
An Adaptable TGG Interpreter for In-Memory Model Transformations
∗

Ekkart Kindler, Vladimir Rubin, Robert Wagner
Software Engineering Group, Department of Computer Science, University of Paderborn

[kindler|vroubine|wagner]@upb.de

Abstract
Triple graph grammars are a technique for defining corre-
spondences between different kinds of models. Triple graph
grammars can even be used for implementing translations
and maintaining consistency between two models. But the-
se implementations work only for automatically generated
models. Therefore, the transformations cannot be applied to
third-party models. In this paper, we discuss this problem
and ideas for its solution.

1. Introduction
With the advent of Model Driven Architecture (MDA) [5],

generation and transformation of models have become more
and more important. There are many different techniques
for defining and implementing such transformation; for a
good overview and a discussion of the different approaches
see [2].

Triple graph grammars (TGGs) [9], an extension of graph
rewriting [7], is one of these techniques. TGGs are parti-
cularly useful for graph based models such as diagrams. A
TGG defines a translation on a relatively high level of ab-
straction based on the syntactic structure of the underlying
models. This way, it is possible to prove the correctness of
the defined translation. In addition, TGGs do not only defi-
ne a translation from one model to another, but also capture
the correspondence between the source and the target mo-
del. Therefore, they can be used to translate back to the
source model after some changes of the target model, and
they can be used to check and maintain the consistency bet-
ween two models.

TGGs have been used in different projects, and there are
different implementations of TGGs. To apply TGG rules in
Progres [8], they are translated to simple graph rewriting
rules, which are then applied to the complete model sto-
red in a database. Fujaba [10] applies Story Charts and
pattern matching for this transformation. This results in a
simple and quite natural implementation. This implementa-
tion, however, requires that there is a model on top of which
the TGG rules are formulated; in fact there are three mo-
dels, one for the source, one for the target and one for the
correspodence part. Moreover, it is necessary that the mo-
dels for which the rules are to be applied are generated from
this meta model according to the rules of Fujaba. When de-
aling with models of third parties, where the mapping from

∗This work has partly been supported by the German Research
Foundation (DFG) grant GA 456/7Isileit as part of the SPP
1064.

the meta model to a Java implementation differs from Fu-
jaba’s implementation, this implementation does not work
anymore.

In this paper, we present an idea for applying TGG trans-
formations to models that have not been generated from the
meta model underlying the TGG rules. Rather, we would li-
ke to use any (Java) implementation of the model. We call
these models in-memory models. In order to apply a TGG
translation to such in-memory models, there must be a map-
ping which defines how the constructs of the meta model, its
classes, its attributes, and its associations are implemented.
Though it would be a worthwhile task to develop a frame-
work for defining such mappings in the most general way,
we propose a simple technique to start with, which can be
extended in the future. The idea is quite simple: The map-
ping is implemented by a class with a particular interface.
This interface requires methods, which map arbitrary ob-
jects from the implementation to the corresponding class of
the meta model. And it requires methods that, for a given
object, provides all links corresponding to an association of
the meta model. Moreover, this class must provide methods
for generating objects and links in the implementation. With
this additional mapper class it is easy to translate models
by a TGG interpreter. In fact, there are two mapper classes:
one for the source and one for the target meta model.

The ideas of this paper were inspired by a project and
tool called Component Tools. For understanding this back-
ground, we will briefly discuss this project in Sect. 2. Then,
we will rephrase the concept of TGGs in Sect. 3. The co-
re ideas and implementation techniques for an in-memory
TGG transformation will be discussed in Sect. 4.

2. Tool Support for System Engineering
In this section we give a brief overview on the concepts for

a tool called ComponentTools (see [3] for a more detailed
description). Parts of this tool have been implemented as a
prototype already. The tool will support building a system
from components, transforming these models, and for ex-
porting them for analysis purposes as well as for importing
analysis results back to the component view.

ComponentTools was originally inspired by the case
study within the Isileit1 project. The Isileit project aims
at the development of a seamless methodology for the inte-
grated design, analysis, and validation of distributed produc-
tion control systems. Its particular emphasis lies on reusing

1Isileit is the German acronym for “Integrative Specifi-
cation of Distributed Production Control Systems for the
Flexible Automated Manufacturing”.

