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Abstract

This paper explores three concepts: the k-center problem, some of its variants, and
asymmetry. The k-center problem is fundamental in location theory. Variants of k-
center may more accurately model real-life problems than the original formulation.
Asymmetry is a significant impediment to approximation in many graph problems,
such as k-center, facility location, k-median and the TSP.

We give an O(log∗ n)-approximation algorithm for the asymmetric weighted k-
center problem. Here, the vertices have weights and we are given a total budget for
opening centers. In the p-neighbor variant each vertex must have p (unweighted)
centers nearby: we give an O(log∗ k)-bicriteria algorithm using 2k centers, for small
p.

Finally, we show the following three versions of the asymmetric k-center prob-
lem to be inapproximable: priority k-center, k-supplier, and outliers with forbidden

centers.
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1 Introduction

Imagine you have a delivery service. You want to place your k delivery hubs at
locations that minimize the maximum distance between customers and their
nearest hubs. This is the k-center problem—a type of clustering problem that
is similar to the facility location [1] and k-median [2] problems. The motivation
for the asymmetric k-center problem, in our example, is that traffic patterns
or one-way streets might cause the travel time from one point to another to
differ depending on the direction of travel. Traditionally, the k-center problem
was solved in the context of a metric; in this paper we retain the triangle
inequality, but abandon the symmetry.

Symmetry is a vital concept in graph approximation algorithms. Recently,
the asymmetric k-center problem was shown to be Ω(log∗ n) hard to approxi-
mate [3–5], even though the symmetric version has a factor 2 approximation.
Facility location and k-median both have constant factor algorithms in the
symmetric case, but are provably Ω(log n) hard to approximate without sym-
metry [6]. The traveling salesman problem is a little better, in that no super-
constant hardness is known, but without symmetry no algorithm better than
O(log n) [7] has been found either.

Definition 1 (k-Center) Given G = (V,E), a complete graph with nonneg-
ative (but possibly infinite) edge costs, and a positive integer k, find a set S of
k vertices, called centers, with minimum covering radius. The covering radius
of a set S is the minimum distance R such that every vertex in V is within
distance R of some vertex in S.

Kariv and Hakimi [8] showed that the k-center problem is NP-hard. Without
the triangle inequality the problem is NP-hard to approximate within any fac-
tor (there is a straightforward reduction from the dominating set problem).
We henceforth assume that the edge costs satisfy the triangle inequality. Hsu
and Nemhauser [9], using the same reduction, showed that the metric k-center
problem cannot be approximated within a factor of (2− ǫ) unless P = NP. In
1985 Hochbaum and Shmoys [10] provided a (best possible) factor 2 algorithm
for the metric k-center problem. In 1996 Panigrahy and Vishwanathan [11,12]
gave the first approximation algorithm for the asymmetric problem, with fac-
tor O(log∗ n). Archer [13] proposed two O(log∗ k) algorithms based on many
of the ideas in [12]. The complementary Ω(log∗ n) hardness result [3–5] shows
that these approximation algorithms are asymptotically optimal.
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Variants of the k-Center Problem

A number of variants of the k-center problem have been explored in the con-
text of symmetric graphs. Perhaps some delivery hubs are more expensive to
establish than others. Instead of a restriction on the number of centers we
can use, each vertex has a weight and we have a budget W , that limits the
total weight of centers. Hochbaum and Shmoys [14] produced a factor 3 algo-
rithm for this weighted k-center problem, which has recently been shown to
be tight [3,5].

Hochbaum and Shmoys [14] also studied the k-supplier problem, where the
vertex set is segregated into suppliers and customers. Only supplier vertices
can be centers and only the customer vertices need to be covered. Hochbaum
and Shmoys gave a 3-approximation algorithm and showed that it is the best
possible.

Khuller et al. [15] investigated the p-neighbor k-center problem where each
vertex must have p centers nearby. This problem is motivated by the need to
account for facility failures: even if up to p−1 facilities fail, every demand point
has a functioning facility nearby. They gave a 3-approximation algorithm for
all p, and a best possible 2-approximation algorithm when p < 4, noting that
the case where p is small is “perhaps the practically interesting case”.

Maybe some demand points are more important than others. Plesnik [16] stud-
ied the priority k-center problem, in which the effective distance to a demand
point is enlarged in proportion to its specified priority. Plesnik approximates
the symmetric version within a factor of 2.

