
Combined Radix-10 and Radix-16 Division Unit
Tomás Lang and Alberto Nannarelli∗

Dept. of Electrical Engineering and Computer Science, University of California, Irvine, USA
∗Dept. of Informatics & Math. Modelling, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract— In this work we extend a previously proposed digit-
recurrence radix-10 division unit to be able to perform also radix-
16 division. The extension is simplified by the fact that in the
radix-10 implementation the quotient digit is decomposed into
two parts and that this decomposition is also appropriate for
the radix-16 case. Moreover, to reduce the latency in the radix-
10 the most-significant portion of the datapath, including the
selection function, has been implemented in radix-2, so that the
modifications of that part to include radix-16 consists mainly in
combining the two modules to obtain the selection constants. The
rest of the modifications relate to the generation of multiples, to
the carry-save adder, to the carry-propagate adder, and to the
on-the-fly conversion and rounding. The implementation results
show that the delay of an iteration is similar to that of the radix-
10 case and that the area is about thirty percent larger.

I. INTRODUCTION
Hardware implementations of decimal arithmetic units have

recently gained importance because they provide higher ac-
curacy in financial applications [1]. Moreover, to reduce the
required area, it is convenient to perform in the same unit
the operation for both decimal and binary representations.
Combined units of this type have been proposed for addition
[2] and multiplication [3]. In this work we propose a combined
unit for the division operation.
Previously we described a radix-10 division unit using the

digit-recurrence approach [4]. Moreover, this approach has
been used extensively for radix-2 representation [5].
Specifically, since the radix-10 unit produces one digit of

the quotient per iteration and the radix-10 digit is represented
in BCD by four bits, it seems appropriate to combine it with a
radix-16 unit. This combination is simplified by the fact that in
the radix-10 case we have decomposed the quotient digit into
two parts, which is also the preferred method for implementing
radix-16 division [5].

II. DIVISION ALGORITHM
The expressions for the digit-recurrence iteration for the

radix-10 case are [4]

v[j] = 10w[j − 1]− qHj(5d)

w[j] = v[j]− qLjd

with qHj ∈ {−1, 0, 1} and qLj ∈ {−2,−1, 0, 1, 2} for a re-
dundancy factor ρ10 = 7/9.
Similarly, for the radix-16 case

v[j] = 16w[j − 1]− qHj(4d)

w[j] = v[j]− qLjd

with qHj ∈ {−2,−1, 0, 1, 2} and qLj ∈ {−2,−1, 0, 1, 2} for
a redundancy factor ρ16 = 10/16.
Therefore, the two recurrences can be combined into

v[j] = rw[j − 1]− qHj(kd) (1)
w[j] = v[j]− qLjd (2)

with quotient digit selection functions

qH = SELH(r̂w, d̂) (3)
qL = SELL(v̂, d̂) (4)

and quotient digit qj = kqHj + qLj . The switch between the
two radices is performed by setting a bit R such that

when R = 0 → r = 16 and k = 4 (radix-16)
when R = 1 → r = 10 and k = 5 (radix-10)

To ensure convergence, the recurrence is initialized as

w[0] = x/r2 .

III. DIVIDER ARCHITECTURE
The scheme implementing the division recurrence of (1) and

(2) is shown in Fig. 1. The divider is completed by a unit to
convert the quotient-digit qj from the signed-digit to the BCD,
or to the binary unsigned, representation, and to perform the
rounding.
As mentioned above, the radix selection is done with a

signal R such that for radix-16 R = 0 and for radix-10
R = 1. Therefore, in the recurrence, we have to process data
both in BCD (for radix-10) and in binary (for radix-16). This
requires some modifications in the carry-save adders (CSAs)
as explained in Section III-D.
In [4], to speed up the radix-10 division, we implement the

most-significant slice (MS-slice) of the recurrence in radix-2
(two’s complement). The conversion, one digit per iteration,
from a BCD digit to a 4-bit binary digit is straightforward.
When combining with radix-16, we need to apply only minor
modifications in the MS-slice, as explained in Section III-C.
One radix-16 digit is simply transferred from the dual-radix
recurrence part every iteration.
In the following, we indicate with lower case letters (e.g.

d) digit-vectors in the dual radix part of the recurrence and
with upper case letters (e.g. D) bit-vectors in the MS-slice.
When necessary to specify the radix, radix-10 digit-vectors
are indicated with the subscript BCD (e.g. dBCD).
We now discuss the implementation of the relevant blocks

in Fig. 1 and the convert-and-round unit.

