Petri Nets and the Real World

Ekkart Kindler and Frank Nillies
Department of Computer Science
University of Paderborn
D-33098 Paderborn, Germany
[kindler|frank]@upb.de

Abstract— Two years ago, we extended Petri nets by a simple Even more interestingly, the interface to the virtual world
but powerful concept for interactively animating systems as a of the visualization can be replaced by an interface to the real
3D-visualization, which is calledPNVis. The basic idea of PNVis world, e.g. a machinery or plant. This allows us to control the

is to equip the Petri net with information on how a token on . . . S .
some place corresponds to a physical object and how this object plant directly by a Petri net (respectively BNSimsimulating

behaves. PNVis associates the simulation of tokens of the Petrithe Petri net). In this paper, we present the basic concepts
net with these objects in the virtual 3D-world. that allow us to control a plant by a Petri net. The concepts

In this paper, we take the next step and use the concepts of are, basically, the same as for visualizing a Petri net; the
PNVis and associate the tokens of a Petri net with objects of controller and visualization can even be used synchronously,

the real world. This way, a Petri net can be used as a controller . . - .)
of some plant. In principle, this idea works for any kind of which allows us to visualize the real behaviour of a plant while

hardware; for simplicity, however, we demonstrate this idea by funning. Since these concepts are quite simple and compatible
a Petri net for controlling a simple toy-train. with the standard Petri net semantics, these concepts seem to

What is more, we show that the control and the 3D- be universal for relating the behaviour and the analysis results
visualization can be synchronized so that the visualization, of petri nets to the real world.
basically, shows the behaviour of the real world. Altogether, this
demonstrates that the concepts of PNVis are a powerful means Il. PNVIS

for designing, prototyping, and validating controllers. .)) .) .
In this section, we give a brief overview of the extensions

needed for visualizing Petri nets by the help of PNVis. To
this end, a Petri net is equipped with some information on the
Petri nets are a well-accepted formalism for modellinghape and the dynamic behaviour of the objects corresponding
concurrent and distributed systems. The main advantagest@tokens on some places.
Petri nets are their graphical notation, their simple semantics, Shapes and animation functiondn a first step, we
and the rich theory for analyzing and verifying their behaviougistinguish those places of a Petri net that correspond to
In spite of their graphical nature, getting an understandinrtual objects. We call thenanimation placesThe idea is
of a complex system just from studying the Petri net modeiat each token on such a place corresponds to an object with
itself is quite hard — if not impossible. In particular, this applieis individual appearance and behaviour. In order to visualize
to experts from application areas who are not experts in Pedrid to animate a physical object, we need two pieces of
nets. ‘Playing the token-game’ is not enough for understandiinformation: its shape and its behaviour.
the behaviour of a complex system. The concept®uivis It is easy to define thehapeof the object associated with
improve this situation by providing a simple mechanism fai token on a place: Each animation place is associated with
animating the behaviour of a system modelled as a Petri me8D-model(e.g. a VRML file) that defines the shape of alll
in a 3D-visualization. The extensions of Petri nets that atekens on this place. Defining tHeehaviourof an object is
necessary for such a 3D-visualization are remarkably sim@inilar: Each animation place is associated withaaimation
[2], [3]: the tokens of the Petri net are associated with objedisnction This animation function is composed from some
of a virtual world and with a behaviour. A simple feedbaclpredefined animation functions. When a token is produced on
mechanism allows the 3D-visualization to have an effect @m animation place, an object with the corresponding shape
the behaviour of the Petri net. appears and behaves according to the animation function. For
The interaction between the actuBetri net simulator example, the object coulthovealong a predefined line, the
(PNSim and thevisualization(PNVig is realized by a simple object couldrotate, or the object could simplgppearat some
protocol. It turned out that this protocol can be used fgosition.
visualizing systems in other formalisms than Petri nets by In order to illustrate these concepts, let us consider a simple
replacing PNSimby a simulator for some other formalism.example: a toy-train. Figure 1 shows the layout of a toy-
Likewise, we can us€’NSimwith some other visualization train, which consists of two semicircle tracksl and sc2
tool such as a simple control panel, which allows users tehich are composed to a full circle. We call this layout the
interact with the Petri net simulation; this will result in a toounderlyinggeometry For defining such a geometry, there is
similar to ExSpectwith its dash boards [5]. a set of predefined geometrical objects such as lines, circle

