Low Latency Digit—Recurrence Reciprocal and Square—Root
Reciprocal Algorithm and Architecture*

Elisardo Antelo
Dept. Electronic and Computer Eng.
University of Santiago
Santiago de Compostela. SPAIN
elisardo@dec.usc.es

Paolo Montuschi
Dept. Automatica e Informatica.
Politecnico di Torino
Torino, ITALY
paolo.montuschi@polito.it

Abstract

The reciprocal and square—root reciprocal operations
are important in several applications. For these op-
erations, we present algorithms that combine a digit-
by-digit module and one iteration of a quadratic—
convergence approzimation. The latter is implemented
by a digit—recurrence, which uses the digits produced by
the digit—by—digit part. In this way, both parts execute
in an overlapped manner, so that the total number of
cycles is about half of the number that would be required
by the digit—by—digit part alone. Because of the approz-
imation, correct rounding of the result cannot be ob-
tained directly in all cases; we propose a variable—time
implementation that produces the correctly rounded re-
sult with a small average overhead. Radix—4 implemen-
tations are described and have been synthesized. They
achieve the same cycle time as the standard digit—by—
digit implementation, resulting in a speed—up of about 2
and, because of the approximation part, the area factor
s also about 2. We also show a combined implemen-
tation for both operations that has essentially the same
complexity as that for square—root reciprocal alone.

1. Introduction

Reciprocal and square-root reciprocal are among
the set of arithmetic operations implemented in hard-
ware in microprocessors. For the implementation of

*E. Antelo has been partially supported by Xunta de Galicia
under project PGIDT03TIC10502PR.

Tomés Lang
Dept. Electrical and Computer Eng.
University of California at Irvine.
Irvine, CA. USA

tlang@uci.edu

Alberto Nannarelli
Dept. Informatics and Math. Modelling
Technical University of Denmark
Kongens Lyngby, DENMARK
an@imm.dtu.dk

reciprocal and square-root reciprocal there are the fol-
lowing alternatives (see [2] for details): i) Digit—by—
digit algorithms, ii) Quadratic convergent algorithm,
and iii) Polynomial approximations. Methods ii) and
iii) require a dedicated parallel multiplier and addi-
tional tables. Method i) is a cost—effective alternative
with a low hardware overhead.

Digit—by—digit algorithms have been implemented in
several general-purpose microprocessors and graphics
processors. For instance, studies in [3] show that for
a geometry processor, a digit—by—digit unit is a suit-
able choice. A recent highly scalable architecture based
on stream processing also uses a digit—by—digit unit as
part of the arithmetic clusters [4].

In this work we describe an algorithm for the com-
putation of the functions 1/d and 1/v/d which consists
of a digit—by—digit part followed by a linear approxi-
mation. The scheme is illustrated in Figure 1. The
total delay is reduced by implementing the linear ap-
proximation as a digit—recurrence which is performed
in an overlapped fashion with the digit—-by—digit part.
Because the linear approximation has quadratic con-
vergence, we perform roughly half of the iterations as
compared to a conventional digit—recurrence algorithm.
We require two datapaths operating in parallel.

2. Proposed algorithm

For the reciprocal computation, the digit—-by—digit
part of the algorithm produces an approximation & of
1/d. Then, as described by the Newton—Raphson iter-

Module A Result Module B
Digit-by—digit | %i&it
Algorithm for Qj+1 Digit-recurrence
— _ Linear Approximation
d lan dd 12 pp

Latency of conventional digit—by—digit algorithm

Module A | | | | | | | | | | | | | |

(alone) [[[[[[[[[[[[[[

Module A f————————+—+7+H

Result digits

Module B {4+

Figure 1. Proposed scheme.

ation (or equivalently, by a linear approximation based
on the Taylor series expansion) a better approximation
is given by

A=k(2—kd (1)

The relative order of convergence of this iteration is
quadratic, that is, if the relative error of k is 4, then
the relative error of A is € = 2.

