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Abstract. In the Finite Capacity Dial-a-Ride problem the input is a
metric space, a set of objects {di}, each specifying a source si and a
destination ti, and an integer k—the capacity of the vehicle used for
making the deliveries. The goal is to compute a shortest tour for the
vehicle in which all objects can be delivered from their sources to their
destinations while ensuring that the vehicle carries at most k objects at
any point in time. In the preemptive version an object may be dropped
at intermediate locations and picked up later
and delivered. Let N be the number of nodes in the input graph. Charikar
and Raghavachari [FOCS ’98] gave a min{O(log N), O(k)}-approximation
algorithm for the preemptive version of the problem. In this paper we
show that the preemptive Finite Capacity Dial-a-Ride problem has no
min{O(log1/4−ε N), k1−ε}-approximation algorithm for any ε > 0 un-
less all problems in NP can be solved by randomized algorithms with
expected running time O(npolylogn).

1 Introduction

Vehicle routing and delivery problems have been widely studied in Computer Sci-
ence and Operations Research. These problems occur in many practical settings
such as transportation of goods or passengers and robotics (see Christofedes [5]
and Golden and Assad [10]). Many of these problems are NP-hard and there has
been a great deal of research in finding and analyzing heuristics to solve these
problems. One such problem is the Finite Capacity Dial-a-Ride problem—or
Dial-a-Ride for short—which is defined as follows. The input is a metric space,
a set of objects, where each object di specifies a source si and a destination ti,
and an integer k—the capacity of the vehicle used for making the deliveries.
The goal is to compute a shortest tour for the vehicle in which all objects can
be delivered to their destinations (from their sources) while ensuring that the
vehicle carries at most k objects at any point in time. There are two variants
of the problem: the non-preemptive case, in which an object once loaded on the
vehicle stays on it until delivered to its destination, and the preemptive case
in which an object may be dropped at intermediate locations and then picked
up later by the vehicle and delivered. The Dial-a-Ride problem generalizes the
Traveling Salesman problem (TSP) even for k = 1 and is thus NP-hard.

⋆ This work was performed while the author was a Ph.D. student at the IT University
of Copenhagen.



Let N denote the number of nodes in the input graph, i.e., the number of
points that are either sources or destinations. In this paper we show that the pre-
emptive Dial-a-Ride problem has no min{O(log1/4−ε N), k1−ε}-approximation
algorithm for any ε > 0 unless NP ⊆ ZPTIME(npolylogn)1. To our knowledge, the
TSP lower bound—which is a small constant—was the best known so far.

The Dial-a-Ride problem has several practical applications such as trans-
portation of elderly and/or disabled persons and courier services. In practice,
multi-vehicle systems, where there are more than one vehicle, are more common.
Since single-vehicle Dial-a-Ride is a special case of the multi-vehicle Dial-a-Ride
problem, the hardness results in this paper holds for these problems a well.

Previous and Related Results Guan [12] proved that the preemptive case is
NP-hard for trees when k ≥ 2. Frederickson and Guan [8] showed that the
unit-capacity non-preemptive case is NP-hard on trees. For this case Freder-
ickson et al. [9] gave an 1.8-approximation algorithm on general graphs. The
first non-trivial approximation algorithms for the Dial-a-Ride problem for gen-
eral k were given by Charikar and Raghavachari [4]. For the preemptive case
they gave a 2-approximation algorithm for trees. Using the results on probabilis-
tic approximation of metric spaces by tree metrics [7] this gives an O(log N)-
approximation for arbitrary metrics. For the non-preemptive case they gave an
O(

√
k)-approximation algorithm for special instances on height-balanced trees.

