
TOPICS IN ALGORITHMS

DATA STRUCTURES ON TREES AND

APPROXIMATION ALGORITHMS ON GRAPHS

INGE LI GØRTZ

DISSERTATION

PRESENTED TO THE FACULTY

OF THE IT UNIVERSITY OF COPENHAGEN

IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF THEORETICAL COMPUTER SCIENCE MAY 2005

ii

Abstract

This dissertation is divided into two parts. Part I concerns algorithms and data

structures on trees or involving trees. Here we study three different problems: ef-

ficient binary dispatching in object-oriented languages, tree inclusion, and union-

find with deletions.

The results in Part II fall within the heading of approximation algorithms.

Here we study variants of the k-center problem and hardness of approximation

of the dial-a-ride problem.

Binary Dispatching The dispatching problem for object oriented languages is the

problem of determining the most specialized method to invoke for calls at run-

time. This can be a critical component of execution performance. The unary dis-

patching problem is equivalent to the tree color problem. The binary dispatching prob-

lem can be seen as a 2-dimensional generalization of the tree color problem which

we call the bridge color problem.

We give a linear space data structure for binary dispatching that supports dis-

patching in logarithmic time. Our result is obtained by a employing a dynamic to

static transformation technique. To solve the bridge color problem we turn it into

a dynamic tree color problem, which is then solved persistently.

Tree Inclusion Given two rooted, ordered, and labeled trees P and T the tree

inclusion problem is to determine if P can be obtained from T by deleting nodes

in T . The tree inclusion problem has recently been recognized as an important

query primitive in XML databases. We present a new approach to the tree inclu-

sion problem which leads to a new algorithm that uses optimal linear space and

has subquadratic running time or even faster when the number of leaves in one of

the trees is small. More precisely, we give three algorithms that all uses O(nP +nT)

space and runs in O(nP nT

log nT
), O(lP nT), and O(nP lT log log nT), respectively. Here nS

and lS are the number of nodes and leaves in tree S, respectively.

iii

iv ABSTRACT

Union-Find with Deletions A classical union-find data structure maintains a

collection of disjoint sets under makeset, union and find operations. In the union-

find with deletions problem elements of the sets maintained may be deleted. We

give a modification of the classical union-find data structure that supports delete,

as well as makeset and union, in constant time, while still supporting find in O(logn)

worst-case time and O(α(n)) amortized time. Here n is the number of elements

in the set returned by the find operation, and α(n) is a functional inverse of Ack-

ermann’s function.

Asymmetry in k-Center Variants Given a complete graph on n vertices with

nonnegative (but possibly infinite) edge costs, and a positive integer k, the k-

center problem is to find a set of k vertices, called centers, minimizing the maximum

distance to any vertex and from its nearest center. We examine variants of the

asymmetric k-center problem.

We provide an O(log∗ n)-approximation algorithm for the asymmetric weighted

k-center problem. Here, the vertices have weights and we are given a total bud-

get for opening centers. In the p-neighbor variant each vertex must have p (un-

weighted) centers nearby: we give an O(log∗ k)-bicriteria algorithm using 2k cen-

ters, for small p. In k-center with minimum coverage, each center is required to

serve a minimum of clients. We give an O(log∗ n)-approximation algorithm for

this problem. We also show that the following three versions of the asymmetric

k-center problem are inapproximable: priority k-center, k-supplier, and outliers with

forbidden centers.

Finite Capacity Dial-a-Ride Given a collection of objects in a metric space, a

specified destination point for each object, and a vehicle with a capacity of at most

k objects, the finite capacity dial-a-ride problem is to compute a shortest tour for the

vehicle in which all objects can be delivered to their destinations while ensuring

that the vehicle carries at most k objects at any point in time. In the preemptive

version of the problem an object may be dropped at intermediate locations and

then picked up later by the vehicle and delivered.

We study the hardness of approximation of the preemptive finite capacity

dial-a-ride problem. Let N denote the number of nodes in the input graph, i.e.,

the number of points that are either sources or destinations. We show that the

preemptive Finite Capacity Dial-a-Ride problem has no min{O(log1/4−ε N), k1−ε}-
approximation algorithm for any constant ε > 0 unless all problems in NP can be

solved by randomized algorithms with expected running time O(npolylogn).

Acknowledgments

Stephen Alstrup and Theis Rauhe were my advisors in the first 3 years of my PhD

studies until they went on leave to start up their own company. I wish to thank

them for their support, advice, and inspiration, and for recruiting me to the IT

University. Anna Östlin Pagh and Lars Birkedal were my advisors in the last year

of my PhD. I want to thank both of them for their support and advice.

I am especially grateful to Moses Charikar for all the time he has spent intro-

ducing me to the area of approximation algorithms. Part II of this dissertation

is done under his supervision, and—although he had no official obligations—he

acted as an advisor for me while I was visiting Princeton University. It has been

a pleasure to work with him during my visits.

A special thanks goes to Mikkel Thorup, who has provided helpful guidance

over the years, and for being the one evoking my interest in algorithms.

Thank you to Morten Heine B. Sørensen for introducing me to the world of

research.

I also want to thank my excellent co-authors: Anthony Wirth, Uri Zwick,

Philip Bille, Mikkel Thorup, and Gerth Stølting Brodal.

I am most grateful to Bernard Chazelle for being my host when I was visiting

Princeton University the first time. I also want to thank all the people I met at

Princeton who made my stay a very pleasant experience.

Thank you to the people at the IT University, especially the people in the De-

partment of Theoretical Computer Science, for creating a pleasant working envi-

ronment.

I want to thank Matthew Andrews, Christian Worm Mortensen, and Martin

Zachariazen for useful discussions.

I thank the anonymous reviewers of my papers for their helpful suggestions.

Finally, I want to thank all the people who have proof-read parts of this dis-

sertation: Martin Zachariasen, Anthony Wirth, Philip Bille, Jesper Gørtz, Søren

Debois, and Rasmus Pagh.

v

vi ACKNOWLEDGMENTS

Contents

Abstract iii

Acknowledgments v

I Data Structures and Algorithms on Trees 1

1 Introduction to Part I 3

1.1 Overview . 3

1.2 Models of Computation . 4

1.3 Prior Publication . 5

1.4 On Chapter 2: Binary Dispatching 5

1.5 On Chapter 3: Tree Inclusion . 12

1.6 On Chapter 4: Union-find with Deletions 15

2 Binary Dispatching 23

2.1 Introduction . 23

2.2 Preliminaries . 27

2.3 The Bridge Color Problem . 29

2.4 A Data Structure for the Bridge Color Problem 31

3 Tree Inclusion 39

3.1 Introduction . 39

3.2 Notation and Definitions . 43

3.3 Computing Deep Embeddings . 46

3.4 A Simple Tree Inclusion Algorithm 49

3.5 A Faster Tree Inclusion Algorithm 56

4 Union-Find with Deletions 69

4.1 Introduction . 69

4.2 Preliminaries . 73

vii

viii CONTENTS

4.3 Augmenting Worst-Case Union-Find with Deletions 75

4.4 Faster Amortized Bounds . 81

II Approximation Algorithms 87

5 Introduction to Part II 89

5.1 Overview . 89

5.2 Approximation Algorithms . 90

5.3 Prior Publication . 90

5.4 On Chapter 6: Asymmetry in k-Center Variants 91

5.5 On Chapter 7: Dial-a-Ride . 95

6 Asymmetry in k-Center Variants 103

6.1 Introduction . 103

6.2 Definitions . 107

6.3 Asymmetric k-Center Review . 108

6.4 Asymmetric Weighted k-Center . 109

6.5 Asymmetric p-Neighbor k-Center . 114

6.6 Inapproximability Results . 117

6.7 Asymmetric k-Center with Minimum Coverage 120

7 Finite Capacity Dial-a-Ride 125

7.1 Finite Capacity Dial-a-Ride . 125

7.2 Relation between Buy-at-Bulk and Dial-a-Ride 129

7.3 The Network . 130

7.4 Hardness of Buy-at-Bulk with Cost Function ⌈x
k
⌉ 134

7.5 Routing in the Network . 142

7.6 Hardness of Preemptive Dial-a-Ride 148

8 Future Work 151

8.1 Multiple Dispatching . 151

8.2 Tree Inclusion . 152

8.3 Union-find with Deletions . 152

8.4 Asymmetric k-Center . 152

8.5 Dial-a-Ride . 153

Part I

Data Structures and Algorithms on

Trees

1

Chapter 1

Introduction to Part I

The papers in this part of the dissertation all concerns trees and data structures.

Three problems are studied in this part: The binary dispatching problem (Chap-

ter 2), the tree inclusion problem (Chapter 3), and the union-find with deletions prob-

lem (Chapter 4).

1.1 Overview

In this section we will give a short overview of the problems studied in this part

of the dissertation.

Binary Dispatching The dispatching problem for object oriented languages is the

problem of determining the most specialized method to invoke for calls at run-

time. This can be a critical component of execution performance. The unary dis-

patching problem is equivalent to the tree color problem: Given a rooted tree T , where

each node has zero or more colors, construct a data structure that supports the

query firstcolor(v, c), that is, to return the nearest ancestor of v with color c (this

might be v itself).

The binary dispatching problem can be seen as a 2-dimensional generalization of

the tree color problem which we call the bridge color problem. In Chapter 2 we give

a linear space data structure for binary dispatching that supports dispatching in

logarithmic time. To solve the bridge color problem we turn it into a dynamic tree

color problem, which is then solved persistently.

Tree Inclusion Given two rooted, ordered, and labeled trees P and T the tree

inclusion problem is to determine if P can be obtained from T by deleting nodes in

T .

3

4 CHAPTER 1. INTRODUCTION TO PART I

In Chapter 3 we present a new approach to the tree inclusion problem. This

leads to a new algorithm that use optimal linear space and has subquadratic run-

ning time or even faster when the number of leaves in one of the trees is small.

The running time of our tree inclusion algorithm depends on the tree color prob-

lem, which we also used in our data structure for the binary dispatching problem.

We show a general connection between a data structure for the tree color prob-

lem and the tree inclusion problem. To achieve subquadratic running time we

divide T into small trees or forests, called micro trees or clusters, of logarithmic

size which overlap with other micro trees in at most two nodes. Each micro tree

is represented by a constant number of nodes in a macro tree. The nodes in the

macro tree are then connected according to the overlap of the micro tree they rep-

resent. We show how to efficiently preprocess the micro trees and the macro tree

such that queries in the micro trees can be performed in constant time. This cuts

a logarithmic factor off the quadratic running time.

Union-Find with Deletions A classical union-find data structure maintains a

collection of disjoint sets under the operations makeset, union and find. In the

union-find with deletions problem elements of the sets maintained may be deleted. In

Chapter 4 we give a data structure for the union-find with deletions problem that

supports delete, as well as makeset and union, in constant time, while still support-

ing find in O(log n) worst-case time and O(ᾱ(⌊M+N
N
⌋, n)) amortized time. Here n

is the number of elements in the set returned by the find operation, and ᾱ(·, ·) is a

functional inverse of Ackermann’s function. Our data structure, like most other

union-find data structures, maintains the elements of each set in a rooted tree.

1.2 Models of Computation

The models of computation considered are the RAM model and the pointer machine

model. These are briefly described below.

RAM Model A random access machine (RAM) has a memory which comprises

an unbounded sequence of registers, each of which is capable of holding an in-

teger. Arithmetic operations are allowed to compute the address of a memory

register. On a unit cost RAM with logarithmic word size the size of a register is

bounded by O(log n), where n is the input problem size. It can perform arithmetic

operations such as addition, comparison, and multiplication in constant time. A

more formal definition can be found in the book by Aho et al. [1].

1.3. PRIOR PUBLICATION 5

Pointer Machine A pointer machine has a memory consisting of an unbounded

collection of registers. Each register is a record with a finite number of named

fields. The memory can be modelled as a directed graph with bounded degree.

No arithmetic is allowed to compute the address of a node. The only possibility

to access a node is to follow pointers.

The results in Chapter 2 and 3 rely on a unit-cost RAM with logarithmic word-

size. The results in Chapter 4 also hold on a pointer machine.

1.3 Prior Publication

The results in this part of the dissertation have all been published or accepted for

publication:

1. ”Time and Space Efficient Multi-Method Dispatching”.

Stephen Alstrup, Gerth Stølting Brodal, Inge Li Gørtz, and Theis Rauhe.

Proceedings of the 8th Scandinavian Workshop on Algorithm Theory (SWAT) 2002.

2. ”The Tree Inclusion Problem: In Optimal Space and Faster”.

Philip Bille and Inge Li Gørtz.

Proceedings of the 32nd International Colloquium on Automata, Languages and

Programming (ICALP) 2005.

3. ”Union-Find with Constant Time Deletions”.

Stephen Alstrup, Inge Li Gørtz, Theis Rauhe, Mikkel Thorup, and Uri Zwick.

Proceedings of the 32nd International Colloquium on Automata, Languages and

Programming (ICALP) 2005.

In the following we will refer to these papers as paper 1, 2, and 3.

1.4 On Chapter 2: Binary Dispatching

In Chapter 2 we consider the binary dispatching problem. The chapter is an ex-

tended version of paper 1. In this section we formally define the problem, discuss

its applications, and relate our results to other work. The result is achieved using

a novel application of fully persistence, we believe is of independent interest.

6 CHAPTER 1. INTRODUCTION TO PART I

1.4.1 Multiple Dispatching

In object oriented languages the modular units are abstract data types called

classes and selectors. Each selector has possibly multiple implementations—de-

noted methods—each in a different class. The classes are arranged in a class hi-

erarchy, and a class can inherit methods from its superclasses (classes above it

in the class hierarchy). Therefore, when a selector s is invoked in a class c, the

relevant method for s inherited by class c has to be determined. The dispatch-

ing problem is to determine the most specialized method to invoke for a method

call. This specialization depends on the actual arguments of the method call at

run-time and can be a critical component of execution performance in object ori-

ented languages. Most object oriented languages rely on dispatching of methods

with a single argument, but multi-method dispatching—where the methods take

more than one argument—is used in object oriented languages such as Cecil [25],

CLOS [24], Dylan [38], and MultiJava [36, 46].

Formally, let T be a rooted tree denoting the class hierarchy. Each node in T

corresponds to a class, and T defines a partial order � on the set of classes:

A � B ⇐⇒ A is an ancestor of B (not necessarily a proper ancestor).

If A is a proper ancestor of B we write A ≺ B. Similarly, B � A (B ≻ A) if

B is a (proper) descendant of A. Let M be the set of methods. Each method

takes a number of classes as arguments. A method invocation is a query of the

form s(A1, . . . , Ad) where s is the name of a method inM and A1, . . . , Ad are class

instances. Let s(A1, . . . , Ad) be such a query. We say that

s(B1, . . . , Bd) is applicable for s(A1, . . . , Ad) ⇐⇒ Bi � Ai for all i ∈ {1, . . . , d} .

The most specialized method for a query s(A1, . . . , Ad) is the method s(B1, . . . , Bd)

such that

1. s(B1, . . . , Bd) is applicable for s(A1, . . . , Ad),

2. for every other method s(C1, . . . , Cd) applicable for s(A1, . . . , Ad) we have

Ci � Bi for all i.

There might not be a most specialized method, i.e., we might have two applicative

methods s(B1, . . . , Bd) and s(C1, . . . , Cd) where Bi ≺ Ci and Cj ≺ Bj for some

indices 1 ≤ i, j ≤ d. That is, neither method is more specialized than the other.

Multi-method dispatching is to find the most specialized applicable method in

M if it exists. If it does not exist or in case of ambiguity, “no applicable method”

resp. “ambiguity” is reported instead.

1.4. ON CHAPTER 2: BINARY DISPATCHING 7

The d-ary dispatching problem is to construct a data structure that supports

multi-method dispatching with methods having up to d arguments, where M
is static but queries are online. The cases d = 1 and d = 2 are the unary and binary

dispatching problems respectively.

Let N be the number of nodes in T , i.e., the number of classes. Let m denote

the number of methods and M the number of distinct method names inM.

Unary Dispatching and the Tree Color Problem

In the tree color problem we are given a tree T . Each node in T can have zero

or more colors from a set of colors C. The problem is to support the query

firstcolor(v, c), that is, to return the nearest ancestor of v with color c (this might

be v itself). The tree color problem is the same as the unary dispatching problem

(d = 1) if we let colors represent the method names.

The unary dispatching problem/tree color problem has been studied by a

number of people.

The best known result using linear space for the unary dispatching problem

(or static tree color problem) due to Muthukrishnan and Müller [93] is O(loglogN)

query time with expected linear preprocessing time. The expectation in the pre-

processing time is due to perfect hashing in a van Emde Boas predecessor data

structure [120, 121]. Since the tree color data structure is static it is possible to

get rid of the expectation using the deterministic dictionary by Hagerup et al. [63]

together with a simple two-level approach (see e.g. [119]).

