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Abstract. We consider string matching with variable length gaps. Given
a string T and a pattern P consisting of strings separated by variable
length gaps (arbitrary strings of length in a specified range), the prob-
lem is to find all ending positions of substrings in T that match P . This
problem is a basic primitive in computational biology applications. Let
m and n be the lengths of P and T , respectively, and let k be the
number of strings in P . We present a new algorithm achieving time
O((n+m) log k+α) and space O(m+A), where A is the sum of the lower
bounds of the lengths of the gaps in P and α is the total number of oc-
currences of the strings in P within T . Compared to the previous results
this bound essentially achieves the best known time and space complexi-
ties simultaneously. Consequently, our algorithm obtains the best known
bounds for almost all combinations of m, n, k, A, and α. Our algorithm
is surprisingly simple and straightforward to implement.

1 Introduction

Given integers a and b, 0 ≤ a ≤ b, a variable length gap g{a, b} is an arbitrary
string over Σ of length between a and b, both inclusive. A variable length gap

pattern (abbreviated VLG pattern) P is the concatenation of a sequence of
strings and variable length gaps, that is, P is of the form

P = P1 · g{a1, b1} · P2 · g{a2, b2} · · · g{ak−1, bk−1} · Pk .

A VLG pattern P matches a substring S of T iff S = P1 ·G1 · · ·Gk−1 ·Pk, where
Gi is any string of length between ai and bi, i = 1, . . . , k − 1. Given a string T
and a VLG pattern P , the variable length gap problem (VLG problem) is to find
all ending positions of substrings in T that match P .

Example 1. As an example, consider the problem instance over the alphabet
Σ = {A, G, C, T }:

T = ATCGGCTCCAGACCAGTACCCGTTCCGTGGT

P = A · g{6, 7} · CC · g{2, 6} · GT

The solution to the problem instance is the set of positions {17, 28, 31}. For ex-
ample the solution contains 17, since the substring ATCGGCTCCAGACCAGT,
ending at position 17 in T , matches P .

Variable length gaps are frequently used in computational biology applica-
tions [15, 13, 16, 7, 8]. For instance, the PROSITE data base [5, 9] supports search-
ing for proteins specified by VLG patterns.



1.1 Previous Work

We briefly review the main worst-case bounds for the VLG problem. As above, let
P = P1 ·g{a1, b1}·P2 ·g{a2, b2} · · · g{ak−1, bk−1}·Pk be a VLG pattern consisting

of k strings, and let T be a string. To state the bounds, let m =
∑k

i=1 |Pi| be
the sum of the lengths of the strings in P and let n be the length of T .

The simplest approach to solve the VLG problem is to translate P into a
regular expression and then use an algorithm for regular expression matching.
Unfortunately, the translation produces a regular expression significantly longer
than P , resulting in an inefficient algorithm. Specifically, suppose that the alpha-
bet Σ contains σ characters, that is, Σ = {c1, . . . , cσ}. Using standard regular
expression operators (union and concatenation), we can translate g{a, b} into
the expression

g{a, b} =

a
︷ ︸︸ ︷

C · · ·C

b−a
︷ ︸︸ ︷

(C|ǫ) · · · (C|ǫ),

where C is shorthand for the expression (c1 | c2 | . . . cσ). Hence, a variable length
gap g{a, b}, represented by a constant length expression in P , is translated into
a regular expression of length Ω(σb). Consequently, a regular expression R cor-

responding to P has length Ω(Bσ + m), where B =
∑k−1

i=1 bi is the sum of the
upper bounds of the gaps in P . Using Thompson’s textbook regular expression
matching algorithm [19] this leads to an algorithm for the VLG problem using
O(n(Bσ + m)) time. Even with the fastest known algorithms for regular expres-
sion matching this bound can only be improved by at most a polylogarithmic
factor [14, 17, 2, 3].