As above this implies an O(
√

k log N)-approximation for arbitrary metrics. For
points on a line they note that they have a 2-approximation. They also show that
the ratio of the cost of the optimal non-preemptive solution to the cost of the
optimal preemptive solution can be as large as Ω(k2/3). As noted by Charikar
and Raghavachari an O(k)-approximation algorithm can be obtained by taking
the O(1)-approximation algorithm for the unit-capacity case. We note that there
is a simple 3N

k -approximation algorithm (due to [14] for k = N).
Several papers have presented exact exponential time algorithms and heuris-

tic algorithms for the Dial-a-Ride problem. For a description of many of these
approaches see [6]. A related problem is the k-delivery TSP where all objects
are identical and can be delivered to any of the destination points. Charikar
et al. [3] gave a 5-approximation algorithm for both the preemptive and the non-
preemptive problem. Haimovich and Rinnooy Kan [13] gave a 3-approximation
for the problem when all objects initially are located at one central depot.

Our Results and Techniques Our results rely on the hardness results for the
two network design problems Buy-at-Bulk and SumFiber-ChooseRoute(SFCR)
(defined in the next section). Andrews [1] and Andrews and Zhang [2] showed

that there is no O(log1/4−ε N)-approximation algorithm for uniform Buy-at-
Bulk and SFCR, respectively, for any ε > 0 unless NP ⊆ ZPTIME(npolylogn). The
result for SFCR uses a network constructed from an interactive 2-prover system

1
ZPTIME(npolylogn) is the class of problems solvable by a randomized algorithm that
always returns the right answer and has expected running time O(npolylogn), where
n is the size of the input.



for Max3Sat. They show that if the Max3Sat formula φ is satisfiable then the
optimal solution to the SFCR instance has small cost, and if φ is unsatisfiable
then it has high cost. More precisely, the cost if φ is unsatisfiable is a factor of
γ more than if φ is satisfiable for γ = O(log1/4−ε N). Hence if there were an
α-approximation for SFCR with α < γ, then we would be able to determine
if φ was satisfiable. Using almost the same construction we show that Buy-at-
Bulk with cost function h(x) = ⌈x

k ⌉ has no O(log1/4−ε N)-approximation for

any ε > 0 unless NP ⊆ ZPTIME(npolylogn), when k is between log11/(8ε)−9/2 n =

Ω(log1/4+(7ε)/11 N) and O(2log2 n/ logn). Here n is the size of φ. By changing
some of the parameters in the construction we are able to show that the problem
is not approximable within a factor of k1−ε for any ε > 0 when k < log1/4 N .

We then show the same hardness results for the preemptive Dial-a-Ride prob-
lem by showing a relation between this problem and the Buy-at-Bulk problem
with cost function h(x) in the network constructed from the 2-prover system.
This is the main technical contribution of this paper. Due to lack of space many
proofs are omitted. They can be found in the full version of the paper [11].

2 Definitions

Uniform Buy-at-Bulk Given an undirected network N , with lengths le on the
edges and a set {(si, ti)} of source-destination pairs. Each pair (si, ti) has an
associated demand δi. There is a cost function f on the edges, which is a function
of the amount of demand xe using edge e. Function f is subadditive2, and f(0) =
0. The goal is to route all demands δi from their source si to their destination ti
minimizing the total cost. The demands are unsplittable, i.e., demand δi must
follow a single path from si to ti. The total cost of the solution is

∑

e f(xe)le.

SumFiber-ChooseRoute (SFCR) Here we are given N , le, {(si, ti)}, and δi as in
Buy-at-Bulk. Each demand requires bandwidth equivalent to one wavelength.
Each fiber can carry k wavelengths, and the cost of deploying x fibers on edge
e is x · le. The problem is to specify a path from si to ti for all demands δi,
and a wavelength for the demand λi, minimizing the total cost. Let fe(λ) be the
number of demands assigned to wavelength λ that are routed through edge e.
Then maxλ fe(λ) is the number of fibers needed on edge e. Thus the total cost
of the solution is

∑

e le maxλ fe(λ).