Similarly to the reciprocal case, if the digit—
recurrence part produces an approximation k of 1/ Vd,
a Newton-Raphson iteration produces a better approx-
imation B, as follows:

B = g (3 — dk?) (2)

Again, in this case the relative order of convergence is
quadratic. If 6 and € are the relative errors of k and B
respectively, then

§=1-kvVd and e=1-BVd (3)

Therefore,

kVd=1-6 and e:l—kT\/a(3—dk2) (4)

Consequently,

2
e=1- 0 _a_s ==L 6
2 2
Then the relative error of B has a complexity of O(6%).
Floating—point representation is used with n—bit sig-
nificands, and the input significand is shifted (with the
corresponding exponent adjustment) to have the result
in the interval [1,2). This is achieved by producing a

shifted input significand d within the interval [1/2,1)
for reciprocal and [1/4,1) for square-root reciprocal®.

The proposed algorithm can be summarized as fol-
lows:

e Obtain the approximation k using a digit—
recurrence algorithm and performing g iterations,
roughly half of final required precision.

e Since k is obtained digit-by-digit in most—
significant digit first mode, perform the computa-
tion of A = k(2—d k) and B = (k/2)(3 —d k?) by
means of a digit recurrence. In this way, we have
a full overlap between the computation of £ and
the computation of the approximation (see Figure

1).
The details of the digit—by—digit algorithms to com-
pute k can be found for instance in [2]. In summary,

e Reciprocal: For the computation of 1/d a residual
is defined as w[j] = (1 — d Q[j]) where Q][j] is
the partial result up to iteration j, defined as

Qlj] = Q0] + Z gir™

Then the algorithm proceeds as follows:

1. Initializations: initialize w[0], ¢1 and Q[0] to
assure convergence. Several alternatives are
possible [2].

2. Recurrence?: for j =0to g —1

Wi +1] = rwlj] - gd (6)
G2 = SEL(rufj +1],d)

The digits gj11 take values in the set {—p(r—
1),...,0,...,p(r — 1)}, where p is the redun-
dancy factor (p > 1/2). The digit-selection
function SEL assures an absolute error of Q[j]
bounded by +p 7.

e Square-root reciprocal [6] [7] [8]: for the compu-
tation of 1/v/d a residual is defined as w[j] =
r7(1/2)(1—d P[4]?) where P[j] is the partial result
up to iteration j, defined as

Pl = PO} + 3 pa™

Moreover, to obtain a simple implementation two
variables are introduced: D[j] = dPJ[j] and C[j] =
(1/2)r=UtDd. The algorithm proceeds as follows:

LIf the input significand is 1.0 the algorithm provides directly
the trivial result.
2We use a retimed recurrence as in [5].

1. Initializations: initialize w[0], p1, Q[0], D[0]
and C[0] to assure convergence. Several al-
ternatives are possible [7].

2. Recurrence: for j =0to g —1

wlj+1] = rwlj] = p1 D[] — pji Ol
Dj+1] = D[jl+ 2pj+1Clj] (7)
Cli+1 = r'Cljl

pj+2 = SEL(rw[j+1],D[j +1])

Similarly, the digits p;+1 take values in the
set {—p(r—1),...,0,...,p(r—1)}. The digit—
selection function assures an absolute error of
P[j] bounded by +p r—7.

After g iterations (we will show that ¢ is roughly
[n/(21log,(r))]), we obtain the approximation k = Q[g]
for reciprocal and k = P[g] for square—root reciprocal.

3. Recurrence for the approximation

Since k is computed digit—by—digit, to avoid mul-
tipliers and to speedup the computation, we obtain
A=k(2-dk)and B = (k/2)(3—d k?) also by means
of a digit—recurrence which is overlapped with the de-
termination of k.

3.1. Reciprocal (1/d)

To obtain a recurrence we define

Aljl = Q2 —d Q[j])
so that the final reciprocal approximation is A = A[g]
with A[0] = Q[0](2 — dQI0]).
We now obtain a recurrence for A[j]. To eliminate
variable shifts, we compute

E[j] = r* A[j).

Then,

E[j +1] = r*E[j] = r*Ut)(Q[j + 1](2 - d Q[j + 1])
—QLj1(2 — d Q[j])

E[j + 1] = r*B[j] = r*U Y (QU] + qjpar™UTY)
2-d @[+1]) - QU2 —-d Q)

which simplifies to

E[j +1] = r*E[j] = v qj41 (2 - dQ[j + 1] — dQlj])

Reciprocal recurrence Approx. recurrence

iy d wlj] 12 E[j]
L»Dj o 2wl
S Pl I I S
ADD ' ADD
| '
I D41 *
DIGIT o !
. ‘ + +
SELECTION | ADD
qj+2 wlj+1] E[j+1]

Figure 2. Recurrences for the proposed recip-
rocal computation.

