

Formally Verifying a
Theorem Prover for
First-Order Logic
Asta Halkjær From Frederik Krogsdal Jacobsen

Technical University of Denmark

Introduction

Automatic theorem provers have many success stories:
• Ada/SPARK (Rolls Royce, Lockheed Martin, EuroFighter, Collins, . . .)
• Dafny
• TLA+ (Microsoft, Intel, AWS, . . .)
• Mathematics
• Hardware verification

. . . but we are not eating our own dog food!

August 9, 2022 DTU Compute 3Formally Verifying aTheorem Prover forFirst-Order Logic

Introduction

Automatic theorem provers have many success stories:
• Ada/SPARK (Rolls Royce, Lockheed Martin, EuroFighter, Collins, . . .)
• Dafny
• TLA+ (Microsoft, Intel, AWS, . . .)
• Mathematics
• Hardware verification

. . . but we are not eating our own dog food!

August 9, 2022 DTU Compute 4Formally Verifying aTheorem Prover forFirst-Order Logic

A few dog treats

Examples of formally verified automatic theorem provers:
• Propositional logic (tableaux), Blanchette et al.
• Clausal first-order logic (ordered resolution), Schlichtkrull et al.
• First-order logic (implicit sequent calculus), Ridge et al.
• First-order logic (implicit sequent calculus), Villadsen et al.
• SAT solver, Fleury
• SAT solver, Maríc

August 9, 2022 DTU Compute 5Formally Verifying aTheorem Prover forFirst-Order Logic

What’s missing?

• Optimized proof search procedures
• Heuristics
• Realistic logics
• Proof certificates

August 9, 2022 DTU Compute 6Formally Verifying aTheorem Prover forFirst-Order Logic

Overview of results

• A sound and complete prover for first-order logic with functions
• Based on a sequent calculus
• All proofs are formally verified in Isabelle/HOL
• Human-readable proof certificates

August 9, 2022 DTU Compute 7Formally Verifying aTheorem Prover forFirst-Order Logic

Why did we do this?

• Formalized metatheory for non-trivial sequent calculus provers
• Formal verification of an executable prover
• Novel analytic proof technique for completeness
• Verifiable and human-readable proof certificates
• A prover for the SeCaV system

August 9, 2022 DTU Compute 8Formally Verifying aTheorem Prover forFirst-Order Logic

Sample SeCaV Proof Rules

Neg p ∈ z
⊩ p, z

BASIC
⊩ z z ⊆ y

⊩ y
EXT

⊩ p, z
⊩ Neg (Neg p), z

NEGNEG

⊩ p,q, z
⊩ Dis p q, z

ALPHADIS
⊩ Neg p, z ⊩ Neg q, z

⊩ Neg (Dis p q), z
BETADIS

⊩ p [Var 0/t], z
⊩ Exi p, z

GAMMAEXI

⊩ Neg (p [Var 0/Fun i []]), z i fresh
⊩ Neg (Exi p), z

DELTAEXI

August 9, 2022 DTU Compute 9Formally Verifying aTheorem Prover forFirst-Order Logic

Prover I

• SeCaV rules affect one formula at a time
• Our prover rules affect every applicable formula at once
• We copy Gamma formulas and remember all terms on the branch
• So no formula or instantiation is forgotten

• Rules affect disjoint formulas
• So we can apply them in any order

• We apply rules fairly and repeatedly
• So we never miss out on a proof

August 9, 2022 DTU Compute 10Formally Verifying aTheorem Prover forFirst-Order Logic

Prover I

• SeCaV rules affect one formula at a time
• Our prover rules affect every applicable formula at once
• We copy Gamma formulas and remember all terms on the branch
• So no formula or instantiation is forgotten

• Rules affect disjoint formulas
• So we can apply them in any order

• We apply rules fairly and repeatedly
• So we never miss out on a proof

August 9, 2022 DTU Compute 11Formally Verifying aTheorem Prover forFirst-Order Logic

Prover I

• SeCaV rules affect one formula at a time
• Our prover rules affect every applicable formula at once
• We copy Gamma formulas and remember all terms on the branch
• So no formula or instantiation is forgotten

• Rules affect disjoint formulas
• So we can apply them in any order

• We apply rules fairly and repeatedly
• So we never miss out on a proof

August 9, 2022 DTU Compute 12Formally Verifying aTheorem Prover forFirst-Order Logic

Prover II

• We rely on the abstract completeness framework by Blanchette,
Popescu and Traytel

• We need to fix a stream of rules from the beginning
• Proof attempts are coinductive trees grown by applying these rules
• If a tree cannot be grown further, we found a proof

• A function gives the child sequents representing the subgoals left after
applying a rule

• We export code to Haskell to obtain an executable prover

August 9, 2022 DTU Compute 13Formally Verifying aTheorem Prover forFirst-Order Logic