Administrator
In: FUJABA Days 2004. Darmstadt, Germany. September 15-17, 2004. Proceedings. pp. 35-38

existing techniques, which are used by engineers in industry,
and on improving them with respect to formal analysis, si-
mulation, and automatic code generation.

The specification of such systems is done in close coopera-
tion with mechanical and electrical engineers. It turned out
that system engineers prefer to construct systems from some
components in a way that is independent from a particular
modelling technique. However, they still would like to use
the power of different techniques, once they have construc-
ted their system.

Faced with this requirements, we have started to build
a tool solving these problems. In the following, we will use
a simplified toy train example representing a material flow
system within our case study for explaining the main ideas.

Figure 1 shows such a simple toy train system built from
components. There are basically four different components:
straight tracks, curved tracks, tracks with a stop signal and
switches. The components are equipped with some ports,
which are graphically represented as small boxes or circles at
the border of the component. The ports are used to connect
the components to each other. In our example, there are
ports representing the physical connections of tracks, and
there are ports which allow to attach controller components,
e.g. for the switches or the light signals. Note that, for sim-
plicity, in our example we did not connect the system to
controller components and only the physical connections of
tracks are presented.

Figure 1: A toy train build from components

In order to build such a system, we need to provide a
component library, which contains these four components.
The component library defines all the available ports, their
graphical appearance, and how ports may be connected. Mo-
reover, the component allows us to provide a model for each
component that defines its dynamic behaviour.

Figure 2 shows the Petri net models for two of the com-
ponents. In fact, we can provide even more models for each
component. For example, there could be abstract models as
shown in Figure 2, or there could me more concrete ones. Or
there could be additional models in different notation such
as State Charts or other notations. From these models, and
the system built by the user, ComponentTools generates
several overall models of the system, each in one particular
notation, which can then be used by appropriate tools sup-
porting this formalism, e.g. for analysis, verification or code
generation.

The presented tool is implemented in some parts as a pro-
totype [4], whereas the model generation and transformati-
ons will be implemented in a course called “project group”
at the University of Paderborn.

In the next section, we give a short introduction to triple
graph grammars, which we are using for the specification

Figure 2: Two models for components

and execution of model transformations between the com-
ponent model and the underlying models of each component
to the overall models in a particular notation.

3. Triple Graph Grammars
In his original work, Schürr [9] extended pair grammars [6]

to triple graph grammars. In contrast to pair graph gram-
mars, triple graph grammars support context-sensitive pro-
ductions with rather complex left-hand and right-hand sides.
Generally, the separation of correspondence objects enables
the modeling of m-to-n relationships between related sides.

The triple graph grammar approach makes a clear distinc-
tion between source and target models; it also keeps the
extra links needed for specifying the transformations as a
separate specification.

Figure 3: TGG Rule Example

A triple graph grammar specification is a declarative de-
finition of a mapping between two meta models. In Fig. 3 a
triple graph grammar rule is shown, defining the correspon-
dence between a component and a Petri net model. It con-
sists of a triple of productions (left production, correspon-
dence production, right production), where each production
is regarded as a context-sensitive graph grammar rule. The
left production shows the generation of a new component
and linking it to the existing one. The right part shows the
addition of a new place, a transition and two arcs to the exi-
sting Petri Net. The correspondence production shows the
relations between the left-hand and right-hand sides.

This declarative specification can be translated into sim-
ple graph rewriting rules which are used for the transforma-
tion in both directions. In Fig. 4 the forward transformation
rule is presented.

The forward transformation rule is applied to the model, if
the left production of the triple graph grammar is detected,

Figure 4: Forward graph rewriting rule

i.e. if a component was added to the project. In this case, the
graph rewriting system will search for all objects contained
in the left-hand side of the forward transformation rule. If
a match is found, the correspondence objects, the objects
representing new places, transitions, arcs, and links between
the objects are created.

In contrast to the forward rule, the rule which handles the
translation from the right-hand model to the left-hand mo-
del, i.e. from the Petri net model to the component model,
is called backward rule. It is created from the triple graph
grammar in the very same way as the forward rule: we just
exchange the left and right side. For more details, we refer
to [9].