Since wlj] = /(1 —d Q[j]) and Qj + 1] = Q[j] +
gj+17~UTD | we obtain

E[j +1] = r?E[j] + ¢j+1 2rw[j] — ¢jr1d) (8)

Note that w[j] and —g;j41d are computed as part of the
w recurrence.
An alternative to the above expression is

Blj +1] = r*Blj] + ¢j1 (rw[j] + wlj +1]) (9)

The preferred expression will depend on the implemen-
tation details.

Figure 2 shows the overlap between recurrences w
and E in the computation of the reciprocal (in this
case we use expression (8)). The actual implementa-
tions depend on the radix and on the representation
(for instance two’s complement non redundant or re-
dundant representation) of the different variables.

The number of iterations g is related to the final
error as follows:

e The modulus of the absolute error of k = Q[g]
is less than p 779. Therefore the modulus of the
relative error of k is bounded by || < p r~9d.

e Since the approximation squares the relative error,
we obtain a bound for final relative error

€< p2r*29d2

Consequently, for a final absolute error €¢/d not larger
than 277,

2 <pPrd < pPrt < 2P (10)

resulting in
p _logy(1/p)
> — - == 11
2 o 7 (11)
where 7 = 2°. Since 1/2 < p < 1, then g is bounded by

p p

[21; 1] s9< [21)]
For a specific implementation, the exact value of g
should be determined using (11) with the actual value
of p. Note that since g has to be an integer, the actual
absolute error is 277 with p’ > p (the value of p' is
obtained from (10) using the actual value of g). There-
fore we distinguish between the desired absolute error
(27P) and the achieved absolute error with g iterations
(27).

Therefore E[g] corresponds to the scaled value of
1/d within a precision of 277 (A[g] = r~29E[j]). In
this way, the number of iterations (g) has been roughly
halved with respect to a conventional digit—by—digit
radix—r algorithm. In terms of the number of itera-
tions, this is roughly equivalent to using a radix r?,
although the latter should lead to an implementation
with a higher cycle time due to a more complex itera-
tion.

3.2. Square-root reciprocal (1/+/d)

The linear approximation for the square—root recip-
rocal results in
3 1

Since k = PJg], similarly to the case for reciprocal we
define

. 2j 1,3 1 2 - 2j . —j .
H[j] = r Plj](5 — 5dP7[j]) = r* P[5](1 + r~ w[f])

so that B = r~29 H[g]. We now obtain a recurrence for
HIjl.

H[j + 1] = r*H[j] + r*UD {(Plj] + pjyar=0F) -
(L+r~ 0wl +1]) = P[]+ r~Iw(j])
Using the recurrence given in (7) results in

. . . . 1 .
H{j+1] = r* H[j]+pj1 2ro[j] +wlj+1] = 5pj41 D[j])
(13)
The initial condition is

3 1
H[o] = PO](; — 5dP2[0)
As shown in Figure 3, there is an overlap between

recurrences w[j] and H[j].The actual implementations

Square—root reciprocal recurrence Approximation recurrence

Dl 2CHl Pj1 D[l <l i) 2wl PHE
T
ﬁ pj+1
(172) pjy D]
+ + =

i)

Dlj+1] Pjt2

z

i+ Cli+l]

Figure 3. Proposed recurrences for square—
root reciprocal computation.

depend on the radix and on the representation of the
different variables. The total number of iterations is
again g.