Charikar et al. [17] note that a disadvantage of the standard k-center formu-
lation is that a few distant clients, outliers, can force centers to be located in
isolated places. They suggest a variant of the problem, the k-center problem
with outliers and forbidden centers, where a small subset of clients may be
denied service, and some points are forbidden from being centers. Charikar et
al. gave a (best possible) 3-approximation algorithm for the symmetric version
of this problem.

Bhatia et al. [18] considered a network model, such as a city street network, in
which the traversal times change as the day progresses. This is known as the
k-center problem with dynamic distances: we wish to assign the centers such
that the objective criteria are met at all times.
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Problem Symmetric Asymmetric

k-center 2 [10] O(log∗ k) [13]

k-center with dynamic distances 1 + β † [18] O(log∗ n + ν) ‡ [18]

weighted k-center 3 [14] O(log∗n)

p-neighbor k-center 3 (2 §) [19] O(log∗k) ¶

priority k-center 2 [16] Inapproximable

k-center with outliers and 3 [17] Inapproximable

forbidden centers

k-suppliers 3 [14] Inapproximable

Table 1
An overview of the approximation results for k-center variants. The results in this
paper are in boldface. †β is the maximum ratio of an edge’s greatest length to its
smallest length. ‡This is a bicriteria algorithm using k(1+3/(ν +1)) centers, where
ν is a tuning parameter. §For p < 4. ¶This is a bicriteria algorithm using 2k centers,
for p ≤ n/k

Results and Organization

Table 1 gives an overview of the best known results for the various k-center
problems. In this paper we explore asymmetric variants that were not yet in
the literature.

Section 2 contains the definitions and notation required to develop the re-
sults. In Section 3 we briefly review the algorithms of Panigrahy and Vish-
wanathan [12], and Archer [13]. The techniques used in the standard k-center
problem are often applicable to the variants.

Our first result, in Section 4, is an O(log∗ n)-approximation for the asymmetric
weighted k-center problem. In Section 5 we develop an O(log∗ k) approxima-
tion for the asymmetric p-neighbor k-center problem, for p ≤ n/k. As noted
by Khuller et al. [15], the case where p is small is the most interesting case in
practice. This a bicriteria algorithm, allowing 2k centers to be used rather than
just k. It can, however, be converted to an O(log k)-approximation algorithm
using only k centers. Turning to hardness, we show that the asymmetric ver-
sions of the k-center problem with outliers (and forbidden centers), the prior-
ity k-center problem, and the k-supplier problem are NP-hard to approximate
within any factor (Section 6).
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2 Definitions

To avoid any uncertainty, we note that log stands for log2 by default, while ln
stands for loge.

Definition 2 For every integer i > 1, logi x = log(logi−1 x), and log1 x =
log x. We let log∗ x represent the smallest integer i such that logi x ≤ 2.

The input to the asymmetric k-center problem is a distance function d on every
ordered pair of vertices—distances are allowed to be infinite—and a bound k
on the number of centers. Note that we assume that the edges are directed.

Definition 3 Vertex c covers vertex v within r, or c r-covers v, if dcv ≤ r.
We extend the definition to sets so that a set C r-covers a set A if for every
a ∈ A there is some c ∈ C such that c covers a within r. Often we abbreviate
“1-covers” to “covers”.

Many of the algorithms for k-center and its variants do not, in fact, operate
on graphs with edge costs. Rather, they consider bottleneck graphs [14], in
which only those edges with distance lower than some threshold are included,
and they appear in the bottleneck graph with unit cost. Since the optimal
value of the covering radius must be one of the n(n − 1) distance values,
many algorithms essentially run through a sequence of bottleneck graphs of
every possible threshold radius in ascending order. This can be thought of as
guessing the optimal radius ROPT. The approach works because the algorithm
either returns a solution, within the specified factor of the current threshold
radius, or it fails, in which case ROPT must be greater than the current radius.

Definition 4 (Bottleneck Graph Gr) For r > 0, define the bottleneck
graph Gr of the graph G = (V,E) to be the graph Gr = (V,Er), where
Er = {(i, j) : dij ≤ r} and all edges have unit cost.

Most of the following definitions apply to bottleneck graphs.

