

Porpoise
contextual second-order abstract syntax in higher-order logic

Francisco Ferreira and Frederik Krogsdal Jacobsen

Higher order abstract syntax

Instead of writing:
let x = 1 + 2 in x + 3

Write:
let (1 + 2) (λy .y + 3)

This is from the meta-logic
Why?

• Alpha-equivalence by construction
• Type-preserving substitution “for free”

November 17 Logic & AI @ AlgoLoG Seminar 3Porpoise

Higher order abstract syntax

Instead of writing:
let x = 1 + 2 in x + 3

Write:
let (1 + 2) (λy .y + 3)

This is from the meta-logic

Why?
• Alpha-equivalence by construction
• Type-preserving substitution “for free”

November 17 Logic & AI @ AlgoLoG Seminar 4Porpoise

Higher order abstract syntax

Instead of writing:
let x = 1 + 2 in x + 3

Write:
let (1 + 2) (λy .y + 3)

This is from the meta-logic
Why?

• Alpha-equivalence by construction
• Type-preserving substitution “for free”

November 17 Logic & AI @ AlgoLoG Seminar 5Porpoise

Contextual type theory

It is obvious that
λx : nat → nat.λy : nat.x y

is closed and well-typed with type (nat → nat) → nat → nat.

But what about an incomplete term with a hole?

λx : nat → nat.λy : nat.⌊ ⌋

Contextual type theory allows us to characterize and instantiate holes

November 17 Logic & AI @ AlgoLoG Seminar 6Porpoise

Contextual type theory

Contextual types internalize the typing judgment:

x : nat → nat, y : nat ⊢ ⌊ ⌋ : nat

The hole has the contextual type ⌈x : nat → nat, y : nat ⊢ nat⌉

Advantages:
• Internalised support for incomplete terms when reasoning
• Substitutions become context-aware

November 17 Logic & AI @ AlgoLoG Seminar 7Porpoise

Contextual type theory

Contextual types internalize the typing judgment:

x : nat → nat, y : nat ⊢ ⌊ ⌋ : nat

The hole has the contextual type ⌈x : nat → nat, y : nat ⊢ nat⌉

Advantages:
• Internalised support for incomplete terms when reasoning
• Substitutions become context-aware

November 17 Logic & AI @ AlgoLoG Seminar 8Porpoise

Contextual modal type theory

• The contextual box modality says that a term is closed
• Behaves similar to S4
• The point is to separate syntactic and computational views on a term

With this, we essentially obtain the logic of the Beluga proof assistant
(if we add MLTT, we instead obtain the logic of the Orca proof assistant)

November 17 Logic & AI @ AlgoLoG Seminar 9Porpoise

Expressivity is an issue

let (a ∧ b) (λx .if x then true else false)
Type visible from meta-logic

... this is an exotic term

Other issues:
• Linearity is a problem because existing systems treat contexts

structurally
• Relating to other theories is difficult because there are no libraries
• Encodings need to be very elaborate in some systems due to just

having first-order reasoning logics
• To avoid exotic terms we need to restrict recursive functions and pattern

matching

November 17 Logic & AI @ AlgoLoG Seminar 10Porpoise

The syntactic framework SF

Types A,B ::= a | A → B | □A
Terms M,N ::= c M⃗ | λx .M | {M} | x

Substitutions σ ::= · | σ,M
Contexts γ ::= · | γ, x

• All terms are fully normalized by construction
• Babybel: embedding into OCaml following the approach of contextual

modal type theory

November 17 Logic & AI @ AlgoLoG Seminar 11Porpoise

Porpoise: SF with HOL term injection

SPNIL
· : γ ⊢s n / n

SPCONS
M : γ ⊢ T s⃗ : γ ⊢s T ′ / n

M, s⃗ : γ ⊢s T → T ′ / n

TMLAM
M : γ, (T ,aux) ⊢ T ′

λx .M : γ ⊢ T → T ′ / n
TMBOX

M : · ⊢ T
{M} : γ ⊢ T

TMVAR
(T ,aux) ∈ γ

x : γ ⊢ T
TMC

sig(c) = T s⃗ : γ ⊢s T / n
c s⃗ : γ ⊢ n

• The type system forces all constructors to be fully applied

November 17 Logic & AI @ AlgoLoG Seminar 12Porpoise

Work in progress!

• Are there classes of schemas and judgments where the substitution
lemmas can be derived automatically?

• Classifying schemas is an open problem in general
• How nice can we make the experience of having to manually prove

substitution lemmas?
• How easy is using other theories in practice? E.g. how annoying is it to

work with real-valued semantics?

November 17 Logic & AI @ AlgoLoG Seminar 13Porpoise