Interactive Proof Systems A Raz-verifier is an interactive two-prover system. An
interactive two-prover system for Max3Sat(5) consists of a polynomial time
verifier with access to a source of randomness and two computationally un-
bounded provers. The verifier sends a polynomial size query to each prover and
receives a polynomial size answer. The provers try to convince the verifier that
the formula is satisfiable. The provers cannot communicate with each other and
are restricted to see only the queries addressed to them. Based on the random

2 f(x + y) ≤ f(x) + f(y).



bits and the answers to the queries the verifier decides whether or not to accept
the input. The verifier accepts with probability 1 if φ is satisfiable. If φ is un-
satisfiable then regardless of how the provers answer the verifier accepts with a
very low probability, η, called the error probability.

Proof System Parameters Let R be the random bits, Qi the random query sent
to prover i, and Ai the answer returned by prover i. We will use lowercase letters
to denote specific values of these strings. Each random string r uniquely identifies
a pair of queries q0 and q1. Each query may have many different answers. We
say a ∈ q if a is an answer to query q. We assume that the verifier appends
the name of the prover to the query and the provers append the query name
to its answer string. This way, an interaction is uniquely identified by the triple
(r, a0, a1). If the verifier accepts the answers a0 and a1 from the provers we
say that (r, a0, a1) is an accepting interaction. Note that two different random
strings might result in the same prover-0 query (or prover-1 query), but in that
case they will result in different prover-1 (prover-0) queries. Let m(Qi) denote
the number of distinct possible values of Qi. By padding random bits, we can
assume, m(Q0) ≤ m(Q1) < 2m(Q0). We can ensure that the Raz verifier has
the following properties (here |x| denotes the number of bits in the string x):
|R| = O(log2 n), |Qi| = O(log2 n), |Ai| = O(log2 n), and η = 2−Ω(log n). For each
i and for any q ∈ {0, 1}|Qi|: Pr[Qi = q] ∈ {0, 1/m(Qi)}.

3 Relation between Buy-at-Bulk and Dial-a-Ride

The following lemma shows a relation between Buy-at-Bulk and Dial-a-Ride.

Lemma 1. Let OPTB be the value of an optimal solution to a Buy-at-Bulk
instance B with source destination pairs S in graph G and cost function h(x) =
⌈x

k ⌉, and let OPTD be the value an optimal solution to the Dial-a-Ride instance
D with the same source-destination pairs S in G. Then OPTB ≤ OPTD.

Proof. We will abuse notation and let OPTi stand for both the value of the
optimal solution and the solution itself. We can turn OPTD into a solution to
instance B as follows: Route a demand δi from its source si to its destination ti by
the same edges as object δi passes in OPTD. valid solution. It is straightforward
to verify that the cost of this solution is no larger than OPTD. ⊓⊔
Since the optimal solution to B might be disconnected, there is in general no
way to turn OPTB into a solution to D at a cost bounded in terms of OPTB.
However, on the network used to construct the hardness result for Buy-at-Bulk
we will show that in the case were the Max3Sat instance φ is satisfiable it is
possible to turn the solution to B into a solution to D at cost at most 7 ·OPTB.

4 The Network

In this section we describe the network that is used to show hardness of SFCR
in [2]. The network is constructed randomly from an interactive proof system
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Fig. 1. The basic network N0. For each of the three random strings r, r′ and r′′, four
canonical paths corresponding to four accepting interactions, are shown (r solid, r′

dashed, and r′′ dotted). The long thick edges are the answer edges.

for Max3Sat. The idea is for each demand to define a set of canonical paths on
which the demand can be carried. These canonical paths correspond to accepting
interactions and are short paths directly connecting the source and destination.

