
Programmable Power-of-two RNS Scaler and its
Application to a QRNS Polyphase Filter

G.C. Cardarilli, A. Del Re, A. Nannarelli† and M. Re
Dept. of Electronic Engineering University of Rome ”Tor Vergata”, Italy

† Dept. of Informatics and Mathematical Modelling, Technical University, Denmark

Abstract— The scaling operation, i.e. the division by a constant
factor followed by rounding, is a commonly used technique
for reducing the dynamic range in Digital Signal Processing
(DSP) systems. Usually, the constant is a power of two, and
the implementation of the scaling is reduced to a right shift.
This basic operation is not easily implementable in the Residue
Number System (RNS) due to its non positional nature. A number
of different algorithms have been presented in the literature for
the RNS scaling. In this paper, several RNS dynamic reduction
techniques have been analyzed and the selected one is applied to
a polyphase filter bank. A comparison of the filter bank scaled
with RNS to binary and binary to RNS conversions, and the
RNS scaled implementation is presented. A reduction of area
and power consumption of about 30% for the scaling block is
obtained.

I. INTRODUCTION

The use of alternative number systems in the implementa-
tion of application specific Digital Signal Processing (DSP)
systems has gained a remarkable importance in recent years
because of the lower power consumption over their two’s
complement counterparts [1]. In particular, a number of papers
have been presented on specific applications using Logarithmic
Number System (LNS) or Residue Number Systems (RNS).
The renewed success of these techniques is mainly related
to the low power requirements, but also to the availability
of hardware platforms, such as FPGAs, particularly suitable
for the implementation of LNS and RNS arithmetic blocks.
Techniques to implement RNS operations are often based
on look-up tables, which are the basic blocks to instantiate
combinational logic in FPGAs.

On the other hand, several basic operations such as sign de-
tection and truncation, which are trivial in two’s complement,
are not easy to implement in RNS. In DSP, the most common
operation affected by this problem is the scaling operation
(i.e. the division by a constant factor followed by rounding)
used for reducing the dynamic range in DSP units. In large
systems, dynamic range reduction might be needed in different
parts of the datapath requiring several scaling blocks. For these
reasons, the investigation of optimized RNS scaling techniques
is an important aspect of the RNS implementation of DSP
systems.

In this paper, starting from the analysis of different RNS
scaling algorithms proposed in the literature, an optimized
method for power of two scaling is proposed and the results of
the comparison with other techniques are given. Moreover, the
application of the proposed scaling algorithm to a polyphase

filter bank is illustrated. Results shows a 30% reduction of
area and power consumption in the scaling block.

II. BACKGROUND ON RNS

A Residue Number System (RNS) is defined by a set of
relatively prime integers {m1,m2, . . . ,mP } . Its dynamic
range is given by the product M = m1 · m2 · . . . · mP .
Any integer X ∈ {0, 1, 2, . . . M − 1} has a unique RNS rep-
resentation given by:

X
RNS→ (〈X〉m1 , 〈X〉m2 , . . . , 〈X〉mP

)

where 〈X〉mi
denotes the operation X mod mi [2].

Operations on different mi (moduli) are done in parallel

Z = X op Y
RNS→


Zm1 = 〈Xm1 op Ym1〉m1

Zm2 = 〈Xm2 op Ym2〉m2

.
ZmP

= 〈XmP
op YmP

〉mP

As a consequence, operations on large wordlengths can be
split into several modular operations executed in parallel and
with reduced wordlength.

The conversion of the RNS representation of Z can be
accomplished by the Chinese Remainder Theorem (CRT):

Z =

〈
P∑

i=1

mi · 〈mi
−1〉mi

· Zmi

〉
M

(1)

with mi = M
mi

and mi
−1 obtained by 〈mi · mi

−1〉mi
= 1.

III. RNS SCALING TECHNIQUES

RNS scaling techniques presented in the literature can be
classified in three main groups:

1) Scaling by several moduli of the RNS base, [3], [4], [5],
[6], [7], [8].

