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ABSTRACT

The use of the Residue Number System (RNS) in modern telecom-
munication and multimedia applications is becoming more and
more important because it allows interesting advantages in terms
of precision, power consumption and speed. Generally, the out-
put conversion from residue to binary is the crucial point in ef-
fective realizations of application specific architectures based on
residual arithmetic. This paper presents a general conversion pro-
cedure based on aN moduli set. The algorithm can process both
unsigned and signed numbers. Based on this algorithm an archi-
tecture which efficiently implements the output conversion is illus-
trated. The architecture has been mapped on a FPGA.

1. INTRODUCTION

The advantages of Residue Number System (RNS) processing are
discussed in several publications and books [5], [13], [14]. Error
free computation, simplified and fast addition and multiplication,
possibility to obtain parallel architectures are among the more im-
portant advantages. New important RNS research topics, as for
example those related to low power DSP implementations, are
also emerging [1], [2], [11]. The practical use of RNS is however
strongly limited by the input and output conversions required for
the translation from the binary to the RNS representation and vice
versa. In fact, the implementation of the converters constitutes a
fixed overhead on the total area, delay and power dissipation. For
these reasons the output conversion, which is generally performed
using the Chinese Remainder Theorem (CRT in the following),
still appears to be a crucial point in the realization of competitive
RNS subsystems and, therefore, represents one of the main topics
in the recent RNS research activities. Some authors have proposed
the use of three moduli sets [3], [4], [6], [7], [8] in order to obtain
simpler and more efficient output conversion architectures. For ex-
ample papers [7] and [8] consider the set(2n−1, 2n, 2n+1). Of
course, this approach reduces the exploitation of the RNS proper-
ties (the maximum advantages are obtained by using a lot of small
value moduli). In fact,n grows with the desidered wordlength and,
correspondly, the resulting modular processor becomes slower. On
the other hand, high speed and low power multimedia applications
require DSP hardware with large dynamic range and fine gran-
ularity in the wordlength selection (this aspect is related to the
wordlength optimization). Of course these requirements cannot be
fully matched by using three moduli. To overcome these problems,
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in a lot of applications moduli sets with more than three moduli are
required. In [12] an efficient method for the RNS-Binary conver-
sion, based on a set ofN moduli, has been proposed. Although
this method does not limit the number of moduli, it imposes an
important limitation because only odd moduli can be used. This
reduces the RNS advantages because power of two modular arith-
metic exhibits very efficient implementations (for this reason, nor-
mally the greatest modulo is chosen of the form2h). Our work is
aimed to remove the above limitation preserving the properties of
the method presented in [12]. The paper is organized as follows.
Section 2 describes the algorithm while in Section 3 the extension
for the signed conversion is given. Section 4 shows an actual im-
plementation of the proposed algorithm. The VLSI architecture
is presented and the mapping on FPGA XILINX V1000-6 is dis-
cussed. The conclusions are drawn in Section 5.

2. THE NEW CONVERSION ALGORITHM

The classical CRT formulation for aN moduli set is

〈X〉M =

*
NX

i=1

m̂i〈m̂−1
i · ri〉mi

+
M

= 〈H〉M (1)

Where〈 〉T is themod T operator,M =
QN

i=1 mi,
ri = 〈X〉mi i ∈ [1, N ],

m̂i =
M
mi

and the quantitieŝm−1
i represent the multiplicative inverse ofm̂i,

i.e.

〈m̂im̂−1
i 〉mi = 1 (2)

When (1) is implemented by a digital circuit two problems arise.
The first one concerns the complexity of the arithmetic operations
involved (a set of modulo additions and modulo multiplications are
required). There are a number of methods to efficiently implement
the computation of the termH. In [9] look-up tables (LUT) are
used to compute the terms and a tree of carry save adders imple-
ments the summation.

The second problem is related to the computation of the exter-
nal mod M operation. This operation is very complex [10] due
to the large value ofM in the finalmod M operator and to the



dynamic range of the termH. In fact, from (1) we obtain the fol-
lowing bounds

0 ≤ H =
NX

i=1

m̂i〈m̂−1
i · ri〉mi ≤

NX
i=1

M
mi

· (mi − 1) < N ·M

(3)

Equation (3) shows the relation between the range ofH and
N . Moreover, the methodologies used for the modulo computation
of specific modulus set (as those based on moduli close to pow-
ers of two) do not appear to be useful for this modulo operation.
Indeed, if we maintain the generality of the procedure, the final
modulo cannot be constrained. To obtain a more suitable form for
themod M operation, let us consider the numberX · 2k beingk a
suitable integer quantity. Multiplying both the members of (1) by
2k we obtain

