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Abstract

The aim of this work is to compare in terms of perfor-
mance, area and power dissipation, a complex FIR filter
realized in the traditional two’s complement system with a
Quadratic Residue Number System (QRNS) based one. The
resulting implementations, designed to work at the same
clock rate, show that the QRNS filter is almost half the size
of the traditional one, and dissipates about one third of the
energy.

1 Introduction

The new generation of telecommunication equipment of-
ten require the use of high order FIR filters for the imple-
mentation of the new modulation schemes. Moreover, low
power consumption for new portable multimedia terminals
is needed. In this context, computational intensive signal
processing blocks can be effectively implemented by using
Residue Number System (RNS) arithmetic.

The use of the RNS allows the decomposition of a given
dynamic range in slices of smaller range on which the com-
putation can be efficiently implemented in parallel [1], [2],
[3]. The QRNS (Quadratic RNS) is particularly convenient
when dealing with complex numbers [4] [5]. In QRNS the
imaginary term of a complex number is transformed into an
integer, therefore a complex multiplication which requires
four integers multiplications and two sums in the conven-
tional two’s complement system, is implemented with two
integer multiplications in QRNS.

The drawback presented by the RNS (and QRNS) is the
overhead due to both input and output conversions binary-
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RNS-binary. This problem can be solved by using efficient
conversion techniques [6] [7], or by converting directly the
analog signal in the residue representation [8].

Recently, a number of works on low power and RNS
have been presented. In [9] and [10] the power dissipation
is reduced by taking advantage of the speed-up due to the
parallelism of the RNS structure. The supply voltage is re-
duced, resulting in a quadratic reduction of power, until the
speed-up= 1 [9], or until the desired value of delay [10]. In
[11] some encoding optimization techniques for small mod-
uli are presented.

In our work, we compare the performance, area and
power of a complex FIR filter realized with the traditional
binary arithmetic, with a QRNS based one.

Both filters have been designed according to the specifi-
cations of an actual filter used in a telecommunication satel-
lite and are clocked at the same rate of 166 MHz. Although
the QRNS filter has a longer latency, it can sustain the same
throughput of the traditional one, while its area and power
dissipation are about 57% of the total area and 34% of the
total power of the traditional filter.

2 Background

A Residue Number System is defined by a set of rela-
tively prime integers

fm1;m2; : : : ;mP g :

The dynamic range of the system is given by the product of
all the modulimi:

M = m1 �m2 � : : : �mP :

Any integerX 2 f0; 1; 2; : : :m� 1g has a unique RNS
representation given by:

X
RNS
! ( hXim1

; hXim2
; : : : ; hXimP

)



wherehXimi
denotes the operationX mod mi. Operations

on single moduli are done in parallel
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RNS
!
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>>:
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op Ym1
im1

Zm2
= hXm2
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ZmP
= hXmP
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The conversion of the RNS representation ofZ can be ac-
complished by the Chinese Remainder Theorem (CRT):

Z =

*
PX
i=0

mi � hmi
�1
imi

� Zmi

+
M

with mi =
M

mi

andmi
�1 obtained byhmi �mi

�1
imi

= 1.

In the complex case, we can transform the imaginary
term into an integer if the equationq2 + 1 = 0 has two
distinct rootsq1 andq2 in the ring of integers modulomi

(Zmi
). A complex numberxR + jxI = (xR; xI ) 2 Zmi

,
with q root of q2 + 1 = 0 in Zmi

has a unique Quadratic
Residue Number System representation given by

(xR; xI)
QRNS
! (Xi; X̂i) i = 0; 1; : : : ; P

Xi = hxR + g � xI imi

X̂i = hxR � g � xI imi

The inverse QRNS transformation is given by

xR = h2�1(Xi + X̂i)imi

xI = h2�1 � q�1(Xi � X̂i)imi

where2�1 andq�1 are the multiplicative inverses of2 and
q, respectively, modulomi:

h2 � 2�1imi
= 1 and hq � q

�1
imi

= 1 :

Moreover, it can be proved that for all the prime integers
which satisfy

p = 4k + 1 k 2 N

the equationq2 + 1 = 0 has two distinct rootsq1 andq2.