2) Scaling by an integer belonging to the RNS dynamic
range [9].

3) Scaling by a power of two [10].

In the first group, different algorithms are used to reduce
the dynamic by a scaling factor obtained by the product
of some moduli composing the RNS base. In the second
group, a factorization of the CRT (1) is exploited to scale
by an integer number S in the dynamic range of the RNS
representation. Differently from the above recalled algorithms,
the last technique does not require a binary or a Mixed
Radix System (MRS) conversion, since the scaling operation

11020-7803-8834-8/05/$20.00 ©2005 IEEE.

is completed in the RNS domain [10]. Moreover, scaling by
a power of two is the classical way for dynamic reduction in
binary systems and it is possible to obtain a programmable
scaler with a slightly increasing in the hardware complexity.
For these reasons, we chose to use this scaling technique in our
system. It is based on the Division Remainder Zero Theorem:
given [x1, x2, ..., xn] the RNS representation of X , and s, a
divider of X , co-prime with the moduli mi, then:

〈X/s〉M = 〈X · s−1〉M =
= 〈x1 · s−1〉m1 , 〈x2 · s−1〉m2 , ..., 〈xn · s−1〉mn

(2)
Applying equation (2), the scaling by 2 operation is straight-
forward when X is an even number. If X is odd, we apply
the above procedure to X + 1, obtaining:

〈(X + 1)/2〉M = 〈(X + 1) · 2−1〉M =
= 〈2−1(x1 + 1)〉m1 , 〈2−1(x2 + 1)〉m2 , ..., 〈2−1(xn + 1)〉mn

(3)
Therefore, the scaling by 2 operation requires a block for the
parity detection of X . For this purpose, a base extension to
the modulus mn+1 = 2 is needed. A second modification to
equation (2) must be considered when signed numbers have
to be represented. In RNS, positive numbers are mapped in
the range [0, (M − 1)/2], while negative numbers are in the
range [(M + 1)/2,M − 1], in a manner similar to the two’s
complement representation. Given a signed integer X̃ , whose
absolute value is X , we have:

X̃ = X if X̃ ≥ 0
X̃ = M − X if X̃ < 0

(4)

The scaling operation result must be:

X̃ ′ = X/s if X̃ ≥ 0
X̃ ′ = M − X

s if X̃ < 0
(5)

As a consequence, there is the need for a sign detection block.
Given a negative integer X̃ whose absolute value is X , its RNS
representation is M − X . From equation (5), the scaled by 2
value X̃ ′ must be

X̃ ′ = M − X

2
= M − M − X̃

2
=

M + X̃

2
(6)

From equation (6), when X̃ < 0 scaling must be applied to the
quantity Y = X̃ +M , which belongs to the enlarged dynamic
range obtained by the base extension. Since M =

∏
i mi is

odd, we will have:

< Y >2= 0 if < X >2= 1
< Y >2= 1 if < X >2= 0 (7)

while the remaining digits [y1, y2, ..., yn] is equal to the
representation [x̃1, x̃2, ..., x̃n] of X̃ . Therefore, when X̃ is
positive, the output of the sign detection block is 0 and the
output of the parity block is correct, while, if X̃ is negative,
the output of the sign detection block is 1 and the output of
the parity block must be negated. Therefore, a XOR gate is
used to obtain the correct parity check both for positive and
negative input, avoiding the addition of M . The block diagram

Parity
Detection

1

1
1

m

x +

2

1
2

m

x +

n
mn

x 1+

0

1

0

1

0

1

Sign
Detection

1

1
2

m

−⋅

1

1
2

m

−⋅

1

1
2

m

−⋅

x1

x2

xn

x'1

x'2

x'n

Fig. 1. Block diagram for the basic scaling by 2 operation

of the basic scaling-by-2 operation is sketched in Fig. 1. It
is composed of the blocks previously indicated: the sign and
parity detectors, the modular adders and multipliers and the
2-to-1 multiplexers.

