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Abstract—Floorplanning is becoming more and more impor-
tant in VLSI design flows, especially for System-on-Chip (SoC)
designs where IP blocks dominate standard cells. Moreover,
in deep sub-micron technologies, where process variations can
introduce extra signal skew, it is desirable to have floorplans
with balanced net delays to increase the safety margins of the
design.

In this paper, we investigate the properties of floorplanning
based on the elastic energy model. The B*-tree, which is based on
an ordered binary tree, is used for circuit representation and the
elastic energy is used as the cost function. To evaluate how well
a net is balanced, we introduced a new metric ’Unbalancing’.
A more balanced net would have a smaller ’Unbalancing’
value. Experimental results show that our approach can not
only meet fixed-outline constraints, but also achieve significant
improvements in net balance for all the circuits in the MCNC
benchmark.

I. INTRODUCTION

The System-on-Chip (SoC) design methodology is being
used more and more widely in recent years. With technology
scaling, more functionalities can now be put onto a single chip.
To reduce design complexities, these functionalities usually
appear as Intellectual Property (IP) macros. According to
the International Technology Roadmap for Semiconductors
(ITRS), the number of IP macros in a typical design in 2006
was almost 600, and it is still rising.

The impact of the growth in macros is that we are rapidly
moving from ICs with a sea of standard cells and a few macros,
to ICs with a sea of macros and a few areas of standard cells
that implement custom designed, or glue logic in between the
macros.

Therefore, when we are dealing with a ”sea of macros”, the
situation is quite different from traditional design. Because
macros, instead of standard cells, become dominant, a bad
floorplan will not be compensated for in later steps when
macros take more than half of the circuit area.

For these reasons, floorplanning becomes very important in
the design flow because it is no longer possible to bring design
closure through optimization in place-and-route alone.

In addition, manufacturing processes also pose new chal-
lenges like fixed-outline constraints and process variations. As
a result, more and more effort should go to floorplanning.

In this work, we investigate the floorplanning problem under
these new requirements and constraints. In [2], the authors
proposed an energy-based approach, which models relations
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between blocks as net energy and overlap energy. The opti-
mization objective is to minimize the overall energy. However,
having overlaps means a larger search space and extra compu-
tations to remove overlaps. We adopted the net energy model
and incorporate it with the B*-tree representation proposed
in [4], which guarantees overlap-free floorplanning. Then, we
developed an algorithm based on simulated annealing, which
perturbs the floorplan in a more random manner than the
original method used in [2]. In addition, our algorithm can
handle both hard and soft blocks within a multi-dimensional
constraint space.

The elastic energy model has the potential of finding better
balanced net structures. A more balanced net has less differ-
ences in length between wires and thus less differences in
delay. We observe that a more balanced net could improve
performance and robustness. An example is shown in Fig.
1. The original net structure is shown in the left. Source
and Sinks are terminals of blocks that communicate with
each other. The source type terminal sends out signal and
the sink type terminal receives signal. As can be seen in the
original net structure, the path from Source to Sink2 is the
longest and defines the largest wire delay. A more balanced
structure of the same net is shown in the right. Sink2 is
pulled towards Source in order to reduce the elastic energy.
Consequently, Sink3 and Sink4 are pushed away slightly
due to the movement of blocks. Although the total wirelength
might stay the same or increase, differences in signal delay
among wires become smaller. The largest wire delay is reduced
in length, and as a result the clock cycle could be shorter.
In process technologies where designers need to cope with
process variations, a system with balanced nets would have
less signal skew and be more robust to process variations.
In the above example, we could maintain the original cycle
time and any variations in wire delay not exceeding the
safety margin would be tolerated in the optimized design. To
evaluate how balanced a net is, we introduce a new metric
“unbalancing’ to measure the difference in length between each
wire within a net.

Experimental results show that our algorithm can generate
floorplans with more balanced net structures (improvements
from 10% to 30% in balancing) with a small increase in the
total wirelength (less than 10%) over traditional algorithms.
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Fig. 1.