The advantage of triple graph grammars over the other
approaches lies within the definition of inter-graph relati-
onships, which provide the flexibility to use productions for
both forward and backward transformation and correspon-
dence analysis. A triple graph grammar, as a declarative
definition of the mapping between the two graphs, can be
used for the implementation of a translator in either directi-
on. Such an translator will be presented in the next section.

4. Interpreter
In this section, we present the core ideas and implemen-

tation techniques for an in-memory model transformation
based on triple graph grammars. Before explaining our ap-
proach, we give a brief description of Fujaba’s approach for
graph rewriting and discuss its limitations.

The problem.In order to execute triple graph grammar ru-
les in Fujaba, the specified rules are transformed into simple
graph rewriting rules. These graph rewriting rules are trans-
lated to a Java implementation which performs the desired
graph pattern matching and graph rewriting. However, this
implementation is based on the meta models of the source,
the target, and the correspondence graphs and requires that
both meta models are implemented in a predefined way.

In fact, Fujaba requires the implementation to be auto-
matically generated from the meta models by Fujaba. For
example, each attribute of a meta model class must be im-
plemented as a private variable with appropriate get and
set methods. Associations must be implemented as bidirec-
tional references with well-defined access methods following
some naming conventions. These access methods allow navi-
gation between in-memory objects, accessing and modifying
in-memory objects, and creating new objects. The mapping
between the conceptual model and its implementation is im-

plicitly given by the code generator, which is fundamental
for Fujaba’s graph rewriting algorithm.

In the ComponentTools project, we deal with already
existing third-party models. In some cases, the source code
of the model implementation is given. In other cases only
some kind of an Application Programming Interface (API),
which typically differ from Fujaba’s model implementati-
on. Hence, the graph pattern matching and graph rewriting
algorithms of Fujaba will not work for these models.

Transition

fire() : void

PetriNetElement

label : String

Conceptual

Model
 Implementation Model

 Mapping

<<interface>>

PetriNetElement

setLabel(String) : void

getLabel() : void

<<interface>>

Transition

fire() : void

TransitionImpl

fire() : void

PetriNetElementImpl

setLabel(String) : void

getLabel() : void

Figure 5: Simple mapping example

Figure 5 shows a part of an example of a conceptual model
underlying the rules of a TGG and a typical implementati-
on, which, for simplicity, is represented also in UML. This
example shows that we cannot be even sure that the names
of elements in the conceptual model have the same names
in the implementation. In order to generate new objects,
the TGG interpreter needs to know the names of the classes
implementing the interfaces and how associations are imple-
mented.

Architecture.In general, there is no way to map some ob-
jects and references of an implementation to the correspon-
ding classes and associations of the conceptual model ful-
ly automatically without providing additional information.
Therefore, we need a mechanism that defines this mapping
such that the TGG interpreter can understand the imple-
mentation model. To this end, we propose a simple archi-
tecture which is shown in Fig. 6.

Figure 6: Architecture with Mapper Class

Between the TGG interpreter and the source and target
model, there are mapper classes, which define the mapping
between the conceptual model and the implementation. The-
se classes provide methods that, for a given object of the
implementation, return the corresponding class in the con-
ceptual model. Moreover, they provide methods that return
all links in the conceptual model for a given object of the
implementation. On the other hand, the mapper classes pro-
vide methods for generating new objects in the implementa-
tion model for a given class of the conceptual model and they
provide methods for generating links in the implementation.

For each conceptual model underlying the TGG and each
implementation of such a model, a user must implement

such a mapper class. These classes are passed to the TGG
interpreter as additional parameters. In order to pass these
mapper classes to the TGG interpreter, the TGG interpreter
defines a mapper interface, which must be implemented by
all mapper classes. The interface requires that there are all
the methods which have been discussed above: methods for
mapping objects of the implementation to the correspon-
ding classes of the conceptual model, methods for getting
all links corresponding to some particular association of the
conceptual model of an object of the implementation, and
methods for generating objects and links in the implemen-
tation models that correspond to some class or association
of the meta model.

Discussion.Though the mapper class approach is quite
simple, it is the most powerful one because, in principle,
any mapping can be implemented as a mapper class. The
disadvantage of this approach is that it requires program-
ming the mapper classes for each new implementation of a
model, which is tedious work. In particular, an inexperienced
user might provide a flawed mapper class, which would re-
sult in flawed translations even if the TGG interpreter works
correctly.