967978-1-4244-2110-7/08/$25.00 ©2007 IEEE

L
q

q
H

Position of registers

L
qq

H
SEL &

q
HL

q

^

Mux 2:1

km Table

16*43*4d̂

d

3

1+3*4

wc

c

ws

s

0

Mult/mux

vcvs

radix−10/16 CSA

Mult/mux

radix−10/16 CSA

x

rwrw

rw

precomp.

 R

 Rm
H
1

m
L
2

L
1

m
m
H
2

0 1 0 1 0 10 1 R

0 1 0 1 0 1 R

0

2
d

−
2
d

−
d

8
d

−
8
d

4
d

−
4
d0 0

dradix−2

−
5
d

5
d

−
2
d

2
d
B
C
D

B
C
D

B
C
D

B
C
D

B
C
D

−
d

kD+−

BCD

+−5d
2d+−kD+−2D+− +−D

BCD

Fig. 1. Basic implementation of radix-10/radix-16 recurrence.

A. Precomputation of the multiples
This block computes the multiples of d necessary for both

the recurrence and the selection function. In the radix-10 case
the multiples five times the divisor (5dBCD) and two times the
divisor (2dBCD), and their negatives, are precomputed. For
the radix-16 the multiples required are eight, four, and two
times the divisor (8d, 4d, and 2d); these are straightforward to
compute (by shifting) and a selector is used to select among the
multiples depending on the radix. The detail of the multiples
selection for the dual radix recurrence is shown in Table I.
In the radix-2 MS-slice for the radix-16 division, we simply

use a truncated representation of 8d, 4d, and 2d. For radix-10
division, the multiples 5dBCD, 2dBCD and their negatives are
converted into two’s complement.

B. Quotient-digit selection
In the quotient digit selection functions described by (3) and

(4), the estimates r̂w and v̂ are obtained by using a limited
number of digits of the carry-save representation. Although
in principle this number could be different, we use the same
number to simplify the scheme.
The selection of the quotient-digit is done by preloading

selection constants and comparison [6]. With respect to the
radix-10 implementation of [4], in this dual radix divider we
need to combine the radix-10 selection function with the radix-
16 one. We explored two alternatives:
1) separate modules to generate the constants for each
radix;

2) a combined module for both.
The combination of the radices can be done if the constants

mks satisfy the conditions on the bounds of the selection
intervals (see [5] and [4] for the detailed derivations). These
bounds are shown in Fig. 2, for the positive quadrant. The

-qHd -qLd
qH r-16 r-10 qL r-16 r-10
-2 8d N/A -2 2d 2dBCD

-1 4d 5dBCD -1 d d
0 0 0 0 0 0
1 −4d −5dBCD 1 −d −dBCD

2 −8d N/A 2 −2d −2dBCD

TABLE I
OPERATION OF MULT/MUX.

 0

 1

 2

 3

 4

 5

 6

 7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2. PD plot for qH (top) and qL (bottom) (positive quadrant).

dotted lines in the figure, represents the bounds for radix-
16, and the solid lines the bounds for radix-10. The selection
constants are then chosen by

L10
k ≤ mk < U16

k+1 k = {−1, 0, 1, 2}

where L10
k is the bound obtained for radix-10 (solid lines in

Fig. 2) and U16
k+1 is the bound for radix-16 (dotted lines in

Fig. 2).
Moreover, we choose constants which are symmetric with

respect to the sign:

m2 = −m−1 and m1 = −m0 .

For radix-16 (which selection function is decomposed into
two radix-4 selection functions), 3 bits of the divisor d are
sufficient to select the constant mk

d = 0.1b2b3b4 . . .

968

Radix−2

Mux 2:1

CSA 3:2

CSA 3:2
critical
 path

q
H L

q

L
q q

H

mux

SEL q
H

H1

L2 L1,

initialization
X(1)

CSA 4:2

CSA 3:2

CSA 3:2

L
q

q
H

d̂

d

precomp.

Mult/mux

Mult/mux

Mux 2:1

−2d −d0d 2d

Mult/mux

Mult/mux

L
q

q
H

Registers

Position of registers

vs vc

ws wc

1616*4

16*4 16

2D−D−2D 0 D

1111

c(3)
ws(4)

c(4)w

c(3)v

q
H

L
q D

s c8W 8W

s c2W2W

sW cW

(u=1)
L

qSEL
L

qSEL (u=0)
c(3)

c(3)v

sY cY

sY cY

(u=2)
L

qSEL(u=−2)
L

qSEL

s c8W 8W

Mux 2:1

mult by
 10/16

kD

−8D−kD 0 kD 8D
H1 L2 L1

km Table

H2

H2

(u=−1)
L

qSEL

+/−KD +/−8D

x/r2

crwsrw

...
...