I. INTRODUCTION

shape: locomotive ; :
animation: move completely independent of each other. When transitldires,

shape: track geometry: scl an object corresponding to the token on pladeis deleted
scl \ and a new object corresponding to the new token on place
p2is created and the move animation is started. Clearly, this
is not what happens in reality. In reality, the same object,
the toy-train, moves from trackclto tracksc2 In order to
keep the identity of an object when a token is moved from

sc2) one place to another, we equip the arcs of the Petri net with
shape: track ;?lj‘g;}g;"ﬁgsge annotations of the fornid:n, wheren is some number. We
geometry: sc2 call n the identity of that arc. By assigning the same identity
to an in-coming arc and an out-going arc of a transition, we
Fig. 1. A toy-train express that the corresponding object is moved between those

two places. In order not to clone an object, we require that

there is a one-to-oneorrespondencdetween the identities

segmepts, apd Be CUIVes. '”.OUT example,. there is ONGt the in-coming and out-going arcs of a transition; i. e. each
toy-train moving clockwise on this circle. The right-hand sid entity of a transition occurs exactly once in all in-coming

of Fig. 1 shows the corre_spo_nding Petri net m_odel, where bo& s and exactly once in all out-going arcs. Figure 3 shows
placespl and p2 are animation places. In this example, thrﬁqe toy-train example equipped with such identities

correspondence between the Petri net model and the physical
model is clear from the similar layout. Formally, this corre- shape: locomotive

spondence is defined by annotating each place with a reference animation: move
geometry: scl

to the corresponding element in the geometry. The annotation
shapedefines the shape of the objects. In our example, it is
a toy-train, actually docomaotiveonly, for both places, where
the details of the definition of the shape are discussed in [2],
[3]. Here, we can think of it as the reference to some VRML
model of a locomotive. The annotati@mimationdefines the

behaviour of the object, which is started when a token is added shape: locomotive

to the place. In our example, it israoveanimation. Without animation: move

additional parameters, each animation function refers to the geometry: sc2

geometry object corresponding to that place. Therefore, a toy- Fig. 3. The model with identities

train corresponding to a token on plggemoves on traclscl,

and a toy-train corresponding to a token on plp@moves Animation results:Next, we consider the relation of the
on tracksc2 behaviour of the Petri net and the animations of the objects

In order to make our example complete, we must proviggyresponding to the tokens in more detail. When a token
some graphical information for visualizing the geometry ol added to an animation place by firing a transition, the
jects. To this end, each geometry object can have an annotatigfination for the corresponding object is started. But, what
shape too. In our example, the semicircleslandsclare | happen, if a token is removed before the animation is
visualized as tracks (see [2], [3] for details). Once we haygrminated? In our example, this does not make much sense —
provided this information, we can start PNVis for visualizingpe toy-train would jump from its current position on the track
this system. Figure 2 shows a screen-shot of the 3D-animatigithe start of the next track. Assuming that firing a transition
of our example, where there is a toy-train moving on trs€® does not take any time, this behaviour is physically impossible.
which corresponds to a token on plag2 But, there are other examples in which a transitions could fire
while an animation is running. Therefore, we must explicitly
define in the Petri net model whether a transition may or may
not remove a token while an animation is still running on the
corresponding object. When we want a transition to wait until
the animation of a token has terminated before removing the
token, we add the annotatigasult: {..} to the corresponding
arc. Actually, an animation function has a return value, and the
annotatiorresultsays for which return values of the animation
the corresponding transition may fire. The $et stands for
all possible return values. Altogetheeturn: {..} means that

Fig. 2. Screen-shot of the visualization

. . S . 1Both transitions have only one in-coming and out-going arc. Therefore,
Object identities:Up to now, the objects and the Shape&e example does not show the full power of identities. We will see a more

corresponding to the tokens on the two plapg&sand p2 are exciting examples, soon.