We first construct a basic network N0, which is used as the base case in the
random construction. Given an instance φ, first construct the interactive two-
prover system. This is then turned into an instance of SFCR as follows. For each
possible answer a there is an answer edge (also denoted by a). For each random
string r there is a source node sr, a destination node tr, and a demand dr of
one to be routed from sr to tr. For each accepting interaction (r, a0, a1) there is
a canonical path p. This path starts at node sr, passes through a0 and a1 and
ends at tr. To make this possible we place edges between sr and a0, between a0

and a1, and between a1 and tr. The edge between a0 and a1 is referred to as a
center edge, and the edge between sr and a0, and between a1 and tr as a demand
edge. For each query q the answer edges a ∈ q are grouped together (see Fig. 1).
Answer edges have length h > 1 and the other edges have length 1.

Before defining the final network, we define a random network N1 in terms
of N0 and two parameters X and Z. The network essentially replicates N0 in
the vertical direction XZ times. Each answer edge a0 (resp. a1) of N0 has XZ
copies, denoted by a0,x,z (a1,x,z) where 0 ≤ x < X and 0 ≤ z < Z. For each
random string r, create X demands dr,x and X source and destination nodes, sr,x

and tr,x, where 0 ≤ x < X . Each of the X demands dr,x routes one unit of flow
from sr,x to tr,x. For each accepting interaction (r, a0, a1), the demand dr,x has a
canonical path that starts at sr,x, passes through a0,x′,z′ and a1,x′′,z′′ and ends at
tr,x. The answer edges a0,x′,z′ and a1,x′′,z′′ are chosen randomly. More precisely,
x′ and x′′ are chosen uniformly at random from the range {0, 1, . . . , X − 1} and
z′ and z′′ are chosen uniformly at random from the range {0, 1, . . . , Z − 1}. To
make the canonical paths feasible, N1 has center edges connecting a0,x′,z′ and
a1,x′′,z′′ , and edges connecting sr,x to a0,x′,z′ , and a1,x′′,z′′ to tr,x.

The final network N2 is essentially a concatenation of N1 in the horizontal
direction Y times for some parameter Y , where each level is constructed ran-
domly and independently. Each answer edge is indexed by a0,x,z,y (resp. a1,x,z,y)
where y ∈ {0, 1, . . . , Y − 1}. As in N1, X demands dr,x, 0 ≤ x < X , are created
for each random string r. For each accepting interaction (r, a0, a1), the demand
dr,x has a canonical path starting at sr,x followed by answer edges a0,x,z,0 and
a1,x,z,0 chosen uniformly at random at level y = 0. At each subsequent level y,
the answer edges are chosen uniformly at random until the path ends at tr,x.



The center edges and demand edges are defined by the canonical paths. Each
canonical path also requires an edge between each consecutive pair of levels.

5 Hardness of Buy-at-Bulk with Cost Function ⌈x

k
⌉

In this section we use the network N2 to show hardness of Buy-at-Bulk with
cost function ⌈x

k ⌉. The results are obtained by changing some of the parameters
in the network compared to paper by Andrews and Zhang [2], but otherwise the
proofs in this section are similar to the ones in the [2]. We use the following
parameters to show hardness with dependence on N .

• ℓ = logα n for some constant α. • σ = log
α

4 n

• Z = 2|r|

k min{m(Q0),m(Q1)} • Y =
√

ℓ = log
α

2 n

• X = (26+|r|+|a0|+|a1|Y Z)2l+1 = 2O(logα+2 n) • h = 2|r|

(m(Q0)+m(Q1))Z

• k = log
α

4
+4 n • η = 1

σ2 log n

The only parameter changed compared to [2] is h. To show hardness with

dependence on k we allow k to be smaller than logα/4+4 n. To make the proofs
go through we change Z and h as follows. Let c > 1 be a constant such that
k = logα/4+4 n/c and set

• Z = 2|r|

ck min{m(Q0),m(Q1)} = 2|r|

log
α

4
+4 n·min{m(Q0),m(Q1)}

• h = 2|r|

c(m(Q0)+m(Q1))Z

The next two lemmas hold for both definitions of Z and h. An answer edge is
said to be bought if any demand is routed through it.