〈X · 2k〉M =

*
NX

i=1

m̂i〈m̂−1
i · ri · 2k〉mi

+
M

(4)

The terms of the summation in (4) have the same dynamic range as
given by (3) since the factor2k appears inside amod mi operation.
Equation (4) can be rewritten as

X · 2k =
NX

i=1

m̂i〈m̂−1
i · ri · 2k〉mi − α ·M (5)

whereα comes from the external modulo operation. From (5) we
get

X =
PN

i=1 m̂i〈m̂−1
i · ri · 2k〉mi − α ·M

2k =
H − α ·M

2k (6)

Properties of (6) has been exploited in [12]. Due to the presence
of a power of two modulus, this expression cannot be directly
used for the computation of the output conversion. In the present
case, (5) must be modified by taking into account that one of the
residues, is a power of two (we supposemN = 2h). In this case,
we have

〈X〉2h = rN (7)

From (7) it derives that theh least significant bits ofX correspond
to theh bits ofrN . This means that the reconstruction of these bits
does not require any operation in the residue to binary conversion
process. In this case, the main task of the converter is the recon-
struction of the remaining most significant bits ofX. These bits
correspond to the numberε defined as

ε =
X − 〈X〉2h

2h =
X − rN

2h (8)

Starting from this value the converted valueX can be obtained by

X = ε · 2h + rN . (9)

Theε value can be computed by introducing (6) in (8)

ε =
H−2krN

2h − αfM
2k (10)

wherefM = M/2h. Since the definition of the termH implies
that

〈H〉2h =
D
2krN

E
2h

(11)

the first term of the numerator of (10) is an integer quantityeH
given by eH =

H − 2krN

2h (12)

Using (12), (10) can be rewritten as

ε =
eH − α · fM

2k (13)

Due to the scaling by the factor2h, this expression requires for its
computation a reduced dynamic range. Eq.(13) is similar to (6)
and, as we show later, a simplified method can be used to select
the valueαfM . In the following, all the expressions are defined in
terms ofε, eH, fM .

The most difficult task, in the evaluation of (13), is the compu-
tation of the termαfM . To solve this problem, we firstly evaluate
the dynamic range of the termeH. Starting from (12) we obtain

−2k < eH < N · fM (14)

consequently, the factorα belongs to the interval (see Appendix
A)

−2k < α < N (15)

Starting from this result, (13) suggests an efficient method to find
the right valueα · fM to be subtracted toeH. In fact, in order to
obtain integer values ofε (the reconstructed value), the quantityeH − α · fM must be a multiple of the factor2k. This means that
the k least significant bits ofeH − α · fM must be equal to zero.
Starting from this observation, we can derive that the correct value
of the termα belongs to the subset

Υ = {α ∈ I : 〈α · fM〉2k = 〈 eH〉2k} (16)

WhereI is the set of integer numbers. This subset only depends
on thek least significant bits ofeH. Unfortunately, using these bits
we are able to select only2k values ofα ·fM , out of theN +2k +1
possible values, according with (14). Ifk is chosen such that

2k ≥ N − 1 (17)

the values ofα · fM can be computed starting from the2k posi-
tive values stored in a very small LUT. In fact, sinceε must be a
positive number, the quantityeH − α · fM must be positive. If this
does not happen, the obtained value ofα ∈ Υ is incorrect. From
(14) and (16) the correct value is obtained by subtracting2k from
the incorrect one. So, ifα′ is the incorrect value addressed by the
LUT andα is the correct one,ε is obtained by

ε =
eH − α · fM

2k =
eH − α′ · fM

2k + fM (18)

The procedure deriving from (18) can be summarized by the
following steps.

1. The termα′ ·fM is read from the LUT addressed
by thek least significant bits ofeH.

2. The sumeH −α · fM is computed and thek least
significant bits are discarded.

3. If the obtained result is negative the quantityfM
is added.



3. SIGNED NUMBER CONVERSION

The conversion into a two’s complement representation can be eas-
ily performed by using the following conventions for the RNS rep-
resentation of signed numbers. SinceM is even, positive num-
bers are into the range[0, (M/2) − 1] and negative ones are in
[M/2, M−1]. The signed conversion must translate these ranges
into the ranges of the two’s complement representation (form bits,
the positive numbers are in the range[0, 2m−1−1] while the neg-
ative ones are mapped in the interval[2m−1, 2m−1]). This trans-
lation can be performed by considering the following procedure.
As first step we add,mod M , the quantityP = M/2. This opera-
tion translates the positive numbers into the range[M/2, M − 1],
while the negative ones are now in the interval[0, (M/2)−1]. As
a final step, the two’s complement value of the output can be re-
constructed through the binary subtraction of the valueM/2 from
the final result.