The tree color problem has also been studied in the dynamic setting. Here we

have the update operations color(v, c) and uncolor(v, c), which add and removes

the color c from v’s set of colors, respectively. In the unary dispatching problem

this corresponds to adding and removing methods. Alstrup et al. [7] showed how

to solve the dynamic tree color problem with expected update time O(loglog N)

for both color(v, c) and uncolor(v, c), and query time = (log N/loglog N), using

linear space and preprocessing time. Alstrup et al. also showed how to add the

update operations AddLeaf in amortized constant time and RemoveLeaf in worst

case constant time while maintaining the time bounds on the other operations. In

the unary dispatching problem this corresponds to adding or removing classes in

the bottom of the class hierarchy.

Dietz [41] showed how to solve the incremental tree color problem in expected

amortized time O(loglogN) for color and expected amortized time O(loglogN) per

query using linear space, when the nodes are inserted top-down and each node

has exactly one color.

8 CHAPTER 1. INTRODUCTION TO PART I

In all the above algorithms the expected preprocessing and/or update times

are due to hashing.

1.4.2 Persistent Data Structures and the Plane Sweep Technique

Before we state our results for the binary dispatching problem we will introduce

the concept of persistence and describe the plane sweep technique, where par-

tial persistence is used to turn a static d dimensional problem into a dynamic

d − 1 dimensional problem. Several of the earlier and related results on binary

dispatching uses the plane sweep technique. To construct our data structure for

the binary dispatching problem we use a technique similar to the plane sweep

technique, but we use full persistence instead of partial persistence.

Persistence

An update operation on a data structure can be seen as generating a new version

of the data structure. Data structures that one encounters in traditional algorith-

mic settings are ephemeral in the sense that an update operation destroys the old

version of the data structure, leaving only the new one. In a persistent data struc-

ture all previous versions of the data structure can be queried. The concept of

persistent data structures was introduced by Driscoll et al. [44].

We distinguish between two different types of persistence: partial persistence

and full persistence. A data structure is partially persistent if all versions can be

queried but only the newest one can be updated. A data structure is fully persistent

if every version can be both queried and updated.

In addition to its ephemeral arguments a persistent update or query takes as

an argument the version of the data structure to which the query or update refers.

The version graph is a directed graph where each node corresponds to a version

of the data structure and there is an edge from node v1 to a node v2 if and only

if v2 was created by an update operation to v1. The version graph for a partially

persistent data structure is a path, for a fully persistent data structure it is a tree,

and for a confluently persistent data structure it is a directed acyclic graph (DAG).

Making Data Structures Persistent In the following let m denote the number of

versions. Driscoll et al. [44] showed how to make any ephemeral data structure on

a RAM partially persistent with slowdown O(log m) for both updates and queries.

The extra space cost is O(1) per ephemeral memory modification. Using this

method together with the van Emde Boas predecessor data structure [120] and

dynamic perfect hashing [43] gives slowdown O(loglogm) per query and expected

1.4. ON CHAPTER 2: BINARY DISPATCHING 9

slowdown O(loglogm) per update with extra space cost O(1) per ephemeral mem-

ory modification [71].

Dietz [41] showed how to make any ephemeral data structure on a RAM

fully persistent with O(loglog m) slowdown for queries and expected amortized

O(loglog m) slowdown for updates. The extra space cost is O(1) per ephemeral

memory modification.

For bounded degree linked data structures it is possible to get better bounds.

Driscoll et al. [44] showed how to make any such data structure partially or fully

persistent with worst-case slowdown O(1) for queries, amortized slowdown O(1)

for updates, and amortized O(1) extra space cost per memory modification.

For more about how to implement a persistent data structure, and applica-

tions of persistent data structures, see the surveys by Kaplan [72] and Italiano

and Raman [71].

Plane Sweep Technique

In the plane sweep technique partial persistence is used to turn a dynamic d-

dimensional data structure into a static d + 1 dimensional data structure.

This technique was first used by Sarnak and Tarjan [104] to give an algorithm

for the planar point location problem. In the planar point location problem we are

given a subdivision of the Euclidian plane into polygons by a collection of n line

segments which intersect only at their endpoints. The goal is to construct a data

structure such that, given a query point we can efficiently determine the polygon

containing it.

Sarnak and Tarjan construct the data structure as follows. Imagine moving an

infinite line—denoted the sweep line—across from left to right, beginning at the

leftmost endpoint of any line segment. As the sweep line moves, the line seg-

ments currently intersecting it are maintained in a partially persistent balanced

binary search tree in order of their intersection with the sweep line. The plane is

divided into vertical slabs, within which the search tree does not change.

Given a query point q, first locate the slab in which the x-coordinate lies, and

then query this version of the partially persistent search tree to find the two line

segments immediately above and below q in this slab. This uniquely determines

the polygon in which q lies.

Sarnak and Tarjan showed how to implement a partially persistent search tree

with worst-case O(log n) query and update time, and an amortized O(1) space

cost per update. This gives a data structure for the planar point location problem

using O(n logn) preprocessing time, O(n) space, and O(log n) query time.

10 CHAPTER 1. INTRODUCTION TO PART I

1.4.3 Our Results and Techniques

Our main result is a data structure for the binary dispatching problem which is

of “particular interest” quoting Ferragina et al. [50]. Our data structure uses O(m)

space and query time O(log m) on a unit-cost RAM with word size logarithmic in

N with O(N + m loglog m) time for preprocessing.

We reduce the binary dispatching problem to a problem we call the bridge

color problem. This is a generalization of the tree color problem. In the bridge

color problem we are given two rooted trees T1 and T2, and a set of edges—called

bridges—connecting nodes in T1 to nodes in T2. Each bridge has a color from a set

of colors C. A bridge is a triple (c, v1, v2) ∈ C × V (T1)× V (T2) and is denoted by

c(v1, v2). The bridge color problem is to construct a data structure which supports

the query firstcolorbridge(c,v1,v2).

firstcolorbridge(c, v1, v2) Find a bridge c(w1, w2) such that:

1. w1 � v1 and w2 � v2.

2. There is no other bridge c(w′
1, w

′
2) such that w1 ≺ w′

1 � v1 or w2 ≺ w′
2 �

v2.

If there is no bridge satisfying the first condition return NIL. If there is a

bridge satisfying the first condition but not the second then return ”ambi-

guity”.

The binary dispatching problem can be reduced to the bridge color problem the

following way. Let T1 and T2 be copies of the tree T in the binary dispatching

problem. For every method s(v1, v2) ∈ M make a bridge of color s between v1 ∈
V (T1) and v2 ∈ V (T2).

We solve the bridge color problem by constructing two fully persistent data

structures for the dynamic tree color problem. For each node v in T1 we have

a version of the tree color data structure for T2. That is, T1 can be seen as the

version tree. For version v (v ∈ V (T1)) a node u ∈ V (T2) has color c if and only

if there is a bridge of color c from an ancestor of v to u. We similarly construct

a fully persistent tree color data structure for T1 with T2 corresponding to the

version tree. We can then answer firstcolorbridge queries by performing a constant

number of persistent firstcolor queries.

Our technique can be seen as the fully persistent analogue to the partial per-

sistent plane sweep technique. It has been referred to by Kaplan [72] as one of the

few interesting applications of fully persistent data structures.

In the data structure described above we need a data structure that supports

insert and predecessor queries on a set of integers from {1, . . . , n}. This can be

1.4. ON CHAPTER 2: BINARY DISPATCHING 11

solved in worst case O(loglog n) time per operation on a RAM using a data struc-

ture of van Emde Boas [120]. We show how to do modify this data structure such

that it only uses worst case O(1) memory modifications per update.

1.4.4 Previous Results and Related Work

For the d-ary dispatching, d ≥ 2, the result of Ferragina et al. [50] is a data struc-

ture using space O(m (t logm/logt)d−1) and query time O((logm/logt)d−1loglogN),

where t is a parameter 2 ≤ t ≤ m. For the case t = 2 they are able to improve

the query time to O(logd−1m) using fractional cascading [30]. They obtain their

results by reducing the dispatching problem to a point-enclosure problem in d di-

mensions: Given a point q, check whether there is a smallest rectangle containing

q. In the context of the geometric problem, Ferragina et al. also present applica-

tions to approximate dictionary matching.

Packet Classification Problem Eppstein and Muthukrishnan [47] looked at a

similar problem called packet classification. Here there is a database of m filters

available for preprocessing. A packet filter i in an IP network is a collection of

d-dimensional ranges [l1i , r
1
i] × · · · × [ldi , r

d
i], an action Ai, and a priority pi. An

IP packet P is a d-dimensional vector of values [P1, . . . , Pd]. A filter i applies to

packet P if Pj ∈ [lji , r
j
i] for j = 1, . . . , d.

The packet classification problem is given a packet P to determine the filter of

highest priority that applies to P .

The ranges of the different filters are typically nested [47]. That is, if two

ranges intersect, one is completely contained in the other. In this case the packet

classification problem is essentially the same as the multiple dispatching problem.

For the case d = 2 Eppstein and Muthukrishnan gave an algorithm using

space O(m1+o(1)) and query time O(loglog m), or O(m1+ε) and query time O(1).

They reduced the problem to a geometric problem, very similar to the one in [50].

To solve the problem they used the plane-sweep approach to turn the static two-

dimensional rectangle query problem into a partially persistent dynamic one-

dimensional problem.

Later Results In 2004 Kwok and Poon [99] gave an algorithm for the binary dis-

patching problem with the same time and space bounds as ours. They reduce the

problem to a point enclosure problem on a 2-dimensional grid the same way as

Ferragina et al. [50], and then apply the plane sweep technique. Kwok and Poon

12 CHAPTER 1. INTRODUCTION TO PART I

claim their algorithm is simpler than ours because they use partial persistence

instead of full persistence.

Related Work Kwok and Poon [99] also study two related problems: 2-d point

enclosure for nested rectangles and 2-dimensional packet classification problem for con-

flict resolved filters. In the point enclosure for nested rectangles problem the set of

rectangles is nested and the problem is to find the most specific rectangle enclos-

ing the query point. A set of rectangles is nested if any two rectangles from the

set either have no intersection or one is completely contained in the other. The 2-

dimensional packet classification problem for conflict resolved filters is the same

as the problem studied by Eppstein and Muthukrishnan [47] except all conflicts

are resolved, that is, all packets has a unique most specific matching filter and

thus there is no need to check for ambiguity. For both problems Kwok and Poon

give a linear space algorithm with O(loglog2 m) query time.

Thorup [119] studies the dynamic stabbing problem in one or more dimen-

sions. His goal is to get very fast query time trading it for slow update time, but

still keeping linear space.

1.5 On Chapter 3: Tree Inclusion

In Chapter 3 we consider the tree inclusion problem. The chapter is the full version

of paper 2 and is a minor revision of the technical report [22]. In this section we

formally define the problem, discuss its applications, and relate our results to

other work.

1.5.1 Tree Comparison

Let T be a rooted tree. We say that T is labeled if each node is assigned a symbol

from an alphabet Σ and we say that T is ordered if a left-to-right order among

siblings in T is given. All trees in this chapter are rooted and labeled.

Comparison of trees occurs in several diverse areas such as computational

biology, structured text databases, image analysis, automatic theorem proving,

and compiler optimization [111, 128, 80, 82, 69, 101, 129]. Many different ways to

compare trees have been devised.

Tree Inclusion A tree P is included in T , denoted P ⊑ T , if P can be obtained

from T by deleting nodes of T . Deleting a node v in T means making the children

of v children of the parent of v and then removing v. The children are inserted in

1.5. ON CHAPTER 3: TREE INCLUSION 13

the place of v in the left-to-right order among the siblings of v. The tree inclusion

problem is to determine if P can be included in T and if so report all subtrees of T

that include P . The tree P and T is often called the pattern and target, respectively.

In this chapter we consider the ordered tree inclusion problem. For some ap-

plications considering unordered trees is more natural. However, this problem

has been proved to be NP-complete [91, 80], whereas the ordered version can be

solved in polynomial time. From now on when we say tree inclusion we refer to

the ordered version of the problem.

Related Tree Comparison Problems In the tree pattern matching problem [69, 84,

45, 37] the goal is to find an injective mapping f from the nodes of P to the nodes

of T such that for every node v in P the ith child of v is mapped to the ith child

of f(v). The tree pattern matching problem can be solved in O(n logO(1) n) time,

where n = nP + nT . Another similar problem is the subtree isomorphism problem

[33, 108], which is to determine if T has a subgraph which is isomorphic to P .

Unlike tree inclusion the subtree isomorphism problem can be solved efficiently

for unordered trees. The best algorithms for the subtree isomorphism problem

use O(n1.5
P nT / log nP) for unordered trees and O(nP nT / log nP) time ordered trees

[33, 108]. Both use O(nP nT) space.

The tree inclusion problem can be considered a special case of the tree edit dis-

tance problem [111, 128, 81]. Here one wants to find the minimum sequence of in-

sert, delete, and relabel operations needed to transform P into T . Inserting a node

v as a child of v′ in T means making v the parent of a consecutive subsequence

of the children of v′. A relabeling of a node changes the label of a node. The

currently best worst-case algorithm for this problem uses O(n2
P nT log nT) time.

The unordered tree edit distance is MAX SNP-hard [14]. For more details and

references see the survey [21].

1.5.2 Applications

Recently, the tree inclusion problem has been recognized as an important query

primitive for XML data and has received considerable attention, see e.g., [105,

125, 124, 127, 106, 118]. The key idea is that an XML document can be viewed

as an ordered, labeled tree and queries on this tree correspond to a tree inclusion

problem. The ordered tree edit distance problem has been used to compare XML

documents [94].

14 CHAPTER 1. INTRODUCTION TO PART I

1.5.3 Results

The tree inclusion problem was initially introduced by Knuth [83, exercise 2.3.2-

22] who gave a sufficient condition for testing inclusion. Motivated by applica-

tions in structured databases [79, 90] Kilpeläinen and Mannila [80] presented the

first polynomial time algorithm using O(nP nT) time and space, where nP and

nT is the number of nodes in a tree P and T , respectively. The main idea behind

this algorithm is following: Let v ∈ V (P) and w ∈ V (T) be nodes with children

v1, . . . , vi and w1, . . . , wj, respectively. To decide if P (v) can be included T (w) we

try to find a sequence of numbers 1 ≤ x1 < x2 < · · · < xi ≤ j such that P (vk) can

be included in T (wxk
) for all k, 1 ≤ k ≤ i. If we have already determined whether

or not P (vs) ⊑ T (wt), for all s and t, 1 ≤ s ≤ i, 1 ≤ t ≤ j, we can efficiently find

such a sequence by scanning the children of v from left to right. Hence, applying

this approach in a bottom-up fashion we can determine, if P (v) ⊑ T (w), for all

pairs (v, w) ∈ V (P)× V (T).

During the last decade several improvements of the original algorithm of [80]

have been suggested [78, 2, 103, 31]. The previously best known bound is due to

Chen [31] who presented an algorithm using O(lP nT) time and O(lP min{dT , lT})
space. Here, lS and dS denotes the number of leaves of and the maximum depth

of a tree S, respectively. This algorithm is based on an algorithm of Kilpeläinen

[78]. Note that the time and space is still Θ(nP nT) for worst-case input trees.

Our Results We improve all of the previously known time and space bounds.

We give three algorithms that all uses linear space and runs in O(nP nT

log nT
), O(lP nT),

and O(nP lT log log nT), respectively.

Hence, for worst-case input this improves the previous time and space bounds

by a logarithmic and linear factor, respectively. When P has a small number of

leaves the running time of our algorithm matches the previously best known time

bound of [31] while maintaining linear space. In the context of XML databases

the most important feature of our algorithms is the space usage. This will make

it possible to query larger trees and speed up the query time since more of the

computation can be kept in main memory.

Our Techniques In this paper we take a different approach than the previous

algorithms. The main idea is to construct a data structure on T supporting a

small number of procedures, called the set procedures, on subsets of nodes of T .

We show that any such data structure implies an algorithm for the tree inclusion

problem. We consider various implementations of this data structure which all

1.6. ON CHAPTER 4: UNION-FIND WITH DELETIONS 15

use linear space. The first one gives an algorithm with O(lP nT) running time. As

it turns out, the running time depends on the tree color problem. We show a general

connection between a data structure for the tree color problem and the tree inclu-

sion problem. Plugging in a data structure of Muthukrishnan and Müller [93] we

obtain an algorithm with O(nP lT log log nT) running time.

Based on the simple algorithms above we show how to improve worst-case

running the time of the set procedures by a logarithmic factor. The general idea

used to achieve this is to divide T into small trees or forests, called micro trees

or clusters of logarithmic size which overlap with other micro trees in at most 2

nodes. This can be done in linear time using a technique by Alstrup et al. [5].

Each micro tree is represented by a constant number of nodes in a macro tree. The

nodes in the macro tree are then connected according to the overlap of the micro

tree they represent. We show how to efficiently preprocess the micro trees and

the macro tree such that the set procedures use constant time for each micro tree.