Prover — proof example

Neg (Uni (Con P(0) Q(0))),Neg P(0),Neg Q(0),
Neg P(a),Neg Q(a),P(a)

BASIC

Neg (Uni (Con P(0) Q(0))),Neg (Con P(0) Q(0)),
Neg (Con P(a) Q(a)),P(a)

ALPHACON

Neg (Uni (Con P(0) Q(0))),Neg (Con P(0) Q(0)),
Neg (Con P(a) Q(a)),P(a)

(α)

Neg (Uni (Con P(0) Q(0))),P(a)
GAMMAUNI

Neg (Uni (Con P(0) Q(0))),P(a)
(α, δ, β)

Imp (Uni (Con P(0) Q(0))) P(a)
ALPHAIMP

Imp (Uni (Con P(0) Q(0))) P(a)
(NEGNEG)

August 9, 2022 DTU Compute 14Formally Verifying aTheorem Prover forFirst-Order Logic

Prover — certificate example

Imp (Uni (Con (P [0]) (Q [0]))) (P [a])

AlphaImp
Neg (Uni (Con (P [0]) (Q [0])))
P [a]

Ext
Neg (Uni (Con (P [0]) (Q [0])))
Neg (Uni (Con (P [0]) (Q [0])))
P [a]

GammaUni[0]
Neg (Con (P [0]) (Q [0]))
Neg (Uni (Con (P [0]) (Q [0])))
P [a]

Ext
Neg (Uni (Con (P [0]) (Q [0])))
Neg (Uni (Con (P [0]) (Q [0])))
P [a]
Neg (Con (P [0]) (Q [0]))

GammaUni[a]
Neg (Con (P [a]) (Q [a]))
Neg (Uni (Con (P [0]) (Q [0])))
P [a]
Neg (Con (P [0]) (Q [0]))

Ext
Neg (Con (P [0]) (Q [0]))
Neg (Con (P [a]) (Q [a]))
P [a]
Neg (Uni (Con (P [0]) (Q [0])))

AlphaCon
Neg (P [0])
Neg (Q [0])
Neg (Con (P [a]) (Q [a]))
P [a]
Neg (Uni (Con (P [0]) (Q [0])))

Ext
Neg (Con (P [a]) (Q [a]))
P [a]
Neg (Uni (Con (P [0]) (Q [0])))
Neg (P [0])
Neg (Q [0])

AlphaCon
Neg (P [a])
Neg (Q [a])
P [a]
Neg (Uni (Con (P [0]) (Q [0])))
Neg (P [0])
Neg (Q [0])

Ext
P [a]
Neg (Uni (Con (P [0]) (Q [0])))
Neg (P [0])
Neg (Q [0])
Neg (P [a])
Neg (Q [a])

Basic

August 9, 2022 DTU Compute 15Formally Verifying aTheorem Prover forFirst-Order Logic

Prover — escape path example

...
Neg P,Q Neg P,P

BASIC

Neg P,Con P Q
BETACON

...
Neg Q,P Neg Q,Q

BASIC

Neg Q,Con P Q
BETACON

Neg (Dis P Q),Con P Q
BETADIS

Neg (Dis P Q),Con P Q
(α, δ, β)

Imp (Dis P Q) (Con P Q)
ALPHAIMP

Imp (Dis P Q) (Con P Q)
(NEGNEG)

Escape paths

August 9, 2022 DTU Compute 16Formally Verifying aTheorem Prover forFirst-Order Logic

Soundness I

• If our prover returns a proof, we can build a SeCaV proof
• The SeCaV proof system is sound, so the prover is sound

• We use the abstract soundness framework by Blanchette et al.
• If the children of a sequent all have SeCaV proofs, so does the sequent

August 9, 2022 DTU Compute 17Formally Verifying aTheorem Prover forFirst-Order Logic

Soundness II
If the children of a sequent all have SeCaV proofs, so does the sequent:

1 Assume all child sequents have a proof
2 Induction on sequent: use appropriate SeCaV rule for each formula

Example: Our sequent looks like Dis P Q, . . ., so P,Q, . . . is a child sequent
with a SeCaV proof. We apply the ALPHADIS rule to prove the sequent using
the proof of ⊩ P,Q, . . . (and possibly some reordering).

. . .

...
⊩ P,Q, . . .

ASSUMPTION
. . .

⊩ Dis P Q, . . .
ALPHADIS

...

