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Motivation

With fuel prices, emissions standards and environmental
regulations expected to increase dramatically over the
next years, the shipping industry is adopting slow steam-
Ing. As the ship speed decreases dramatically, the rel-
ative importance of the added resistance due to waves
compared to the resistance of the vessel in calm water
conditions increases. Therefore, accurate methods for
predicting the added resistance are critical for designing
safe and energy efficient ships.

To achieve this goal a parallel (GPU/CUDA) finite differ-
ence (FD) potential flow solver based on structured grids
will be combined with an immersed boundary technique
for the body representation.

Contribution

» Representation of the complex body geometry in the
structured grid solver while maintaining it’s efficiency.

» Simplified derivation of the WENO (Weighted
Essentially Non-Oscillatory) finite difference scheme
coefficients that is suited to numerical implementation.

» Simplified WENO smoothness indicator that is
computed numerically.

» Stable discretization of the nonlinear wave
propagation problem in a moving frame of reference
using WENO.

Governing equations
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Figure 1: Definition sketch of the seakeeping problem.

The initial-boundary-value problem in a moving frame of
reference consists of the:
Laplace equationin V
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Kinematic Free Surface Boundary Condition (FSBC)
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» ((x,t): free surface elevation.

» p(x,t) = ¢p(x,(,t): velocity potential on the free
surface.

» h: water depth.
» Sy and V' the moving ship surface and it’s velocity.

As a first step the linearized problem is considered
where the kinematic and dynamic FSBC evaluated on
z = 0 reduce to:
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Implementation of the body BC

The FD Laplace solver is extended to include a Weighted
Least Squares (WLS) approximation of the body BC us-
iIng the Immersed Boundary Method (IBM).

® Fluid points
® Ghost points|]|
® Body points |

» Sign function distinguishes points in/out of the body.

» Ghost points: points in the body that belong to the FD
stencil of a fluid point.

» Body points: projection of a ghost point on the body.

» WLS stencil for each body point: contains fluid points
plus the associated ghost point.

» The WLS method is used to approximate the normal
derivative of the body BC.

Solving the linearized problem

» Convective terms of the FSBC are discretized robustly
using a one-point upwind-biased FD scheme.

» Time stepping: Explicit Runge-Kutta 44.
» Figure 2 shows a representative example of linear
Kelvin wave patterns computed using the IBM.

Towards nonlinear wave-structure
Interaction

» The numerical scheme used on the FSBC has to
handle all ratios of wave celerity to ship speed.

» The upwind-biased FD scheme becomes unstable
when the wave speed in the direction of the ship
motion is larger than the ship speed.

» Solution: the FSBC are posed in Hamilton-Jacobi
form and the WENO scheme is adopted.

WENO Finite difference scheme

» A WENO-r scheme develops a left- and right- biased
derivative approximation ¢, ;™.

» Each approximation is based on a weighted sum of
r— sub-stencil approximations (Figure 3) e.g.
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where

Wg = N s=0,...,7r—1
» dg: constant linear weights. Smooth solution =
(2r — 1)*"-order.
» 35: "smoothness indicators”. They become large
whenever discontinuities exist in the solution.
» Ws: Nonlinear weights. Smooth solution =-
(2r — 1)'-order. Discontinuity = (r)*"*-order plus
stability.

» The simplified smoothness indicator is defined as
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(b) Right-BiasedkstenciI.
Figure 3: WENO stencils and sub-stencils for » = 2.

Linear WENO weights

We seek r coefficients which set to zero the first » — 1
truncation error terms in the Taylor series expansion of
the combined derivative approximation; and sum to one.
For example, on the sub-stencils of the left biased stencll
the first truncation error terms are
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Thus we have the following linear system of equations to

solve for the d,:
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WENO on the forward speed
problem

» Express FSBC in Hamilton-Jacobi form:
¢y + H(Vep) = 0.

» Discretize using the Lax-Friedrichs scheme
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(a) Left-Biased stencil.
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where

»a” = max |H1(¢z, @)
» a¥ = max |Hy(¢z, @) ]

» H, and H,: partial derivatives of H with respect to
¢ and ¢, respectively

Express the FSBC in the WENO formulation as:

» (¢ + He = 9.

> Oy + Hy = —g(¢

where

» He = 0, (8.6 — 0. 8. — U)

s Hy = 8,0 (%833@5 _ U) — 1(8.4)2 (1 + 8,¢ 8,C)

» Right hand side terms: source terms

> af = max H; (s qgw)| — max |qu — 20, ¢y — U |

»ay = max |Hy ¢(Ca, ¢2)| = max |¢p, — Ul|

The scheme is tested on propagating steep stream func-
tion waves over a range of different ship speed (U) to
wave propagation speed (c) ratios see e.g. Figure 4.
WENO remains stable and upwinded in all cases.
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(b) U = —4ec.
Figure 4: Stream function wave in a moving frame of
reference.

Conclusion

» WENO plus IBM paves the way for a fully nonlinear
wave-structure interaction solver.
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