Hence, the worst-case running time is improved by a logarithmic factor.

1.6 On Chapter 4: Union-find with Deletions

In Chapter 4 we consider the union-find with deletions problem. The chapter is a

revision of paper 3. In this section we formally define the problem, discuss its

applications, and relate our results to other work.

1.6.1 Union-Find

A union-find data structure maintains a collection of disjoint sets under the op-

erations makeset, which creates a new set, union, which combines two sets into

one, and find, which locates the set containing an element. More formally, a clas-

sical union-find data structure allows the following operations on a collection of

disjoint sets:

• makeset(x): Create a set containing the single element x, and return the name

of the set.

• union(A, B): Combine the sets A and B into a new set, destroying sets A and

B.

• find(x): Find and return (the name of) the set that contains x.

The union-find data structure can also be seen as a data structure maintaining

an equivalence relation, i.e., elements are in the same set if they are equivalent

16 CHAPTER 1. INTRODUCTION TO PART I

according to the equivalence relation. To find out if two elements a and b are

equivalent, compare find(a) and find(b). The two elements are equivalent if the

names of the sets returned by the find operations are the same.

The union-find data structure has many applications in a wide range of ar-

eas. For example, in finding minimum spanning trees [1], finding dominators in

graphs [113], and in checking flow reducibility [112]. For an extensive list of such

applications, and more information on the problem and many of its variants, see

the survey of Galil and Italiano [58].

Kaplan et al. [75] studied the union-find with deletions problem, in which ele-

ments may be deleted. In the union-find with deletions problem—or union-find-delete

for short—we, in addition to the three operations above allow a delete operation:

• delete(x): Deletes x from the set containing it.

Note that a delete operation does not get the set containing x as a parameter.

A union-find-delete data structure can be used in any applications where an

equivalence relation is needed on a collection over a dynamic set of items. One

such application is in implementation of meldable heaps [74].

1.6.2 Classical Union-Find Data Structures

Most union-find data structure represents the sets as rooted trees, with the nodes

representing elements.

A simple union-find data structure (attributed by Aho et al. [1] to McIlroy and

Morris), which employs two simple heuristics, union by rank and path compression,

was shown by Tarjan [114] (see also Tarjan and van Leeuwen [117]) to be very

efficient.

Union by Rank The union by rank heuristic keeps the trees shallow as follows.

Each node is given a rank, which is an upper bound on its height. The rank of

a set is the rank of the root of the tree representing the set. When performing

makeset the rank is defined to be zero. When performing a union of two sets, the

root with the lowest rank is made a child of the root with the highest rank. If both

sets have the same rank, an arbitrary one is made the root, and the rank of the

new root is increased by one.

The union by rank heuristics on its own implies that find operations take

O(log n) worst-case time. Here n is the number of elements in the set returned

by the find operation. All other operations take constant worst-case time. It is

1.6. ON CHAPTER 4: UNION-FIND WITH DELETIONS 17

possible to trade a slower union for a faster find. Smid [109], building on a re-

sult of Blum [23], gave for any k a data structure that supports union in O(k)

time and find in O(logk n) time. When k = log n/ log log n, both union and find

take O(logn/ log log n) time. Fredman and Saks [57] (see also Ben-Amram and

Galil [19]) showed that this tradeoff is optimal, i.e., that any algorithm for the

union-find problem requires Ω(log n/ log log n) single-operation worst-case time

in the cell probe model1. More generally, Alstrup et al. [3] showed that tq =

Ω(log n/ log tu), where tq is the worst-case query time and tu is the worst-case up-

date time. This matches the upper bounds given by Smid.

Path Compression The path compression heuristic changes the structure of the

tree during a find by moving nodes closer to the root. When carrying out a find(x)

operation all nodes on the path from x to the root are made children of the root.

Tarjan and van Leeuwen [117] showed the path compression heuristic alone

runs in O(N + M log2+M/N N)) total time, where M is the number of find opera-

tions and N the number of makeset operations (hence there is at most N − 1 union

operations).

Tarjan [114] (see also Tarjan and van Leeuwen [117]) showed that the data

structure using both union by rank and path compression performs a sequence

of M find operations and N makeset and union operations in O(N+M α(M+N, N))

total time. Here α(·, ·) is an slowly growing function, which is the functional

inverse of Ackermann’s function (for a formal definition see Section 4.1.1). In

other words, the amortized cost of each makeset and union operation is O(1), while

the amortized cost of each find operation is O(α(M+N, N)), only marginally more

than a constant. Fredman and Saks [57] obtained a matching lower bound in the

cell probe model of computation, showing that this data structure is essentially

optimal in the amortized setting. More precisely, they showed that in the cell

probe model any union-find data structure requires Ω(M α(M + N, N)) time to

execute M find operations and N−1 union operations, beginning with N singleton

sets. Ben-Amram and Galil [19] gave a tradeoff between the amortized find time

and the amortized union time in the cell probe model.

Path compression requires two passes over the find path, one to find the tree

root and another to perform the compression. Tarjan and Leeuwen [117] stud-

ied the one-pass variants, path halving and path splitting, and showed that they

1In the cell probe model of computation introduced by Yao [126] the cost of computation is

measured by the total number of memory accesses to a random access memory with b bits word

size. All other computations are considered to be free. In the lower bounds in this chapter b =

⌈log n⌉.

18 CHAPTER 1. INTRODUCTION TO PART I

also run in O(N + M α(M + N, N)) time when combined with union by rank.

Path halving works by making every other node on the find path a child of its

grandparent. In path splitting every node on the find path is made a child of its

grandparent.

Amortized versus Worst-Case Time Bounds Recall that Alstrup et al. [3] show-

ed that the optimal tradeoff between the worst-case find time tq and the worst-case

union time tu is tq = Ω(log n/ log tu). They also showed that only if tq > α(M +

N, N) can this tradeoff be achieved simultaneously with the optimal amortized

time of Θ(α(M + N, N)).

Alstrup et al. also present union-find algorithms with simultaneously optimal

amortized and worst-case bounds. The algorithm is a modified version of the

standard union-find algorithm. By performing some of the path compressions

at union operations, instead of just at find operations, the simultaneously optimal

amortized and worst-case bounds are obtained.

Local Amortized Bounds To state some more local amortized bounds, we need

a non-standard parameterization of the inverse Ackermann function. Let Ak(j)

be the Ackermann function and define ᾱ(i, j) = min{k ≥ 2 | Ak(i) > j}, for

integers i, j ≥ 0. Relating to the standard definition of α, we have α(M, N) =

Θ(ᾱ(⌊M/N⌋, N)).

Kaplan et al. [75] refined the analysis of the union-find data structure with

union by rank and path compression, and showed that the cost of each find is

proportional to the size of the corresponding set instead of the size of the uni-

verse. More precisely, they showed that the amortized cost of find(x) operation is

only O(ᾱ(⌊M+N
N
⌋, n), where n is the number of elements in the set containing x.

1.6.3 Data Structures for Union-Find with Deletions

The challenge in designing a data structure for the union-find with deletions

problem is to keep the time for a find operation proportional to the number of el-

ements in the set and not the number of elements there ever was in the set, while

maintaining linear space in the number of current elements in the data structure.

A simple way to deal with deletions would be to just mark each node containing

a deleted element as deleted. In some applications this might work, but not in

general. The space usage for this data structure would be O(N), where N is the

number of elements ever created, and, moreover, the find time would be depen-

dent on the number of elements there ever was in the set.

1.6. ON CHAPTER 4: UNION-FIND WITH DELETIONS 19

Using an incremental background rebuilding technique for each set, Kaplan

et al. [75] described a way of converting any data structure for the classical union-

find problem into a union-find-delete data structure. The time bounds for make-

set, find and union change by only a constant factor, while the time needed for

delete(x) operation is the same as the time needed for a find(x) followed by a

constant number of unions with a singleton set. As a union operation is usu-

ally much cheaper than a find operation, Kaplan et al. [75] thus showed that in

both the amortized and the worst-case settings, a delete operation is not more ex-

pensive than a find operation. Combined with their refined amortized analysis

of the classical union-find data structure, this provides a union-find-delete data

structure that implements makeset and union in constant time, and find(x) and

delete(x) in O(ᾱ(⌊M+N
N
⌋, n)) amortized time and O(log n) worst-case time. Their

data structure uses an incremental global rebuilding technique [95]. Each set has

two counters, one counting the number of elements in the set, and one counting

the number of deleted elements in the set. At each delete perform a find to find the

set containing the element and then increment the number of deleted elements in

the set by one. When at least 1/4 of the elements in a set is deleted each delete

is followed by a constant number of rebuilding operations. The background re-

building is done by maintaining two trees, T 1
S and T 2

S , for each set S in the data

structure. In the background rebuilding 4 elements are moved from T 1
S to T 2

S

when performing a delete. Kaplan et al. showed that at any time at most 1/4 of

the elements in T 2
S and at most half of the elements in T 1

S are deleted. That is, the

number of items in T 1
S and T 2

S are within a constant factor of the number of un-

deleted elements in the set S, and therefore the time it takes to perform find and

union in the union-find-delete data structure is proportional to the time it takes

to perform find and union in the underlying union-find data structure without

deletions.

Kaplan et al. also gave another data structure for union-find-delete in the

worst-case setting. This is a modification of Smid’s data structure [109] with the

same performance for union and find as Smid’s, i.e., O(k) time for union and

O(logk n) time for find, that supports delete in O(logk n) time.

Kaplan et al. posed the question whether delete operations can be implemented

faster than find operations (while keeping the space and time bounds dependent

on the number of current elements in the data structure and the number of ele-

ments in the set, respectively).

20 CHAPTER 1. INTRODUCTION TO PART I

1.6.4 Our Results

We solve the open problem raised by Kaplan et al. [75] and show that delete can

be performed in constant worst-case time, while still keeping the O(ᾱ(⌊M+N
N
⌋, n))

amortized cost and the O(log n) worst-case cost of find, and the constant worst-

case cost of makeset and union. Here N is the total number of elements ever cre-

ated, M is the total number of find operations performed, and n is the number

of elements in the set returned by the find operation. The data structure that we

present uses linear space and is a relatively simple modification of the classical

union-find data structure. It uses local rebuilding in contrast to the data structure

by Kaplan et al. that uses global rebuilding.

We also obtain a very concise potential-based proof of the O(ᾱ(⌊M+N
N
⌋, n))

bound, first obtained by Kaplan et al. [75], on the amortized cost of a find in the

classical setting. We believe that our potential-based analysis is simpler than the

one given by Kaplan et al. [75].

In the next section we discuss various analyzes of union-find data structures.

1.6.5 Analysis of Union-Find

In general when considering union-find data structures, the data structure itself

is simple, whereas the analysis can be involved.

The first tight amortized analysis of the classical union-find data structure, by

Tarjan [114] and Tarjan and van Leeuwen [117], uses multiple partitions and the so-

called accounting method. The refined analysis of Kaplan et al. [75] is directly based

on this method. The accounting method is one of the standard methods to analyze

the amortized running time of an algorithm using credits and debits. To perform

an operation we are given a certain number of credits to spend. If we complete

the operation before running out of credits we can save the unused credits for

future operations. If we run out of credits before completing an operation we can

borrow credits by creating debit pairs and spending the created credits. The cor-

responding debits remain in existence to account for our borrowing. We can use

surplus credits to pay off existing debits. The total time for a sequence of oper-

ations is proportional to the total number of credits allocated for the operations

plus the number of debits remaining when all the operations are complete [115].

Kozen [85] gave a simplified analysis of the classical union-find data struc-

ture. Based on this Tarjan [116] gave an analysis using potential functions. This

type of analysis is also used in Chapter 21 of Cormen et al. [39]. The potential

function method is another standard method to analyze the amortized cost of an

algorithm. Here a potential function Φ maps each version of the data structure to

1.6. ON CHAPTER 4: UNION-FIND WITH DELETIONS 21

a non-negative integer potential. Let Di be the data structure after the ith opera-

tion. Let ci be the actual cost of the ith operation. The amortized cost ĉi of the ith

operation is then ĉi = ci + Φ(Di)−Φ(Di−1), and the total amortized costs of n op-

erations is
∑n

i=1 ĉi =
∑n

i=1 ci + Φ(Dn)− Φ(D0). To ensure that the total amortized

cost is an upper bound on the actual total cost, the potential function Φ is defined

such that Φ(Di) ≥ Φ(D0), for all i.

Seidel and Sharir [107] recently presented a top-down amortized analysis of

the union-find data structure. The analysis uses a divide-and-conquer approach

to get recurrence relations from which the bounds follow. The bound follows

without having to introduce the inverse Ackermann function in the proof.

Analysis of Our Data Structure The analysis of our data structure uses two

different potential functions. The first potential function is used to bound the

worst-case cost of find operations. Both potential functions are needed to bound

the amortized cost of find operations. The second potential function on its own can

be used to obtain a simple derivation of the refined amortized bounds of Kaplan

et al. [75] for union-find without deletions, since it is bounding the cost of an

amortized operation in terms of the size of the set returned by the operation.

1.6.6 Our Techniques

Our union-find-delete data structure, like most other union-find data structures,

maintains the elements of each set in a rooted tree. As elements can now be

deleted, not all the nodes in these trees contain elements. Nodes that contain

elements are said to be occupied, while nodes that do not contain elements are

said to be vacant. When an element is deleted, the node containing it becomes

vacant. If proper measures are not taken, a tree representing a set may contain

too many vacant nodes. As a result, the space needed to store the tree, and the

time needed to process a find operation may become too large. Our data structure

uses a simple collection of local operations to tidy up a tree after each delete oper-

ation. This ensures that at most half of the nodes in a tree are vacant. More im-

portantly, the algorithm employs local constant-time shortcut operations in which

the grandparent, or a more distant ancestor, of a node becomes its new parent.

These operations, which may be viewed as a local constant-time variant of the

path compression technique, keep the trees relatively shallow to allow fast find

operations.

22 CHAPTER 1. INTRODUCTION TO PART I

1.6.7 Earlier Results

In a previous version of the paper we showed how to obtain deletions in worst

case O(log∗ n) time, while still keeping O(log n) worst-case cost of find operations,

and constant worst-case cost of makeset and union operations. This paper is avail-

able as a technical report [4].

Chapter 2

Binary Dispatching

The dispatching problem for object oriented languages is the problem of determin-

ing the most specialized method to invoke for calls at run-time. This can be a

critical component of execution performance. A number of results, including

[Muthukrishnan and Müller SODA’96, Ferragina and Muthukrishnan ESA’96, Al-

strup et al. FOCS’98], have studied this problem and in particular provided var-

ious efficient data structures for the mono-method dispatching problem. A paper

of Ferragina, Muthukrishnan and de Berg [STOC’99] addresses the multi-method

dispatching problem.

Our main result is a linear space data structure for binary dispatching that

supports dispatching in logarithmic time. Using the same query time as Ferrag-

ina et al. this result improves the space bound with a logarithmic factor.

2.1 Introduction

In object oriented languages the modular units are abstract data types called

classes and selectors. Each selector has possibly multiple implementations—denot-

ed methods—each in a different class. The classes are arranged in a class hierar-

chy, and a class can inherit methods from its superclasses (classes above it in the

class hierarchy). Therefore, when a selector s is invoked in a class c, the relevant

method for s inherited by class c has to be determined. The dispatching problem

for object oriented languages is to determine the most specialized method to in-

voke for a method call. This specialization depends on the actual arguments of

the method call at run-time and can be a critical component of execution per-

formance in object oriented languages. Most of the commercial object oriented

languages rely on dispatching of methods with only one argument, the so-called

mono-method or unary dispatching problem. A number of papers, see e.g.,[49, 93]

23

24 CHAPTER 2. BINARY DISPATCHING

(for an extensive list see [50]), have studied the unary dispatching problem, and

Ferragina and Muthukrishnan [49] provide a linear space data structure that sup-

ports unary dispatching in log-logarithmic time. However, the techniques in

these papers do not apply to the more general multi-method dispatching problem

in which more than one method argument is used for the dispatching. Multi-

method dispatching has been identified as a powerful feature in object oriented

languages supporting multi-methods such as Cecil [25], CLOS [24], Dylan [38],

and MultiJava [36, 46]. Several recent results have attempted to deal with d-ary

dispatching in practice (see [50] for an extensive list). Ferragina et al. [50] provided

the first non-trivial data structures, and, quoting this paper, several experimental

object oriented languages’ “ultimately success and impact in practice depends,

among other things, on whether multi-method dispatching can be supported ef-

ficiently”.

Our result is a linear space data structure for the binary dispatching problem, i.e.,

multi-method dispatching for methods with at most two arguments. Our data

structure uses linear space and supports dispatching in logarithmic time. Using

the same query time as Ferragina et al. [50], this result improves the space bound

with a logarithmic factor. Before we provide a precise formulation of our result,

we will formalize the general d-ary dispatching problem.