Optimization results in more balanced net

II. RELATED WORK

The floorplanning problem is NP-hard and many algorithms
and heuristics have been proposed in the past decades. Early
algorithms [3] use binary trees to represent the relation be-
tween modules positions and can only handle slicing floor-
plans.

In [5], the authors proposed an ordered pair of module
name sequences called sequence-pair (SP), which was a break-
through for representing non-slicing structures. However, the
method still has a huge search space of size (n!)?8" and it
cannot handle soft and rectilinear modules directly.

In [6], the authors proposed another non-slicing structure
representation based on the ordered tree, the O-tree. The O-
tree has a smaller search space than the sequence pair and it
only requires linear time to transform to its constraint graph.
The disadvantage of the O-tree is that it has an irregular tree
structure and this makes primitive operations such as insert-
node and delete-node, inefficient.

In [4], the authors proposed a B*-tree structure, which
is based on ordered binary tree. For any B*-tree there is a
unique corresponding placement, and, according to the B*-tree
definition, the corresponding placement is overlap-free. These
features reduce its search space. The B*-tree minimized the
gap between representations for slicing and non-slicing floor-
plans, therefore, making it easier to implement and operate.
The B*-tree representation will be reviewed in Section 3.

Many other representations [8],[9],[10],[11] also exist, some
of them are extended to improve the runtime or solution
quality. In [13], a method based on floorplan slack is proposed
to meet fixed-outline constraints. Based on this, the authors
in [14] proposed a method that can manage large numbers
of mixed-size blocks through unifying partitioning and floor-
planning. In [12] a similar multilevel approach was proposed
based on the B*-tree representation.

Performance-driven floorplanning has also gained much
attention. In [16], the authors proposed a postfloorplanning
step to reduce the interconnect cost. In [15], the authors try to
reduce leakage consumption since block positions have great
impact on lateral heat conduction and thus affects temperature.
Similarly, in [18] and [17] the authors try to reduce peak
temperature while minimizing the performance loss.

Traditionally, floorplanning algorithms are block-oriented
and use a combination of area and wirelength to evaluate a
given solution. The half-perimeter wirelength (HPWL) method

is widely used to estimate wirelengths. It computes the small-
est rectangle that encompasses all terminals of a net and takes
the sum of the width and the height of the rectangle as an
estimation. A formal definition of the HPWL method is given
below,

n

HPWL, = Z(maxi(xi,j) —ming(x; ;) (D
j=1

HPWL, = Z(mao:j (yi ;) — min;(yi,;)) 2)
i=1

HPWL =HPWL,+ HPWL, 3)

where x; ; and y; ; are the coordinates of each terminal.

Some researchers proposed net-oriented methods as an alter-
native to block-oriented methods. In [7], the authors proposed
a force-directed placement algorithm, which use a star model
for the nets. In [1], the authors proposed a methodology
based on net-clustering and the force-directed method. An
energy-based model superior to the force-directed model is
demonstrated in [2].

In [2], the wirelength minimization problem is addressed as
a minimum (potential) energy problem. The energy associated
with a block is the sum of the net energy (elastic) and the
overlap energy. The net energy is analogous to the elastic
potential energy in physics. Consequently in the floorplan,
placing coupled blocks close to each other reduces the net
energy. However, a natural consequence of the net energy-
based placement approach is cell overlap [2]. Therefore,
overlap energy is introduced to model how many modules
cover each bin on the floorplan grid. A solution with uniformly
distributed overlap energy would be overlap free.

In our algorithm, we adopt the net energy model and
eliminate the overlap as discussed next.

III. REVIEW OF B*-TREES AND ENERGY-BASED MODEL

In this section, we first give definitions of B*-trees and show
examples on how to construct and operate on a B*-tree. Then,
we review the elastic energy model proposed in [2]. After
that, we introduce a new metric to measure how balanced a
floorplan is.

A. Definition of B*-trees

For any module b;, the left child in its horizontal B*-tree is
the lowest unvisited module located on the right hand side and
adjacent to b;. The right child is the module located above and
adjacent to b; with its x-coordinate equal to that of b;, and its
y-coordinate less than that of the top boundary of the module
on the left hand side and adjacent to b;. To compact along
the y direction, a vertical B*-tree can be constructed similarly
with the requirement on left and right child exchanged. Both
horizontal and vertical B*-tree can be constructed in linear
time.