In the following, we describe the algorithms and the design
choices made in the implementation of the parity and sign
detection blocks of Fig. 1.

A. Parity Check Algorithm

Several algorithms have been analyzed for the parity check
of the input signed integer X̃ , requiring the base extension to
the modulo mn+1 = 2. We analyzed the technique proposed
in [2] in the original architecture and a modified structure
obtained by inverting the order of moduli in the base extension
block. Also, we analyzed the Barsi-Pinotti method of [6], and
the fractional CRT [11]:

〈Xs〉2 =

〈
N∑

i=1

2
mi

〈
m̂−1

i · xi

〉
mi

− 2α

〉
2

=

〈
N∑

i=1

2
mi

〈
m̂−1

i · xi

〉
mi

〉
2

(8)

The Shenoy-Kumaresan method [12] requires the use of a
redundant modulus in order to complete the base extension.
If a redundant modulus is not available, the complexity of the
related base extension must be taken into account. Moreover,
from equation (6), it can be noted that the scaled by 2 value
of a negative integer is a function of the dynamic range
M of the RNS representation. Since the parity check block
requires an additional modulus mr, the new dynamic range is
M ′ = M · mr. This does not affect the scaling of residues
related to the base moduli (mr is not part of the RNS base
by definition), but attention must be paid to the scaling of the

1103

Parity
Detection

0

1

Sign
Detection

1

1
2

m

−⋅

xr

x'r

1
r

r m

x +
1

2
r

r

r

m
m

m
M

+ ⋅ +

0

1

xn

x1

Fig. 2. Scaling block for the redundant modulus

Method Area Comparison Latency
Szabo-Tanaka incr. (ST-in) [2] 2786 +11.2% 2
Szabo-Tanaka decr. (ST-dec) [2] 2493 +0% 2
Barsi-Pinotti (BP)[6] 3460 +38.7% 4
Fractional CRT (CRT)[11] 2306 -9% 2
Shenoy-Kumaresan (SK)[12] 395 -84.1% 1

TABLE I

COMPARISON OF THE IMPLEMENTATION RESULTS

residue xr. In particular, if X̃ is negative, we obtain for Y :

Y = M ′ + X̃ = M · mr + X̃ = M(mr + 1) − X (9)

and for the scaled value X ′:

X ′ =
Y

2
=

M ′ + X̃

2
=

M · mr + X̃

2
=

M(mr + 1) − X

2
(10)

The implementation of equation (10) requires modifications
to the scaling-by-2 block which are illustrated in Fig. 2.
We implemented each scheme using the same RNS base
(described in the next section) and compared latency and area
obtained after synthesis on standard cells1. The results are
summarized in Table I, where area is reported as number of
NAND2 equivalent gates and the latency refers to a clock
period of 5 ns.

From Table I, the Shenoy-Kumaresan (SK) method seems
to be very convenient with respect to the area, but it requires
the implementation of a fractional CRT unit as well (for the
redundant modulus). Taking into account the above considera-
tions, a more precise comparison is given in Fig. 3, where the
silicon area is drawn as a function of the number of cascaded
scaling blocks, showing that, if a scaling by 2n with n ≥ 2 is
required, the SK method is convenient.

In conclusion, for the implementation of the parity check
block, we chose the Shenoy-Kumaresan algorithm, using the
fractional CRT method for the related base extension to the
redundant modulus (mr = 5).

B. Sign Detection Algorithm

The sign detection can be reduced to a parity detection
multiplying by 2 the integer X . If X is positive

0 ≤ X ≤ (M − 1)/2 ⇒ 0 ≤ 2X ≤ M − 1

1We used Synopsys tools and the AMS 0.35 µm library of standard cells.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2000

4000

6000

8000

10000

12000

14000

Number of scaling blocks

A
re

a(
N

A
N

D
 e

q)

Complexity Comparison

Shenoy-Kumaresan

Fractional CRT

Barsi-Pinotti

Szabo-Tanaka
 incr.

Szabo-Tanaka
 decr.