Definition 2.1.1 (Multiple Dispatching Problem). Let T be a rooted tree denoting

the class hierarchy. Each node in T corresponds to a class, and T defines a partial

order � on the set of classes:

A � B ⇐⇒ A is an ancestor of B (not necessarily a proper ancestor).

If A is a proper ancestor of B we write A ≺ B. Similarly, B � A (B ≻ A) if

B is a (proper) descendant of A. Let M be the set of methods. Each method

takes a number of classes as arguments. A method invocation is a query of the

form s(A1, . . . , Ad) where s is the name of a method inM and A1, . . . , Ad are class

instances. Let s(A1, . . . , Ad) be such a query. We say that

s(B1, . . . , Bd) is applicable for s(A1, . . . , Ad) ⇐⇒ Bi � Ai for all i ∈ {1, . . . , d} .

The most specialized method for a query s(A1, . . . , Ad) is the method s(B1, . . . , Bd)

such that

1. s(B1, . . . , Bd) is applicable for s(A1, . . . , Ad),

2. for every other method s(C1, . . . , Cd) applicable for s(A1, . . . , Ad) we have

Ci � Bi for all i.

2.1. INTRODUCTION 25

There might not be a most specialized method, i.e., we might have two applicative

methods s(B1, . . . , Bd) and s(C1, . . . , Cd) where Bi ≺ Ci and Cj ≺ Bj for some

indices 1 ≤ i, j ≤ d. That is, neither method is more specialized than the other.

Multi-method dispatching is to find the most specialized applicable method in

M if it exists. If it does not exist or in case of ambiguity, “no applicable method”

resp. “ambiguity” is reported instead.

The d-ary dispatching problem is to construct a data structure that supports

multi-method dispatching with methods having up to d arguments, where M
is static but queries are online.

The cases d = 1 and d = 2 are called the unary and binary dispatching problems,

respectively. Let N denote the number of classes in the class hierarchy, m the

number of methods inM , and M the number of distinct method names inM.

In this paper we focus on the binary dispatching problem which is of “partic-

ular interest” quoting Ferragina et al. [50].

We assume that the size of T is O(m). If this is not the case we can map nodes

that does not participate in any method to their closest ancestor that does partici-

pate in some method in O(n) time.

Results

Our main result is a data structure for the binary dispatching problem using O(m)

space and query time O(log m) on a unit-cost RAM with word size logarithmic in

N with O(N + m (loglog m)2) time for preprocessing. By the use of a reduction

to a geometric problem, Ferragina et al. [50], obtain similar time bounds within

space O(m log m). Furthermore they show how the case d = 2 can be generalized

for d > 2 at the cost of factor logd−2 m in the time and space bounds.

Our result is obtained by a very different approach in which we employ a dy-

namic to static transformation technique. To solve the binary dispatching prob-

lem we turn it into a unary dispatching problem — a variant of the marked ances-

tor problem as defined by Alstrup et al. [7], in which we maintain a dynamic set of

methods. The unary problem is then solved persistently. We solve the persistent

unary problem combining the technique by Dietz [41] to make a data structure

fully persistent and the technique from [7] to solve the tree color problem. The

technique of using a persistent dynamic one-dimensional data structure to solve a

static two-dimensional problem is a standard technique [104]. What is new in our

technique is that we use the class hierarchy tree to denote the time (give the order

on the versions) to get a fully persistent data structure. This gives a “branch-

ing” notion for time, which is the same as what one has in a fully persistent data

26 CHAPTER 2. BINARY DISPATCHING

structure where it is called the version tree. This technique is different from the

plane sweep technique where a plane-sweep is used to give a partially persistent

data structure. A top-down tour of the tree corresponds to a plane-sweep in the

partially persistent data structures.

Related and Previous Work

For the unary dispatching problem the best known bound is O(N + m) space,

O(loglog N) query time and expected O(N + m) preprocessing time [93]. The

expectation in the preprocessing time is due to perfect hashing in a van Emde

Boas predecessor data structure [120, 121]. Since the tree color data structure is

static it is possible to get rid of the expectation using the deterministic dictionary

by Hagerup et al. [63] together with a simple two-level approach (see e.g. [119]).

For the d-ary dispatching, d ≥ 2, the result of Ferragina et al. [50] is a data struc-

ture using space O(m (t logm/logt)d−1) and query time O((logm/logt)d−1loglogN),

where t is a parameter 2 ≤ t ≤ m. For the case t = 2 they are able to improve

the query time to O(logd−1m) using fractional cascading [30]. They obtain their

results by reducing the d-ary dispatching problem to a point-enclosure problem

in d dimensions: Given a point q, check whether there is a smallest rectangle con-

taining q. In the context of the geometric problem, Ferragina et al. also present

applications to approximate dictionary matching.

Eppstein and Muthukrishnan [47] looked at a similar problem called packet

classification. Here there is a database of m filters available for preprocessing. A

packet filter i in an IP network is a collection of d-dimensional ranges [l1i , r
1
i]×· · ·×

[ldi , r
d
i], an action Ai, and a priority pi. An IP packet P is a d-dimensional vector

of values [P1, . . . , Pd]. A filter i applies to packet P if Pj ∈ [lji , r
j
i] for j = 1, . . . , d.

The packet classification problem is given a packet P to determine the filter of

highest priority that applies to P . The ranges of the different filters are typically

nested [47]. That is, if two ranges intersect, one is completely contained in the

other. In this case the packet classification problem is essentially the same as the

multiple dispatching problem. For the case d = 2 Eppstein and Muthukrishnan

gave an algorithm using space O(m1+o(1)) and query time O(loglogm), or O(m1+ε)

and query time O(1). They reduced the problem to a geometric problem, very

similar to the one in [50]. To solve the problem they used the plane-sweep ap-

proach to turn the static two-dimensional rectangle query problem into a partial

persistent dynamic one-dimensional problem.

In 2004 Kwok and Poon [99] gave an algorithm for the binary dispatching

problem with the same time and space bounds as ours. They reduce the problem

2.2. PRELIMINARIES 27

to a point enclosure problem on a 2-dimensional grid the same way as Ferragina

et al. [50], and then apply the plane sweep technique. Kwok and Poon claim their

algorithm is simpler than ours because they use partial persistence instead of full

persistence.

2.2 Preliminaries

In this section we give some basic concepts which are used throughout the paper.

Let T be a rooted tree. The set of all nodes in T is denoted V (T). Let T (v)

denote the subtree of T rooted at a node v ∈ V (T). If w ∈ V (T (v)) then v is

an ancestor of w, denoted v � w, and if w ∈ V (T (v))\{v} then v is a proper

ancestor of w, denoted v ≺ w. If v is a (proper) ancestor of w then w is a (proper)

descendant of v. In the rest of the chapter all trees are rooted trees.

Let C be a set of colors. A labeling l(v) of a node v ∈ V (T) is a subset of C,

i.e., l(v) ⊆ C. A labeling l : V (T) → 2C of a tree T is a set of labelings for the

nodes in T . Given a labeling of a tree T , the first ancestor of w ∈ T with color c is

the node v ∈ T such that v � w, c ∈ l(v), and no node on the path between v and

w is labeled c.

2.2.1 Persistent Data Structures

Data structures that one encounters in traditional algorithmic settings are epheme-

ral, i.e., previous states are lost when an update is made. In a persistent data

structure also previous versions of the data structure can be queried. The concept

of persistent data structures was introduced by Driscoll et al. [44].

Definition 2.2.1 (Persistence). A data structure is partially persistent if all previous

versions remain available for queries but only the newest version can be modi-

fied. A data structure is fully persistent if it allows both queries and updates of

previous versions. An update may operate only on a single version at a time, that

is, combining two or more versions of the data structure to form a new one is not

allowed.

In addition to its ephemeral arguments a persistent update or query takes

as an argument the version of the data structure to which the query or update

refers. Let the version graph be a directed graph where each node corresponds

to a version and there is an edge from node v1 to a node v2 if and only if V2 was

created by an update operation to V1. The version graph for a partially persistent

data structure is a path, and for a fully persistent data structure it is a tree.

28 CHAPTER 2. BINARY DISPATCHING

Definition 2.2.2 (Version tree). The version tree represents the temporal evolution

of a fully persistent data structure. Each node in the version tree represents the

result of an update on a version of the data structure.

Each node v of the version tree is assigned a pair 〈l, val〉, where l is the location

of the persistent data structure that was updated at time v and val the value it was

updated with. There are two operations in a version tree:

AddVersion(v,l,val): add a new leaf beneath node v and assign it the pair

〈l, val〉.

LookUp(v,l): find the first ancestor of node v (including v) which has a pair

assigned whose first element is l, and return the associated value (or error if

no such node exists).

Dietz [41] showed how to make any data structure fully persistent on a unit-

cost RAM with logarithmic word size by an efficient implementation of the ver-

sion tree.

Lemma 2.2.3 (Dietz [41]). A data structure with worst case query time O(Q(n)) and

update time O(F (n)) making worst case O(U(n)) memory modifications can be made

fully persistent using O(Q(n) loglog n) worst case time per query and O(F (n) loglog n)

expected amortized time per update using O(U(n) n) space.

It is important that the ephemeral data structure has worst case update time. If

the updates times are amortized expensive operations might be repeated in many

branches of the version tree.

For more about persistence and results see the surveys by Kaplan [72] and

Italiano and Raman [71].

2.2.2 The Tree Color Problem

Definition 2.2.4 (Tree color problem). Let T be a rooted tree with n nodes, where

we associate a set of colors with each node of T . The tree color problem is to main-

tain a data structure with the following operations:

color(v, c): add c to v’s set of colors, i.e., l(v)← l(v) ∪ {c},

uncolor(v, c): remove c from v’s set of colors, i.e., l(v)← l(v) \ {c},

firstcolor(v, c): find the first ancestor of v with color c (this may be v itself).

2.3. THE BRIDGE COLOR PROBLEM 29

The incremental version of this problem does not support uncolor, the decremen-

tal problem does not support color, and the fully dynamic problem supports both

update operations.

The unary dispatching problem is the same as the tree color problem if we let

each color represent a method name.

Alstrup et al. [7] showed how to solve the tree color problem on a unit cost

RAM with logarithmic word size in expected update time O(loglog n) for both

color and uncolor, and query time O(log n/loglog n), using linear space and pre-

processing time. The expected update time is due to hashing. Thus the expecta-

tion can be removed at the cost of using more space. We need worst case time

when we make the data structure persistent because data structures with amor-

tized/expected time may perform poorly when made fully persistent, since ex-

pensive operations might be performed many times.

Querying and updating a version tree of a fully persistent data structure is an

incremental version of the tree color problem. Dietz [41] showed how to solve the

incremental tree color problem in O(loglog n) amortized time per operation using

linear space, when the nodes are colored top-down and each node has at most

one color.

2.2.3 Predecessor Data Structure

In order to get linear space for our data structure we need a tree color data struc-

ture using only O(1) worst case memory modifications per update. The bottle-

neck in the dynamic tree color data structure from [7] is the use of a van Emde

Boas predecessor data structure [120, 121] (VEB). A VEB supports insert and pre-

decessor queries on a set of integers from {1, . . . , n} in worst case O(loglogn) time

per operation on a RAM.

In Section 2.4.3 we show how to do modify this data structure such that it only

uses worst case O(1) memory modifications per update.

2.3 The Bridge Color Problem

The binary dispatching problem (d = 2) can be formulated as the following tree

problem, which we call the bridge color problem.

Definition 2.3.1 (Bridge Color Problem). Let T1 and T2 be two rooted trees. Between

T1 and T2 there are a number of edges—called bridges—of different colors. Let C

be the set of colors. A bridge is a triple (c, v1, v2) ∈ C × V (T1) × V (T2) and is

30 CHAPTER 2. BINARY DISPATCHING

v

r s u

T1 T2

b3

b1 b2

Figure 2.1: An example of the bridge color problem. The solid lines are tree

edges and the dashed and dotted lines are bridges of color c and c′, respectively.

firstcolorbridge(c,v,u) returns b3. firstcolorbridge(c′,r,s) returns ambiguity since nei-

ther b1 or b2 is closer than the other.

denoted by c(v1, v2). The bridge color problem is to construct a data structure which

supports the query firstcolorbridge(c,v1,v2).

firstcolorbridge(c, v1, v2) Find a bridge c(w1, w2) such that:

1. w1 � v1 and w2 � v2.

2. There is no other bridge c(w′
1, w

′
2) such that w1 ≺ w′

1 � v1 or w2 ≺ w′
2 �

v2.

If there is no bridge satisfying the first condition return NIL. If there is a

bridge satisfying the first condition but not the second then return ”ambi-

guity”.

See Figure 2.1 for an example of the bridge color problem. The binary dis-

patching problem can be reduced to the bridge color problem the following way.

Let T1 and T2 be copies of the tree T in the binary dispatching problem. For

every method s(v1, v2) ∈ M make a bridge of color s between v1 ∈ V (T1) and

v2 ∈ V (T2). The following lemma follows immediately from the definitions of the

binary dispatching problem and the bridge color problem.

Lemma 2.3.2. A method s(B1, B2) is the most specialized method to an invocation

s(A1, A2) if and only if s(B1, B2) = firstcolorbridge(c, A1, A2).

The problem is now to construct a data structure that supports firstcolorbridge.

The object of the remaining of this chapter is to show the following theorem:

2.4. A DATA STRUCTURE FOR THE BRIDGE COLOR PROBLEM 31

Theorem 2.3.3. Using expected O(m loglog m) time for preprocessing and O(m) space,

the query firstcolorbridge can be supported in worst case time O(log m) per operation,

where m is the number of bridges.

2.4 A Data Structure for the Bridge Color Problem

Let B be a set of bridges (|B| = m). As mentioned in the introduction we can

assume that the number of nodes in the trees involved in the bridge color problem

is O(m), i.e., |V (T1)|+ |V (T2)| = O(m). In this section we present a data structure

that supports firstcolorbridge in O(log m) time per query using O(m) space for the

bridge color problem.

2.4.1 Reduction to the Dynamic Tree Color Problem

We first reduce the static bridge color problem to the dynamic tree color problem.

For each node v ∈ V (T1) we define the labeling lv of T2 as follows. The labeling of

a node w ∈ V (T2) contains color c if w is the endpoint of a bridge of color c with

the other endpoint among ancestors of v. Formally, c ∈ lv(w) if and only if there

exists a node u ≺ v such that c(u, w) ∈ B. In addition to each labeling lv, we need

to keep the following extra information stored in a sparse array H(v): For each

pair (w, c) ∈ V (T2)× C, where lv(w) contains color c, we keep the first ancestor v′

of v from which there is a bridge c(v′, w) ∈ B. Note that this set is sparse, i.e., we

can use a sparse array to store it. Similar define the symmetric labelings for T1.

See Figure 2.2 for an example.

For each labeling lv of T2, where v ∈ V (T1), we will construct a data structure

for the static tree color problem. The query firstcolorbridge(c, u, w) can then be

answered by the following queries in this data structure.

First perform the query firstcolor(w, c) in the data structure for the labeling

lu of the tree T2. If this query reports NIL there is no bridge to report, and we

return NIL. Otherwise let w′ be the reported node. We make a lookup in H(u) to

determine the bridge b such that b = c(u′, w′) ∈ B. By definition b is the bridge

over (u, w′) with minimal distance between w and w′. However, it is possible that

there is a bridge (u′′, w′′) over (u, w) where dist(u,u”) < dist(u,u’). By a symmetric

computation with the data structure for the labeling l(w) of T1 we can detect this.

If so we return “ambiguity”. Otherwise we return the unique first bridge b. See

Figure 2.3 for an example.

32 CHAPTER 2. BINARY DISPATCHING

r

s t

w u

v

T1 T2

Figure 2.2: Example of labeling. The labeling for v ∈ V (T1), lv: lv(r) = {c1, c2},
lv(s) = {c3}, lv(t) = {c1}, lv(u) = {c2}. The labeling lw for w ∈ V (T1) is the same

as lv except that lw(u) is empty.

2.4.2 Using Persistence to Save Space

Explicit representation of the tree color data structures for each of the labelings

lv for all nodes v in T1 and T2 would take up space Ω(m2). Fortunately, the data

structures overlap a lot: Let v, w ∈ V (T1), u ∈ V (T2), and let v � w. Then lv(u) ⊆
lw(u). We take advantage of this in a simple way. We make a fully persistent

version of the dynamic tree color data structure. The idea is that the above set of

O(m) tree color data structures corresponds to a persistent version, each created

by one of O(m) updates in total.

Formally, suppose we have generated the data structure for the labeling lv, for

v in T1. Let w be the child of node v in T1. We construct the data structure for the

labeling lw by updating the persistent structure for lv by inserting the color cor-

responding to all bridges with endpoint w (including updating H(v)). Since the

data structure is fully persistent, we can repeat this for each child of v, and hence

obtain data structures for all the labelings for children of v. In other words, we

can form all the data structures for the labeling lv for nodes v ∈ V (T1), by updates

in the persistent structures according to a top-down traversal of T1. Another way

to see this, is that T1 is denoting the time (giving the order of the versions). That

is, the version tree has the same structure as T1.