The root of the tree corresponds to the module on the left
bottom corner. To construct a B*-tree for a given floorplan,
we can use a Depth First Search (DFS) procedure recursively.
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Fig. 2. A floorplan and its corresponding B*-tree

Fig. 2 gives a floorplan and its corresponding B*-tree. Module
b0 is made the root since it’s on the left bottom corner. Then
we construct the left subtree for bO0. Module bl is made b0’s
left child. Likewise, module b3 is made module b1’s left child.
Since b3 does not have modules located to its left nor does
it have modules located above with equal x-coordinate, the
procedure goes back to construct the right subtree for bl. Thus,
module b4 is made module bl’s right child. The procedure
continues until all modules are visited.

However, in a floorplanning algorithm we usually have
a tree structure first and then find coordinates for all the
modules. Similarly, starting from the root the process could
proceed in a recursive fashion. According to the definition,
we can have the following geometric relationship between a
module and its left and right child.

node— > left.x = node.x + node.width
node— > right.x = node.x

To find the y-coordinate, a contour structure can be used
to keep track of the current contour curve along with the
traversal of all nodes. As shown in Fig. 3, the current contour
is composed of nO,n4,nl and n3 and node n6’s y-coordinate
needs to be determined. To place module b6 without overlap,
its y-coordinate needs to be at least equal to module n3’s y-
coordinate. The contour is updated as well to reflect the new
contour curve.

old contour:
Ny :>]'l4:>]l 1 :>n3

new contour:
Ny ==Ny=>Ng=>13

b0 b3
b1

Fig. 3. Updating y-coordinate for block b6

B. Operations on B*-trees

Primitive tree operations include insertion and deletion.
Since we do not consider rectilinear modules in this work,
insertion is made straightforward. A node can be inserted to
any position in the tree and the node being replaced is made
the newly inserted node’s child. Deleting a node is a little more
complex. Three scenarios could occur, namely, deleting a leaf

node, deleting a node with one child and deleting a node with
two children.

1) A leaf node can be deleted directly and it introduces no
overhead.

2) If the node being deleted has only one child, the child
inherits its parent’s position in the tree. If the child is a
left child and has its own children the procedure needs
to be done recursively for the child as well.

3) If the node being deleted has two children, its left child
replace its position and the procedure is again done
recursively.

An example is shown in Fig. 4 where root node n0 is
deleted. As the figure shows, in the worst case the time
complexity for a deletion operation is the height of the subtree
of which the root is the deleted node.

Ry A

13 Pl s s My s
Mg Mz

Fig. 4. Deleting root node n0

C. Energy-Based Model

As mentioned in Section 1, the energy-based model ap-
proach uses the net (elastic) energy to keep closely coupled
blocks together and uses the overlap energy to remove possible
overlaps between blocks. In our work, we borrow the idea
of net (elastic) energy and discard overlap energy since the
B*-tree structure can guarantee an overlap-free floorplan.
Therefore, we will only give a description of the elastic energy
model in this section.

In physics, the elastic force is conservative and it has a
corresponding potential energy defined as E = —kx? where x
is the deformation of the spring and & is the elastic constant of
the spring. In [2], the authors similarly defined the net elastic
energy as the quadratic distance between the net terminals.
Therefore, the elastic energy of a block is the total elastic
energy of all its terminals. The elastic energy of a floorplan is
the total energy of all blocks.

Terminals within a net can be classified as source and sink.
A net containing one source and four sinks is shown in Fig. 5.
In the figure, the center of mass is the center of all sink type
terminals. Source is attracted to the center of mass so that the
signal delay to all sinks can be balanced. Therefore, the energy
of a source is defined as the quadratic distance between the
source and the center of mass (Tymed,Ymed)-

E(S) = (xs - xmed)z + (ys - ymed)2 “)
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Fig. 5. A net containing one source and four sinks

For sinks, if the net contains only two terminals (one source
and one sink) the energy is defined as the quadratic distance
from the sink to the source.

