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Motivation

The use of flexible mesh discretisation methods are im-
portant for simulation of nonlinear wave-structure inter-
actions in offshore and marine settings such as harbour
and coastal areas. For real applications, development
of efficient models for wave propagation based on un-
structured discretisation methods is of key interest. We
present a high-order general-purpose three-dimensional
numerical model solving fully nonlinear and dispersive
potential flow equations with a free surface.

Figure 1 : Snapshot of scaled free surface showing
diffraction and refraction patterns in the free surface.

Governing equations

Let both Q@ C R9(d = 2, 3) and ' C R%! be bounded,
connected domains with piecewise smooth boundaries
I' and I', respectively. Let T : t > 0 be the time domain.
Introduce the free surface boundary Tt C T and the
bottom boundary I'* C I'. The mathematical problem
is to find a scalar velocity potential function ¢(x, z,1) :
(? x T' — R and to determine the evolution of the free
surface elevation n(x,t) : ' x T — R.

The Eulerian description of the unsteady kinematic
and a dynamic free surface boundary conditions is ex-
pressed in the Zakharov form. In 2’ x T, find 1, ¢

om=—-Vn-Vo+ w1+ Vn-Vn)
. 1, -~ -
b =—gn—- (Ve Ve — w1+ Vn- Vn))

2
Here V = (8., 0,) and the '~ symbol denote function-
als defined in the free surface plane. The vertical veloc-
ity w = 0,¢|.—, is at a given time determined from the

solution of a Laplace problem
QO = &, z=mn on I'™
Vip+0..0=0, —h(xr)<z<n in
9.0 +Vh-V¢p =0, z=—h(x) on I
where h(x) : 2 — R describes the still water depth.

A basis for efficient simulations is the classical o-
transformation of the vertical coordinate

= (z + h(z))d(z,t)", 0<o <1,

where d(x,t) = n(x,t)+h(x) is the height of the water
column.

Following Cai Et al. (1998), we express the o-
transformed system in a form where variable depth
is accounted. Let Q¢ C R?Y (d = 2,3) be
the time-independent computational domain Q¢ =
{(x,y,0)|(x,y) € Q,0 < o < 1}. The Jacobian

of the map x : 2 — Q€is then
~ Oxr Ox Ox B 7
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_ |9y 9y 3y | _
J(x,z,t) = | 52 5y 90 | = 0 1 0
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enabling the o-transformed system to be expressed Iin
the differential form

Ve (KV‘®) =0 in QF°
where V¢ = (V, 9,) is introduced and the symmetric
coefficient matrix is

1

The velocity field can be determlned from & using the
relation (u, w) = (V + Vo0,,0.00,)P.

Numerical Discretization
We form a partition of the domain €2;, C

to obtain a tessellation 73 of €2; consisting of
N¢; non-overlapping shape-regular elements
Tr such that Up®, Tr = 75 with k denoting
the k'th element. For approximation of func-
tions we introduce the finite element approxi-
mation space of continuous, piece-wise poly-
nomial functions V. = {v, € C°(Q,);Vk &
{1, ..., K}, vy7, € P9} where P9 is the space
of polynomials of degree at most q.

Introduce the approximations
NFS

fn = Z fi(t) Ni(x)

where {N;}Y*s € V is the set of global fi-
nite element basis functions with cardinal prop-
erty N;(x;) = 4;; at mesh nodes. Choose
v(z) € {N;})'*5. The discretization in two
spatial horizontal dimensions becomes

— (A2 + AD) m + M

1 (A‘gfh(nh)w i Ay@h(nh)y) M
d - 1

M'dnh =
dt

M'—o¢p = —M'gnn — - [(Agbh)”” + A;‘bh)y) dn

dt 2

+ MPrp, — (A;Bﬁ(nh)m 4 Agﬁ(nh)y)} nh

where the following global matrices have been
introduced

M' / N;N,dzx,

// bIN; N ;dx,

(Ag)ij = //,b(w)Nia—qudm

The gradient of the globally continuous basis
functions will be discontinuous across element
interfaces in the classical sense. To guaran-
tee global continuity of derivatives a gradient
recovery procedure can be used.

We represent the global approximation of com-
ponents of the horizontal first derivatives in CY

N
u=Veo=>» ulN(z)
—1

By a global Galerkin projection of the form

||| w@ida = [[[ Voo(e)de

two linear systems of equations are generated
Mu = D,p, Mv=D,p
for the velocity vectors.

Consider the discretisation of the governing
equations for the o-transformed Laplace prob-
lem. We seek to construct a linear system

L®, =b, LeRYN &,,becRY

where N Is the total degrees of freedom in the
discretisation.

The weak formulation of the symmetric
Laplace problem can be expressed as: find
¢ c V such that

—// (KV‘®) - Vvdxr =0, VveV
Q

having assumed impermeable wall
boundaries. Thus, the discrete system
operator is defined from

Lij —= — // (KVCNj) . VCdeZB
\y

The elemental integrals are approximated as

// (KVCNj) . VCNZdLE
Ok

— / / / | J¥|(KV°N;) - VN;dr
Tr

where J* is the Jacobian of the affine
mapping x* : T — T, where T, is a
computational reference element.

Numerical Results
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Figure 2 : Computed and measured time series of free
surface elevations at two gauges after the bar in
submerged bar test benchmark.

Contributions

» Spectral Element Method for solving Nonlinear and
Dispersive Water Waves efficiently and accurately.

» General discretization framework based on a Galerkin
Method in space.

» Numerical analysis and validation of the model using
benchmark for dispersive and nonlinear waves in 2D.

Outlook

» Improve numerical stability for marginally
resolved/highly nonlinear waves.

» Advanced industry size applications in areas with
marine structures.
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