Lemma 2. If φ is satisfiable, then the Buy-at-Bulk instance has a solution of
total cost at most 2|r|(2Y + 1)X + 2(m(Q0) + m(Q1))hXY Z.

Proof. Since φ is satisfiable there are two provers that always cause the verifier
to accept. We route the demand on answer edge a if and only if for these two
provers a is the answer to query q. For each string r there must be some accepting
interaction (r, a0, a1) for which both a0 and a1 have been bought. Each of the
demands dr,x, for 0 ≤ x < X , has one canonical path that corresponds to
(r, a0, a1). The demand dr,x is routed along this path. There are 2Y + 1 length
one edges on this path and thus the total number of edges of length one needed
is at most 2|r|(2Y + 1)X . It is possible to show that the expected cost of an
answer edges is two. The details are omitted due to lack of space. The expected
total cost of the answer edges is therefore 2XZY (m(Q0) + m(Q1))h. The total
solution has expected cost 2|r|(2Y + 1)X + 2(m(Q0) + m(Q1))hXY Z, and the
cost of the optimal solution must therefore have cost no higher than that. ⊓⊔
The second lemma gives a lower bound on the cost of the solution when φ is
unsatisfiable. The proof is omitted due to lack of space.

Lemma 3. With probability 2
3 − o(1), if the instance φ of 3SAT is unsatisfiable

then the cost of any solution to our instance of Buy-at-Bulk is at least

min{σh

10
(m(Q0) + m(Q1))XY Z,

Y 2

4k

(

(X2|r|)(1 − 77

375
− o(1)) − X

)

}.



Combining Lemma 2 and 3 we get the following hardness result for Buy-at-Bulk
with cost function h(x) = ⌈x

k ⌉. The proof is omitted due to lack of space.

Corollary 1. For any ε > 0, there is no min{O(log
1
4
−ε N), k1−ε}-approximation

algorithm for Buy-at-Bulk with cost function h(x) = ⌈x
k ⌉ unless all problems

in NP can be solved by a randomized algorithm with expected running time
O(npolylog n).

6 Routing in the Network

Let B be the instance of Buy-at-Bulk constructed in Section 5, and let D be
an instance of preemptive Dial-a-Ride with the same source-destination pairs in
the same network. Let SOLB denote the solution used to give the bound on the
cost of the optimal solution in Lemma 2, and let OPTD be the optimal solution
to D. In this section we show how to construct a solution to D of cost at most
7 · SOLB when φ is satisfiable.

Let N f
2 be the network induced by the edges bought in SOLB. Recall that in

SOLB all demands are routed on canonical paths. For each demand d, let pd be
the canonical path which d is routed on in SOLB. We say that edge e ∈ N f

2 is
used by an object d if e is on the path pd. Let ue be all the objects using edge e.

6.1 The Tour when N f
2

is Connected

We will first explain how to construct the tour when N f
2 is connected. We will

say that the tour is using an edge in the forward direction if it uses it in the same
direction as the demands routed on this edge and backwards otherwise. Assume
that any edge in N f

2 is used by at most k objects (we show later how to get rid
of this assumption). We will ensure that the tour has the following properties:

(i) The tour only uses edges from N f
2 .

(ii) An object d will only be in the vehicle when the vehicle is on an edge e ∈ pd.
(iii) When the vehicle goes forward on an edge it is either empty or carries all

objects using that edge.

The algorithm to construct the tour has two kinds of phases—a delivery
phase and a pickup phase—which are intermixed. In a delivery phase we are in
the process of delivering a certain object. In a pickup phase the vehicle is on its
way to pick up the next object to be delivered. The vehicle is always empty in
a pickup phase. The algorithm calls the following two procedures.

Deliver(d,s): Follow pd. For each edge on pd there are two cases:
1. All objects from ue are present at u: Pick up all the objects and traverse

e. At node v drop off all objects not going in the same direction as d.
2. One or more objects from ue are not present at u: Drop off d at node

u, and go to pick up these objects as follows. Let d′ be such an object.
Follow pd′ backwards from e until encountering d′. Pick up d′ and deliver
d′ at node u (not sd′) by recursively calling Deliver(d′,u).