Definition 5 (Power of Graphs) The tth power of a graph G = (V,E) is
the graph Gt = (V,E(t)), t > 1, where E(t) is the set of ordered pairs of distinct
vertices that have a path of at most t edges between them in G.

Definition 6 For i ∈ N define

Γ+
i (v) = {u ∈ V | (v, u) ∈ Ei}∪{v}, Γ−

i (v) = {u ∈ V | (u, v) ∈ Ei}∪{v} ,

i.e., in the bottleneck graph there is a path of length at most i from v to u,
respectively from u to v.
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Notice that in a symmetric graph Γ+
i (v) = Γ−

i (v). We extend this notation
to sets so that Γ+

i (S) = {u ∈ V | u ∈ Γ+
i (v) for some v ∈ S} , with Γ−

i (S)
defined similarly. We use Γ+(v) and Γ−(v) instead of Γ+

1 (v) and Γ−
1 (v).

Definition 7 For i ∈ N define

Υ+
i (v) = Γ+

i (v) \ Γ+
i−1(v), Υ−

i (v) = Γ−
i (v) \ Γ−

i−1(v) ,

i.e., the nodes for which the path distance from v is exactly i, and the nodes
for which the path distance to v is exactly i, respectively.

For a set S, the extension follows the pattern Υ+
i (S) = Γ+

i (S) \ Γ+
i−1(S). We

use Υ+(v) and Υ−(v) instead of Υ+
1 (v) and Υ−

1 (v).

We call x a parent of y, and y a child of x, if x ∈ Υ−(y). If Υ−(y) is empty
we call y an orphan.

Definition 8 (Center Capturing Vertex (CCV)) A vertex v is a center
capturing vertex (CCV) if Γ−(v) ⊆ Γ+(v), i.e., v covers every vertex that
covers v.

In the graph GROPT
the optimum center that covers v must lie in Γ−(v); for a

CCV v, it lies in Γ+(v), hence the name. In symmetric graphs all vertices are
CCVs and this property leads to the standard 2-approximation.

The following three fundamental problems, related to k-center, are all NP-
complete [20].

Definition 9 (Dominating Set) Given a graph G = (V,E), and a weight
function w : V → Q+ on the vertices, find a minimum weight subset D ⊆ V
such that every vertex v ∈ V is covered by D, i.e., Γ+(D) = V .

Definition 10 (Set Cover) Given a universe U of n elements, a collection
S = {S1, . . . , Sk} of subsets of U , and a weight function w : S → Q+, find a
minimum weight sub-collection of S that includes all elements of U .

Definition 11 (Max Coverage) Given 〈U ,S, k〉, with U and S as above,
find a sub-collection of k sets that includes the maximum number of elements
of U .

3 Asymmetric k-Center Review

The O(log∗ n) algorithm of Panigrahy and Vishwanathan [12] has two phases,
the halve phase, sometimes called the reduce phase, and the augment phase.
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As described above, the algorithm guesses ROPT, and works in the bottleneck
graph GROPT

. In the halve phase we find a CCV v, include it in the set of
centers, mark every vertex in Γ+

2 (v) as covered, and repeat until no CCVs
remain unmarked. The CCV property ensures that, as each CCV is found and
vertices are marked, the unmarked portion of the graph can be covered with
one fewer center. Hence if k′′ CCVs are obtained, the unmarked portion of
the graph can be covered with k′ = k − k′′ centers. The authors then prove
that this unmarked portion, CCV-free, can be covered with only k′/2 centers
if we use radius 5 instead of 1. That is to say, k′/2 centers suffice in the graph
G5

ROPT
.

The k-center problem in the bottleneck graph is identical to the dominating
set problem. This is a special case of set cover in which the sets are the Γ+

terms. In the augment phase, the algorithm recursively uses the greedy set
cover procedure. Since the optimal cover uses at most k′/2 centers, the first
cover has size at most k′

2
log 2n

k′
.

The centers in this first cover are themselves covered, using the greedy set cover
procedure, then the centers in the second cover, and so forth. After O(log∗ n)
iterations the algorithm finds a set of at most k′ vertices that, together with the
CCVs, O(log∗ n)-covers the unmarked portion, since the optimal solution has
k′/2 centers. Combining these with the k′′ CCVs, we have k centers covering
the whole graph within O(log∗ n).