shape: locomotive
animation: move
geometry: scl

t3 shape: signalStop
animation: appear; trigger
geometry: sig

. d:1
id:1 result:{..} result:{..}

result:{..}
result: {..} shape: signalGo
animation: appear; trigger

shape: locomotive oS
geometry: sig

animation: move
geometry: sc2

Fig. 4. A toy-train with a signal

the animation must terminate — with any return value — befoigassigned to the token; the assigned value depends on the part
the transition can fire. If there is no such annotation at the aaf, the object on which the user clicked. In combination with
the transition does not need to wait until the animation of ththe annotationsesult:{..} at the in-coming arcs of transitions
corresponding object terminates — when fired, the transitit®iandt4, the user can toggle the state of the signal by clicking

simply stops the animatién on the signal in the 3D-visualization.
In order to illustrate these new concepts, we extend our
example. We assume that there is a signal at the end of track [Il. CONTROLLING PLANTS

scl When the signal is in stated, the toy-train stops at the | this section, we show how the concepts of PNVis can
end of trackscl when the signal is in statgreen the toy- pe ysed for controlling a plant via the same interface as the
train may enter traclsc2 In order to have a position for thejgalization; i.e. the Petri net simulator does not interact
signal in the layout, the geometry is extended by a psimat yith the 3D-visualization, but with the hardware. In our
the end of semicirclecl Figure 4 shows the Petri net mOde\mpIementation we used a AKlin toy-train, which has an

of this extended system. The two plagesandp2 as well as jyterface to a Linux workstation in order to interact with it. A
the transitiongl andt2 are the same as before. The arcs atg-iure of the toy-train system is shown in Fig. 5.

equipped with identities in order to keep the same object, the actions and eventshen the simulator interacts with the
toy-train, on the tracks. The annotaticgsult:{..} guarantees ;g ajization, the simulator starts an animation of an object

that the transitions wait until the move animation of the tOX/'vhen a token is added to a place. Likewise, the simulator

train has come to an end (i.e..the toy-train has reached mf‘eracting with the hardware issues soantionwhen a token
end of the track). Next we consider the signal: The two statgs , yqed to a place. Such an action can be the switching

of the signal are represented by the plaegsandgreen The ¢ some actuator of the hardware. Likewise, the simulator

object corresponding to a token on plaed s a signal With itS a5 cting with the hardware can issue an action when a token

red light on:SignalStop The object corresponding to a tokeNg remayed from a place. The details on how to define actions,
on placegreenis a signal with its green light orignalGo 54 how to associate them with a place of a Petri net will be
These objects will appear at the poisig of the geometry iscssed later.

(somewhere at the end st1). Due to the loop between place
greenand transitiontl, transitiontl can fire only when the
signal is in stategreen The interesting parts of this model

In order to give the simulator feedback on the behaviour of
the hardware, we will usevents An example for an event
could be a rising edge of the position sensor at the end of

e;]re ”;? |denft|t;:as of tra}r}snmm;l when tranS|t|ont1r:§ flrled, some track — indicating that the toy-train has reached the end
the object of the signal from plaagreenstays on this place. o¢ g rack. Then the token on the place representing the

Moreover, the animation is not restarted, because the iden%(in on that track could be removed and added to the place
is equpec_;l with theke_ep an_|mat|on t_ag)) representing the next track. When the event occurs, a result

Another interesting issue is the animation of the signal. TR@ e js assigned to a token on the corresponding place (where
anlmgtlon function IS composed of Mo .predefmed anmauqu result value depends on the type of the event). This way,
functions:appear; trigger The meaning is that these animag,e petri net simulator knows that the token can be removed.
tions are started sequentially. When the first animation functigq o, example, we have one sensor at the end of each track

finishes, the second starts. In both cases, the signal app@afsinent. The details on how to define events and how to relate
at positionsig; then, it behaves as a trigger. thgger is an hem to a place will be discussed later.
animation function that waits for a user to click on that object. In a nutshell, the actions on the hardware correspond to

When this happens, the animation terminates andaresultvaé@tmg an animation in the visualization, and the events

2 . I . _ ___correspond to the termination of an animation function in
If the corresponding arc has an identity, there is an opteep animation . lizati Thi I the Petri t simulator t
that does not stop the current animation on the object, but continues mee V|Sua'_za 1on. 'S_a ows e etri r_1e S_|mu_ ator to U_Se
animation while the token is on another place. the same interface to interact with the visualization and with

Fig. 5. The hardware: A [rklin toy-train

the hardware; we call this interface theteraction handler Example: The actions and events as well as the panel with
interface. Here, we do not go into the technical details of thits buttons are defined in an XML file. A simplified version
interface. of the XML file for our toy-train example of Fig. 4 is shown