Route(d): First deliver d by calling Deliver(d,sd) (this is the delivery phase
for object d). Then follow the route constructed during this call to Deliver
backwards until dd is reached (this is a pickup phase). Whenever encoun-
tering an undelivered object d′ on the way, pick it up and deliver it to its
destination by recursively calling Route(d′).

Algorithm The algorithm starts at a node sr,x for some r and x, pick up dr,x

and call Route(dr,x). Below we will show that when the vehicle returns to dr,x

all objects are delivered.

Analysis of the algorithm It is easy to verify that the tour made by the algorithm
satisfies property (i), (ii), and (iii). We will denote the route constructed during
the delivery phase for object d by rd.

Lemma 4. For any object d, the route rd, has the following properties:

(iv) rd only goes backwards on an edge e to fetch ”missing” objects. If d′ is such
an object then e ∈ pd′ .

(v) If rd goes backwards on edge e it returns to the right endpoint of e through
e.

(vi) When route rd traverses an edge e in the forward direction the vehicle con-
tains all objects using e.

Proof. Property (iv) and (vi) follows immediately from the description of the
algorithm. It remains to prove property (v). All canonical paths go through all
levels of the network in increasing order. Therefore an object missing at the left
endpoint of some edge at level i can be fetched at a level smaller than i or at i
if the edge is not the first edge on level i. It is thus possible to fetch all objects
missing at a certain node, since there are no cyclic dependencies. ⊓⊔

Lemma 4 gives us the following two corollaries.

Corollary 2. For any object d, the route rd traverses each edge in N f
2 at most

once in each direction.

Corollary 3. For any two objects d1 and d2 the routes rd1
and rd2

are disjoint.

Lemma 5. All objects are delivered to their destination.

Proof. By contradiction. Recall, we assumed N f
2 is connected. Assume some

subset of objects S are not delivered. Consider an object d ∈ S. If d is at a node
u 6= sd then it was left at u during the delivery phase of some object d′. But then
it would have been picked up and delivered to its destination when the vehicle
traversed rd′ backwards. Thus d must still be at its source sd. Since d is still at
sd the path pd does not share any edges with any path pd′ where d′ is a delivered
object. To see this assume d shared an edge e with a delivered object d′. Due
to property (ii) the vehicle crossed e containing d′, since d′ is delivered. Due to
property (vi) of Lemma 4 d must have been in the vehicle when it crossed e,
and thus d would no longer be at sd. Since SOLB are using canonical paths for



each object, the graph N f
2 has the property that if two canonical paths pd and

pd′′ meet at some vertex then they must share an edge adjacent to that vertex.
Therefore pd cannot share any vertices with any path pd′ where d′ is a delivered
object. This is true for all objects d ∈ S, contradicting that N f

2 is connected. ⊓⊔

Lemma 6. When N f
2 is connected the tour has length at most 4 · SOLB.

Proof. Let l(rd) denote the length of the route rd. The total length of the parts
of the tour constructed during delivery phases is

∑

d∈D l(rd).
Now consider the parts of the tour constructed during a pickup phase. Here

we are going backwards on the route rd for some object d. During this pickup
phase we stop each time we meet an object d′ and deliver it by calling Route(d′).
Due to Corollary 3 the part of the tour constructed during the call to Route(d′)
is disjoint from rd, since it only contains edges on rd′ . The route rd is thus
traversed at most once during the pickup phases. Thus the total length of the
parts of the tour constructed during delivery phases is at most

∑

d∈D l(rd).
Adding together the total length of the tours constructed during the delivery

phases and the pickup phases, we get that the total length of the tour is at most
2 ·∑d∈D l(rd). Using Corollary 2 and Corollary 3 we get that the tour uses each

edge in N f
2 at most 4 times, and thus the cost of the tour is at most 4 ·SOLB. ⊓⊔