Again as for the reciprocal the number of iterations
g is related to the final error as follows:

e The modulus of the absolute error of k = PJ[g] is
less or equal to p r=9. Therefore the modulus of
the relative error of k is bounded by |§| < pr~9+/d.

e Therefore, the relative error of B is bounded by

2 .—2g

€< %(3%—;}1’9\/&)

Consequently, for a final absolute error €/ V/d not larger
than 277,

2 ..—2g \/8 2 ..—2g
€ per _ por _ _
— < — (3 IVd 3 g 27P
7a S 5 (34+pr~9Vd) < 5 (B+pr79) <
Then, the condition to solve is
2.27°7
e = (14)
p*(3+ pr=9)
resulting in the following condition for g
p 1 P’B+pr9)
4 _—log, (20 15
9>2b+2b°g2(. (15)

Since 1/2 < p < 1,7 > 2 and g > 1, the logarithm
term is bounded by

1 1 2 -9 1 4
IR S (p (3+pr)) o (T/4) _

b 2b 2 2b

Therefore g is bounded by

5t o< g +1]

For a specific implementation, the exact value of g
should be determined using (14) with the actual value
of p. Again the achieved absolute error (27*') should
be less than equal to the desired absolute error (277)
since g is an integer.

The final result is B = B[g] = =29 H[g], which cor-
responds to 1/ V/d computed within a precision of 277.
As before, the number of iterations has been roughly
halved with respect to a conventional digit—by—digit
radix—r implementation. In terms of the number of
iterations, this is roughly equivalent to using a radix
r2, although the latter should lead to an implementa-
tion with a higher cycle time due to a more complex
iteration.

3.3. On-the—fly—conversion of the result

The results E[g] and H|[g] are obtained in carry—save
form. As done in the corresponding digit—by—digit im-
plementations, it is possible to convert them on—the—fly
to conventional representation [2]. Since only g itera-
tions are performed, it is necessary to obtain one addi-
tional radix—r? digit each iteration. Because of space
limitations we do not give the detailed description of
the conversion algorithm. In addition to the result, it
uses two conditional forms and performs the conversion
with a delay of one cycle.

4. Rounding

Although in several applications correct rounding is
not necessary, it might be convenient to include this
possibility. In this section we present a method to ob-
tain correctly rounded results. This method consists of
the following steps:

1. Determine whether the result obtained by the ba-
sic algorithm described in the previous section can
be used directly to perform the rounding. We
would compute the result with some additional ac-
curacy so that the probability of being able to do
this rounding is high.

2. In the few instances in which this rounding cannot
be performed, we continue with the digit recur-
rence until we produce the rounding bit and the
corresponding final residual. The rounding of this
result is then straightforward [2].

Although this scheme leads to a variable latency opera-
tion (the higher latency case with very low probability)

this should not be a hard constraint for a dynamically
scheduled processor.

The delay overhead for correct rounding is composed
of the time to produce the additional bits to reduce the
probability of not being able to round directly and of
the time to finish the iterations of the digit—by—digit
part in the few cases in the result cannot be rounded
directly. Moreover, little additional hardware is needed
since we use the already available digit-by—digit hard-
ware.

It can be easily shown that, since the approxima-
tion produces always a positive error, there are only
three patterns that cannot be directly rounded (if we
include all rounding modes). Consequently, if h addi-
tional bits are computed, the probability of not being
able to round directly is 3/2". Moreover, depending on
the radix it might be the case that some additional bits
are already obtained as part of the last iteration. For
example, for radix—4, double precision (i.e. p = 53),
it is necessary to perform 14 iterations, which produce
p' = 56 bits. Consequently, one additional iteration
would produce a pattern of b’ = p' —p+4 = 7 bits and
a probability 0.024 of not being able to round directly.
Actually, if after performing the last normal iteration
we detect whether we can round we would need the
additional cycle in only 3/8 of the cases. Moreover, by
checking also after the additional cycle and performing
another iteration if needed, we would reduce the prob-
ability by 1/16, with an average overhead of less than
half of a cycle.

5. Radix—4 Implementation

In this section we describe the radix—4 implemen-
tation of the proposed algorithm with the digit—set
{-2,-1,0,1,2} . We first show the separate imple-
mentations for reciprocal and square-root reciprocal
and then we consider their combination. To have a
faster implementation we use a carry—save representa-
tion for the residual and for the digit—recurrence of the
approximation.

