
Reducing Power Dissipation in FIR Filters using the Residue Number System

Gian Carlo Cardarilli, Alberto Nannarelli and Marco Re
Department of Electrical Engineering

University of Rome ”Tor Vergata”
Rome, 00133 ITALY

Abstract—The aim of this work is to reduce the power dissi-
pated in high order Finite Impulse Response (FIR) filters, while
maintaining the delay unchanged. We compare in terms of per-
formance, area, and power dissipation the implementation of a
traditional FIR filter with a Residue Number System (RNS) based
one. The resulting implementations, designed to work at the same
clock rate, show that the RNS filter is smaller and consumes less
power than the traditional one for a number of taps larger than
eight.

I. INTRODUCTION

The new generation of telecommunication equipment often
require the use of high order FIR filters for the implementation
of the new modulation schemes. Moreover, the telecommu-
nication market demands for speed and low power consump-
tion for the new portable multimedia terminals. In this context,
computational intensive signal processing blocks can be effec-
tively implemented by using Residue Number System (RNS)
arithmetic.

The use of the RNS allows the decomposition of a given dy-
namic range in slices of smaller range on which the compu-
tation can be efficiently implemented in parallel [1], [2], [3].
The typical drawback presented by the RNS is related to the
input-output conversion from binary to RNS and vice versa.
This problem is solved by using new efficient conversion tech-
niques [4], [5] or by converting directly the analog signal in the
residue representation and vice versa [6]. Recently, a number
of works on low power and RNS have been presented. In [7]
and [8] the power dissipation is reduced by taking advantage of
the speed-up due to the parallelism of the RNS structure. The
supply voltage is reduced, resulting in a quadratic reduction of
power, until the speed-up = 1 [7] or until the desired value of
delay [8]. In [9] some encoding optimization techniques for
small moduli (3 and 7) are presented.

In our work, we compare the performance, area and power of
a FIR filter realized with the traditional binary arithmetic, with
a RNS based one. Although the RNS filter has the same per-
formance of the traditional one, its area and power dissipation
are smaller for filters with more than eight taps. Furthermore,
we reduce power dissipation, without sacrificing performance,

This work was partially supported by MURST National Project: Codesign
Methods for Low Power Integrated Circuits.

by equalizing the parallel paths of the RNS filter with a dual
voltage approach [10].

II. TRADITIONAL FIR FILTER

The starting point of our design is a programmable N taps
FIR filter

y(n) =

NX

k=0

akx(n� k)

realized in transposed form (Figure 1) with input and coeffi-
cients size of 10 bits. The product is realized with a Booth
multiplier [11] and the five resulting partial products are accu-
mulated in a Wallace’s tree structure which produces a carry-
save (CS) representation of the product. In order to keep the
cycle time as short as possible, the sum at the k-th tap is stored
in carry-save representation as well. Therefore, an array of 4:2
compressors [12] is required to reduce the CS representation
of akx(n� k) and the CS representation of

P
k�1

i=0
aix(n� i)

to the CS representation of
Pk

i=0
aix(n� i) in the k-th tap

(Figure 2).

To have an error-free filter we must keep a number of
bits sufficient to hold the carry-save representation of the
sum at the k-th tap. In the worst case, we need to store
2 � (10 � 10 + log

2
N) bits per tap. The CS representation

is finally converted into two’s complement representation by
a carry-propagate adder (realized with a carry-look-ahead
scheme) in the last stage of the filter.

III. RNS FIR FILTER

The RNS implementation of the FIR filter is shown in Fig-
ure 3. The FIR filter is decomposed into P filters working in
parallel, where P is the number of moduli used in the RNS
representation. In addition, the RNS filter requires both binary

Z
−1

+

+ Z
−1

+

+Z
−1 +

++
a

0
a

1
a

n
a
n−1

y(t)

x(t)

Fig. 1. FIR filter in transposed form.

20

20

20

20

20

20

2020

10

10

Multiplier
10 x 10

RegistersCSA 4:2

X

A

Ys i

Yc i

Ys i−1

Yc i−1

Fig. 2. Tap structure for the filter implementation.

to RNS and RNS to binary converters.

In order to have a dynamic range of 20 bits, as in the case of
the traditional implementation, we chose the following set of
moduli:

mi = f3; 5; 7; 11; 17; 64g

such that
log

2
(3 � 5 � 7 � 11 � 17 � 64) � 20:

A. Implementation of modular multiplication

In each tap, a modular multiplier is needed to compute the
term hakx(n � k)imi

. Because of the complexity of mod-
ular multiplication, we used the isomorphism technique [13]
to implement the product of residues in all the moduli but 3
(multiplication can be easily computed in tabular way) and 64
(modular product corresponds to the 6 least-significant bits of
the conventional product). By using isomorphism, the product
of the two residues is transformed into the sum of their indices
which are obtained by an isomorphic transformation. Accord-
ing to [13], if m is prime there exists a primitive radix q such
that its powers modulo m cover the set [1;m� 1]:

ni = hq
wiim with ni 2 [1;m� 1]

wi 2 [0;m� 2]:

Both transformations n ! w and w ! n can be implemented
with m� 1 entries tables. Therefore, the product of a1 and a2
modulo m can be obtained as:

ha1 � a2im = hq
w
im

where

w = hw1 + w2im�1 with a1 = hq
w1im

a2 = hq
w2
im

In order to implement the modular multiplication the following
operations are performed:

i) Two isomorphic transformations to obtain w1 and w2;

ii) One modulo m� 1 addition hw1 + w2im�1;

Binary

to RNS

Converter

RNS to

Binary

Converter

FIR filter mod m

FIR filter mod m

FIR filter mod m

FIR filter mod m

1

2

P

i

. . . .