Archer [13] presents two O(log∗ k) algorithms, both building on the work
in [12]. The algorithm more directly connected with the earlier work nev-
ertheless has two fundamental differences. Firstly, in the reduce phase Archer
shows that the CCV-free portion of the graph can be covered with 2k′/3 cen-
ters within radius 3. Secondly, he constructs a set cover-like integer program
and solves the relaxation to get a total of k′ fractional centers that cover the
unmarked vertices. From these fractional centers, he obtains a 2-cover of the
unmarked vertices with k′ log k′ (integral) centers. These are the seed for the
augment phase, which thus produces a solution with an O(log∗ k′) approxi-
mation to the optimum radius. We now know that all of these approximation
algorithms are asymptotically optimal [3–5].

4 Asymmetric Weighted k-Center

Recall the application in which the costs of delivery hubs vary. In this situation,
rather than having a restriction on the number of centers used, each vertex
has a weight and we have a budget W that restricts the total weight of centers
used.
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Definition 12 (Weighted k-Center) Given a weight function on the ver-
tices, w : V → Q+, and a bound W ∈ Q+, find a set S ⊆ V of total weight at
most W , so that S covers V with minimum radius.

Hochbaum and Shmoys [14] gave a 3-approximation algorithm for the sym-
metric weighted version, applying their approach for bottleneck problems. We
propose an O(log∗ n)-approximation for the asymmetric version, based on Pan-
igrahy and Vishwanathan’s technique for the unweighted problem. Note that
in light of the complementary hardness result just announced [3–5], this algo-
rithm is asymptotically the best possible. There is another variant that has
both the k and the W restrictions, but we will not expand on that problem
here.

First, a brief sketch of the algorithm, which works with bottleneck graphs. In
the reduce phase, having found a CCV, v, we pick the lightest vertex u in Γ−(v)
(which might be v itself) as a center in our solution. We then mark everything
in Γ+

3 (u) as covered, and continue looking for CCVs. We can show that there
exists a 49-cover of the unmarked vertices with total weight less than a quarter
of the optimum. Finally, we recursively apply a greedy procedure for weighted
sets and elements O(log∗ n) times, similar to the one used for set cover. The
total weight of centers in our solution set is at most W .

The following lemma concerning vertex-weighted digraphs is the key to our
reduce phase and is analogous to Lemma 4 in [12] and Lemma 16 in [13].

Lemma 13 (Cover of Half the Graph’s Weight) Let G = (V,E) be a
digraph with weighted vertices, but unit edge costs. Then there is a subset
S ⊆ V , w(S) ≤ w(V )/2, such that every vertex with positive indegree is
reachable in at most 3 steps from some vertex in S.

PROOF. To construct the set S repeat the following, to the extent possible:
Select a vertex v with positive outdegree and if possible select one with in-
degree zero (that is, Υ−(v) is empty). Compare sets {v} and Υ+(v): add the
lighter set to S and remove Γ+(v) from G.

It is clear that the weight of S is no more than half the weight of V . We must
now show that S 3-covers all non-orphan vertices.

The children of a selected vertex v, Υ+(v), are clearly 1-covered. Assume v is
not in S (trivial otherwise): if v was an orphan initially then ignore it. If v
is an orphan when selected, but not initially, then at some previous stage in
the procedure some parent of v must have been removed by the selection of
a grandparent (a vertex in Υ−

2 (v)), so v is 2-covered. Note that if one of v’s
parents had been selected then v would already have been removed from G.
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Now assume v has at least one parent when it is selected. Consequently, at
that state in the procedure, there are no vertices that have children, but
are orphans, otherwise on of them would have been selected instead of v. We
conclude that the sets of parents of v, S1 = Υ−(v), parents of S1, S2 = Υ−(S1),
and parents of S2, S3 = Υ−(S2), are not empty. Although these sets might
not be pairwise disjoint, if they contained any of v’s children, then v would be
3-covered.

After v is removed, there are three possibilities for S2: (i) Some vertex in
S3 is selected, removing part of S2; (ii) Some vertex in S2 is selected and
removed; (iii) Some vertex in S1 is selected, possibly making some S2 vertices
childless. One of these events must happen, since S1 and S2 are non-empty.
As a consequence, v is 3-covered. 2

Henceforth call the vertices that have not yet been covered/marked active.
Using Lemma 13 we can show that after removing the CCVs from the graph,
we can cover the active set with half the weight of an optimum cover if we are
allowed to use distance 7 instead of 1.