5.1. Reciprocal

Figure 4 shows the radix—4 implementation for the
reciprocal. The digit—selection function requires an es-
timation with the seven leading bits of rw and three
bits of d (see [2] for details of the selection function).
The digit multipliers are implemented as decoded 4-—
1 multiplexers (with an implicit zero output when all
control inputs are zero). The result of the approxi-
mation F, represented in carry—save, is converted on—
the—fly to non-redundant representation. The Figure

wlj] 2E[j]

d 1] nbits Bit
qj+1 [0§ nbits | [I} nbits | %
2rw(j
: ’
4-1 mux
' ¥
‘ 3-2 cs adder ‘ ‘ 3-2 cs adder ‘
Estimate
of d l l
7
short 4—1 mux
q adder I
3 F%k Estimate 4-2 cs adder
of rw[j+1] (9 wbis |
digit (94 nbits |
selection u
)L 4 I On~—the—fly
4j42 wlj+1] Conversion E[j+1]
(one hot code) 8] nbits
(0 coded as 0000) Final result

Figure 4. Radix—4 implementation of the re-
ciprocal.

also shows the number of integer and fractional bits
required for the operands.

To have the result within the interval [1,2) we use
the following initializations: Q[0] = 1 if d > 3/4 else
2; w[0] =1 —d Q[0] and E[0] = Q[0](2 — d Q[0]). The
algorithm requires g + 1 cycles (see expression (11) for
the value of g): In the first cycle the initializations
and the computation of ¢; are performed. Cycles 2 to
g correspond to normal iterations and cycle g + 1 is
required to finish the conversion and rounding. This
results in 7 cycles (¢ = 6) for single precision and 14
cycles (g = 13) for double precision. In contrast, a
conventional digit—by—digit algorithm with the same
initializations requires 13 cycles for single precision and
27 for double precision. The algorithm was verified
using numerical simulations.

5.2. Square-root reciprocal

We use an implementation of the digit-by-digit al-
gorithm as described in [7] (see left side of Figure 5).
As before, for radix—4 the digit multipliers are imple-
mented as decoded 4—1 multiplexers. Moreover in this
case the multiplication by p? 1 reduces to a selection
between the multiples 0, 1 or 4. We use also a 4-1 mul-
tiplexer in this case to control the selection directly by
Dj+1-

In this implementation rw[j] is represented in carry—
save but D[j] and C[j] are in conventional two’s com-
plement representation. Therefore a 4-to-2 carry—save

adder is required to update the residual, and a fast
carry—propagate adder is used to update the value of
D.

For the selection function an estimate of rw[j + 1]
and of D[j + 1] is required. A short adder assimilates
the more significant bits of rw[j + 1]. The estimate
of D[j + 1] is obtained by the addition of the most
significant bits of D[j] and of 2 p;+1C[j].

For the implementation of the approximation part
(right side of Figure 5) we arranged the computation
(see Equation (13)) to have a similar critical path as
the one of the digit—by-digit algorithm and to allow
the combined implementation with the reciprocal (see
below). Moreover the result of the approximation H
is converted on-the—fly. The number of integer bits of
the operands would be similar to the reciprocal case.
The number of fractional bits depends on the required
type of rounding (see [6] and [7] for details).

To have the result within the interval [1,2) we use
the following initializations: P[0] = 1if d > 1/2 else 2;
w(0] = (1/2)(1—d P[0]*), D[0] = d P[0], C[0] = (1/8)d
and H[0] = (P[0]/2) (3 —d P[0]?). The algorithm re-
quires g + 1 cycles (see Expression (15) for the value of
g): In the first cycle the initializations and the compu-
tation of p; are performed. Cycles 2 to g correspond to
normal iterations and cycle g + 1 is required to finish
the conversion and rounding. This results in 7 cycles
(g = 6) for single precision and 15 cycles (g = 14) for
double precision. In contrast, a conventional digit—by—
digit algorithm with the same initializations requires
13 cycles for single precision and 27 for double preci-
sion. The algorithm was verified using numerical sim-
ulations.

5.3. Combined unit

The digit-by-digit algorithm for combined reciprocal
and square-root reciprocal was developed in [7]. The
resultant implementation is basically the square-root
reciprocal implementation with the following modifica-
tions

e Single selection function for reciprocal and square—
root reciprocal as obtained in [7], with the same
complexity as in the case of the square—root recip-
rocal.

e Initialize C[0] = 0 for reciprocal computation.
This implies that D[j] = d, that is, constant along
the iterations.