Several algorithms that improve upon the direct translation to a regular
expression matching problem have been proposed [15, 13, 6, 16, 11, 12, 18, 7, 8, 4].
Some of these are able to solve more general versions of the problem, such as
searching for patterns that also contain character classes and variable length
gaps with negative length. Most of the algorithms are based on fast simulations
of non-deterministic finite automata. In particular, Navarro and Raffinot [16]
gave an algorithm using O(n(m+B

w
+1)) time, where w is the number of bits in a

memory word. Fredrikson and Grabowski [7, 8] improved this bound for the case
when all variable length gaps have lower bound 0 and identical upper bound b.
Their fastest algorithm achieves O(n(m log log b

w
+ 1)) time. Very recently, Bille

and Thorup [4] gave an algorithm using O(n(k log w

w
+ log k)+m log m+A) time

and O(m + A) space, where A =
∑k−1

i=1 ai is the sum of the lower bounds on
the lengths of the gaps. Note that if we assume that the nk term dominates and
ignore the w/ log w factor, the time bound reduces to O(nk).

An alternative approach, suggested independently by Morgante et al. [12]
and Rahman et al. [18], is to design algorithms that are efficient in terms of
the total number of occurrences of the k strings P1, . . . , Pk within T . Let α be
this number, e.g., in Example 1 A, CC, and GT occur 5, 5, and 4 times in
T . Hence, α = 5 + 5 + 4 = 14. Rahman et al. [18] gave an algorithm using



O((n + m) log k + α log(max1≤i<k(bi − ai))) time1. Morgante et al. [12] gave a
faster algorithm using O((n + m) log k + α) time. Each of the k strings in P can
occur at most n times and therefore α ≤ nk. Hence, in the typical case when the
strings occur less frequently, i.e, α = o(n(k log w

w
+ log k)), these approaches are

faster. However, unlike the automata based algorithm that only use O(m + A)
space, both of these algorithm use Θ(m + α) space. Since α typically increases
with the length of T , the space usage of these algorithms is likely to quickly
become a bottleneck for processing large biological data bases.

1.2 Our Results

We address the basic question of whether is it possible to design an algorithm
that simultaineously is fast in the total number of occurrences of the k strings
and uses little space. We show the following result.

Theorem 1. Given a string T and a V LG pattern P with k strings, we can

solve the variable length gaps matching problem in time O((n+m) log k+α) and

space O(m + A). Here, α is the number of occurrences of the strings of P in T
and A is the sum of the lower bounds of the gaps.

Hence, we match the best known time bounds in terms of α and the space for
the fastest automata based approach. Consequently, whenever α = o(n(k log w

w
+

log k)) the time and space bounds of Theorem 1 are the best known. Our algo-
rithm uses a standard comparison based version of the Aho-Corasick automaton
for multi-string matching [1]. If the size of the alphabet is constant or we use
hashing the log k factor in the running time disappears. Furthermore, our algo-
rithm is surprisingly simple and straightforward to implement.

In some cases, we may also be interested in outputting not only the ending
positions of matches of P , but also all of the possible combinations of strings
in P that imply an occurrence in T . For instance, after we have identified a
particularly interesting section in T using Theorem 1. Note that there can be
exponentially many of these. Morgante et al. [12] showed how to encode all of
these in a graph of size O(α). We can similarly extend our algorithm to produce
such an encoding at the cost of using O(α) additional space.

1.3 Technical Overview

The previous work by Morgante et al. [12] and Rahman et al. [18] find all of the
α occurrences of the strings P1, . . . , Pk of P in T using a standard multi-string
matching algorithm (see Section 2.1). From these, they construct a graph of
size Ω(α) to represent possible combinations of string occurrences that can be
combined to form occurrences of P .

1 The bound stated in the paper does not include the log k factor, since they assume
that the size of the alphabet is constant. We make no assumption on the alphabet
size and therefore include it here.



Our algorithm similarly finds all of the occurrences of the strings of P in
T . However, we show how to avoid constructing a large graph representing the
possible combinations of occurrences. Instead we present a way to efficiently
represent sufficient information to correctly find the occurrences of P , leading to
a significant space improvement from O(m + α) to O(m + A). Surprisingly, the
algorithm needed to achieve this space bound is very simple, and only requires
maintaining a set of sorted lists of disjoint intervals. Even though the algorithm is
simple the space bound achieved by it is non-obvious. We give a careful analysis
leading to the O(m + A) space bound.