−8d −kd 0 kd 8d

rw

rw

Radix−r

radix−r CSA

radix−r CSA

4

4 4

4

4

12 12

12

1212

4
−

−

M M M M

M M

M M

Fig. 3. Implementation of the dual-radix recurrence.

Therefore, to unify the intervals on d for both radices, we map
the 8 configurations 0.1 b2b3b4 into the closest 3 fractional
digits BCD representation of dBCD.
The resulting intervals on d and the constants for both qH

and qL are reported in Table II. Their bounds are plotted in
Fig. 2.
The values in Table II represent fractional numbers, that

has to be implemented as integers in the radix-2 selection
functions. This conversion fraction to integer is done by

Mk = mk · r
2

and therefore, we get two different encodings for radix-10 and
radix-16.
Moreover, with respect to the radix-10 only implementation,

the digit-set of qH is extended from three to five values for
radix-16. For this reason, the selection by comparison is mod-
ified by computing speculatively the five possible outcomes of
v̂[j].

C. Radix-2 most-significant slice
With respect of the implementation of [4], the radix-2 MS-

slice is modified as follows. A picture of the implementation
of the recurrence is shown in Fig. 3.
1) To produce a 5-value quotient-digit qH , the selection
function for qH is composed of four sign-detectors and
the encoder of the quotient digit qH is slightly changed.

2) As a consequence of 1), the multiplexer producing
qH(kD) is changed into a 5:1 mux and two extra flip-
flops are required to store qH .

3) The speculative selection function for qL is in this
dual radix unit composed of five blocks computing

speculatively

qL = SELL(̂rW − qH(kD), d̂) , qH = {−2, 1, 0, 1, 2}

Consequently, a mux 5:1, controlled by qH , must be
used to select among the possible values of qL.

4) The multiplication rW [j] is performed by a CSA 4:2
and a multiplexer:
radix R inputs to CSA 4:2
16 0 8Ws + 8Wc + 8Ws + 8Wc

10 1 8Ws + 8Wc + 2Ws + 2Wc

D. Dual-radix carry-save adders

The carry-save adders (CSA) in the recurrence can be
operated by selecting the radix with R. A scheme of the dual-
radix CSA is shown in Fig. 4 for one digit, we indicate with
x(i) the digit of weight r−i.

E. Conversion and Rounding

The on-the-fly conversion and rounding implemented in
[4] can be easily be adapted to the radix-16 case, with the
exception of the normalization that in the binary case requires
shifts of one bit, while in radix-10 the shifts is one BCD
digit (4 bits). Moreover, the adder necessary to compute the
sign of the final reminder, and to determine if it is zero, is
implemented in dual-radix.

IV. IMPLEMENTATION AND COMPARISONS

In this section we present the results of the evaluation of
the dual radix division unit and a comparison with the decimal
divider of [4] and a double-precision radix-16 digit-recurrence
division unit.

969

[di, di+1) qH qL

mH2 mH1 mH0 m
H1

mL2 mL1 mL0 m
L1

0.100, 0.106 - 0.26 -0.26 - 0.16 0.04 -0.04 -0.16
0.106, 0.120 0.28 -0.28
0.12 , 0.13 0.32 -0.32 0.20 0.08 -0.08 -0.20
0.13 , 0.14 0.34 -0.34
0.14 , 0.15 0.36 -0.36
0.15 , 0.17 0.40 -0.40 0.24 -0.24
0.17 , 0.20 0.46 -0.46 0.28 -0.28
0.20 , 0.22 0.52 -0.52 0.32 -0.32
0.22 , 0.25 0.58 -0.58 0.36 -0.36
0.25 , 0.30 0.68 -0.68 0.40 -0.40
0.30 , 0.35 0.80 -0.80 0.48 0.16 -0.16 -0.48
0.35 , 0.42 0.96 -0.96 0.56 -0.56
0.42 , 0.50 1.14 -1.14 0.68 0.24 -0.24 -0.68
0.50 , 0.57 3.20 1.32 -1.32 -3.20 0.80 -0.80
0.57 , 0.63 3.52 1.44 -1.44 -3.52 0.88 0.36 -0.36 -0.88
0.63 , 0.69 3.84 1.58 -1.58 -3.84 0.96 -0.96
0.69 , 0.75 4.16 1.80 -1.80 -4.16 1.12 -1.12
0.75 , 0.82 4.48 1.88 -1.88 -4.48
0.82 , 0.88 5.12 2.08 -2.08 -5.12 1.28 -1.28
0.88 , 0.94 2.24 -2.24
0.94 , 1.00 5.76 -5.76 1.40 -1.40