Lemma 14 (Cover of Half Optimal Weight) Consider a subset A ⊆ V
that has a cover consisting of vertices of total weight W , but no CCVs. Assume
there exists a set C1 that 3-covers exactly V \ A. Then there exists a set of
vertices S of total weight W/2 that, together with C1, 7-covers A.

PROOF. Let U be a subset of the optimal centers that covers A. We call
u ∈ U a near center if it can be reached in 4 steps from C1, and a far center
otherwise. Since C1 5-covers all of the nodes covered by near centers, it suffices
to choose S to 6-cover the far centers, so that S will 7-cover all the nodes they
cover.

Define an auxiliary graph H on the (optimal) centers U as follows. There is an
edge from x to y in H if and only if x 2-covers y in G (and x 6= y). The idea is
to show that any far center has positive indegree in H. As a result, Lemma 13
shows there exists a set S ∈ U with |S| ≤ W/2 such that S 3-covers the far
centers in H, and thus 6-covers them in G.

Let x be any far center: note that x ∈ A. Since A contains no CCVs, there
exists y such that y covers x, but x does not cover y. Since x 6∈ Γ+

4 (C1),
y 6∈ Γ+

3 (C1), and thus y ∈ A (since everything not 3-covered by C1 is in A).
Thus there exists a center z ∈ U , which is not x, but might be y, that covers
y and therefore 2-covers x. Hence x has positive indegree in the graph H. 2
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As we foreshadowed, we will use the greedy heuristic to complete the algo-
rithm. We now analyze the performance of this heuristic in the context of the
dominating set problem in node-weighted graphs. All vertices V are available
as potential members of the dominating set (i.e. centers), but we need only
dominate the active vertices A. The heuristic is to select the most efficient
vertex: the one that maximizes w(A(v))/w(v), where A(v) ≡ A ∩ Γ+(v).

Lemma 15 (Greedy Algorithm in Weighted Dominating Set) Let
〈

G = (V,E), w : V → Q+, A ⊆ V
〉

be an instance of the dominating set problem in which a set A is to be domi-
nated. Also, let w∗ be the weight of an optimum solution for this instance. The
greedy algorithm gives an approximation guarantee of 2 + ln(w(A)/w∗).

PROOF. In every application of the greedy selection there must be some
vertex v ∈ V for which

w(A(v))

w(A)
≥

w(v)

w∗
(1)

otherwise no optimum solution of weight w∗ would exist. This is certainly true
of the most efficient vertex v, so make v a center and make all the vertices it
covers inactive, leaving A′ active. Now,

w(A′) = w(A) − w(A(v)) ≤ w(A)

(

1 −
w(v)

w∗

)

< w(A) exp

(

−
w(v)

w∗

)

.

After j steps, the remaining active vertices, Aj, satisfy

w(Aj) < w(A0)
j

∏

i=1

exp

(

−
w(vi)

w∗

)

, (2)

where vi is the ith center picked (greedily) and A0 is the original active set.

Assume that after some number of steps, say j, there are still some active
elements, but the upper bound in (2) has just dropped below w∗. That is to
say,

j
∑

i=1

w(vi) > w∗ ln(w(A0)/w∗) .

Before we picked the vertex vj we had

j−1
∑

i=1

w(vi) ≤ w∗ ln(w(A0)/w∗) , and so,
j

∑

i=1

w(vi) ≤ w∗ + w∗ ln(w(A0)/w∗) ,

for (1) tells us that w(vj) is no greater than w∗. To cover the remainder, Aj,
we just use Aj itself, at a cost less than w∗. Hence the total weight of the
solution is at most w∗(2 + ln(w(A0)/w∗)).
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On the other hand, if the upper bound on w(Aj) never drops below w∗ before
Aj becomes empty, then we have a solution to the instance of weight at most
w∗ ln(w(A0)/w∗). 2

We now show that this tradeoff between covering radius and optimal cover
size leads to an O(log∗ n) approximation.

Lemma 16 (Recursive Set Cover) Given A ⊆ V , such that A has a cover
of weight W , and a set C1 ⊆ V that covers V \ A, we can find in polynomial
time a set of vertices of total weight at most 4W that, together with C1, covers
A (and hence V ) within a radius of O(log∗ n).