August 9, 2022 DTU Compute 18Formally Verifying aTheorem Prover forFirst-Order Logic

Completeness

• Framework: prover either produces a finite, well formed proof tree or an
infinite tree with a saturated escape path

• Need to show that root sequent of a saturated escape path is not valid:
• Formulas on saturated escape paths form Hintikka sets
• Hintikka sets induce a well formed countermodel

• . . . so valid sequents result in finite, well formed proof trees

HERE BE DRAGONS
(need to build a bounded countermodel over only the terms in the sequent
and ensure functions stay inside its domain)

August 9, 2022 DTU Compute 19Formally Verifying aTheorem Prover forFirst-Order Logic

Completeness

• Framework: prover either produces a finite, well formed proof tree or an
infinite tree with a saturated escape path

• Need to show that root sequent of a saturated escape path is not valid:
• Formulas on saturated escape paths form Hintikka sets
• Hintikka sets induce a well formed countermodel

• . . . so valid sequents result in finite, well formed proof trees

HERE BE DRAGONS
(need to build a bounded countermodel over only the terms in the sequent
and ensure functions stay inside its domain)

August 9, 2022 DTU Compute 20Formally Verifying aTheorem Prover forFirst-Order Logic

Bounded semantics

• In a completeness proof for a calculus we can assume that Gamma
formulas are instantiated with all possible terms

• Thus, we can build a countermodel in the full Herbrand domain

• Our prover only uses terms from the given sequent (and fresh ones)
• So we must build a bounded countermodel over this restricted domain
• We must ensure that our function denotation stays inside this domain

August 9, 2022 DTU Compute 21Formally Verifying aTheorem Prover forFirst-Order Logic

Subtypes fail us

• The SeCaV semantics represents the domain as a type variable.
• We cannot build the subtype of terms from a local sequent (yet?1)

• So we represent the domain as an explicit parameter to the semantics
• We have u,E ,F ,G |= Uni P iff u,E ,F ,G |= P(x) for all x ∈ u
• We reprove soundness of SeCaV under this (u)semantics

1Kunčar and Popescu ITP 2014
August 9, 2022 DTU Compute 22Formally Verifying aTheorem Prover forFirst-Order Logic

Hintikka sets

• We always need at least one term
terms H ≡ if (

⋃
p ∈ H. set (subtermFm p)) = {} then {Fun 0 []}

else (
⋃

p ∈ H. set (subtermFm p))
• To quantify over in our Hintikka sets

locale Hintikka =
fixes H :: fm set
assumes

Basic: Pre n ts ∈ H =⇒ Neg (Pre n ts) /∈ H and
AlphaDis: Dis p q ∈ H =⇒ p ∈ H ∧ q ∈ H and
BetaDis: Neg (Dis p q) ∈ H =⇒ Neg p ∈ H ∨ Neg q ∈ H and
GammaExi: Exi p ∈ H =⇒ ∀ t ∈ terms H. sub 0 t p ∈ H and
DeltaExi: Neg (Exi p) ∈ H =⇒ ∃ t ∈ terms H. Neg (sub 0 t p) ∈ H and
...

August 9, 2022 DTU Compute 23Formally Verifying aTheorem Prover forFirst-Order Logic

Bounded countermodel

• We carefully build the countermodel
E S n ≡ if Var n ∈ terms S then Var n else SOME t. t ∈ terms S
F S i l ≡ if Fun i l ∈ terms S then Fun i l else SOME t. t ∈ terms S
G S n ts ≡ Neg (Pre n ts) ∈ S
M S ≡ usemantics (terms S) (E S) (F S) (G S)

• terms is downwards closed, so members evaluate to themselves
t ∈ terms S =⇒ semantics-term (E S) (F S) t = t

• We have a countermodel to any formula in a Hintikka set
Hintikka S =⇒ (p ∈ S −→ ¬ M S p) ∧ (Neg p ∈ S −→ M S p)

August 9, 2022 DTU Compute 24Formally Verifying aTheorem Prover forFirst-Order Logic

Saturated escape paths form Hintikka sets

• Final step is to inspect the saturated escape paths
• We need to show that the formulas constitute a Hintikka set
• On paper, this follows straightforwardly from our rules
• In practice, it requires fiddly reasoning about the coinductive paths

• In the end: any saturated escape path has a (bounded) countermodel,
contradicting the validity of its root sequent

August 9, 2022 DTU Compute 25Formally Verifying aTheorem Prover forFirst-Order Logic

Results

• We have verified soundness and completeness in Isabelle/HOL
• Verification helped find actual bugs in our implementation

• The performance is limited, but optimizations are possible
• Generation of proof certificates is not (yet) fully verified

August 9, 2022 DTU Compute 26Formally Verifying aTheorem Prover forFirst-Order Logic

Where can we go from here?

• New frameworks for integrating heuristics
• Fully verified proof certificate generation
• Verified proof certificate compression
• Frameworks for other proof systems
• Even more realistic logics (e.g. with equality)

August 9, 2022 DTU Compute 27Formally Verifying aTheorem Prover forFirst-Order Logic