E(t) = (xt - .775)2 + (yt - ys)2 (5)

In all other cases, the model considers various contributions
to the sink’s energy and the following equation is used:

E(t) = w(zs — xmed)2 + (ye — ymed)2 + d2(t, bbox)

+0.5(|ze — 5| + |yr — ys|)V Abbox] (6)

wy is the net’s weight. So net with a higher priority can
be given a higher weight.

d(t, bbox) is the distance between the sink and the bounding
box of all other sinks. It is zero if the sink is within
the bounding box. This term in the equation adds
extra values to sinks that are not within the bounding
box of all other sinks.

Abbox is the area of the net bounding box. The last term
is the Manhattan distance between the sink and the
source multiplied by half the length of a square with
the same area as the net bounding box. The value is
linear with respect to the distance to the source.

D. Degree of UnBalancing

In this work, we assume a net is composed of one source
and one or more sinks. Wires connect each sink to its source.
To evaluate how balanced a net is, we introduce the new metric
unbalancing (UB). For a given net, its degree of unbalancing
is the sum of the absolute difference between the length of
each individual wire and the average length of all these wires.

A formal definition is given as follows. W L;; denotes the
wirelength between the j;;, sink and its source in net ¢. Note
that the estimation is based on the HPWL method

WLij = (xlj - msourcei) + (yZJ - ysourcei> (7)

Therefore, we can obtain the average wirelength in net @
W Lgyg,

1
9 Hsink; Z J ®)

jEsink;

The unbalancing (UB) of net ¢ is the sum of absolute difference
between W L;; and W Lg,,, for each j

UB;= Y |WLij — WLayg,| )
jEsink;
And the unbalancing of a floorplan is the sum of the UB; of

all nets in the floorplan

UB = Z UB,;

1€Enet

(10)

If UB; = 0 for a given net, then it is perfectly balanced,
i.e. all wires have same length. If UB = 0 for all nets in a
given floorplan, then the floorplan is perfectly balanced.

Fig. 6 shows an example of an improvement in the degree of
Unbalancing. The original net has a total wirelength of 23 and
the degree of UB is 8.5. The optimized net’s total wirelength
increases by 2 units but the degree of UB significantly drops
to 3.5. The benefit is that the difference in wirelength among
wires in the same net gets smaller. If the delay in the wire
connecting Source and Sink2 is increased due to process
variations, then the original net is more vulnerable to timing
failures than the improved net if clock cycle time in the two
designs is the same.

Sinkl
5 WL total = 23
Source Sink2 Wl = 373
3 UB,=8.5
Sink4
WL total = 25

WL querage = 6.25
UB;=3.5

Sink3

Fig. 6. Improvement in UB in a better balanced net

In Section 5, we use this metric to compare the results
obtained from experiments using different cost functions and
show that by using the elastic energy model a floorplan with
better balanced nets can be obtained.

IV. SIMULATED ANNEALING

Our algorithm is based on simulated annealing. The basic
process of simulated annealing is to transform a solution into
a new one and to determine whether the new solution is
accepted based on probability. The acceptance probability is
related to a variable called temperature. Transformations are
performed enough number of times at any given temperature
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and then it is decreased in a controlled process. In such a
way, more solutions are accepted at high temperatures even if
some of them are worse than the previous solution, while at
low temperatures, the focus is more on local changes.

In floorplanning problems, a solution can be perturbed in
a number of ways. Blocks could be moved to a different
location. Pads could be moved along the boundary of the
parent block. With its area being fixed, the width and height
of a soft block are free to be changed under its aspect ratio
constraint [4]. Therefore, soft blocks could have a different
aspect ratio thus a new shape. The algorithm flow is given in
Fig. 7.

simulated_annealing ()

initialize floorplan f;
initialize Temperature;

do{
do{
generate new floorplan g;
update energy for each block;
if (accept(f,g))
f=g;
if (g is the best ever seen)
report g;
}while (! thermal_equilibrium ());

decrease Temperature;
}while (!'stop ()):

Fig. 7. Program flow in the annealing process

During each iteration of the annealing process, we randomly
assign new values to a set of variables to generate a new
floorplan. To move a block to a new position, we need to
generate three new values.