PROOF. We will be applying the greedy algorithm of Lemma 15. The ap-
proximation guarantee is 2 + ln(w(A)/W ), which is less than log1.5(w(A)/W )
when w(A) ≥ 4W .

Our first attempt at a solution, S0, is all vertices of weight no more than W .
Only these vertices could be in the optimum center set and their total weight
is at most nW . Since C1 covers S0 \ A, consider A0 = S0 ∩ A, which has a
cover of size W . Lemma 15 shows that the greedy algorithm results in a set
S1 that covers A0 and has weight

w(S1) ≤ W log1.5(
Wn

W
) = W log1.5 n ,

assuming n ≥ 4. The set C1 covers S1 \ A, so we need only consider A1 =
S1 ∩A. We continue this procedure and note that at the ith iteration we have
w(Si) ≤ W log1.5(w(Si−1)/W ). By induction, after O(log∗ n) iterations the
weight of our solution set, Si, is at most 4W . 2

All the algorithmic tools can now be assembled to form an approximation
algorithm.

Theorem 17 (Approximation of Weighted k-Center) We can approxi-
mate the weighted k-center problem within factor O(log∗ n) in polynomial time.

PROOF. Guess the optimum radius, ROPT, and work in the bottleneck graph
GROPT

. Initially, the active set A is V . Repeat the following as many times
as possible: Pick a CCV v in A, add the lightest vertex u in Γ−(v) to our
solution set of centers, and remove the set Γ+

3 (u) from A. Since v is covered
by an optimum center in Γ−(v), u is no heavier than this optimum center.
Moreover, since the optimum center lies in Γ+(v), Γ+

3 (u) includes everything
covered by it.
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Let C1 be the centers chosen in this first phase. We know the remainder of the
graph, A, has a cover of total weight W ′ = W −w(C1), because of our choices
based on CCV and weight.

Lemma 14 shows that we can cover the remaining uncovered vertices with
weight no more than W ′/2 if we use covering radius 7. Applying the lemma
again, we can cover the remaining vertices with weight W ′/4 centers if we allow
radius 49. So let the active set A be V \ Γ+

49(C1), and recursively apply the
greedy algorithm as described in the proof of Lemma 16 on the graph G49

ROPT
.

As a result, we have a set of size W ′ that covers A within radius O(log∗ n). 2

5 Asymmetric p-Neighbor k-Center

Imagine that we wish to place k facilities so that the maximum distance of
a demand point from its pth-closest facility is minimized. As a consequence,
failures in p − 1 facilities do not cause severe network performance loss.

Definition 18 (Asymmetric p-Neighbor k-Center Problem) For every
subset S and vertex v in V , let dp(S, v) denote the distance from the pth closest
vertex in S to v. The problem is to find a subset S of at most k vertices that
minimizes maxv∈V \S dp(S, v).

We show that we can approximate the asymmetric p-neighbor k-center prob-
lem within a factor of O(log∗ k) if we allow ourselves to use 2k centers. Our
algorithm is restricted to the case p ≤ n/k, but this is reasonable as p should
not be too large [15].

We use the same techniques as before, including bottleneck graphs, but in the
augment phase we use the greedy algorithm for the constrained set multicover
problem [21]. That is, each element, e, needs to be covered re times, but each
set can be picked at most once. The p-neighbor k-center problem has re = p
for all e. We say that an element e is active if it occurs in fewer than p
sets chosen so far. The greedy heuristic is to pick the set that covers the most
active elements. It can be shown that this algorithm achieves an approximation
factor of Hn = O(log n) [21, Section 13.2]. However the following result is more
appropriate to our application.

Lemma 19 (Greedy Constrained Set Multicover) Let k be the value of
the optimum solution to the Constrained Set Multicover problem. The greedy
algorithm gives approximation guarantee of log1.5(np/k).