Edges used by more than k objects We assumed that any edge in N f
2 is used by

at most k objects. We can get rid of this assumption by a minor modification
of the algorithm. Let Se be the set of objects using edge e. Then the solution
SOLB paid ⌈Se

k ⌉ · le for this edge. As before, when we want to traverse e we
go backwards and pick up all objects in Se. We then go forward and back on e
carrying as many objects from Se as possible each time until all objects from Se

are on the right endpoint of e. The number of times we traverse e is ⌈Se

k ⌉, and
thus Lemma 6 still holds.

6.2 N c
2

Connected and N f
2

Disconnected

Let N c
2 be the graph induced by the canonical paths (N2 can contain answer

edges that are not part of any canonical path). If N c
2 is connected but N f

2 is

disconnected we can add edges from N c
2 to N f

2 to connect it. We can do this
by adding edges of total length equal to the number of connected components
minus one times the length of a canonical path in N c

2 .
First we note that since N c

2 consists of the union of canonical paths, then

for any component C in N f
2 there must be another component C′ in N f

2 such
that some object d routed in C has a canonical path p that intersect with a
canonical path p′ for an object d′ routed in C′. We connect C and C′ by adding
the following edges: All edges on p from sd to the intersecting edge e (including
e), and all edges on p′ from e to td′ . We call these added edges a connecting path

from C′ to C. Since N c
2 is connected we can make N f

2 connected by adding c−1

connecting paths, where c is the number of connected components in N f
2 . We



add these connecting paths in such a way that all components can be reached
from one component—called the start component—using a path that when going
from component C to a component C′ uses a connecting path from C to C′ (not
from C′ to C). Since the length of a connecting path is the same as the length
of a canonical path the total length is c−1 times the length of a canonical path.
Since each connected component consists of at least one canonical path the total
length of the connecting paths is at most the same as the sum of all edges in
N f

2 , i.e., SOLB.

Constructing the tour Start in the start component Cs in N f
2 and deliver the

objects in this component as described in the previous section. Whenever the
vehicle gets to a node dd which is the starting point of a connecting path from
this component to another component C, it follows this connecting path to C
and delivers the objects in C the same way. When all objects in a component are
delivered the vehicle returns to the starting point in this component and from
there to the previous component C′ if such a component exists. It then carries
on delivering the objects in C′.

Lemma 7. When N c
2 is connected the tour has length at most 6 · SOLB .

Proof. If N f
2 is connected it follows from Lemma 6. If N f

2 is disconnected we
use the approach described above. To deliver the objects in a single component
we use no more time than in the previous section. By Lemma 6 the contribution
from these parts of the tour is at most 4 · SOLB in total. To get to the next
component and back again we use a connecting path and the sum of the edges
used to get to and from connected components is thus at most 2 · SOLB. ⊓⊔

6.3 N c
2

Disconnected

If N c
2 is disconnected we connect it by adding edges of length one between a

source node in one component and a source node in another component . We
call these edges component edges. We add the minimum number of component
edges, i.e., l − 1 where l is the number of connected components. This can be
seen as constructing a tree on the components.

Since we add the component edges between disjoint components in N c
2 , which

are also disjoint components in N2, we do not introduce any new cycles in N2.
Therefore the component edges cannot decrease the cost of the optimal solution
to the Buy-at-Bulk instance or to the Dial-a-Ride instance: Let C1 and C2 be
two components connected by a component edge e. If some object d with source
sd in C1 is using e, then it has to use it again to get back to C1, since sd ∈ C1

and the only connection between C1 and C2 is e.

Constructing the Tour The vehicle first delivers the objects in a component C in
N c

2 as described in the previous section. When it gets to the source node in the
component that has a component edge to a source node in another component
C′, it goes to C′ and delivers the objects in C′ the same way. When all objects



in a component are delivered it returns to the starting point of this component
and follows the component edge back to the previous component C if such a
component exists. It then carries on delivering the objects in component C.