Similarly, we construct the labelings for T1 by a traversal of T2. We conclude

with the following lemma:

Lemma 2.4.1. A static data structure for the bridge color problem can be constructed by

2.4. A DATA STRUCTURE FOR THE BRIDGE COLOR PROBLEM 33

v

u r s

T1 T2

b3

b1 b2

lv

lu lr ls

Figure 2.3: The query firstcolorbridge(c,v,s) returns b3. To answer the query

we perform the queries firstcolor(c, s) in the tree color data structure for lv and

firstcolor(c, v) in the tree color data structure for ls. The query firstcolorbridge(c′,u,r)

returns ambiguity since neither b1 or b2 is closer than the other. To answer the

query we perform the queries firstcolor(c′, r) in the tree color data structure for lu

and firstcolor(c, u) in the tree color data structure for lr.

O(m) updates to a fully persistent version of the dynamic tree color problem.

2.4.3 Reducing the number of Memory Modifications in the Tree

Color Problem

Alstrup et al. [7] gives the following upper bounds for the tree color problem for

a tree of size m. Expected O(loglog m) update time for both color and uncolor, and

query time O(log m/loglog m), with linear space and preprocessing time.

For our purposes we need a slightly stronger result, i.e., updates that only

make worst case O(1) memory modifications. By inspection of the dynamic tree

color algorithm, the bottle-neck in order to achieve this, is the use of the van Emde

Boas predecessor data structure [120, 121] (VEB). Using a standard technique by

Dietz and Raman [42] to implement a fast predecessor structure we get the fol-

lowing result.

Theorem 2.4.2. Insert and predecessor queries on a set of integers from {1, . . . , n} can

34 CHAPTER 2. BINARY DISPATCHING

be performed in O(loglogn) worst case time per operation using worst case O(1) memory

modifications per update.

To prove the theorem we first show an amortized result1. The elements in our

predecessor data structure is grouped into buckets S1, . . . , Sk, where we maintain

the following invariants:

(1) max Si < min Si+1 for i = 1, . . . k − 1, and

(2) 1/2 log n < |Si| ≤ 2 log n for all i.

We have k ∈ O(n/ log n). Each Si is represented by a balanced search tree

with O(1) worst case update time once the position of the inserted or deleted

element is known and query time O(log m), where m is the number of nodes in

the tree [51, 86]. This gives us update time O(loglog n) in a bucket, but only O(1)

memory modifications per update. The minimum element si of each bucket Si is

stored in a VEB.

When a new element x is inserted it is placed in the bucket Si such that si <

x < si+1, or in S1 if no such bucket exists. Finding the correct bucket is done by a

predecessor query in the VEB. This takes O(loglog n) time. Inserting the element

in the bucket also takes O(loglog n) time, but only O(1) memory modifications.

When a bucket Si becomes to large it is split into two buckets of half size. This

causes a new element to be inserted into the VEB and the binary trees for the two

new buckets have to be build. An insertion into the VEB takes O(loglog n) time

and uses the same number of memory modifications. Building the binary search

trees uses O(log n) time and the same number of memory modifications. When a

bucket is split there must have been at least log n insertions into this bucket since

it last was involved in a split. That is, splitting and inserting uses O(1) amortized

memory modifications per insertion.

Lemma 2.4.3. Insert and predecessor queries on a set of integers from {1, . . . , n} can be

performed in O(loglogn) worst case time for predecessor and O(loglogn) amortized time

for insert using O(1) amortized number of memory modifications per update.

We can remove the amortization by the following technique by Raman [100]

called thinning at the cost of making the bucket sizes Θ(log2n).

Let α > 0 be a sufficiently small constant. Define the criticality of a bucket to

be:

ρ(b) =
1

α log n
max{0, size(b)− 1.8 log2 n}.

1The amortized result (Lemma 2.4.3) was already shown by Mehlhorn and Näher [92], but in

order to make the deamortization we give another implementation here.

2.4. A DATA STRUCTURE FOR THE BRIDGE COLOR PROBLEM 35

A bucket b is called critical if ρ(b) > 0. We want to ensure that size(b) ≤ 2 log2 n.

To maintain the size of the buckets every α log n updates take the most critical

bucket (if there is any) and move logn elements to a newly created empty adjacent

bucket. A bucket rebalancing uses O(log n) memory modifications and we can

thus perform it with O(1) memory modifications per update spread over no more

than α log n updates.

We now show that the buckets never get too big. The criticality of all buckets

can only increase by 1 between bucket rebalancings. We see that the criticality of

the bucket being rebalanced is decreased, and no other bucket has its criticality

increased by the rebalancing operations. We make use of the following lemma

due to Raman:

Lemma 2.4.4 (Raman [100]). Let x1, . . . , xn be real-valued variables, all initially zero.

Repeatedly do the following:

(1) Choose n non-negative real numbers a1, . . . , an such that
∑n

i=1 ai = 1, and set

xi ← xi + ai for 1 ≤ i ≤ n.

(2) Choose an xi such that xi = maxj{xj}, and set xi ← max{xi − c, 0} for some

constant c ≥ 1.

Then each xi will always be less than ln n + 1, even when c = 1.

Apply the lemma as follows: Let the variables of Lemma 2.4.4 be the criti-

calities of the buckets. The reals ai are the increases in the criticalities between

rebalancings and c = 1/α. We see that if α ≤ 1 the criticality of a bucket will

never exceed ln n + 1 = O(log n). Thus for sufficiently small α the size of the

buckets will never exceed 2 log2 n. This completes the proof of Theorem 2.4.2.

We need worst case update time for color in the tree color problem in order

to make it persistent. The expected update time is due to hashing, and can be

removed at the cost of using more space. We now use Theorem 2.4.2 to get the

following lemma.

Lemma 2.4.5. Using linear time for preprocessing, we can maintain a tree with complex-

ity O(loglog m) for color and complexity O(log m/loglog m) for firstcolor, using O(1)

memory modifications per update, where m is the number of nodes in the tree.

2.4.4 Making the Data Structure Persistent

Using Dietz’ method [41] to make a data structure fully persistent on the data

structure from Lemma 2.4.5, we can construct a fully persistent version of the tree

color data structure.

36 CHAPTER 2. BINARY DISPATCHING

Taking advantage of the fact that the structure of the version tree is known

from the beginning, we can get faster preprocessing time for our bridge color

data structure.

Since the structure of the version tree is known from the beginning we can

construct the tree color data structure for the version tree, by first to running

through the whole version tree in an Euler tour, and remembering which updates

are made in which node. Then we can construct the tree color data structure

for the version tree using the data structure for the static tree color problem by

Muthukrishnan and Müller [93]. This uses expected linear preprocessing time

and linear space using worst-case O(loglog m) time per query. As mentioned ear-

lier the expectation in the preprocessing time can be removed.

Another possibility is to use a modified version of Dietz’ method to make a

data structure fully persistent. Recall that this method gives an expected amor-

tized slowdown of O(loglog m). The amortization comes from the problem of

maintaining order in a list. Since we know the structure of the version tree from

the beginning we can get rid of this amortization. This gives a significant simpli-

fication of the construction of our bridge color data structure. This data structure

uses expected O(loglog m) time per update, and the preprocessing time for our

bridge color problem is thus a factor of O(loglog m) bigger than in the approach

using a static tree color data structure for the version tree.

2.4.5 Reducing the Space

Using the method described in the previous section we can construct a fully per-

sistent version of the tree color data structure with complexity O(loglog m) for

color and uncolor, and complexity O((log m/loglog m) · loglog m) = O(log m) for

firstcolor, using O(m) memory modifications, where m is the number of nodes in

the tree.

According to Lemma 2.4.1 a data structure for the bridge color problem can

be constructed by O(m) updates to a fully persistent version of the dynamic tree

color problem. We can thus construct a data structure for the bridge color problem

in time O(m loglog m), which has query time O(log m), where m is the number of

bridges. However, this data structure uses O(c·m) space, where c is the number of

method names. Since we only use O(m) memory modifications to construct the

data structure we can use dynamic perfect hashing [43] to reduce the space. This

gives a data structure for the bridge color problem using O(m) space and expected

preprocessing time O(m loglog m). This completes the proof of Theorem 2.3.3.

If we use O(N) time to reduce the class hierarchy tree to size O(m) as men-

2.4. A DATA STRUCTURE FOR THE BRIDGE COLOR PROBLEM 37

tioned in the introduction, we get the following corollary to Theorem 2.3.3.

Corollary 2.4.6. Using expected O(N + m loglog m) time for preprocessing and O(m)

space, the binary dispatching problem can be solved in worst case time O(log m) per

query. Here N is the number of classes and m is the number of methods.

38 CHAPTER 2. BINARY DISPATCHING

Chapter 3

Tree Inclusion

Given two rooted, ordered, and labeled trees P and T the tree inclusion problem

is to determine if P can be obtained from T by deleting nodes in T . This problem

has recently been recognized as an important query primitive in XML databases.

Kilpeläinen and Mannila [SIAM J. Comput. 1995] presented the first polynomial

time algorithm using quadratic time and space. Since then several improved re-

sults have been obtained for special cases when P and T have a small number

of leaves or small depth. However, in the worst case these algorithms still use

quadratic time and space. In this paper we present a new approach to the prob-

lem which leads to a new algorithm which uses optimal linear space and has

subquadratic running time. Our algorithm improves all previous time and space

bounds. Most importantly, the space is improved by a linear factor. This will

make it possible to query larger XML databases and speed up the query time

since more of the computation can be kept in main memory.

3.1 Introduction

Let T be a rooted tree. We say that T is labeled if each node is a assigned a symbol

from an alphabet Σ and we say that T is ordered if a left-to-right order among

siblings in T is given. All trees in this paper are rooted, ordered, and labeled. A

tree P is included in T , denoted P ⊑ T , if P can be obtained from T by deleting

nodes of T . Deleting a node v in T means making the children of v children of

the parent of v and then removing v. The children are inserted in the place of v

in the left-to-right order among the siblings of v. The tree inclusion problem is to

determine if P can be included in T and if so report all subtrees of T that include

P . The tree P and T is often called the pattern and target, respectively.

Recently, the problem has been recognized as an important query primitive

39

40 CHAPTER 3. TREE INCLUSION

catalog

book book

author chapter author chapter chapter

john XML name title section title

john databases XML queries

(a) (b)

catalog

book book

author chapter author chapter chapter

john XML name title section title

john databases XML queries

(c)

Figure 3.1: Can the tree (a) be included in the tree (b)? It can and the embedding

is given in (c).

for XML data and has received considerable attention, see e.g., [105, 125, 124, 127,

106, 118]. The key idea is that an XML document can be viewed as an ordered,

labeled tree and queries on this tree correspond to a tree inclusion problem. As

an example consider Figure 3.1. Suppose that we want to maintain a catalog of

books for a bookstore. A fragment of the tree, denoted D, corresponding to the

catalog is shown in (b). In addition to supporting full-text queries, such as find

all documents containing the word ”John”, we can also utilize the tree structure

of the catalog to ask more specific queries, such as ”find all books written by John

with a chapter that has something to do with XML”. We can model this query

by constructing the tree, denoted Q, shown in (a) and solve the tree inclusion

problem: is Q ⊑ D? The answer is yes and a possible way to include Q in D is

indicated by the dashed lines in (c). If we delete all the nodes in D not touched by

dashed lines the trees Q and D become isomorphic. Such a mapping of the nodes

from Q to D given by the dashed lines is called an embedding (formally defined in

3.1. INTRODUCTION 41

Section 3.3).

The tree inclusion problem was initially introduced by Knuth [83, exercise

2.3.2-22] who gave a sufficient condition for testing inclusion. Motivated by ap-

plications in structured databases [79, 90] Kilpeläinen and Mannila [80] presented

the first polynomial time algorithm using O(nPnT) time and space, where nP and

nT is the number of nodes in a tree P and T , respectively. During the last decade

several improvements of the original algorithm of Kilpeläinen and Mannila [80]

have been suggested [78, 2, 103, 31]. The previously best known bound is due to

Chen [31] who presented an algorithm using O(lPnT) time and O(lP min{dT , lT})
space. Here, lS and dS denotes the number of leaves of and the maximum depth

of a tree S, respectively. This algorithm is based on an algorithm of Kilpeläinen

[78]. Note that the time and space is still Θ(nP nT) for worst-case input trees.

In this paper we improve all of the previously known time and space bounds.

Combining the three algorithms presented in this paper we have:

Theorem 3.1.1. For trees P and T the ordered tree inclusion problem can be solved in

time O(min(nP nT

log nT
, lP nT , nP lT log log nT)) using optimal O(nT + nP) space.

Hence, for worst-case input this improves the previous time and space bounds

by a logarithmic and linear factor, respectively. When P has a small number of

leaves the running time of our algorithm matches the previously best known time

bound of [31] while maintaining linear space. In the context of XML databases

the most important feature of our algorithms is the space usage. This will make

it possible to query larger trees and speed up the query time since more of the

computation can be kept in main memory.

3.1.1 Techniques

Most of the previous algorithms, including the best one by Chen [31], are es-

sentially based on a simple dynamic programming approach from the original

algorithm of Kilpeläinen and Mannila [80]. The main idea behind this algorithm

is the following: Let v ∈ V (P) and w ∈ V (T) be nodes with children v1, . . . , vi and

w1, . . . , wj, respectively. To decide if P (v) can be included T (w) we try to find a

sequence of numbers 1 ≤ x1 < x2 < · · · < xi ≤ j such that P (vk) can be included

in T (wxk
) for all k, 1 ≤ k ≤ i. If we have already determined whether or not

P (vs) ⊑ T (wt), for all s and t, 1 ≤ s ≤ i, 1 ≤ t ≤ j, we can efficiently find such

a sequence by scanning the children of v from left to right. Hence, applying this

approach in a bottom-up fashion we can determine, if P (v) ⊑ T (w), for all pairs

(v, w) ∈ V (P)× V (T).

42 CHAPTER 3. TREE INCLUSION

In this paper we take a different approach. The main idea is to construct a

data structure on T supporting a small number of procedures, called the set proce-

dures, on subsets of nodes of T . We show that any such data structure implies an

algorithm for the tree inclusion problem. We consider various implementations

of this data structure which all use linear space. The first simple implementation

gives an algorithm with O(lPnT) running time. As it turns out, the running time

depends on a well-studied problem known as the tree color problem. We show

a direct connection between a data structure for the tree color problem and the

tree inclusion problem. Plugging in a data structure of Dietz [41] we obtain an

algorithm with O(nP lT log log nT) running time.

Based on the simple algorithms above we show how to improve the worst-

case running time of the set procedures by a logarithmic factor. The general idea

used to achieve this is to divide T into small trees or forests, called micro trees

or clusters of logarithmic size which overlap with other micro trees in at most 2

nodes. Each micro tree is represented by a constant number of nodes in a macro

tree. The nodes in the macro tree are then connected according to the overlap of

the micro trees they represent. We show how to efficiently preprocess the micro

trees and the macro tree such that the set procedures use constant time for each

micro tree. Hence, the worst-case running time is improved by a logarithmic

factor to O(nP nT

log nT
).

Throughout the paper we assume a standard RAM model of computation

with word size Ω(log n). We use a standard instruction set such as bitwise boolean

operations, shifts, and addition.

3.1.2 Related Work

For some applications considering unordered trees is more natural. However, in

[91, 80] this problem was proved to be NP-complete. The tree inclusion problem

is closely related to the tree pattern matching problem [69, 84, 45, 37]. The goal is

here to find an injective mapping f from the nodes of P to the nodes of T such

that for every node v in P the ith child of v is mapped to the ith child of f(v).

The tree pattern matching problem can be solved in O(n logO(1) n) time, where

n = nP +nT . Another similar problem is the subtree isomorphism problem [33, 108],

which is to determine if T has a subgraph which is isomorphic to P . The subtree

isomorphism problem can be solved efficiently for ordered and unordered trees.

The best algorithms for this problem use O(n1.5
P nT / log nP) for unordered trees

and O(nPnT / log nP) time ordered trees [33, 108]. Both use O(nPnT) space. The

tree inclusion problem can be considered a special case of the tree edit distance

3.2. NOTATION AND DEFINITIONS 43

problem [111, 128, 81]. Here one wants to find the minimum sequence of insert,

delete, and relabel operations needed to transform P into T . The currently best

worst-case algorithm for this problem uses O(n2
PnT log nT) time. For more details

and references see the survey [21].

3.1.3 Outline

In Section 3.2 we give notation and definitions used throughout the paper. In

Section 3.3 a common framework for our tree inclusion algorithms is given. Sec-

tion 3.4 present two simple algorithms and then, based on these result, we show

how to get a faster algorithm in Section 3.5.