PROOF. The same kind of averaging argument used for standard set cover
shows that the greedy choice of a set reduces the total number of unmarked
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element copies by a factor 1 − 1/k. So after i steps, the number of copies of
elements yet to be covered is np(1−1/k)i < np(e−1/k)i. Hence after k ln(np/k)
steps the number of uncovered copies of elements is less than k. A naive cover
of these last k element copies leads the total number of sets in the solution
to be at most k + k ln(np/k). Since p ≥ 2, this greedy algorithm has an
approximation factor less than log1.5(np/k). 2

If p ≤ n/k the approximation guarantee above is less than log1.2(n/k). We can
now apply the standard recursive approach from [12]. Recall that Panigrahy
and Vishwanathan use O(log∗ n) iterations to get down to 2k centers, which
gives them a O(log∗ n) approximation because of the halve phase. They also
state that using O(log n) iterations instead they would get down to k centers
without the halve phase. Since we do not have anything similar to the halve
phase, for the p-neighbor k-center problem we need O(log n) iterations to get
down to k centers. There is no analogy to Lemma 4 [12], in which Panigrahy
and Vishwanathan show that all vertices with positive indegree can be 2-
covered by half the number of centers.

We can lower the approximation guarantee to O(log∗ k), with 2k centers, using
Archer’s LP-based priming, which we describe now in detail.

We first solve the LP for the constrained set multicover problem. Let yv be
the (fractional) extent to which a vertex is a center:

minimize
∑

v∈V

yv

subject to
∑

u∈Γ−(v)

yu ≥ p, v ∈ A

−yv ≥ −1, v ∈ V

yv ≥ 0, v ∈ V .

In the solution each vertex is covered by an amount p of fractional centers,
out of a total of k. We can now use the greedy method to obtain an initial
set of k2 ln k centers that 2-covers every vertex in the active set with at least
p centers.

Let A be the active vertices (the vertices that are covered fewer than p times)
and let A(v) = Γ+(v)∩A. Let y′(v) = yv · av, where av is the number of times
v still needs to be covered, and let y′(S) =

∑

v∈S y′(v) for all S ⊆ V . Note
that v ∈ A ⇔ av > 0 and thus y′(A) = y′(V ). The function y′ indicates the
extent to which an optimal fractional center is not yet covered. We will see
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that when the value of y′(V ) is low, we can be sure that we have found a
reasonable cover of all the vertices.

Start with an empty set S and repeat the following until y′(V ) < p: Choose
the vertex v from T = V − S maximizing y′(Γ+(v)), add it to S, and set
au = au − 1 for all vertices u ∈ A(v).

Lemma 20 Once y′(V ) < p, the set S 2-covers every vertex with at least p
centers.

PROOF. For every v, let α(v) be its active parents, α(v) = {u : u ∈
Γ−(v), au ≥ 1}, and let β(v) be its inactive parents, β(v) = {u : u ∈
Γ−(v), au = 0} .

Since y′(V ) < p we have

∑

u∈α(v)

yu ≤
∑

u∈α(v)

y′
u < p .

By the first LP constraint we have

∑

u∈α(v)

yu +
∑

u∈β(v)

yu =
∑

u∈Γ−(v)

yu ≥ p ,

and thus
∑

u∈β(v) yu > 0. We conclude that there must be at least one vertex
in β(v). The p vertices covering this vertex 2-cover v. 2

The following lemma corresponds to Archer’s Lemma 4 [13].

Lemma 21 There exists v ∈ T such that

y′(A(v)) ≥
y′(A)

y(T )
.

PROOF. We take a weighted average of y′(A(v)) over v ∈ T .

1

y(T )

∑

v∈T

yv · y
′(A(v)) =

1

y(T )

∑

v∈T

∑

u∈A(v)

yv · y
′(u)

=
1

y(T )

∑

u∈A

y′(u)
∑

v∈Γ−(u)∩T

yv

≥
1

y(T )

∑

u∈A

y′(u)
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The inequality follows from the fact that for all u ∈ A, y′(u) ≥ 0 and y(Γ−(u)∩
T ) ≥ 1 (otherwise there would be more than p − 1 members of Γ−(u) in
S). Since some term is at least as large as the weighted average, the lemma
follows. 2

Lemma 22

|S |≤ k2 ln k .

PROOF. Due to Lemma 21, the vertex v chosen in every application of the
greedy method has y′(Γ+(v)) = y′(A(v)) ≥ y′(A)/y(T ). In this proof we focus
on one iteration at a time and let A′ stand for the active vertices after the
iteration and A for those before. Now,

y′(A′) = y′(A) − y(A(v))

≤ y′(A) − y′(A(v))/p

≤ y′(A) −
y′(A)

y(T ) · p

≤ y′(A) −
y′(A)

kp

= y′(V )(1 −
1

kp
)

since y(B) ≥ y′(B)/p for any set B and y(T ) ≤ k. Initially, y′(V ) = kp, so
y′(V ) < p after at most kp ln k iterations. Since p ≤ k—otherwise no solution
exists—we have |S| ≤ k2 ln k. 2

Repeatedly applying the greedy procedure for constrained set multicover, this
time for O(log∗ k) iterations, we get 2k centers that cover all active vertices
within O(log∗ k). Alternatively, we could carry out O(log k) iterations and
stick to just k centers.