Panels and buttonsOf course, the user would also like toin Fig. 7 at the end of this article.
interact with the hardware. For example, the user might wantThe first part of this file defines the initialization of the
to toggle some signal to red or to green, or the user mighardware, i. e. the initial setting of all actuators. In our exam-
want to toggle some switch from left to right or vice versa. ple, the signal (with hardware address 101) is set to green.
To this end, the hardware handler supports the definitiom a second part, two buttons are defined, which allow the
of buttonson some contropanel which can be pressed byuser to interact with the system. Each button has a position,
the user in order to interact with the hardware. An examptesize (dimension), and an image that appears on that button.
panel for our toy-train example is shown in Fig. 6. The buttoridoreover, the two colouracolor andhcolor define the
can be activated and deactivated by corresponding actiocslours of the button in the activated and the deactivated state.
i.e. when tokens are removed and added to the correspondiig definition of each button implicitly defines an event, which
places. The activated buttons will be highlighted and can becurs when a user presses the button. The name of this event
pressed by the user. Pressing an activated button, triggerssagiven in the corresponding attribute in the button definition.
event, which in turn can be used to return a result value toMoreover, the file defines some actions and events. Each
some token, which enables the transition to fire. action is assigned a name, and it refers to a component in the
hardware by some id; actually, this id refers to some software
object representing the hardware component inHaedware
Abstraction Layer(HAL). The attributetype defines the class
of this object and the attributgerform refers to the method
to be called on this object when the action is initiated.
Likewise, the definition of an event defines the name,
and it refers to some hardware id (resp. a software object
representing it). The attributgpe defines its class, and the
attributetrigger defines the value which triggers this event —
actually, it is a change to this value triggering the event. In
our example, the evendSClis triggered once the sensBi
Fig. 6. Screen-shot of a simple control panel changes its value to 1, which indicates that the toy-train has
reached the end of tracicl

(00X

innercircle

A second XML file defines how the different actions and herefore, the analysis results for the low-level Petri net are
events are associated with the places of the Petri net. Ti#l valid.
XML file for our example is shown in Fig. 8 at the end of this This way, a single Petri net model can be used throughout
article. In this file, placgl is assigned the end-evesndSC1 the design process of plants such as flexible manufacturing
When this event occurs, a token on plgzk will receive 0 systems — including analysis and verification as well as
as its result value For each of the places green and redalidation. In particular the behaviour can be simulated and
representing the two states of the signal, we define two actionisualized in early stages of the design process.
that are invoked, when a token is added to them: the first action
enables the button for switching the signal to the other state,
the second action actually switches the hardware signal to {hle Dennis Beck. Steuerung von Anlagen durch Petrinetzmodelle. Bachelor
;] thesis, Department of Computer Science, University of Paderborn (in
state _corresp_ondlng to the placed or g_reer). The a!cthn German), June 2004.
associated with the removal of a token is the deactivation pf Ekkart Kindler and Csaba&kes. 3D-visualization of Petri net models: A
the other button. Moreover, the result value 0 is assigned to \C/\C;nf(ept- 'nu?i:J;JhaSt and R. L%fsngéegitmt‘&fkshog (Q)'gorithmen und
. . . lerkzeuge etrinetze pages 69-78, September .
the FOken When the bgtton IS pre;;ed, which will allow thﬁ] Ekkart Kindler and Csaba&Pes. 3D-visualization of Petri net models:
Petri net simulator to fire the transition frorad to greenor Concept and realization. In J. Cortadella and W. Reisig, edifypg)i-
vice versa. cation and Theory of Petri Nets 2004, *25International Conferenge

When the Petri net simulator and the hardware handler ET&F Ili\laiﬁ?\loiﬁ)i?ays.pasgfr?cﬁ?glni;l;t:ii-)r?z{él%egyD{gl?seuzil?s?:}ung mit einer realen
started with the Petri net from Fig. 4 and the two XML files = Anlage auf der Basis von Petrinetzmodellen. Bachelor thesis, Department
from Fig. 7 and 8, they actually control the real hardware of_Computer Science, University of Pgderbom (in German), May 2005.
. RO ['ril] Erlp Verbegek. ExSpec_t 6.4x product |nf!’omat|0n. In K. H. Mortensen,

\II:\{herg the user can interact with it via the panel shown editor, Petri Nets 2000: Tool Demonstrationgages 39-41, June 2000.

ig. 6.