2 Algorithm

In this section we present the algorithm. For completeness, we first briefly review
the classical Aho-Corasick algorithm for multiple string matching in Section 2.1.
We then define the central idea of relevant occurrences in Section 2.2. We present
the full algorithm in Section 2.3 and analyze it in Section 3.

2.1 Multi-String Matching

Given a set of pattern strings P = {P1, . . . , Pk} of total length m and a text
T of length n the multi-string matching problem is to report all occurrences of
each pattern string in T . Aho and Corasick [1] generalized the classical Knuth-
Morris-Pratt algorithm [10] for single string matching to multiple strings. The
Aho-Corasick automaton (AC-automaton) for P , denoted AC(P), consists of the
trie of the patterns in P . Hence, any path from the root of the trie to a state s
corresponds to a prefix of a pattern in P . We denote this prefix by path(s). For
each state s there is also a special failure transition pointing to the unique state
s′ such that path(s′) is the longest prefix of a pattern in P matching a proper
suffix of path(s). Note that the depth of s′ in the trie is always strictly smaller
for non-root states than the depth of s.

Finally, for each state s we store the subset occ(s) ⊆ P of patterns that match
a suffix of path(s). Since the patterns in occ(s) share suffixes we can represent
occ(s) compactly by storing for s the index of the longest string in occ(s) and a
pointer to the state s′ such that path(s′) is the second longest string if any. In
this way we can report occ(s) in O(|occ(s)|) time.

The maximum outdegree of any state is bounded by the number of leaves in
the trie which is at most k. Hence, using a standard comparison-based balanced
search tree to index the trie transitions out of each state we can construct AC(P)
in O(m log k) time and O(m) space.

To find the occurrences of P in T , we read the characters of T from left-to-
right while traversing AC(P) to maintain the longest prefix of the strings in P
matching T . At a state s and character c we proceed as follows. If c matches
the label of a trie transition t from s, the next state is the child endpoint of t.
Otherwise, we recursively follow failure transitions from s until we find a state
s′ with a trie transition t′ labeled c. The next state is then the child endpoint of
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Fig. 1. In this figure x is an occurrence of Pi in T reported at position τ . The first
and last occurrence of Pi+1 start outside R(x) thereby violating the ith gap constraint,
so these occurrences are not relevant compared to x. The second occurrence y of Pi+1

starts in R(x), so if x is itself relevant, then y is also relevant.

t′. If no such state exists, the next state is the root of the trie. For each failure
transition traversed in the algorithm we must traverse at least as many trie
transitions. Therefore, the total time to traverse AC(P) and report occurrences
is O(n log k + α), where α is the total number of occurrences.

Hence, the Aho-Corasick algorithm solves multi-string matching in O((n +
m) log k + α) time and O(m) space.

2.2 Relevant Occurrences

For a substring x of T, let startpos(x) and endpos(x) denote the start and end
position of x in T , respectively. Let x be an occurrence of Pi with τ = endpos(x)
in T , and let R(x) denote the range [τ + ai +1; τ + bi +1] in T . An occurrence y
of Pi in T is a relevant occurrence of Pi iff i = 1 or startpos(y) ∈ R(x), for some
relevant occurrence x of Pi−1. See Fig. 1 for an example. Relevant occurrences
are similar to the valid occurrences defined in [18]. The difference is that a valid
occurrence is an occurrence of Pi+1 that is in R(x) for any occurrence x of Pi

in T , i.e., x need not be a valid occurrence itself.
From the definition of relevant occurrences, it follows directly that we can

solve the VLG problem by finding the relevant occurrences of Pk in T . Specifi-
cally, we have the following result.

Lemma 1. Let S be a substring of T matching the VLG pattern S1 · g{a1, b1} ·
S2 · g{a2, b2} · · ·Sk. Then, startpos(Si+1) ∈ R(Si) for all i = 1, . . . , k − 1.