TABLE II
CONSTANTSmk FOR BOTH RADIX-10 AND RADIX-16 SELECTION.

Unit cycle time n. cycles latency speed-up area ratio
[ns] [ns] [μm2]

Radix-16 (standard) 1.00 16 16.0 1.00 38000 0.40
Radix-10 [4] 1.00 20 20.0 0.80 59700 0.60

97700 1.00
Dual-radix (this work) 1.04 16/20 16.6/20.8 0.96/0.96 78500 0.80

TABLE III
SUMMARY OF RESULTS FOR THE SYNTHESIZED UNIT.

+4 +2

CPACPA

44

4444

(i)a (i)b (i)

s (i)c(i+1)

c out

sign

01

4

R . sign

01 R

sign
___ c out

1

1

ci

Fig. 4. Scheme of radix-10/radix-16 CSA (one digit).

We performed a synthesis of the unit of Fig. 3 (plus convert-
and-round unit) using the STM 90 nm CMOS standard cells
library [7] and Synopsys Design Compiler. From the synthesis
we estimated the critical path (including estimations at netlist
level of wire load) and the area. The critical path is highlighted
in Fig. 3 (dotted line).
The results are compared with those of [4] for the radix-10

division and with those of [8] for radix-16.
The data in Table III show that the delay of the critical

path for the dual radix unit is practically the same since the
difference is about one INVFO4.
The additional area with respect to the implementation of

[4] corresponds mainly to the following modules:
• multiplexers to select the multiples of the divisor in the
precomputation block;

• module to compute the selection constants;
• the extra modules in the selection functions;
• the multiplexers for the CSAs in the dual radix recurrence
(Fig. 4).

However, by comparing the area of the combined divider
with separate units for each radix, we have about 20% less
area.

V. CONCLUSIONS
We conclude that the combination of both radices in a single

unit is feasible. The cycle time is similar to that of the radix-
10 (and radix-16) implementation and the additional area can
be justified by considering that the unit can perform both
radix-10 and radix-16 divisions. The selection function might
be simplified somewhat by modifying the implementation for
radix-10 of [4] using a set for qH = {−2,−1, 0, 1, 2}, since
that is also required for radix-16.

970

REFERENCES
[1] M. F. Cowlishaw, “Decimal floating-point: algorism for computers,” in

Proc. of 16th Symposium on Computer Arithmetic, June 2003, pp. 104–
111.

[2] A. Vazquez and E. Antelo, “Conditional speculative decimal addition,”
Proc. 7th Conference on Real Numbers and Computers (RNC 7), pp.
47–57, June 2006.

[3] A. Vazquez, E. Antelo, and P. Montuschi, “A new family of high-
performance parallel decimal multipliers,” to appear in Proc. of 18th
Symposium on Computer Arithmetic, June 2007.

[4] T. Lang and A. Nannarelli, “A Radix-10 Digit-Recurrence Division Unit:
Algorithm and Architecture,” IEEE Transactions on Computers, vol. 56,
no. 6, pp. 727–739, June 2007.

[5] M. Ercegovac and T. Lang, Division and Square Root: Digit-Recurrence
Algorithms and Implementations. Kluwer Academic Publisher, 1994.

[6] N. Burgess and C. Hinds, “Design Issues in Radix-4 SRT Square Root
and Divide Unit,” Proc. 35th Asilomar Conference on Signals, Systems
and Computers, pp. 1646–1650, 2001.

[7] STMicroelectronics. 90nm CMOS090 Design Platform. [Online]. Avail-
able: http://www.st.com/stonline/prodpres/dedicate/soc/asic/90plat.htm

[8] E. Antelo, T. Lang, P. Montuschi, and A. Nannarelli, “Digit-recurrence
dividers with reduced logical depth,” IEEE Transactions on Computers,
vol. 54, pp. 837–851, July 2005.

971