Figure 5 shows the combined reciprocal and square—
root reciprocal. For the combination of the digit—
recurrence (E and H) of the linear approximation part
we perform the following scheme:

D[j] Pirl mPjy —(l/i)D[j] 2rw[j] r’HIj]
bl 4
4 : -
\ rec) 8 | P - a_aﬁ;f
4-2 cs adder ; 4-2 cs adder
8 |8 Wi+ H
| T = 1 ‘
short | | short . o | It and A 3-2 cs adder
adder | |adder right shift 3m75 4 A mux
cp adder byr| i 1
/ %ﬁ # Estimate :
. f rw[j+1] ;
Estimate T ©
of D[j+1] d1g1.t rec: recoder 4-2 cs adder
selection
m: recp. (0) or rsqrt (1)
L
D[j+1] Pi+2 wlj+1] Clj+1] Hij+1]

(one hot code)
(0 coded as 0000)

Figure 5. Radix—4 unified implementation of reciprocal and square—root reciprocal.

e Recurrence E does not add the term w[j + 1].
Therefore we make pjy1 = 0 before the multi-
plexer that performs p;w[j + 1], so that an out-
put zero is produced by the multiplexer when the
reciprocal operation is to be performed.

e Recurrence H requires the term (—1/2)p3,, D[j],
while for E we need —p3,, D[j] (note that in the
combined implementation p;;; is used for digits
of both reciprocal and reciprocal square-root, and
that for reciprocal D[j] = d). For the combined
implementation we use a recoder which inputs are
pj+1 and a bit that indicates the operation, and
which outputs select the suitable values from a 4-1
multiplexer.

Therefore the combination of both algorithms re-
quires minor changes in the square-root reciprocal ar-
chitecture, and does not affect its critical path.

6. Evaluation

In this section we present the results of the evalu-
ation of the proposed designs and a comparison with
existing digit—recurrence alternatives. We performed a
synthesis of both a radix—4 reciprocal unit and a radix—
4 square-root reciprocal unit using a 0.18 um CMOS
library and Synopsys. From the synthesis we estimated
the critical path (including estimations at netlist level
of wire load) and the gate count.

Table 1 shows the results obtained for double pre-
cision (not exactly rounded). In both cases the criti-
cal path corresponds to the digit-by-digit part, which

means that apart from slight load variations, the cy-
cle times of the proposed schemes are the same as the
corresponding digit—by—digit schemes without the ap-
proximation part.

Regarding the area, since the proposed conversion
has roughly the same complexity as the standard con-
version, the proposed schemes increase the hardware
complexity by 1.9 (reciprocal) and 1.7 (square-root re-
ciprocal) with respect to the corresponding digit—by—
digit schemes.

For reciprocal, the area—time ratios of higher radix
schemes with respect to the radix—4 scheme are well
known [2], and therefore it is possible to compare our
design with more instances in an area—-time space. Fig-
ure 6 shows the area—time ratios for digit—by—digit
radix—4, radix—16 using overlapped radix—4 and very—
high radix (radix 512 with prescaling and selection by
rounding) schemes in comparison with the proposed
design, for double precision.

For digit-by—digit square-root reciprocal we are
aware of the implementations proposed in [7] [8] (radix
4) and in [6] (very—high radix). A radix-16 implemen-
tation with overlapped radix—4 iterations would be sig-
nificantly more complex, because of the many condi-
tional forms required, so this implementation was not
considered. It was shown in [7] that the scheme pro-
posed presents better area—delay figures than the pro-
posal of [8]. Therefore we take [7] as the radix—4 design
of reference. For the very—high radix implementation
we assume a cost in area 1.5 times the cost of a very—
high radix reciprocal unit with the same cycle time
(this is a very conservative figure since the square-root
reciprocal unit requires two rectangular multipliers in-

Table 1. Summary of results for the synthesized radix—4 units.

Design Critical path area (# nand-2)
buf: buffer; mux: 4-to-1 mux; reg: register; 4-2: 4-to-2 csa; sel: digit sel. (A+B+C)*
Reciprocal | fhu(0-11) + frmuz (0-20) + f20r3(0-16) + faer (0-61) + treq(0.28) = 1.36 ns 11650
(270044650+3500)
Square—1oot | tpy £(0.05) 4 tmuz (0-20) + ta—2(0.27) + t51(0.97) + trey(0.28) = 1.77 ns 19500
reciprocal (82004-7700+3500)

* A: digit—by—digit recurrence; B: approximation; C: conversion.