3.2 Notation and Definitions

In this section we define the notation and definitions we will use throughout the

paper. For a graph G we denote the set of nodes and edges by V (G) and E(G),

respectively. Let T be a rooted tree. The root of T is denoted by root(T). The

size of T , denoted by nT , is |V (T)|. The depth of a node v ∈ V (T), depth(v), is the

number of edges on the path from v to root(T) and the depth of T , denoted dT , is

the maximum depth of any node in T . The set of children of a node v is denoted

child(v). A node with no children is a leaf and otherwise an internal node. The set

of leaves of T is denoted L(T) and we define lT = |L(T)|. We say that T is labeled

if each node v is a assigned a symbol, denoted l(v), from an alphabet Σ and we

say that T is ordered if a left-to-right order among siblings in T is given. All trees

in this paper are rooted, ordered, and labeled.

Let T (v) denote the subtree of T rooted at a node v ∈ V (T). If w ∈ V (T (v))

then v is an ancestor of w, denoted v � w, and if w ∈ V (T (v))\{v} then v is a

proper ancestor of w, denoted v ≺ w. If v is a (proper) ancestor of w then w is a

(proper) descendant of v. A node z is a common ancestor of v and w if it is an

ancestor of both v and w. The nearest common ancestor of v and w, nca(v, w), is

the common ancestor of v and w of largest depth. The first ancestor of w labeled

α, denoted fl(w, α), is the node v such that v � w, l(v) = α, and no node on the

path between v and w is labeled α. If no such node exists then fl(w, α) = ⊥, where

⊥ 6∈ V (T) is a special null node.

For any set of pairs U , let U |1 and U |2 denote the projection of U to the first and

second coordinate, that is, if (u1, u2) ∈ U then u1 ∈ U |1 and u2 ∈ U |2.

44 CHAPTER 3. TREE INCLUSION

Lists A list, X , is a finite sequence of objects X = [v1, . . . , vk]. The length of

the list, denoted |X|, is the number of objects in X . The ith element of X , X[i],

1 ≤ i ≤ |X| is the object vi and v ∈ X iff v = X[j] for some 1 ≤ j ≤ |X|. For any

two lists X = [v1, . . . , vk] and Y = [w1, . . . , wk], the list obtained by appending Y to

X is the list X ◦ Y = [v1, . . . , vk, w1, . . . , wk]. We extend this notation such that for

any object u, X ◦ u denotes the list X ◦ [u]. For simplicity in the notation we will

sometimes write [vi | 1 ≤ i ≤ k] to denote the list [v1, . . . , vk]. A pair list is a list of

pairs of object Y = [(v1, w1), . . . , (vk, wk)]. Here the first and second element in the

pair is denoted by Y [i]1 = vi and Y [i]2 = wi. The projection of pair lists is defined

by Y |1 = [v1, . . . , vk] and Y |2 = [w1, . . . , wk].

Orderings Let T be a tree with root v and let v1, . . . , vk be the children of v from

left-to-right. The preorder traversal of T is obtained by visiting v and then recur-

sively visiting T (vi), 1 ≤ i ≤ k, in order. Similarly, the postorder traversal is ob-

tained by first visiting T (vi), 1 ≤ i ≤ k, in order and then v. The preorder number

and postorder number of a node w ∈ T (v), denoted by pre(w) and post(w), is the

number of nodes preceding w in the preorder and postorder traversal of T , re-

spectively. The nodes to the left of w in T is the set of nodes u ∈ V (T) such that

pre(u) < pre(w) and post(u) < post(w). If u is to the left of w, denoted by u ⊳ w,

then w is to the right of u. If u ⊳ w, u � w, or w ≺ u we write u E w. The null node

⊥ is not in the ordering, i.e., ⊥ ⋪ v for all nodes v.

Deep Sets A set of nodes V ⊆ V (T) is deep iff no node in V is a proper ancestor

of another node in V .

Minimum Ordered Pair Let V1, . . . , Vk be deep sets of nodes. Let Φ(V1, . . . , Vk)

⊆ (V1 × · · · × Vk), be the set such that (v1, . . . , vk) ∈ Φ(V1, . . . , Vk) iff v1 ⊳ · · ·⊳ vk.

If (v1, . . . , vk) ∈ Φ(V1, . . . , Vk) and there is no (v′
1, . . . , v

′
k) ∈ Φ(V1, . . . , Vk), where ei-

ther v1⊳v′
1⊳v′

kEvk or v1Ev′
1⊳v′

k⊳vk then the pair (v1, vk) is a minimum ordered pair.

The set of minimum ordered pairs for V1, . . . , Vk is denoted by mop(V1, . . . , Vk).

Figure 3.2 illustrates mop on a small example. The following lemma shows that

mop(V1, . . . , Vk) can be computed iteratively by first computing mop(V1, V2) and

then mop(mop(V1, V2)|2, V3) and so on.

Lemma 3.2.1. For any deep sets of nodes V1, . . . , Vk we have, (v1, vk) ∈ mop(V1, . . . , Vk)

if and only if there exists a node vk−1 such that (v1, vk−1) ∈ mop(V1, . . . , Vk−1) and

(vk−1, vk) ∈ mop(mop(V1, . . . , Vk−1)|2, Vk).

3.2. NOTATION AND DEFINITIONS 45

v1 v2 v5 v6 v7

v3 v4

(a)

=S1 =S2 =S3 =S4

v1 v2 v5 v8 v9

v3 v4 v6 v7

(b)

Figure 3.2: Two examples of mop. In (a) we have Φ(S1, S2, S1, S3, S4) =

{(v1, v2, v3, v6, v7), (v1, v2, v5, v6, v7), (v1, v4, v5, v6, v7), (v3, v4, v5, v6, v7)} and thus

mop(S1, S2, S1, S3, S4) = {(v3, v7)}. In (b) we have mop(S1, S2, S1, S3, S4) =

{(v1, v7), (v3, v9)} since Φ(S1, S2, S1, S3, S4) = {(v1, v2, v3, v5, v7), (v1, v2, v6, v8, v9),

(v1, v2, v3, v8, v9), (v1, v2, v3, v5, v9), (v1, v4, v6, v8, v9), (v3, v4, v6, v8, v9)}.

Proof. We will start by showing (v1, vk) ∈ mop(V1, . . . , Vk) ⇒ ∃vk−1 such that

(v1, vk−1) ∈ mop(V1, . . . , Vk−1) and (vk−1, vk) ∈ mop(mop(V1, . . . , Vk−1)|2, Vk).

First note that (w1, . . . , wk) ∈ Φ(V1, . . . , Vk)⇒ (w1, . . . , wk−1) ∈ Φ(V1, . . . , Vk−1).

Since (v, vk) ∈ mop(V1, . . . , Vk) there must be a minimum node vk−1 such that

Φ(V1, . . . , Vk−1) contains the tuple (v1, . . . , vk−1). It follows immediately that the

pair (v, vk−1) ∈ mop(V1, . . . , Vk−1). It remains to show that the pair (vk−1, vk) ∈
mop(mop(V1, . . . , Vk−1)|2, Vk). Since (v1, vk) ∈ mop(V1, . . . , Vk) there exists no w ∈
Vk such that vk−1 ⊳ w ⊳ vk. For the sake of contradiction assume there exists a w ∈
mop(V1, . . . , Vk−1)|2 such that vk−1 ⊳w⊳vk. Since (v, vk−1) ∈ mop(V1, . . . , Vk−1) this

implies that there is a w′⊲v1 such that (w′, w) ∈ mop(V1, . . . ,Vk−1). But this implies

that there is a tuple (w′, . . . , w, vk) ∈ Φ(V1, . . . , Vk) contradicting that (v1, vk) ∈
mop(V1, . . . , Vk).

We now show that if there exists a vk−1 such that (v1, vk−1) ∈ mop(V1, . . . , Vk−1)

and (vk−1, vk) ∈ mop(mop(V1, . . . , Vk−1)|2, Vk) then (v1, vk) ∈ mop(V1, . . . , Vk).

Clearly, there exists a tuple (v1, . . . , vk−1, vk) ∈ Φ(V1, . . . , Vk). Assume that there

exists a tuple (w1, . . . , wk) ∈ Φ(V1, . . . , Vk) such that v1 ⊳ w1 ⊳ wk E vk. Since

wk−1 E vk−1 this contradicts that (v1, vk−1) ∈ mop(V1, . . . , Vk−1). Assume that there

exists a tuple (w1, . . . , wk) ∈ Φ(V1, . . . , Vk) such that v1 E w1 ⊳ wk ⊳ vk. Since

(v1, vk−1) ∈ mop(V1, . . . , Vk−1) we have vk−1Ewk−1 and thus wk⊲vk−1 contradicting

(vk−1, vk) ∈ mop(mop(V1, . . . , Vk−1)|2, Vk).

46 CHAPTER 3. TREE INCLUSION

3.3 Computing Deep Embeddings

In this section we will present a general framework for answering tree inclusion

queries. As Kilpeläinen and Mannila [80] we solve the equivalent tree embedding

problem. Let P and T be rooted labeled trees. An embedding of P in T is an injective

function f : V (P)→ V (T) such that for all nodes v, u ∈ V (P),

(i) l(v) = l(f(v)). (label preservation condition)

(ii) v ≺ u iff f(v) ≺ f(u). (ancestor condition)

(iii) v ⊳ u iff f(v) ⊳ f(u). (order condition)

An example of an embedding is given in Figure 3.1(c).

Lemma 3.3.1 (Kilpeläinen and Mannila[80]). For any trees P and T , P ⊑ T iff there

exists an embedding of P in T .

We say that the embedding f is deep if there is no embedding g such that

f(root(P)) ≺ g(root(P)). The deep occurrences of P in T , denoted emb(P, T) is

the set of nodes,

emb(P, T) = {f(root(P)) | f is a deep embedding of P in T}.

Note that emb(P, T) must be a deep set in T . Furthermore, by definition the set

of ancestors of nodes in emb(P, T) is the set of subtrees T (u) such that P ⊑ T (u).

Hence, to solve the tree inclusion problem it is sufficient to compute emb(P, T)

and then, using additional O(nT) time, report all ancestors (if any) of this set.

We show how to compute deep embeddings. The key idea is to construct a

data structure that allows a fast implementation of the following procedures. For

all V ⊆ V (T), U ⊆ V (T)× V (T), and α ∈ Σ define:

PARENTT (V). Return the set R := {parent(v) | v ∈ V }.

NCAT (U). Return the set R := {nca(u1, u2) | (u1, u2) ∈ U}.

DEEPT (V). Return the set R := {v ∈ V | ∄w ∈ V such that v ≺ w}.

MOPT (U, V). Return the set of pairs R such that for any pair (u1, u2) ∈ U , (u1, v) ∈
R iff (u2, v) ∈ mop(U |2, V).

FLT (V, α). Return the set R := {fl(v, α) | v ∈ V }.

Collectively we call these procedures the set procedures. With the set procedures

we can compute deep embeddings. The following procedure EMBT (v), v ∈ V (P)

recursively computes the set of deep occurrences of P (v) in T .

3.3. COMPUTING DEEP EMBEDDINGS 47

EMBT (v) Let v1, . . . , vk be the sequence of children of v ordered from left to right.

There are three cases:

1. k = 0 (v is a leaf). Set R := DEEPT (FLT (L(T), l(v))).

2. k = 1. Recursively compute R1 := EMBT (v1).

Set R := DEEPT (FLT (DEEPT (PARENTT (R1)), l(v))).

3. k > 1. Compute R1 := EMBT (v1) and U1 := {(r, r) | r ∈ R1}. For i,

1 ≤ i ≤ k, compute Ri := EMBT (vi) and Ui := MOPT (Ui−1, Ri). Finally,

compute R := DEEPT (FLT (DEEPT (NCAT (Uk)), l(v))).

If R = ∅ stop and report that there is no deep embedding of P (v) in T .

Otherwise return R.

Figure 3.3 illustrates how EMB works on a small example.

Lemma 3.3.2. For any two trees T and P , EMBT (v) computes the set of deep occurrences

of P (v) in T .

Proof. By induction on the size of the subtree P (v). If v is a leaf we immedi-

ately have that emb(v, T) = DEEPT (FLT (L(T), l(v))) and thus case 1 follows. Sup-

pose that v is an internal node with k ≥ 1 children v1, . . . , vk. We show that

emb(P (v), T) = EMBT (v). Consider cases 2 and 3 of the algorithm.

If k = 1 we have that w ∈ EMBT (v) implies that l(w) = l(v) and there is a

node w1 ∈ EMBT (v1) such that fl(parent(w1), l(v)) = w, that is, no node on the

path between w1 and w is labeled l(v). By induction EMBT (v1) = emb(P (v1), T)

and therefore w is the root of an embedding of P (v) in T . Since EMBT (v) is the

deep set of all such nodes it follows that w ∈ emb(P (v), T). Conversely, if w ∈
emb(P (v), T) then l(w) = l(v), there is a node w1 ∈ emb(P (v1), T) such that w ≺
w1, and no node on the path between w and w1 is labeled l(v), that is, fl(w1, l(v)) =

w. Hence, w ∈ EMBT (v).

Before considering case 3 we show that Uj = mop(EMBT (v1), . . . , EMBT (vj))

by induction on j, 2 ≤ j ≤ k. For j = 2 it follows from the definition of MOPT

that U2 = mop(EMBT (v1), EMBT (v2)). Hence, assume that j > 2. By the induction

hypothesis we have Uj = MOPT (Uj−1, EMBT (vj)) = MOPT (mop(EMBT (v1), . . . ,

EMBT (vj−1)), Rj). By the definition of MOPT , Uj is the set of pairs such that for any

pair (r1, rj−1) ∈ mop(EMBT (v1), . . . , EMBT (vj−1)), we have that (r1, rj) ∈ Uj if and

only if (rj−1, rj) ∈ mop(mop(EMBT (v1), . . . , EMBT (vj−1))|2, Rj). By Lemma 3.2.1 it

follows that (r1, rj) ∈ Uj if and only if (r1, rj) ∈ mop(EMBT (v1), . . . , EMBT (vj)).

Next consider case 3 (k > 1). If w ∈ EMBT (v) we have l(w) = l(v) and

there are nodes (w1, wk) ∈ mop(emb(P (v1), T), . . . , emb(P (vk), T)) such that w =

48 CHAPTER 3. TREE INCLUSION

P T

a1
a

b2 a4
b b a

a3
a a b a b

a

(a) (b)

a a

b b a b b a

a a b a b a a b a b

a a

(c) (d)

a a

b b a b b a

a a b a b a a b a b

a a

(e) (f)

Figure 3.3: Computing the deep occurrences of P into T depicted in (a) and (b)

respectively. The nodes in P are numbered 1–4 for easy reference. (c) Case 1 of

EMB: The set EMBT (3). Since 3 and 4 are leaves and l(3) = l(4) we have EMBT (3) =

EMBT (4). (d) Case 2 of EMB. The set EMBT (2). Note that the middle child of the

root of T is not in the set since it is not a deep occurrence. (e) Case 3 of EMB: The

two minimal ordered pairs of (d) and (c). (f) The nearest common ancestors of

both pairs in (e) give the root node of T which is the only (deep) occurrence of P .

3.4. A SIMPLE TREE INCLUSION ALGORITHM 49

fl(nca(w1, wk), l(v)). Clearly, w is the root of an embedding of P (v) in T . As-

sume for contradiction that w is not a deep embedding, that is, w ≺ u for some

node u ∈ emb(P (v), T). Since w = fl(nca(w1, wk), l(v)) there must exist nodes

u1 ⊳ · · · ⊳ uk, such that ui ∈ emb(P (vi), T) and u = fl(nca(u1, uk), l(v)). Since

w ≺ u we must have w1 ⊳ u1 or uk ⊳ wk. However, this contradicts the fact that

(w1, wk) ∈ mop(emb(P (v1), T), . . . , emb(P (vk), T)). If w ∈ emb(P (v), T) a similar

argument implies that w ∈ EMBT (v).

When the tree T is clear from the context we may not write the subscript T in

the procedure names. Note that since the EMBT (v) is a deep set we can assume

in an implementation of EMB that PARENT , FL, NCA, and MOP take deep sets as

input. We will use this fact in the following sections.

3.4 A Simple Tree Inclusion Algorithm

In this section we a present a simple implementation of the set procedures which

leads to an efficient tree inclusion algorithm. Subsequently, we modify one of the

procedures to obtain a family of tree inclusion algorithms where the complexities

depend on the solution to a well-studied problem known as the tree color problem.

3.4.1 Preprocessing

To compute deep embeddings efficiently we require a data structure for T which

allows us, for any v, w ∈ V (T), to compute ncaT (v, w) and determine if v ≺ w or

v ⊳ w. In linear time we can compute pre(v) and post(v) for all nodes v ∈ V (T),

and with these it is straightforward to test the two conditions. Furthermore,

Lemma 3.4.1 (Harel and Tarjan[66]). For any tree T there is a data structure using

O(nT) space and preprocessing time which supports nearest common ancestor queries in

O(1) time.

Hence, our data structure uses linear preprocessing time and space.