As a consequence, the product of two complex numbers
xR + jxI andyR + jyI is in QRNS

(xR + jxI )(yR + jyI)
QRNS
! (hXiYiimi

; hX̂iŶiimi
)

and it is realized by using two integers multiplications in-
stead of four. Table 1 shows an example of QRNS multipli-
cation in the ring modulo 13.

A complex N taps FIR filter (Figure 1) is expressed by

y(n) =

NX
k=0

akx(n� k)

wherex; y; ak denotes complex quantities. From the QRNS
theory described above, it is easy to derive for the complex
filter the structure shown in Figure 2, in which both por-
tions of the filter are realized withP RNS filters working in
parallel.

example form = 13:
q = q1 = 5 $ h5 � 5i13 = �1

(xR + jxI)(yR + jyI) = (3 + j)(2 + j2) = 4 + j8

conversion to QRNS
X = h3 + 5 � 1i13 = 8 Y = h2 + 5 � 2i13 = 12

X̂ = h3� 5 � 1i13 = 11 Ŷ = h2� 5 � 2i13 = 5

multiplications
X � Y = h8 � 12i13 = 5 X̂ � Ŷ = h11 � 5i13 = 3

conversion from QRNS
ZR = h7(5 + 3)i13 = 4 being2�1 = 7

ZI = h7 � 8(5� 3)i13 = 8 beingq�1 = 8

Table 1. Example of QRNS multiplication mod
13.
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Figure 1. FIR filter in direct form.

3 Traditional FIR Filter

The starting point of our design is a programmable 64-
tap FIR filter realized in direct form (Figure 1) with com-
plex input and coefficients size of 10 bits for the real part
and 10 bits for the imaginary part. These data are derived
from the specification of an actual digital filter, used aboard
a satellite for direct TV broadcasting. We designed a proto-
type filter in traditional two’s complement system in order
to compare its performance, area and power dissipation with
a QRNS filter.

The filter can be decomposed in a real and imaginary
part. A single tap is realized as sketched in Figure 3. The
real and imaginary products are realized with two Booth
multipliers [12] and the resulting partial products are ac-
cumulated in a Wallace’s tree structure which produces a
carry-save (CS) representation of the product in each side

RNS FIR filter

RNS FIR filter
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Figure 2. Structure of QRNS filter.



of the filter. The CS representation of the products, is then
accumulated in two 128-addend Wallace’s tree realized with
4:2 compressors [13], not depicted in Figure 3. To have an
error-free filter we must keep a number of bits sufficient to
hold the carry-save representation of the sum, and we need
a 20 + log

2
64 wide tree. The carry-save representation is

finally converted into two’s complement representation by
a carry-propagate adder (realized with a carry-look-ahead
scheme) in the last stage of the filter (both real and imagi-
nary sides).

The filter has been implemented in the AMS 0:35�m

standard cells library, and it was synthesized from VHDL
description using Synopsys and a constraint of 6 ns as a
critical path, for this reason it resulted in a pipelined filter
of 6 stages.

4 QRNS FIR Filter

From Figure 2 we can see that the QRNS filter can be
realized by two RNS filters in parallel. Each RNS filter is
then decomposed into P filters working in parallel, where
P is the number of moduli used in the RNS representation.
In addition, the RNS filter requires both binary to QRNS
and QRNS to binary converters. In order to have a dynamic
range of 20 bits, as in the case of the traditional implemen-
tation, we chose the following set of moduli:

mi = f5; 13; 17; 29; 41g

such that

log2(5 � 13 � 17 � 29 � 41) = 20:3 :

4.1 Implementation of modular multiplication

In each tap, a modular multiplier is needed to compute
the term hakx(n � k)imi

. Because of the complexity of
modular multiplication, we used the isomorphism technique
[14] to implement the product of residues. By using isomor-
phism, the product of the two residues is transformed into
the sum of their indices which are obtained by an isomor-
phic transformation. According to [14], if m is prime there
exists a primitive radix r such that its powers modulo m

cover the set [1;m� 1]:

ni = hrwi im with ni 2 [1;m� 1]

wi 2 [0;m� 2]:

Both transformations n ! w and w ! n can be imple-
mented with m� 1 entries tables. Therefore, the product of
a1 and a2 modulo m can be obtained as:

ha1 � a2im = hr
w
im

Z
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Z
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++
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++
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Figure 3. Structure of tap in traditional com-
plex FIR filter.

where

w = hw1 + w2im�1 with a1 = hrw1 im

a2 = hrw2 im

In order to implement the modular multiplication the fol-
lowing operations are performed:

i) Two isomorphic transformations to obtain w1 and w2;

ii) One modulo m� 1 addition hw1 + w2im�1;

iii) One inverse isomorphic transformations to obtain the
product.