T T T T T T
2 - This work — recp. (14 cycles) b
]

=512

1.8 - (9 cycles) b
Q
§ 16 - This work — sqrtrecp.
q:_j Ll recp. ./ (15 cycles) |
g
% 2 (lértzclyécles) Previous schemes
& r=512

18 1=4 (27 cycles) (15 cycles) |

r=4 (27 cycles)
! ! !

0.6 1 1 1 1 1
1 1.5 2 25 3 35 4 45 5 55

Area ratio

Figure 6. Area-time space.

stead of one for reciprocal, and additional adders, mul-
tiplexers, registers and a barrel shifter). We also show
in Figure 6 the ratios corresponding to the square-root
reciprocal, using the area and delay of the conventional
radix—4 reciprocal unit as a reference. From our estima-
tions, we conclude that the proposed designs introduce
attractive points in the area—time space.

7. Conclusions

We have presented an algorithm and implementa-
tion for the computation of the reciprocal and square—
root reciprocal operations. These are based on the
combination of the corresponding digit—by—digit algo-
rithm and an approximation with quadratic conver-
gence. The latter is performed by a digit recurrence
using as input the digits produced by the digit—by—digit
part, allowing in this way the overlap of both parts and
eliminating the need of a multiplier. As a result, the
execution time is almost one half of that required when
using only the digit—by—digit portion.

In contrast with the implementations that use only
a digit—by—digit algorithm, because of the approxima-
tion, the result obtained cannot be correctly rounded
directly (in all cases). Although this rounding is not
required in some applications, such as graphics, we pro-

pose a variable—time execution that produces the cor-
rectly rounded result, with a small average overhead.

We have performed a synthesis of the implementa-
tion for radix 4 and have shown that the resulting cy-
cle time is the same as that of the digit—by—digit unit
and that, as a consequence, the execution time is al-
most halved. On the other hand, the addition of the
approximation part almost doubles the required area.
Since the resulting implementation produces four bits
of the result per iteration, for reciprocal we show that
it is about 50% faster than a radix—16 implementation
with overlapped radix—4 stages with an increase of 30%
in area. On the other hand, for square-root recipro-
cal the radix—16 implementation would be significantly
more complex, because of the many conditional forms
required.

References

[1] N. Ide et al.,, “2.44-GFLOPS 300-MHz Floating—Point
Vector—Processing Unit for High—Performance 3-D Com-
puter Graphics Computing”, IEEE J. of Solid-State Cir-
cuits, Vol. 35, No. 7, pp. 1025-1033, July 2000.

[2] M. Ercegovac and T. Lang, ”Digital Arithmetic”, Morgan
Kaufmann Publishers, 2003.

[3] C.H. Jeong, et al. “Cost/performance Trade-off in Floating-
point Unit Design for 3D Geometry Processor”, in Proc. 1st
IEEE Asia Pacific Conference on ASICs, pp. 104-107, 1999.

[4] W.J. Dally, P. Hanrahan, M. Erez and T.J. Knight, “Mer-
rimac: Supercomputing with Streams”, Supercomputing
Conference, November 2003, Phoenix, Arizona (USA).

[5] A. Nannarelli and T. Lang, "Low-Power Divider”, IEEE
Trans. on Computers, vol. 48, no. 1, Jan. 1999, pp. 2-14.

[6] E. Antelo, T. Lang and J.D. Bruguera, “Computation of
\/z/d in a Very-high Radix Combined Division/Square—
Root Unit with Scaling and Selection by Rounding”, IEEE
Trans. on Computers, vol. 47, no. 2, Feb. 1998, pp. 152-161.

[7] T. Lang and E. Antelo, “Radix—4 Reciprocal Square-root
and Its Combination with Division and Square Root”, IEEE
Trans. on Comput., vol. 52, no 9, Sept. 2003, pp. 1100-1114.

[8] N. Takagi, “A Hardware Algorithm for Computing Recipro-
cal Square Root”, in Proc. 15th IEEE Symposium on Com-
puter Arithmetic, pp. 94-100, 2001.