3.4.2 Implementation of the Set Procedures

To answer tree inclusion queries we give an efficient implementation of the set

procedures. The idea is to represent the node sets in a left-to-right order. For this

purpose we introduce some helpful notation. A node list, X , is a list of nodes. If

vi ⊳ vi+1, 1 ≤ i < |X| then X is ordered and if v1 E vi+1, 1 ≤ i < |X| then X is

50 CHAPTER 3. TREE INCLUSION

semiordered. A node pair list, Y , is a list of pairs of nodes. We say that Y is ordered

if Y |1 and Y |2 are ordered, and semiordered if Y |1 and Y |2 are semiordered.

The set procedures are implemented using node lists and node pair lists be-

low. All lists used in the procedures are either ordered or semiordered. As noted

in Section 3.3 we may assume that the input to all of the procedures, except DEEP,

represent a deep set, that is, the corresponding node list or node pair list is or-

dered. We assume that the input list given to DEEP is semiordered and the out-

put, of course, is ordered. Hence, the output of all the other set procedures must

be semiordered.

PARENTT (X). Return the list Z := [parent(X[i]) | 1 ≤ i ≤ |X|].

NCAT (Y). Return the list Z := [nca(Y [i]) | 1 ≤ i ≤ |Y |].

DEEPT (X). Initially, set v := X[1] and Z := []. For each i, 2 ≤ i ≤ k, compare v

and X[i]: If v ⊳ X[i] set Z := Z ◦ v and v := X[i]. If v ≺ X[i], set v := X[i]

and otherwise (X[i] ≺ v) do nothing.

Finally, set Z := Z ◦ v and return Z.

MOPT (X, Y). Initially, set Z := []. Find the minimum j such that X[1]2 ⊳Y [j] and

set x := X[1]1, y := Y [j], and h := j. If no such j exists stop.

As long as h ≤ |Y | do the following: For each i, 2 ≤ i ≤ |X|, do: Set h := h+1

until X[i]2 ⊳ Y [h]. Compare Y [h] and y: If y = Y [h] set x := X[i]1. If y ⊳ Y [h]

set Z := Z ◦ (x, y), x := X[i]1, and y := Y [h].

Finally, set Z := Z ◦ (x, y) and return Z.

FLT (X, α). Initially, set Y := X , Z := [], and S := []. Repeat until Y := []: For

i = 1, . . . , |Y | if l(Y [i]) = α set Z := INSERT(Y [i], Z) and otherwise set S :=

S ◦ parent(Y [i]).

Set S := DEEPT (S), Y := DEEP
∗
T (S, Z), S := [].

Return Z.

The procedure FL calls two auxiliary procedures: INSERT(v, Z) that takes an or-

dered list Z and insert the node v such that the resulting list is ordered, and

DEEP
∗(S, Z) that takes two ordered lists and returns the ordered list represent-

ing the set DEEP(S ∪ Z) ∩ S, i.e., DEEP
∗(S, Z) = [s ∈ S|∄z ∈ Z : s ≺ z]. Below we

describe in more detail how to implement FL together with the auxiliary proce-

dures.

3.4. A SIMPLE TREE INCLUSION ALGORITHM 51

We use one doubly linked list to represent all the lists Y , S, and Z. For each

element in Y we have pointers Pred and Succ pointing to the predecessor and suc-

cessor in the list, respectively. We also have at each element a pointer Next point-

ing to the next element in Y . In the beginning Next = Succ for all elements, since

all elements in the list are in Y . When going through Y in one iteration we simple

follow the Next pointers. When FL calls INSERT(Y [i], Z) we set Next(Pred(Y [i]))

to Next(Y [i]). That is, all nodes in the list not in Y , i.e., nodes not having a Next

pointer pointing to them, are in Z. We do not explicitly maintain S. Instead we

just set save PARENT(Y [i]) at the position in the list instead of Y [i]. Now DEEP(S)

can be performed following the Next pointers and removing elements from the

doubly linked list accordingly to procedure DEEP. It remains to show how to cal-

culate DEEP
∗(S, Z). This can be done by running through S following the Next

pointers. At each node s compare Pred(s) and Succ(s) with s. If one of them is a

descendant of s remove s from the doubly linked list.

Using this linked list implementation DEEP
∗(S, Z) takes time O(|S|), whereas

using DEEP to calculate this would have used time O(|S|+ |Z|).

3.4.3 Correctness of the Set Procedures

Clearly, PARENT and NCA are correct. The following lemmas show that DEEP,

FL, and MOP are also correctly implemented.

Lemma 3.4.2. Procedure DEEP(X) is correct.

Proof. Let u be an element in X . We will first prove that if X ∩ V (T (u)) = ∅ then

u ∈ Z. Since X ∩ V (T (u)) = ∅ we must at some point during the procedure have

v = u, and v will not change before u is added to Z. If u occurs several times in X

we will have v = u each time we meet a copy of u (except the first) and it follows

from the implementation that u will occur exactly once in Z.

We will now prove that if X ∩ V (T (u)) 6= ∅ then u 6∈ Z. Let w be the rightmost

and deepest descendant of u in X . There are two cases:

1. u is before w in X . Look at the time in the execution of the procedure when

we look at w. There are two cases.

(a) v = u. Since u ≺ w we set v = w and proceed. It follows that u 6∈ Z.

(b) v = x 6= u. Since any node to the left of u also is to the left of w and X

is an semiordered list we must have x ∈ V (T (u)) and thus u 6∈ Z.

52 CHAPTER 3. TREE INCLUSION

2. u is after w in X . Since w is the rightmost and deepest ancestor of u and X

is semiordered we must have v = w at the time in the procedure where we

look at u. Therefore u 6∈ Z.

If u occurs several times in X , each copy will be taken care of by either case 1. or

2.

To show that FL is correct we need the following proposition.

Proposition 3.4.3. Let X be an ordered list and let v be an ancestor of X[i] for some

i ∈ {1, . . . , k}. If v is an ancestor of some node in X other than X[i] then v is an ancestor

of X[i− 1] or X[i + 1].

Proof. Assume for the sake of contradiction that v ⊀ X[i − 1], v ⊀ X[i + 1], and

v ≺ w, where w ∈ X . Since X is ordered either w⊳X[i−1] or X[i+1]⊳w. Assume

w ⊳ X[i − 1]. Since v ≺ X[i] and X[i − 1] is the left of X[i], X[i − 1] is to the left

of v contradicting v ≺ w. Assume X[i + 1] ⊳ w. Since v ≺ X[i] and X[i + 1] is the

right of X[i], X[i− 1] is to the right of v contradicting v ≺ w.

Proposition 3.4.3 shows that the doubly linked list implementation of DEEP
∗

is correct. Clearly, INSERT is implemented correct be the doubly linked list rep-

resentation, since the nodes in the list remains in the same order throughout the

execution of the procedure.

Lemma 3.4.4. Procedure FL(V, α) is correct.

Proof. Let F = {fl(v, α) | v ∈ X}. It follows immediately from the implementation

of the procedure that FL(X, α) ⊆ F . It remains to show that DEEP(F) ⊆ FL(X, α).

Let v be a node in DEEP(F)), let w ∈ X be the node such that v = fl(w, α), and let

w = v1, v2, . . . , vk = v be the nodes on the path from w to v. In each iteration of the

algorithm we have vi ∈ Y for some i unless v ∈ Z.

Lemma 3.4.5. Procedure MOP(X, Y) is correct.

Proof. We want to show that for 1 ≤ j < |X|, 1 ≤ t < |Y |, (X[j]1, Y [t]) ∈ Z iff

(X[j]2, Y [t]) ∈ mop(X|2, Y). Since X|2 and Y are ordered lists

(X[j]2, Y [t]) ∈ mop(X|2, Y) ⇐⇒ Y [t− 1] E X[j]2 ⊳ Y [t] E X[j + 1]2. (3.1)

First we show that (X[j]1, Y [t]) ∈ Z ⇒ (X[j]2, Y [t]) ∈ mop(X|2, Y). We will break

the proof into three parts, each showing one of the inequalities from the right

hand side of (3.1).

3.4. A SIMPLE TREE INCLUSION ALGORITHM 53

• Y [t−1]EX[j]2: We proceed by induction on j. Base case j = 1: Immediately

from the implementation of the procedure. j > 1: We have x = X[j−1]1 and

y = Y [h] for some h ≤ t. By the induction hypothesis Y [j − 1] E X[j − 1]2. If

X[j]2⊳Y [h] then h = t since Y [h−1]EX[j−1]2⊳X[j]2 and thus Y [t−1]⊳X[j]2.

If X[j]2 D Y [h] then h ≤ t− 1 and thus Y [t− 1] E X[j]2.

• X[j]2 ⊳ Y [t]: Follows immediately from the implementation of the proce-

dure.

• X[j +1]2 DY [t]: Assume X[j +1]2 ⊳Y [t]. Consider the time in the procedure

when we look at X[j + 1]2. We have y = Y [t] and thus set x := X[j + 1]1

contradicting (X[j]1, Y [t]) ∈ Z.

It follows immediately from the implementation of the procedure, that if X[j]2 ⊳

Y [t], Y [t− 1] E X[j]2, and X[j + 1]2 D Y [t] then (X[j]1, Y [t]) ∈ Z.

3.4.4 Complexity of the Set Procedures

For the running time of the node list implementation observe that, given the data

structure described in Section 3.4.1, all set procedures, except FL, perform a single

pass over the input using constant time at each step. Hence we have,

Lemma 3.4.6. For any tree T there is a data structure using O(nT) space and prepro-

cessing which supports each of the procedures PARENT , DEEP, MOP, and NCA in linear

time (in the size of their input).

The running time of a single call to FL might take time O(nT). Instead we will

divide the calls to FL into groups and analyze the total time used on such a group

of calls. The intuition behind the division is that for a path in P the calls made to

FL by EMB is done bottom up on disjoint lists of nodes in T .

Lemma 3.4.7. For disjoint ordered node lists V1, . . . , Vk and labels α1, . . . , αk, such that

any node in Vi+1 is an ancestor of some node in DEEP(FLT (Vi, αi)), 2 ≤ i < k, all of the

calls FLT (V1, α1), . . . , FLT (Vk, αk) can be computed in O(nT) total time.

Proof. Let Y , Z, and S be as in the implementation of the procedure. Since DEEP

and DEEP
∗ takes time O(S), we only need to show that the total length of the lists

S—summed over all the calls—is O(nT) to analyze the total time usage of DEEP

and DEEP
∗. We note that in one iteration |S| ≤ |Y |. INSERT takes constant time

and it is thus enough to show that any node in T can be in Y at most twice during

all calls to FL.

54 CHAPTER 3. TREE INCLUSION

Consider a call to FL. Note that Y is ordered at all times. Except for the first it-

eration, a node can be in Y only if one of its children were in Y in the last iteration.

Thus in one call to FL a node can be in Y only once.

Look at a node u the first time it appears in Y . Assume that this is in the call

FL(Vi, αi). If u ∈ X then u cannot be in Y in any later calls, since no node in Vj

where j > i can be a descendant of a node in Vi. If u 6∈ Z in this call then u cannot

be in Y in any later calls. To see this look at the time when u removed from Y .

Since the set Y ∪Z is deep at all times no descendant of u will appear in Y later in

this call to FL, and no node in Z can be a descendant of u. Since any node in Vj ,

j > i, is an ancestor of some node in DEEP(FL(Vi, αi)) neither u or any descendant

of u can be in any Vj, j > i. Thus u cannot appear in Y in any later calls to FL.

Now if u ∈ Z then we might have u ∈ Vi+1. In that case, u will appear in Y in the

first iteration of the procedure call FL(Vi+1, αi), but not in any later calls since the

lists are disjoint, and since no node in Vj where j > i + 1 can be a descendant of a

node in Vi+1. If u ∈ Z and u 6∈ Vi+1 then clearly u cannot appear in Y in any later

call. Thus a node in T is in Y at most twice during all the calls.

3.4.5 Complexity of the Tree Inclusion Algorithm

Using the node list implementation of the set procedures we get:

Theorem 3.4.8. For trees P and T the tree inclusion problem can be solved in O(lPnT)

time and O(nP + nT) space.

Proof. By Lemma 3.4.6 we can preprocess T in O(nT) time and space. Let g(n)

denote the time used by FL on a list of length n. Consider the time used by

EMBT (root(P)). We bound the contribution for each node v ∈ V (P). From

Lemma 3.4.6 it follows that if v is a leaf the cost of v is at most O(g(lT)). Hence, by

Lemma 3.4.7, the total cost of all leaves is O(lPg(lT)) = O(lPnT). If v has a single

child w the cost is O(g(|EMBT (w)|)). If v has more than one child the cost of MOP,

NCA, and DEEP is bounded by
∑

w∈child(v) O(|EMBT (w)|). Furthermore, since the

length of the output of MOP (and thus NCA) is at most z = minw∈child(v) |EMBT (w)|
the cost of FL is O(g(z)). Hence, the total cost for internal nodes is,

∑

v∈V (P)\L(P)

O

(

g(min
w∈child(v)

|EMBT (w)|) +
∑

w∈child(v)

|EMBT (w)|
)

≤
∑

v∈V (P)

O(g(|EMBT (v)|)).

(3.2)

Next we bound (3.2). For any w ∈ child(v) we have that EMBT (w) and EMBT (v) are

disjoint ordered lists. Furthermore we have that any node in EMBT (v) must be an

ancestor of some node in DEEPT (FLT (EMBT (w), l(v))). Hence, by Lemma 3.4.7, for

3.4. A SIMPLE TREE INCLUSION ALGORITHM 55

any leaf to root path δ = v1, . . . , vk in P , we have that
∑

u∈δ g(|EMBT (u)|) ≤ O(nT).

Let ∆ denote the set of all root to leaf paths in P . It follows that,

∑

v∈V (T)

g(|EMBT (v)|) ≤
∑

p∈∆

∑

u∈p

g(|EMBT (u)|) ≤ O(lPnT).

Since this time dominates the time spent at the leaves the time bound follows.

Next consider the space used by EMBT (root(P)). The preprocessing described

in Section 3.4.1 uses only O(nT) space. Furthermore, by induction on the size

of the subtree P (v) it follows immediately that at each step in the algorithm at

most O(maxv∈V (P) |EMBT (v)|) space is needed. Since EMBT (v) a deep embedding,

it follows that |EMBT (v)| ≤ lT .

3.4.6 An Alternative Algorithm

In this section we present an alternative algorithm. Since the time complexity of

the algorithm in the previous section is dominated by the time used by FL, we

present an implementation of this procedure which leads to a different complex-

ity. Define a firstlabel data structure as a data structure supporting queries of the

form fl(v, α), v ∈ V (T), α ∈ Σ. Maintaining such a data structure is known as the

tree color problem. This is a well-studied problem, see e.g. [41, 93, 49, 7]. With such

a data structure available we can compute FL as follows,

FL(X, α) Return the list Z := [fl(X[i], α) | 1 ≤ i ≤ |X|].

Theorem 3.4.9. Let P and T be trees. Given a firstlabel data structure using s(nT)

space, p(nT) preprocessing time, and q(nT) time for queries, the tree inclusion problem

can be solved in O(p(nT) + nP lT · q(nT)) time and O(nP + s(nT) + nT) space.

Proof. Constructing the firstlabel data structures uses O(s(nT)) and O(p(nT)) time.

As in the proof of Theorem 3.4.8 the total time used by EMBT (root(P)) is bounded

by
∑

v∈V (P) g(|EMBT (v)|), where g(n) is the time used by FL on a list of length n.

Since EMBT (v) is a deep embedding and each fl takes q(nT) we have,

∑

v∈V (P)

g(|EMBT (v)|) ≤
∑

v∈V (P)

g(lT) = nP lT · q(nT).

Several firstlabel data structures are available, for instance, if we want to maintain

linear space we have,

56 CHAPTER 3. TREE INCLUSION

Lemma 3.4.10 (Dietz [41]). For any tree T there is a data structure using O(nT) space,

O(nT) expected preprocessing time which supports firstlabel queries in O(log log nT)

time.

The expectation in the preprocessing time is due to perfect hashing. Since

our data structure does not need to support efficient updates we can remove the

expectation by using the deterministic dictionary by Hagerup et. al. [63]. This

gives a worst-case preprocessing time of O(nT log nT), however, using a simple

two-level approach this can be reduced to O(nT) (see e.g. [119]). Plugging in this

data structure we obtain,

Corollary 3.4.11. For trees P and T the tree inclusion problem can be solved in O(nP +

nT) space and O(nP lT log log nT) time.

3.5 A Faster Tree Inclusion Algorithm

In this section we present a new tree inclusion algorithm which has a worst-case

subquadratic running time. As discussed in the introduction the general idea is

cluster T into small trees of logarithmic size which we can efficiently preprocess

and then use this to speedup the computation with a logarithmic factor.