Fig. 3. Silicon area vs number of scaling blocks

the integer 2X is still in the dynamic range defined by the
RNS base, giving 〈2 · X〉2 = 0. If X < 0

(M + 1)/2 ≤ X ≤ M − 1 ⇒ M + 1 ≤ 2X ≤ 2M − 2

the integer 2X is out of the dynamic range, giving 〈2·X〉2 = 1.
In that way, it is possible to determine the sign of X applying
one of the above algorithm for the parity detection to 2X .
From Fig. 3, the method proposed in [11] results as the
more convenient algorithm for a single scaling by 2 operation.
Adding the hardware required for the multiplication by 2, we
obtain a total complexity of 2485 NAND eq.

A slightly different algorithm was proposed in [13]. The
sign of X is given by:

sign(X) =
{

0 if 0 ≤ X ≤ M−1
2

1 if M+1
2 ≤ X < M

(11)

Dividing X by M/2 we obtain

sign(Xs) =
{

0 if 0 ≤ Xs < 1
1 if 1 ≤ Xs < 2 (12)

So the sign of Xs can be determined by its parity check
by applying the fractional CRT (8). Synthesis results of the
VHDL description of the last method gives a complexity of
2160 NAND eq, resulting more convenient with respect to the
previous algorithm.

C. Error Correction Block

When an odd number has to be scaled by a power of two
an error is unavoidable. This error can occur in every block of
the scaler, but the major contribution is provided by the last
block. In fact, the possible error generated in the first blocks
is scaled by the following one, differently from what happens
for the last. In order to reduce the error to be less than 0.5,
it is sufficient to introduce the correction in the last scaling
block. The related block diagram is sketched in Fig. 4.

1104

Parity
Detection

1

1

1
12)1(

1 m
m

x −⋅+ − 0

1

0

1

Sign
Detection

x1

xn

x'1

x'n

1

1

1
2

m

x
−⋅

n

n m
m

n
x 12)1(1 −⋅+ −

n
m

n
x

12−⋅

r

r m
m

r
x 12)1(1 −⋅+ −

xr

x'rr
m

r
x

1
2

−⋅

r

r

r
r

m
m

m

r

m
r

M
m

x 1
2

1
2)1(1 −++⋅+ −

r

r

r
r

m
m

m

r

m
r

M
m

x
2

1
2

1 ++⋅ −

M
U
X

Fig. 4. The last scaling block with error correction

IV. COMPARISONS

We implemented in standard cells a programmable power
of two scaler to reduce the dynamic range in a QRNS
polyphase filter bank. The QRNS polyphase filter bank is
the same described in [14], based on the following set of
moduli: mi = {13, 17, 29, 37, 41, 53}. In [14], the scaling was
performed by converting (by CRT) the QRNS representation
to binary, by truncating the resulting two’s complement value
and by re-converting in QRNS. The scaling by a power of two
operation is implemented by cascading as many scaling-by-2
blocks as needed. In our case, we use seven scaling blocks to
obtain the division by 27 needed in the filter. A multiplexer is
used between a scaler-by-2 block and a second one for input
routing, resulting in a slightly increased hardware complexity.
Table II shows the comparison between the programmable
power of two scaler and the scaling (performed by QRNS/2’s
compl/QRNS) of [14], both implemented in the QRNS filter
bank described above. Results show a reduction of about 28%
in area and 32% in power dissipation obtained for the new
scaling scheme with respect to the scaling of [14]. For the
whole filter, both the scaled versions reduce area and power of
about 37%, confirming that the specific scaling algorithm has
a small impact on large systems. Power figures were obtained
by Synopsys based on actual switching information.