1) The block to be moved.

2) Its new parent in the B*-tree

3) Which side (left or right) of its parent it is inserted to.

If the block to be moved is a soft block, a new aspect
ratio is generated and its dimension recalculated. Possible pad
locations are modeled as slots in our algorithm. Therefore,
to move a pad is simply to swap the contents of two slots.
Thermal equilibrium is reached until enough iterations have
been performed. When temperature drops below a predefined
threshold, the annealing process finishes.

To meet fixed-outline constraints, the accept function first
checks whether the new solution has an improvement in
geometry violation either along its x dimension or its y
dimension. Therefore, the floorplan will gradually transform
towards the fixed-outline and eventually meets the constraint.

V. EXPERIMENTAL RESULTS

The experiments are carried out for the Microelectronics
Center of North Carolina (MCNC) building block examples,
which is a benchmark widely used for testing floorplanning
and placement algorithms [4], [5] and [6]. The benchmark

contains five circuits with varying number of hard blocks,
terminals, nets and IO pins. No soft blocks are provided in the
benchmark. Table 1 summarizes the circuits characteristics of
the benchmark.

TABLE I
CIRCUIT CHARACTERISTICS IN MCNC BENCHMARK

Circuits | #Blocks | #Nets | #Terminals | #IO Pins
hp 11 83 264 45
apte 9 97 214 73
Xerox 10 203 696 2
ami33 33 123 480 42
ami49 49 408 931 22

Since previous works did not report actual block positions,
there is no way of calculating the degree of unbalancing
from their results. Therefore we compare the results of total
wirelength (WL) and degree of unbalancing (UB) obtained
from experiments using the same program but with different
cost functions.

In the wirelength based approach, the cost function is solely
the total wirelength, which for a given net is the half perimeter
of the net’s bounding box. Calculation is performed based on
equations (1), (2) and (3).

In the energy based approach, for each block we first
compute its elastic energy by adding up the energy associated
with all its terminals according to equations (4), (5) and (6).
Then we obtain a floorplan’s energy by adding up all blocks’
energy. The cost function is a floorplan’s elastic energy.

Experimental results are shown in Table 2. The results con-
tain all nets including power and clock grids. Pads positions
are limited on the parent block’s boundary only. The parent
block’s dimension is specified in the circuit specification. This
is different from results reported by other works [4], [5] and [6]
where they put pads along the boundary of the final floorplan’s
minimum bounding box.

Note that in the original MCNC benchmark circuit specifi-
cations, no information about a terminal’s type (source or sink)
is available. Therefore terminals’ types are assigned randomly.

The results show that by applying our energy based al-
gorithm, we obtain more net balanced floorplans, than those
based on the wirelength model. The increase in total wire-
length is not too large. In the case of ami49, which is the
largest circuit, the degree of balancing improved by almost
20% while the increase in wirelength is only 3%.

VI. CONCLUSIONS

We have successfully implemented a floorplanning algo-
rithm based on B*-tree structure and the elastic energy model.
The algorithm can handle both hard and soft blocks and it
places blocks and pads simultaneously. Moreover, it supports
fixed-outline constraints. The resulting floorplans have more
balanced nets than floorplans based on the wirelength model.
This is more favorable in deep sub-micron technologies be-
cause signal skews are reduced, and, more importantly, the
resulting floorplan is more robust against process variations
since it provides larger safety margins.
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TABLE II

EXPERIMENTAL RESULTS ON MCNC BENCHMARK

Circuits Wirelength Based Energy Based Comparison
WL UB WL UB WL UB
hp 253366 162992 269472 133374 || 9.56% | -32.86%
apte 614602 167922 637446 146465 || 3.72% | -12.78%
Xerox 404278 | 359725 426468 | 324874 || 5.49% | -10.57%
ami33 96205 99286 105399 66664 6.36% | -18.17%
ami49 1070010 | 204111 1102538 | 163422 || 3.04% | -19.93%
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