For example, for the modular multiplication

h3 � 4i5 = 2

we have (r = 2):

i) 3 = h23i5 ! w1 = 3

4 = h22i5 ! w2 = 2

ii) h2 + 3i4 = 1

iii) h21i5 = 2
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Figure 4. Multiplication implemented by iso-
morphism.

The input x, although delayed, is the multiplicand of
all the multiplications (see Figure 1). For this reason only
one isomorphic transformation, incorporated in the binary
to QRNS conversion, is necessary for all the taps. On the
other hand, because the coefficients of the filter (multiplica-
tors) are constant terms loaded once at start-up, it is conve-
nient to load directly the isomorphic representation modulo
mi � 1. As a result, in each tap, we reduce the modular
multiplication to a modular addition followed by an access
to table (inverse isomorphism) as depicted in Figure 4. The
table is implemented as synthesized logic and special atten-
tion has to be paid when one of the two operands is zero.
In this case, there exists no isomorphic correspondence and
the modular adder has to be bypassed.

4.2 Implementation of modular addition

The modular addition ha1 + a2im, consists of two bi-
nary additions. If the result of a1 + a2 exceeds the modulo
(it is larger than m� 1), we have to subtract the modulo m.
In order to speed-up the operation we can execute in parallel
the two operations:

(a1 + a2) and (a1 + a2 �m):

If the sign of the three-term addition is negative it means
than the sum (a1 + a2) < m and the modular sum is
a1 + a2, otherwise the modular addition is the result of the
three-term addition. The above algorithm can be imple-
mented with two dlog

2
me-bit adders as shown in Figure 5.

At the output of the tree, it is necessary to reduce the sum
S of all the taps to hSimi

. This is done with the modulo-
reduction technique described in [6].
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Figure 5. Adder modulo m.

4.3 Implementation of input/output conversions

As already mentioned, the input conversion block in-
cludes the isomorphic transformation. If x is zero, there
is no exponent w such that hrwimi

= 0. As a consequence,
zero is encoded with a special pattern that is then detected
in the block which computes the product using the isomor-
phism (Figure 4).

The output conversion is implemented by using the Chi-
nese Remainder Theorem (CRT), as described in [6].

5 Results and Comparisons

Both the traditional and the QRNS filters were imple-
mented in the AMS 0:35�m standard cells library. Delay,
area and power dissipation have been determined with Syn-
opsys tools.

Table 2 summarizes the results. In the table, area is re-
ported as number of NAND2 equivalent gates and power
is computed at 166 MHz. However, both area and power
dissipation do not take into account the contribution of in-
terconnections.

Table 2 shows that the QRNS filter has a higher latency,
due to the conversions, but it can be clocked at the same rate
of the traditional filter, and consequently, it can sustain the
same throughput. However, the QRNS filter is almost half
the area on the traditional complex filter, and consumes one
third of the energy.

6 Conclusions

We have implemented a QRNS 64-taps FIR filter and
compared its delay, area and power dissipation with those of



Filter Cycle Latency Area Power
[ns] (cycles) (gate equiv.) [W ]

QRNS 6.0 11 + 64 182; 400 2:5

Trad. 6.0 6 + 64 315; 700 7:4

ratio 1.0 1.07 0.57 0.34

Table 2. Summary of results.

a corresponding complex FIR filter realized with the tradi-
tional two’s complement system. The results obtained show
that the QRNS filter can sustain the same clock rate, al-
though it has a slightly longer latency. However, in terms
of area and power the QRNS version is more convenient.
A better improvement is expected for filters with a larger
number of taps.
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