2.3 The Algorithm

Algorithm 1 computes the relevant occurrences of Pk using the output from
the AC automaton. The idea behind the algorithm is to keep track of the ranges
defined by the relevant occurrences of each subpattern Pi, such that we efficiently
can check if an occurrence of Pi is relevant or not. More precisely, for each
subpattern Pi, i = 2, . . . , k, we maintain a sorted list Li containing the ranges
defined by previously reported relevant occurrences of Pi−1. When an occurrence



Algorithm 1 Algorithm solving the VLG problem for a VLG pattern P and a
string T .

1. Build the AC-automaton for the subpatterns P1, P2, . . . , Pk.
2. Process T using the automaton and each time an occurrence x of Pi is reported at

position τ = endpos(x) in T do:
(a) Remove any dead ranges from the lists Li and Li+1.
(b) If i = 1 or τ − |Pi| = startpos(x) is contained in the first range in Li do:

i. If i < k: Append the range R(x) = [τ +ai +1; τ +bi +1] to the end of Li+1.
If the range overlaps or adjoins the last range in Li+1, the two ranges are
merged into a single range.

ii. If i = k: Report τ .

of Pi is reported by the AC automaton, we can determine whether it is relevant
by checking if it starts in a range contained in Li (step 2b). Initially, the lists
L2, L3, . . . , Lk are empty. When a relevant occurrence of Pi is reported, we add
the range defined by this new occurrence to the end of Li+1. In case the new
range [s, t] overlaps or adjoins the last range [q, r] in Li+1 (s ≤ r + 1) we merge
the two ranges into a single range [q, t].

Let τ denote the current position in T . A range [a, b] ∈ Li is dead at position

τ iff b < τ −|Pi|. When a range is dead no future occurrences y of Pi can start in
that range since endpos(y) ≥ τ implies startpos(y) ≥ τ −|Pi|. In Fig. 1 the range
R(x) defined by x dies, when position u is reached. Our algorithm repeatedly
removes any dead ranges to limit the size of the lists L2, L3, . . . , Lk. To remove
the dead ranges in step 2a we traverse the list and delete all dead ranges until
we meet a range that is not dead. Since the lists are sorted, all remaining ranges
in the list are still alive. See Fig. 2 for an example.

3 Analysis

We now show that Algorithm 1 solves the VLG problem in time O((n+m) log k+
α) and space O(m + A), implying Theorem 1.

3.1 Correctness

To show that Algorithm 1 finds exactly the relevant occurrences of Pk, we show
by induction on i that the algorithm in step 2b correctly determines the relevancy
of all occurrences of Pi, i = 1, 2, . . . , k, in T .

Base case: All occurrences of P1 are by definition relevant and Algorithm 1
correctly determines this in step 2b.

Inductive step: Let y be an occurrence of Pi, i > 1, that is reported at position
τ . There are two cases to consider.
1. y is relevant. By definition there is a relevant occurrence x of Pi−1 in

T , such that startpos(y) = τ − |Pi| ∈ R(x). By the induction hypoth-
esis x was correctly determined to be relevant by the algorithm. Since
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Fig. 2. The occurrences of the subpatterns P1 = A, P2 = CC and P3 = GT and the
ranges they define in the text T from Example 1. Occurrences which are not relevant
are crossed out. The bold occurrences of P3 are the relevant occurrences of Pk and their
end positions 17,28 and 31 constitute the solution to the VLG problem. Consider the
point in the execution of the algorithm when the occurrence x of P2 at position τ = 26 is
reported by the Aho-Corasick automaton. At this time L2 =

ˆ
[17; 20], [22; 23], [25; 26]

˜

and L3 =
ˆ

[23, 28]
˜
. The ranges [17; 20] and [22; 23] are now dead and are removed from

L2 in step 2a. In step 2b the algorithm determines that x is relevant and R(x) = [29; 33]
is appended to L3: L3 =

ˆ
[23; 33]

˜
.

endpos(x) < τ , R(x) was appended to Li earlier in the execution of the
algorithm. It remains to show that the range containing startpos(y) is
the first range in Li in step 2b. When removing the dead ranges in Li

in step 2a, all ranges [a, b] where b < τ − |Pi| are removed. Therefore
the range containing τ − |Pi| = startpos(y) is the first range in Li af-
ter step 2a. It follows that the algorithm correctly determines that y is
relevant.