Lemma 8. The optimal solution to D has cost at most 7 · OPTB.

Proof. The cost of delivering the objects in the original components of N2 is at
most 6 · SOLB due to Lemma 7. The total length of the new edges is l− 1 which
is less than 1/2 · SOLB, since each connected component has a canonical path of
at least three. The new edges are used twice: once in each direction. ⊓⊔

7 Hardness of Preemptive Dial-a-Ride

From Lemma 8 and Lemma 2 we get,

Lemma 9. If φ is satisfiable, then the Dial-a-Ride instance has a solution of
total cost 7 · 2|r|(2Y + 1)X + 2(m(Q0) + m(Q1))hXY Z.

We can now use Lemma 1, Lemma 3, and Lemma 9 to show hardness of the
Dial-a-Ride problem.

Lemma 10. Let γ = log
α

4
−5 n. If there exists a γ-approximation algorithm

for the Finite Capacity Dial-a-Ride problem, then there exists a randomized
O(npolylog n) time algorithm for 3SAT.

Proof. For any 3SAT instance φ we construct the network N2 from the two-
prover system and then apply a γ-approximation algorithm A for Dial-a-Ride.

If the 3SAT instance φ is satisfiable then by Lemma 9 and our choice of h
there is a solution to our instance of Dial-a-Ride of cost at most 7 · 2|r|(2Y +
1)X +2(m(Q0)+m(Q1))hXY Z = 7 ·2|r|(4Y +1)X . Hence, the γ-approximation
algorithm returns a solution of cost at most γ · 7 · 2|r|(4Y + 1)X , and we declare
φ satisfiable. If φ is unsatisfiable then by Lemma 1, Lemma 3 and our choice
of h, with probability 2/3 − o(1), any solution have cost at least the minimum
of Ω(σ2|r|XY ) and Ω( ℓ

kX2|r|). Both these expressions are strictly larger than

γ · 7 · 2|r|(4Y + 1)X .
The construction of the network takes time O(npolylog n) since N2 has size

O(npolylog n). Hence we have described a randomized O(npolylog n) time algo-
rithm for 3SAT that has one-sided error probability at most 1/3 + o(1). It is
possible to convert this into a randomized algorithm that never makes an error
and has expected running time O(npolylog n). ⊓⊔
In the Dial-a-Ride instance N is the number of sources and destinations. We
have 2|r|X sources and 2|r|X destinations, and thus N = 2 ·2|r|X = 2O(logα+2 n).
For any constant ε > 0, if we set α = 11

2ε − 2 then γ = Ω(log1/4−ε N). This gives
us the following corollary.

Corollary 4. There is no O(log
1
4
−ε N)-approximation algorithm to the preemp-

tive Finite Capacity Dial-a-Ride problem on general graphs for any constant
ε > 0 unless NP ⊆ ZPTIME(npolylogn).



In the above construction we had k = logα/4+4 n. The proofs hold for larger k too,
but since Z should be a positive integer we require k ≤ 2|r|/ min(m(Q0), m(Q1)).
To get a hardness result for small k we chang the variables Z and h as described
in Section 5. Using Lemma 1 and Lemma 3, we get

Lemma 11. Let k < log
1
4 N . Then there is no k1−ε-approximation algorithm

to the preemptive Finite Capacity Dial-a-Ride problem on general graphs for any
constant ε > 0 unless NP ⊆ ZPTIME(npolylogn).

The proof is omitted due to lack of space. To summarize we have shown,

Theorem 1. There is no min{O(log
1
4
−ε N), k1−ε}-approximation algorithm to

the preemptive Finite Capacity Dial-a-Ride problem on general graphs for any
constant ε > 0 unless NP ⊆ ZPTIME(npolylogn).
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