6 Inapproximability Results

In this section we give inapproximability results for the asymmetric versions
of the k-center problem with outliers, the priority k-center problem, and the
k-supplier problem. These problems all admit constant factor approximation
algorithms in the symmetric case.

15



Asymmetric k-Center with Outliers

A disadvantage of the standard k-center problem is that a few distant clients
can force centers to be located in isolated places. This situation is averted in
the following variant problem, in which a small subset of clients may be denied
service, and some points are forbidden from being centers.

Definition 23 (k-Center with Outliers and Forbidden Centers) Find a
set S ⊆ C, where C is the set of vertices allowed to be centers, such that |S| ≤ k
and S covers at least p nodes, with minimum radius.

Theorem 24 For any function α(n), the asymmetric k-center problem with
outliers (and forbidden centers) cannot be approximated within a factor of
α(n) in polynomial time, unless P = NP.

PROOF. We reduce instance 〈U,S, k〉 of max coverage to our problem. Con-
struct vertex sets A and B so that for each set S ∈ S there is vS ∈ A, and for
each element e ∈ U there is ve ∈ B. From each vertex vS ∈ A, create an edge
of unit length to vertex ve ∈ B if e ∈ S. Let p = |B| + k.

If the optimum value of the max coverage instance is |U|, then the k nodes
in A that correspond to some optimal sub-collection will cover p nodes within
radius 1. Our α(n)-approximation algorithm will thus return k centers that
cover p nodes in some finite distance. If the maximum coverage with k sets is
less than |U|, then the optimum covering radius for p nodes, using k centers,
is infinite. Since our approximation can distinguish between these two cases,
the approximation problem must be NP-complete. 2

Note that the proof never relied on the fact that the B vertices were forbidden
from being centers—setting p to |B| + k ensured this.

Asymmetric Priority k-Center

Perhaps some demand points have a greater need for centers to be closer to
them than others. This situation is captured by the priority k-center problem,
in which the distance to a demand vertex is effectively enlarged by its priority.
Note that the triangle inequality still holds for the original distances.

Definition 25 (Priority k-Center) Given a priority function p : V → Q+

on the vertices, find S ⊆ V , |S| ≤ k, that minimizes R so that for every v ∈ V
there exists a center c ∈ S for which pvdcv ≤ R.

16



A

B

Fig. 1. k-center with priorities. Solid lines have length 1, dotted lines length ℓ.

Theorem 26 For any polynomial time computable function α(n), the asym-
metric k-center problem with priorities cannot be approximated within a factor
of α(n) in polynomial time, unless P = NP.

PROOF. The construction of the sets A and B is similar to the proof of
Theorem 24. Again, we have the unit length set-element edges from A to B,
but this time we make the set A a complete digraph, with edges of length ℓ, as
in Figure 1. Give the nodes in set A priority 1 and the nodes in set B priority
ℓ.

If there exists a collection of k sets that cover all elements, then there exist
k elements of A that cover every vertex in A and B within radius ℓ. If such
sets do not exist, then the optimal covering radius using k centers is ℓ2 + ℓ:
Some vertex in B is at distance ℓ + 1 from its nearest center and has priority
ℓ. Since we can set ℓ equal to α(n), our algorithm can distinguish between the
two types of max coverage instance. Therefore the approximation problem is
NP-complete. 2

Asymmetric k-Supplier

In the k-supplier problem the vertex set is segregated into suppliers and cus-
tomers. Only supplier vertices can be centers and only customer vertices need
to be covered.

Definition 27 (k-Supplier) Given a set of suppliers Σ and a set of cus-
tomers C, find a subset S ⊆ Σ that minimizes R such that S covers C within
R.

Theorem 28 For any function α(n), the asymmetric k-supplier problem can-
not be approximated within a factor of α(n) in polynomial time, unless P =
NP.
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PROOF. By a reduction from the max coverage problem similar to the proof
of Theorem 24. 2
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