2. y is not relevant. Then there exists no relevant occurrence x of Pi−1 such
that startpos(y) ∈ R(x). By the induction hypothesis there is no range in
Li containing startpos(y), since the algorithm only append ranges when
a relevant occurrence is found. Consequently, the algorithm correctly
determines that y is not relevant.

3.2 Time and Space Complexity

The AC automaton for the subpatterns P1, P2, . . . , Pk can be built in time
O(m log k) using O(m) space, where m =

∑k

i=1 |Pi|. For each of the α occur-
rences of the strings P1, P2, . . . , Pk Algorithm 1 first removes the dead ranges
from Li and Li+1 and performs a number of constant-time operations. Since
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Fig. 3. The worst-case situation where ℓ, the maximum number of ranges are present in
Li. The figure only shows the first and the last occurrence of Pi−1 (x1 and xℓ) defining
the ℓ ranges.

both lists are sorted, the dead ranges can be removed by traversing the lists
from the beginning. At most α ranges are ever added to the lists, and there-
fore the algorithm spends O(α) time in total on removing dead ranges. Since
the AC automata runs in time O((n + m) log k + α), the total running time is
O((n + m) log k + α).

To prove the space bound, we first show the following lemma.

Lemma 2. At any time during the execution of the algorithm we have

|Li| ≤

⌊
2ci−1 + |Pi| + ai−1

ci−1 + 1

⌋

= O

(
|Pi| + ai−1

bi−1 − ai−1 + 2

)

,

for i = 2, 3, . . . , k, where ci = bi − ai + 1.

Proof. Consider list Li for some i = 2, . . . , k. Referring to Algorithm 1, the size
of the list Li is only increased in step 2(b)i, when a range R(xj) defined by a
relevant occurrence xj of Pi−1 is reported and R(xj) does not adjoin or overlap
the last range in Li.

Let R(x1) = [s, t] be the first range in Li at an arbitrary time in the execution
of the algorithm. We bound the number of additional ranges that can be added to
Li from the time R(x1) became the first range in Li until R(x1) is removed. The
last position where R(x1) is still alive is τa = t+ |Pi|−1. If a relevant occurrence
xℓ of Pi−1 ends at this position, then the range R(xℓ) = [τa+ai−1+1; τa+bi−1+1]
is appended to Li. Hence, the maximum number of positions d from t to the end



of R(xℓ) is

d = τa + bi−1 + 1 − t

= (t + |Pi| − 1) + bi−1 + 1 − t

= |Pi| + bi−1

= |Pi| + ai−1 + ci−1 − 1 .

In the worst case, all the ranges in Li are separated by exactly one position as
illustrated in Fig. 3. Therefore at most ⌊d/(ci−1 + 1)⌋ additional ranges can be
added to Li before R(x1) is removed. Counting in R(x1) yields the following
bound on the size of Li

|Li| ≤

⌊
d

ci−1 + 1

⌋

+ 1 =

⌊
2ci−1 + |Pi| + ai−1

ci−1 + 1

⌋

= O

(
|Pi| + ai−1

bi−1 − ai−1 + 2

)

.

⊓⊔

By Lemma 2 the total number of ranges stored at any time during the processing
of T is at most

O

(
k∑

i=2

|Pi| + ai−1

bi−1 − ai−1 + 2

)

= O

(
k−1∑

i=1

|Pi+1|

bi − ai + 2
+

k−1∑

i=1

ai

bi − ai + 2

)

= O (m + A) .

Each range can be stored using O(1) space, so this is an upper bound on the
space needed to store the lists L2, . . . , Lk. The AC-automaton uses O(m) space,
so the total space required by our algorithm is O(m + A).

In summary, the algorithm uses O((n + m) log k + α) time and O(m + A)
space. This completes the proof of Theorem 1.
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