Synchronizing interaction handlersActually, we have

another implementation of an interaction handler, which is
capable of synchronizing omaaster interaction handlewith
many otherslave interaction handlersThis way, it is possible
to start the Petri net simulation with the hardware handler
as the master and one or more visualization handlers as the
slaves. Then the visualization shows the behaviour of the real
hardware (see right monitor in Fig. 5). Due to variations
in speed, there might be minor mismatches: For example,
the toy-train in the visualization might stop at the end of a
track because the real train has not arrived there yet; or the
toy-train of the visualization might jump to the next track
from its current position on a track when the real toy-train
reaches the end of its track first. But, the deviations will be
synchronized when the transitions fire and could be minimized
by dynamically adjusting the speeds.

This synchronization shows that the interface is well-
designed. But, we cannot go into the details of this interface
here. You will find more details in [1], [4].

REFERENCES

IV. CONCLUSION

In this paper, we have shown that the simple concepts of
PNVis can be used not only for visualizing the behaviour of
a real system, but also for controlling it. In order to allow
the Petri net simulation to interact and synchronize with the
real world, the concept of result values of tokens were used.
These result values are set either by the visualization or by
the real hardware. By the help of thesult labels at some
arcs, a transition can fire only when the tokens have particular
result values. Note that this is compatible with the traditional
firing rule of low-level Petri nets, where transitions fire non-
deterministically and are not even required to fire at all.
The result values just make the behaviour more deterministic.

3Actually, the result values are irrelevant in this example.

<?xml version="1.0" encoding="1S0O-8859-1"?>
<IDOCTYPE occurrences SYSTEM "occurrence.dtd">

<hardwaredefinition>
<hardwareinitialisation>
<initial type="signal" adressid="101"
state="green"/>
</hardwareinitialisation>

<buttons>
<pushbutton id="red" event="redPressed"
position="320,295" dimension="40,12"
acolor="#FF0000" hcolor="#4C4C4C" />
<pushbutton id="green" event="greenPressed"
position="320,310" dimension="40,12"
acolor="#00C800" hcolor="#4C4C4C" />
</buttons>

<events>
<event name="endSC1">
<attributes type="sensor" id="s1"
trigger="1"/>
</event>
<event name="endSC2">
<attributes type="sensor" id="s2"
trigger="1"/>
</event>
</events>

<actions>
<action name="enableGreen">
<attributes type="button" id="green"
perform="settoenable"/>
</action>
<action name="disableGreen">
<attributes type="button" id="green"
perform="settodisable"/>
</action>
<action name="enableRed">
<attributes type="button" id="red"
perform="settoenable"/>
</action>
<action name="disableRed">
<attributes type="button" id="red"
perform="settodisable"/>
</action>

<action name="firel0lgreen">
<attributes type="signal" id="101"
perform="switchToGreen"/>
</action>
<action name="fire1l0lred">
<attributes type="signal" id="101"
perform="switchToRed"/>
</action>
</actions>
</hardwaredefinition>

Fig. 7. Actions, events and panel definition

<?xml version="1.0" encoding="IS0O-8859-1"?>
<IDOCTYPE relations SYSTEM "relation.dtd">

<eventactiondefinition>

<place name="pl">
<endEvent>
<event name="endSC1" result="0"/>
</endEvent>
</place>

<place name="p2">
<endEvent>
<event name="endSC2" result="0"/>
</endEvent>
</place>

<place name="green">
<onAdd>
<action name="enableRed"/>
<action name="firel0lgreen"/>
</onAdd>
<onRemove>
<action name="disableRed"/>
</onRemove>
<endEvent>
<event name="redPressed" result="0">
</endEvent>
</place>

<place name="red">
<onAdd>
<action name="enableGreen"/>
<action name="firel0lred"/>
</onAdd>
<onRemove>
<action name="disableGreen"/>
</onRemove>
<endEvent>
<event name="greenPressed" result="0">
</endEvent>
</place>

</eventactiondefinition>

Fig. 8. Associating actions and events with the places