This procedure has been embedded in our algorithm and in
order to reduce the algorithm steps, the final subtraction has been
merged with the conditional subtraction required for theα correc-
tion. Therefore if the reconstructed valueX ′ = ε′ · 2h + 〈rN +
P 〉2h is positive we only subtract the valueP . Otherwise, for neg-
ative values, the quantityM − P = M/2 is added. The above
algorithm can be summarized in the following steps

1. Compute the quantityeH using the modified
residuer′i = 〈ri + P 〉mi .

2. Compute the quantitiesε′, X ′ = ε′ ·2h + 〈rN +
P 〉2h .

3. Compute the quantityX. If X ′ is negative the
two’s complement output result is obtained as
X = X ′ + M − P otherwiseX = X ′ − P

3.1. A numerical example

In the following, a numerical example is given. Let us consider the
case of a RNS representation based on the moduli set,

mi = {3, 5, 7, 8}

wherer4 = 23 (i.e. h = 3). The number of moduli is four
therefore, from (17),k = 2. For this set we have

m̂i = {280, 168, 120, 105}, m̂−1
i = {1, 2, 1, 1}, M = 840fM = 105, P = 420

and

H = 280〈1 · 2k · (r1 + P )〉3 − 168〈2 · 2k · (r2 + P )〉5 +

120〈1 · 2k · (r3 + P )〉7 + 105〈1 · 2k · (r4 + P )〉8

Consider the valueX = −209 RNS−−−→ {1, 1, 1, 7}.

H = 1684, eH = 1684−4·〈7+420〉8
8 = 209

The correctα value is1. Consequently we haveε′ = 26 and for
X ′ we obtainX ′ = 26 · 8 + 〈7 + 420〉8 = 211 > 0.

In this case we have to subtract the termP = 420 obtaining
X = 211− 420 = −209.

4. THE VLSI ARCHITECTURE

The converter architecture for a generic set of moduli is sketched
in Fig. 1. TheN LUTs are addressed by the residuesri and store
the terms

m̂i〈m̂−1
i · 2k · (ri + P )〉mi

The LUT-N stores the term̂mN 〈m̂−1
N 2k(rN +P )〉mN −2k〈rN +

P 〉2h . A Carry-Save Adder (CSA) is used to computeeH. Thek
least significant bits ofeH are used to address the LUTαfM that
stores the multiplesα′fM . The selected multiple is added toeH
in order to obtain the valueε′. Theh least significant bits of the
value〈rn+P 〉2h are directly juxtaposed withε′ to obtain the value
X ′. The correct signed valueX is obtained by a final summation.
Depending onSgn(X ′) the value−P or M − P is conditionally
added toX ′.

A VLSI implementation based on the moduli set{3, 5, 7, 11,
17, 64} for a 20 bit converter has been implemented (Fig. 2).
The architecture requires six LUTs that are normally very small.
In fact the input LUTs are related to the moduli wordlength that
can be chosen sufficiently small for the most common dynamic
ranges. The computation of the termeH has been obtained by using
a Carry-Save Adder (CSA), and a carry-save representation has
been maintained where possible. A fast Carry-Propagate Adder
(CPA) has been used to obtain the address to the LUT-αfM . In
the architecture, two different results are computed in parallel and
the correct one is selected by usingSgn(ε′). The architecture has
been mapped on a XILINX-V1000-6 FPGA. The number of used
Configurable Logic Blocks (CLB) is 80 and the maximum delay is
14 nS (taking into account the routing delays).

Figure 1: The converter architecture



Figure 2: The implemented architecture

5. CONCLUSIONS

In this paper a general algorithm forN moduli CRT based conver-
sion is presented. Starting from this formulation a fast architecture
has been obtained. This architecture is able to perform the conver-
sion by using general moduli sets including a power of two mod-
ule. The architecture has been implemented by using carry save
adders and has been mapped on a FPGA. The obtained results in-
dicate that LUT based FPGAs can be an effectively used to map
RNS converters architectures.

Appendix A

The range ofε is

0 ≤ ε =
eH − α · fM

2k ≤ fM − 1 (A.1)

Moreover, the termeH is bounded byeH− = −2k + 1 ≤ eH < eH+ = N · fM (A.2)

From A.1 we haveeHfM ≥ α ≥
eHfM − 2k(fM − 1)fM (A.3)

SubstitutingeH+ respectively in the left side andeH− in the right
side of A.3 we obtaineH+fM =

NfMfM > α ≥ −2k +
1fM

Consequently the range ofα is−2k < α < N
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