Therefore, it would be nice to define the mappings from
the conceptual model to the implementation on a higher le-
vel of abstraction and in a notation particularly tailored for
this purpose. A good notation for defining such mappings,
however, needs more detailed investigation. Once such a no-
tation is available, it is easy to implement a standard mapper
class, which receives such a mapping definition as input and
which uses the Java Reflection API for implementing the
methods required by the mapper interface. With this gene-
ric mapper class, it will no longer be necessary for the user
to implement a mapper class for each new implementation.
Rather, it will be necessary to provide an abstract definition
of the mapping in the new notation.

Likewise, the TGG interpreter could be easily used with
implementations that are generated automatically from the
conceptual models. In this case, the mapper classes could be
generated automatically too. Then, it will not be necessary
to implement mapper classes for generated models. For ex-
ample, we could use JMI generated and reflective interfaces.

Another idea for implementing mapper classes would be
to have a standard mapper class which is provided with some
scripts for implementing the mapping. Then, it would not
be necessary to implement a complete mapper class; rat-
her it is necessary to provide some scripts for defining the
mapping only. For example, we could use the scripting lan-
guage BeanShell [1] for this purpose. On the one hand, this
approach would avoid the compilation step for the mapper
class, which might be an advantage for a stand-alone tool.
On the other hand, using a scripting language will result
in some performance loss in comparison to a programming
language.

Anyway, all these extended mapping concepts can be built
on top of our mapper class concept by implementing a ge-
neric mapper class.

Implementation.Currently, we are working on an imple-
mentation of the above ideas in the context of Component-
Tools. But, the TGG interpreter itself will be completely
independent from the graphical user interface, so that it can
be easily used in other tools such as Fujaba or as a stand-

alone tool.
Even more, our interpreter and mapping concept can also

be used for graph rewriting because triple graph grammars
are just a specialized sort of graph grammars. The mapping
concept immediately carries over to graph rewriting.

5. Conclusion and Future Work
In this paper, we have presented the problem of apply-

ing TGG transformations and consistency algorithms to in-
memory models that have not been automatically generated.
We have presented some ideas for an interpreter for TGGs
that solves this problem. This way, TGG techniques can be
applied to legacy code and models that have not been gene-
rated from our own models.

We just started with a detailed design of the mapper in-
terface and with an implementation of the in-memory TGG
interpreter. But, we hope to have a first prototype soon.

Acknowledgments
We would like to thank all members of the project group
Component Tools at Paderborn University for all their dis-
cussions, which help to clearly identify the problem and to
come up with the first concepts of the in-memory TGG in-
terpreter.

References
[1] BeanShell. Leightweight Scripting for Java.

http://www.beanshell.org (last visited July 2003).

[2] K. Charnecki and S. Helsen. Classification of model
transformation approaches. In OOPSLA 2003
Workshop on Generative Techniques in the Context of
Model-Driven Architecture, Anaheim, CA, USA,
October 2003.

[3] A. Gepting, J. Greenyer, E. Kindler, A. Maas,
S. Munkelt, C. Pales, T. Pivl, O. Rohe, V. Rubin,
M. Sanders, A. Scholand, C. Wagner, and R. Wagner.
Component Tools: A vision for a tool. In preparation,
July 2004.

[4] J. Greenyer. Maintaining and using component
libraries for the design of material flow systems:
Concept and prototypical implementation, October
2003.

[5] OMG. Model Driven Architecture.
http://www.omg.org/mda/.

[6] T. Pratt. Pair grammars, graph languages and
string-to-graph translations. Journal of Computer and
System Sciences 5, pages 560–595, 1971.

[7] G. Rozenberg, editor. Handbook of Graph Grammars
and Computing by Graph Transformation, volume 1.
World Scientific, Singapore, 1999.

[8] A. Schürr. PROGRES, A Visual Language and
Environment for PROgramming with Graph REwrite
Systems. Technical Report AIB 94-11, RWTH
Aachen, Germany, 1994.

[9] A. Schürr. Specification of graph translators with
triple graph grammars. In Proceedings of the 20th

International Workshop on Graph-Theoretic Concepts
in Computer Science, Herrschin, Germany, June 1994.
Spinger Verlag.

[10] University of Paderborn, Germany. Fujaba Tool Suite.
Online at http://www.fujaba.de/.