V. CONCLUSION

In this paper, a programmable RNS scaler by a power of
two has been presented. Several RNS dynamic reduction tech-

Scaling Method Area Ratio Power Ratio Lat.
CRT [14] 19432 1.00 22.36 mW 1.00 6
New scaler 13903 0.72 15.09 mW 0.67 n+2

Complete Filter Area Ratio Power Ratio Lat.
Error Free [14] 1670K 1.00 1510 mW 1.00 11
CRT [14] 1050K 0.63 950 mW 0.63 17
New scaler 1041K 0.62 943 mW 0.62 21

TABLE II

COMPARISON OF SCALER AND FILTER IMPLEMENTATIONS

niques have been analyzed and the selected one is applied to
a QRNS polyphase filter bank. A reduction of area and power
consumption of about 30% for the scaling block has been
obtained, both for area and power consuption. When the entire
QRNS filter is considered, both the scaled versions reduce
area and power of about 37%, proving that the optimization
of scaling blocks and converters is not a primary concern in
large systems. However, this suggests that using truncation
in several parts of the datapath can be beneficial for those
systems.

ACKNOWLEDGMENT

Thanks to Cristina Fidati for her contribution to this work.

REFERENCES

[1] T. Stouraitis and V. Paliouras, “Considering the alternatives in low-power
design,” IEEE Circuits Devices Mag., vol. 17, pp. 22–29, July 2001.

[2] R. I. T. N. S. Szabo, Residue Arithmetic and its Application to Technol-
ogy. New York, NY (USA): McGraw-Hill, 1967.

[3] Z. D. Ulman and M. Czyzak, “Highly parallel, fast scaling of numbers
in non-redundant residue arithmetic,” IEEE Trans. Signal Processing,
vol. 46, pp. 487–496, Feb. 1998.

[4] A. Garcia and A. Lloris, “A look-up scheme for scaling in the RNS,”
IEEE Trans. Comput., vol. 48, pp. 748–751, July 1999.

[5] M. A. P. Shenoy and R. Kumaresan, “A fast and accurate RNS scaling
technique for high speed signal processing,” IEEE Trans. Acoust.,
Speech, Signal Processing, vol. 37, pp. 929–937, June 1989.

[6] F. Barsi and M. C. Pinotti, “Fast base extension and precise scaling in
RNS for look-up table implementations,” IEEE Trans. Signal Processing,
vol. 43, pp. 2427–2430, Oct. 1995.

[7] G. C. Cardarilli, M. Re, R. Lojacono, and G. Ferri, “A systolic
architecture for high performance scaled residue to binary conversion,”
IEEE Trans. Circuits Syst. I, vol. 47, pp. 1523–1526, Oct. 2000.

[8] N. Burgess, “Scaled and unscaled residue number system to binary con-
version techniques using the core function,” in Proc. of 13th Symposium
on Computer Arithmetic, June 1997, pp. 250–257.

[9] M. Griffin, M. Sousa, and F. Taylor, “Efficient Scaling in the Residue
Number System,” in Proc. of Intl. Conf. on Acoustics, Speech, and Signal
Processing, May 1989, pp. 1075–1078.

[10] U. Mayer-Base and T. Stouraitis, “New power-of-two scaling scheme
for cell-based IC design,” IEEE Trans. VLSI Syst., vol. 11, pp. 446–450,
Apr. 2003.

[11] M. Lu and J. S. Chang, “A novel division algorithm for the residue
number system,” IEEE Trans. Comput., vol. 41, pp. 1026–1032, Aug.
1992.

[12] M. A. P. Shenoy and R. Kumaresan, “Fast base extension usign a
redundant modulus in RNS,” IEEE Trans. Comput., vol. 38, pp. 292–
297, Feb. 1989.

[13] T. V. Vu, “Efficient implementations of the chinese remainder theorem
for sign detection and residue decoding,” IEEE Trans. Comput., vol. 34,
pp. 667–669, July 1985.

[14] G. C. Cardarilli, A. Del Re, A. Nannarelli, and M. Re, “Low-power
Implementation of Polyphase Filters in Quadratic Residue Number
System,” in Proc. of IEEE Intl. Symposium on Circuits and Systems,
vol. 2, May 2004, pp. 725–728.

1105

	MAIN MENU
	Front Matter
	Table of Contents
	Session Chair Index
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