. . . .x(t) y(t)

Fig. 3. RNS FIR filter.

iii) One inverse isomorphic transformations to obtain the
product.

For example, for the modular multiplication

h3 � 4i5 = 2

we have (q = 2):

i) 3 = h2
3
i5 ! w1 = 3

4 = h2
2
i5 ! w2 = 2

ii) h2 + 3i4 = 1

iii) h2
1
i5 = 2

Because of the transposed form of the FIR filter, the input
x is the multiplicand of all the multiplications (see Figure 1).
For this reason only one isomorphic transformation, incorpo-
rated in the binary to RNS conversion, is necessary for all the
taps. On the other hand, because the coefficients of the filter
(multiplicators) are constant terms loaded once at start-up, it is
convenient to load directly the isomorphic representation mod-
ulo mi � 1. As a result, in each tap, we reduce the modular
multiplication to a modular addition followed by an access to
table (inverse isomorphism) as depicted in Figure 4. The ta-
ble is implemented as synthesized logic and special attention
has to be paid when one of the two operands is zero. In this
case there exists no isomorphic correspondence and the modu-
lar adder has to be bypassed.

B. Implementation of modular addition

The modular addition ha1 + a2im, consists of two binary ad-
ditions. If the result of a1+ a2 exceeds the modulo (it is larger
than m � 1), we have to subtract the modulo m. In order to
speed-up the operation we can execute in parallel the two op-
erations:

(a1 + a2) and (a1 + a2 �m):

If the sign of the three-term addition is negative it means than
the sum (a1 + a2) < m and the modular sum is a1 + a2, oth-
erwise the modular addition is the result of the three-term ad-
dition. The above algorithm can be implemented with two
dlog

2
me-bit adders as shown in Figure 5.

Fig. 6. Area versus number of taps.

Fig. 7. Power dissipation versus number of taps.

longer latency. However, in terms of area and power the RNS
version is more convenient for filters with more than eight taps.
An additional reduction of about 15% is possible by using dual
voltage.

REFERENCES

[1] N.S. Szabo and R.I. Tanaka, Residue Arithmetic and its Applications in
Computer Technology, New York: McGraw-Hill, 1967.

[2] M.A. Sodestrand, W.K. Jenkins, G. A. Jullien, and F. J. Taylor, Residue
Number System Arithmetic: Modern Applications in Digital Signal Pro-
cessing, New York: IEEE Press, 1986.

[3] M.A. Soderstrand and K.Al Marayati, “Vlsi implementation of very
high-order fir filters,” IEEE International Symposium on Circuits and
Systems (ISCAS’95), vol. Vol. 2, pp. 1436–1439, 1995.

[4] G. Cardarilli, M. Re, and R. Lojacono, “A residue to binary conversion
algorithm for signed numbers,” European Conference on Circuit Theory
and Design (ECCTD’97), vol. Vol. 3, pp. 1456–1459, 1997.

[5] G. Cardarilli, M. Re, R. Lojacono, and G. Ferri, “A new efficient archi-
tecture for binary to rns conversion,” Proc. of European Conference on
Circuit Theory and Design (ECCTD’99), vol. Vol. 2, pp. 1151–1154,
1999.

[6] A.P. Preethy and D. Radhakrishnan, “A vlsi architecture for analog-

to-residue conversion,” Third International Conference on Advanced
A/D and D/A Conversion Techniques and Their Applications, pp. 83–
85, 1999.

[7] M. Bhardwaj and A. Balaram, “Low power signal processing archi-
tectures using residue arithmetic,” Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing (ASSP’98), vol.
Vol. 5, pp. 3017–3020, 1998.

[8] W.L. Freking and K.K. Parhi, “Low-power digital filters using residue
arithmetic,” Thirty-First Asilomar Conference on Signals, Systems and
Computers, vol. Vol. 1, pp. 739–743, 1998.

[9] M.N. Mahesh and M. Mehndale, “Low power realization of residue
number system based fir filters,” Thirteenth International Conference
on VLSI Design, pp. 30–33, 2000.

[10] A. Nannarelli and T. Lang, “Low-power division: Comparison among
implementations of radix 4, 8 and 16,” Proc. of 14th Symposium on
Computer Arithmetic, pp. 60–67, 1999.

[11] Israel Koren, Computer Arithmetic Algorithms, Prentice-Hall, Inc. ,
1993.

[12] M.D. Ercegovac and T. Lang, Division and Square Root: Digit-
Recurrence Algorithms and Implementations, Kluwer Academic Pub-
lisher, 1994.

[13] I.M. Vinogradov, An Introduction to the Theory of Numbers, New York:
Pergamon Press, 1955.

[14] K. Usami and M. Horowitz, “Clustered voltage scaling technique for
low-power design,” Proc. of International Symposium on Low Power
Design, pp. 3–8, Apr. 1995.

