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Motivation
The use of flexible mesh discretisation methods are im-
portant for simulation of nonlinear wave-structure inter-
actions in offshore and marine settings such as harbour
and coastal areas. For real applications, development
of efficient models for wave propagation based on un-
structured discretisation methods is of key interest. We
present a high-order general-purpose three-dimensional
numerical model solving fully nonlinear and dispersive
potential flow equations with a free surface.

Figure 1 : Snapshot of scaled free surface showing
diffraction and refraction patterns in the free surface.

Governing equations
Let both Ω ⊂ Rd (d = 2, 3) and Ω′ ⊂ Rd−1 be bounded,
connected domains with piecewise smooth boundaries
Γ and Γ′, respectively. Let T : t ≥ 0 be the time domain.
Introduce the free surface boundary ΓFS ⊂ Γ and the
bottom boundary Γb ⊂ Γ. The mathematical problem
is to find a scalar velocity potential function φ(x, z, t) :
Ω × T → R and to determine the evolution of the free
surface elevation η(x, t) : Ω′ × T → R.
The Eulerian description of the unsteady kinematic
and a dynamic free surface boundary conditions is ex-
pressed in the Zakharov form. In Ω′ × T , find η, φ̃

∂tη = −∇η · ∇φ̃+ w̃(1 +∇η · ∇η)

∂tφ̃ = −gη −
1

2

(
∇φ̃ · ∇φ̃− w̃2(1 +∇η · ∇η)

)
Here∇ = (∂x, ∂y) and the ’∼’ symbol denote function-
als defined in the free surface plane. The vertical veloc-
ity w̃ ≡ ∂zφ|z=η is at a given time determined from the
solution of a Laplace problem

φ = φ̃, z = η on ΓFS

∇2φ+ ∂zzφ = 0, −h(x) < z < η in Ω

∂zφ+∇h · ∇φ = 0, z = −h(x) on Γb

where h(x) : Ω′ 7→ R describes the still water depth.
A basis for efficient simulations is the classical σ-
transformation of the vertical coordinate

σ ≡ (z + h(x))d(x, t)−1, 0 ≤ σ ≤ 1,

where d(x, t) = η(x, t)+h(x) is the height of the water
column.
Following Cai Et al. (1998), we express the σ-
transformed system in a form where variable depth
is accounted. Let Ωc ⊂ Rd (d = 2, 3) be
the time-independent computational domain Ωc =
{(x, y, σ)|(x, y) ∈ Ω′, 0 ≤ σ ≤ 1}. The Jacobian
of the map χ : Ω→ Ωc is then
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enabling the σ-transformed system to be expressed in
the differential form

∇c · (K∇cΦ) = 0 in Ωc

where ∇c = (∇, ∂σ) is introduced and the symmetric
coefficient matrix is

K(x, t) =
1

detJ
JJT

The velocity field can be determined from Φ using the
relation (u, w) = (∇+∇σ∂σ, ∂zσ∂σ)Φ.

Numerical Discretization
We form a partition of the domain Ωh ⊆ Ω
to obtain a tessellation Th of Ωh consisting of
Nel non-overlapping shape-regular elements
Tk such that ∪Nel

k=1Tk = Th with k denoting
the k’th element. For approximation of func-
tions we introduce the finite element approxi-
mation space of continuous, piece-wise poly-
nomial functions V = {vh ∈ C0(Ωh);∀k ∈
{1, ...,K}, vh|Tk ∈ Pq} where Pq is the space
of polynomials of degree at most q.
Introduce the approximations

fh =
NFS∑
i=1

fi(t)Ni(x)

where {Ni}NFS

i=1 ∈ V is the set of global fi-
nite element basis functions with cardinal prop-
erty Ni(xj) = δij at mesh nodes. Choose
v(x) ∈ {Ni}NFS

i . The discretization in two
spatial horizontal dimensions becomes

M ′ d

dt
ηh = −

(
Aφ̃x
x +Aφ̃y

y

)
ηh +M ′w̃h

+
(
Aw̃h(ηh)x
x +Aw̃h(ηh)y

y

)
ηh

M ′ d

dt
φ̃h = −M ′gηh −

1

2

[(
A(φ̃h)x
x +A(φ̃h)y

y

)
φ̃h

+ M w̃hw̃h −
(
Aw̃2

h(ηh)x
x +Aw̃2

h(ηh)y
y

)]
ηh

where the following global matrices have been
introduced

M ′
ij =

∫∫
Ω′
NiNjdx,

M b
ij =

∫∫
Ω′
bNiNjdx,

(Ab
q)ij =

∫∫
Ω′
b(x)Ni

∂

∂q
Njdx

The gradient of the globally continuous basis
functions will be discontinuous across element
interfaces in the classical sense. To guaran-
tee global continuity of derivatives a gradient
recovery procedure can be used.
We represent the global approximation of com-
ponents of the horizontal first derivatives in C0

u = ∇φ =
N∑
i=1

uiNi(x)

By a global Galerkin projection of the form∫∫∫
Ω

uv(x)dx =

∫∫∫
Ω

∇φv(x)dx

two linear systems of equations are generated
Mu = Dxφ, Mv = Dyφ

for the velocity vectors.
Consider the discretisation of the governing
equations for the σ-transformed Laplace prob-
lem. We seek to construct a linear system

LΦh = b, L ∈ RN×N, Φh, b ∈ RN

where N is the total degrees of freedom in the
discretisation.

The weak formulation of the symmetric
Laplace problem can be expressed as: find
Φ ∈ V such that

−
∫∫∫

Ω

(K∇cΦ) · ∇cvdx = 0, ∀v ∈ V

having assumed impermeable wall
boundaries. Thus, the discrete system
operator is defined from

Lij = −
∫∫∫

Ω

(K∇cNj) · ∇cNidx

The elemental integrals are approximated as∫∫∫
Ωk

(K∇cNj) · ∇cNidx

=

∫∫∫
Tr
|Jk|(K∇cNj) · ∇cNidr

where Jk is the Jacobian of the affine
mapping χk : Tk → Tr where Tr is a
computational reference element.

Numerical Results
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Figure 2 : Computed and measured time series of free
surface elevations at two gauges after the bar in
submerged bar test benchmark.

Contributions
I Spectral Element Method for solving Nonlinear and

Dispersive Water Waves efficiently and accurately.
I General discretization framework based on a Galerkin

Method in space.
I Numerical analysis and validation of the model using

benchmark for dispersive and nonlinear waves in 2D.

Outlook
I Improve numerical stability for marginally

resolved/highly nonlinear waves.
I Advanced industry size applications in areas with

marine structures.
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Couturier (Ed). Designing Scientific Applications on
GPUs, 2013, CRC Press / Taylor & Francis Group.

I Cai, X., Langtangen, H. P., Nielsen, B. F., and Tveito,
A. 1998 A finite element method for fully nonlinear
water waves. J. Comput. Phys., 143, pp. 544–568.

Contacts: Allan: apek@dtu.dk, Daniele: dabi@dtu.dk, Claes: Claes.Eskilsson@chalmers.se


