantee the best precision when compared to an adder which
is slower, but has a carry-chain designed to tolerate some extra
latency.

IV. CONCLUSIONS AND FUTURE WORK

It is possible to tradeoff precision with power dissipation
in DSP systems. The first method proposed is based on
the reduction of the circuit switching activity by selectively
disabling the least-significant bits. The application of bit-
freezing or forcing-to-0 to FIR filters leads to power savings
of about 30% with an error roughly half-way the maximum
precision.
Similar power consumption reductions can be obtained by

lowering the power supply voltage and making sure that the
carry-chains are designed to obtain a target error distribution.
Furthermore, the results obtained for DPA-II suggest to

investigate further in the design of adders with configurable
carry-chains to adapt to the extra latency introduced by re-
duced supply voltage.
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