3.5.1 Clustering

In this section we describe how to divide T into micro trees and how the macro

tree is created. For simplicity in the presentation we assume that T is a binary

tree. If this is not the case it is straightforward to construct a binary tree B, where

nB ≤ 2nT , and a mapping g : V (T) → V (B) such that for any pair of nodes

v, w ∈ V (T), l(v) = l(g(v)), v ≺ w iff g(v) ≺ g(w), and v ⊳ w iff g(v) ⊳ g(w). If the

nodes in the set U = V (B)\{g(v) | v ∈ V (T)} is assigned a special label β 6∈ Σ it

follows that for any tree P , P ⊑ T iff P ⊑ B.

Let C be a connected subgraph of T . A node in V (C) incident to a node in

V (T)\V (C) is a boundary node. The boundary nodes of C are denoted by δC. A

cluster of C is a connected subgraph of C with at most two boundary nodes. A set

of clusters CS is a cluster partition of T iff V (T) = ∪C∈CSV (C), E(T) = ∪C∈CSE(C),

and for any C1, C2 ∈ CS, E(C1)∩E(C2) = ∅, |E(C1)| ≥ 1, root(T) ∈ δC if root(T) ∈
V (C). If |δC| = 1 we call C a leaf cluster and otherwise an internal cluster.

We use the following recursive procedure CLUSTERT (v, s), adopted from Al-

strup and Rauhe [8], which creates a cluster partition CS of the tree T (v) with the

3.5. A FASTER TREE INCLUSION ALGORITHM 57

property that |CS| = O(s) and |V (C)| ≤ ⌈nT /s⌉. A similar cluster partitioning

achieving the same result follows from [6, 5, 52].

CLUSTERT (v, s). For each child u of v there are two cases:

1. |V (T (u))| + 1 ≤ ⌈nT /s⌉. Let the nodes {v} ∪ V (T (u)) be a leaf cluster

with boundary node v.

2. |V (T (u))| > ⌈nT /s⌉. Pick a node w ∈ V (T (u)) of maximum depth such

that |V (T (u))|+ 2− |V (T (w))| ≤ ⌈nT /s⌉.
Let the nodes V (T (u))\V (T (w)) ∪ {v, w} be an internal cluster with

boundary nodes v and w. Recursively, compute CLUSTERT (w, s).

Lemma 3.5.1. Given a tree T with nT > 1 nodes, and a parameter s, where ⌈nT /s⌉ ≥ 2,

we can build a cluster partition CS in O(nT) time, such that |CS| = O(s) and |V (C)| ≤
⌈nT /s⌉ for any C ∈ CS.

Proof. The procedure CLUSTERT (root(T), s) clearly creates a cluster partition of T

and it is straightforward to implement in O(nT) time. Consider the size of the

clusters created. There are two cases for u. In case 1, |V (T (u))| + 1 ≤ ⌈nT /s⌉
and hence the cluster C = {v} ∪ V (T (u)) has size |V (C)| ≤ ⌈nT /s⌉. In case 2,

|V (T (u))|+2−|V (T (w))| ≤ ⌈nT /s⌉ and hence the cluster C = V (T (u))\V (T (w))∪
{v, w} has size |V (C)| ≤ ⌈nT /s⌉.

Next consider the size of the cluster partition. We say that a cluster C is bad if

|V (C)| ≤ c/2 and good otherwise. We will show that at least a constant fraction

of the clusters in the cluster partition are good. Let c = ⌈nT /s⌉. It is easy to

verify that the cluster partition created by procedure CLUSTER has the following

properties:

(i) Let C be a bad internal cluster with boundary nodes v and w (v ≺ w). Then

w has two children with at least c/2 descendants each.

(ii) Let C be a bad leaf cluster with boundary node v. Then the boundary node

v is contained in a good cluster.

By (ii) the number of bad leaf clusters is no larger than twice the number of good

internal clusters. By (i) each bad internal cluster C is sharing its lowest bound-

ary node of C with two other clusters, and each of these two clusters are either

internal clusters or good leaf clusters. This together with (ii) shows that number

of bad clusters is at most a constant fraction of the total number of clusters. Since

a good cluster is of size more than c/2, there can be at most 2s good clusters and

thus |CS| = O(s).

58 CHAPTER 3. TREE INCLUSION
v v

s(v, w)

l(v, w) r(v, w)

w w

(a) (b)

v v

l(v)

(c) (d)

Figure 3.4: The clustering and the macro tree. (a) An internal cluster. The black

nodes are the boundary node and the internal ellipses correspond to the bound-

ary nodes, the right and left nodes, and spine path. (b) The macro tree corre-

sponding to the cluster in (a). (c) A leaf cluster. The internal ellipses are the

boundary node and the leaf nodes. (d) The macro tree corresponding to the clus-

ter in (c).

Let C ∈ CS be an internal cluster v, w ∈ δC. The spine path of C, π(C), is the

path between v, w excluding v and w. A node on the spine path is a spine node. A

node to the left and right of v, w, or any node on π(C) is a left node and right node

respectively. If C is a leaf cluster with v ∈ δC then any proper descendant of v is

a leaf node.

Let CS be a cluster partition of T as described in Lemma 3.5.1. We define an or-

dered macro tree TM . Our definition of TM may be viewed as an ”ordered” version

of the macro tree given by Alstrup and Rauhe [8]. For each internal cluster C ∈
CS, v, w ∈ δC, v ≺ w, we have the node s(v, w) and edges (v, s(v, w)), (s(v, w), w).

Furthermore, we have the nodes l(v, w) and r(v, w) and edges (l(v, w), s(v, w))

and (r(v, w), s(v, w)) ordered such that l(v, w) ⊳ w ⊳ r(v, w). If C is a leaf cluster

and v ∈ δC we have the node l(v) and edge (l(v), v). Since root(T) is a boundary

node TM is rooted at root(T). Figure 3.4 illustrates these definitions.

3.5. A FASTER TREE INCLUSION ALGORITHM 59

To each node v ∈ V (T) we associate a unique macro node denoted i(v). If

u ∈ V (C) and C ∈ CS, then

i(u) =

u If u is boundary,

s(v, w) if u is a spine node and v, w ∈ δC,

l(v, w) if u is a left node and v, w ∈ δC,

r(v, w) if u is a right node and v, w ∈ δC,

l(v) if u is a leaf node and v ∈ δC.

Conversely, for any macro node x ∈ V (TM) define the macro-induced subgraph,

denoted I(x), as the induced subgraph of T of the set of nodes {v | v ∈ V (T), x =

i(v)}. We also assign a set of labels to x given by l(x) = {l(v) | v ∈ V (I(x))}. If x

is spine node or a boundary node the unique node in V (I(x)) of greatest depth is

denoted by first(x). Finally, for any set of nodes {x1, . . . , xk} ⊆ V (TM) we define

I(x1, . . . , xk) as the induced subgraph of the set of nodes V (I(x1))∪· · ·∪V (I(xk)).

The following propositions states useful properties of ancestors, nearest com-

mon ancestor, and the left-to-right ordering in the cluster partition and in T . The

propositions follows directly from the definition of the clustering.

Proposition 3.5.2. For any pair of nodes v, w ∈ V (T), the following hold

(i) If i(v) = i(w) then v ≺T w iff v ≺I(i(v)) w.

(ii) If i(v) 6= i(w), i(v) ∈ {s(v′, w′), v′} and i(w) ∈ {l(v′, w′), r(v′, w′)}, then v ≺T w

iff v ≺I(i(v),s(v′ ,w′),v′) w.

(iii) In all other cases, w ≺T v iff i(w) ≺T M i(v).

Proposition 3.5.3. For any pair of nodes v, w ∈ V (T), the following hold

(i) If i(v) = i(w) then v ⊳ w iff v ⊳I(i(v)) w.

(ii) If i(v) = l(v′, w′), i(w) ∈ {s(v′, w′), v′} then v ⊳ w iff v ⊳I(l(v′,w′),s(v′,w′),v′) w.

(iii) If i(v) = r(v′, w′), i(w) ∈ {s(v′, w′), v′} then w ⊳ v iff w ⊳I(r(v′,w′),s(v′,w′),v′) v.

(iv) In all other cases, v ⊳ w iff i(v) ⊳T M i(w).

Proposition 3.5.4. For any pair of nodes v, w ∈ V (T), the following hold

(i) If i(v) = i(w) = l(v′) then ncaT (v, w) = ncaI(i(v),v′)(v, w).

(ii) If i(v) = i(w) ∈ {l(v′, w′), r(v′, w′)} then ncaT (v, w) = ncaI(i(v),s(v′,w′),v′)(v, w).

60 CHAPTER 3. TREE INCLUSION

(iii) If i(v) = i(w) = s(v′, w′) then ncaT (v, w) = ncaI(i(v))(v, w).

(iv) If i(v) 6= i(w) and i(v), i(w) ∈ {l(v′, w′), r(v′, w′), s(v′, w′)} then

ncaT (v, w) = ncaI(i(v),i(w),s(v′,w′),v′)(v, w).

(v) If i(v) 6= i(w), i(v) ∈ {l(v′, w′), r(v′, w′), s(v′, w′)}, and i(w) �T M w′ then

ncaT (v, w) = ncaI(i(v),s(v′,w′),w′)(v, w′).

(vi) If i(v) 6= i(w), i(w) ∈ {l(v′, w′), r(v′, w′), s(v′, w′)}, and i(v) �T M w′ then

ncaT (v, w) = ncaI(i(w′),s(v′,w′),w′)(w, w′).

(vii) In all other cases, ncaT (v, w) = ncaT M (i(v), i(w)).

3.5.2 Preprocessing

In this section we describe how to preprocess T . First we make a cluster partition

CS of the tree T with clusters of size s, to be fixed later, and the corresponding

macro tree TM in O(nT) time. The macro tree is preprocessed as in 3.4.1. However,

since nodes in TM contain a set of labels, we store for each node v ∈ V (TM)

a dictionary of l(v). Using perfect hashing the total time to compute all these

dictionaries is O(nT) expected time. Furthermore, we modify the definition of fl

such that flT M (v, α) is the nearest ancestor w of v such that α ∈ l(w).

Next we show how to preprocess the micro trees. For any labeled, ordered,

forest S and M, N ⊆ V (S) we define, in addition, to the set procedures the fol-

lowing useful procedures.

ANCESTORS(M). Return the set of all ancestors of nodes in M .

LEFTOFS(M, N). Return a boolean indicating whether there is at least one node

v ∈M such that for all nodes w ∈ S, v E w.

LEFTS(M). Return the leftmost node in M .

RIGHTS(M). Return the rightmost node in M .

MATCHS(M, N, O), where M = {m1 ⊳ · · ·⊳ mk}, N = {v1 ⊳ · · ·⊳ vk}, O = {o1 ⊳

· · ·⊳ol}, and oi = vj for some j. Return the set R := {mj | oi = vj, 1 ≤ i ≤ l}.

MOPS(M, N) Return the triple (R1, R2, bool). Where R1 = mop(M, N)|1 and R2 =

mop(M, N)|2, and bool indicates whether there is any node in v ∈ M such

that for all nodes w ∈ N , v D w.

MASKS(α), α ∈ Σ. Return the set of nodes with label α.

3.5. A FASTER TREE INCLUSION ALGORITHM 61

We show how to implement these procedures on all macro induced subforest S

of each cluster C ∈ CS. Note that a cluster contains at most a constant number

of such subforests. For the procedures PARENTS, ANCESTORS , DEEPS , NCAS ,

LEFTOFS, LEFTS , RIGHTS , MATCHS , and MOPS we will simply precompute and

store the result of any input for all forests S with at most s nodes. We assume that

the input and output node sets of the above procedures is given as a bitstring of

length s. Hence, for any forest S the total of number of distinct node sets is at

most 2s. Since at most 3 input sets occur in the procedures and the total number

of forest of size at most s is O(22s) it follows that there are 2O(s) distinct inputs

to each procedure to precompute and store. Furthermore, it is straightforward to

compute all results within the same time bound. If c is the constant hidden in the

O notation we set s = 1
c
log nT and the total preprocessing time and space used

becomes 2cs = 2log nT = nT . Furthermore, since the size of the input to procedures

is logarithmic we can lookup the result of any input in constant time.

Next we show how to compute the remaining procedures MASKS and FLS .

Note that since the size of the alphabet is potentially Ω(nT), we cannot precom-

pute all values for these procedures in O(nT) time. Instead we implement MASKS

using a dictionary for each subforest S indexed by the labels in S. Again, using

perfect hashing we can build all such tables in O(nT) excepted time using linear

space. Hence, we can lookup MASKS in constant time. Finally, we can compute

FL in constant time with the other procedures since

FLS(M, α) = DEEPS(ANCESTORS(M) and MASKS(α)),

where and denotes a bitwise and operation.

As discussed in Section 3.4.6, if we require worst-case running times instead

of the expected O(nT) time above we may instead use a deterministic dictionary

without changing the overall running time of our tree inclusion algorithm.

3.5.3 A Compact Representation of Node Sets

In this section we show how to implement the set procedures in sublinear time

using the clustering and preprocessing defined in the previous section.

First we define a compact representation of node sets, which we call micro-

macro node sets. A micro-macro node set (mm-node set) V for a tree T with macro

tree TM is a set of pairs V = {(x1, M(xk)), . . . , (xk, M(xk))}, such that for any pair

(x, M(x)) ∈ V :

(i) x ∈ V (TM),

62 CHAPTER 3. TREE INCLUSION

(ii) M(x) ⊆ V (I(x)),

(iii) M(x) 6= ∅.

Additionally, if for any pairs (x, M(x)), (y, M(y)) ∈ X :

(iv) x 6= y,

we say that V is canonical. For any mm-node set V there is a corresponding set of

nodes S(V) ⊆ V (T) given by S(V) = ∪(x,M(x))∈VM(x). Conversely, given a set of

nodes V there is a unique canonical mm-node set V given by:

V = {(x, M(x)) |M(x) = V (I(x)) ∩X 6= ∅}.

We say that V is deep iff the set S(V) is deep. Note that by Lemma 3.5.2(ii) an

mm-node set V may be deep even though the node set V|1 is not. Since the size of

the macro tree is O(nT / log nT) we have that,

Lemma 3.5.5. For any canonical mm-node set V , |V| ≤ O(nT / log nT).

As with node lists in the simple implementation, we define a micro-macro node

list (mm-node list), X = [(x1, M(xk)), . . . , (xk, M(xk))], as a list where each ele-

ment is an element of an mm-node set. We say that X is ordered if x1 ⊳T M · · ·⊳T M

xk and semiordered if x1 ET M · · ·ET M xk.

In the following we show how to implement the set procedures using mm-

node lists. As before we assume that the input to each of the procedures is

deep. Each of the procedures, except DEEP, accept as input mm-node lists which

are semiordered, canonical, and deep and return as output semiordered mm-

node list(s). The input for DEEP is semiordered and canonical and the output

is semiordered, canonical, and deep. Since the output of the procedures is not

necessarily canonical and DEEP requires canonical input we need the following

additional procedure to make EMB work:

CANONICAL(X), whereX is a semiordered mm-node list. Return a semiordered

canonical mm-list R such that S(R) = S(X).

We simply run this procedure on any input mm-node list to DEEP immediately

before executing DEEP.

3.5.4 Implementation of the Set Procedures

The implementation of all set procedures is described in this section.

3.5. A FASTER TREE INCLUSION ALGORITHM 63

PARENT(X). Initially, set R := []. For each i, 2 ≤ i ≤ |X |, set (x, M(x)) := X [i].

There are three cases:

1. x ∈ {l(v, w), r(v, w)}. Compute N = PARENTI(x,s(v,w),v)(M(x)). For

each macro node s ∈ {x, s(v, w), v} (in semiorder) set R := R ◦ (s, N ∩
V (I(s))) if N ∩ V (I(s)) 6= ∅.

2. x = l(v). Compute N = PARENTI(x,v)(M(x)). For each macro node

s ∈ {x, v} (in semiorder) setR := R◦(s, N∩V (I(s))) if N∩V (I(s)) 6= ∅.
3. x 6∈ {l(v, w), r(v, w), l(v)}. If N = PARENTI(x)(M(x)) 6= ∅ set R :=

R ◦ (x, N). Otherwise, if parentT M (x) 6= ⊥ set R := R ◦ (parentT M (x),

first(parentT M (x))).

ReturnR.

Consider the three cases of procedure PARENT. Case 1 handles the fact that left

and right nodes may have a spine node or a boundary node as parent. Since

no left or right node can have a parent outside their cluster there is no need to

compute parents in the macro tree. Case 2 handles the fact that the nodes in a leaf

node may have the boundary node as parent. Since none of the nodes in the leaf

node can have a parent outside their cluster there is no need to compute parents

in the macro tree. Case 3 handles boundary and spine nodes. Since the input to

PARENT is deep there is either a parent within the micro tree or we can use the

macro tree to compute the parent of the root of the micro tree.

NCA(X). Initially, set R := []. For each i, 1 ≤ i ≤ |X |, set (x, M(x)) := X [i]1 and

(y, M(y)) := X [i]2 and compare x and y. There are two cases:

1. x = y: Let z := x. There are two subcases:

If z is a boundary node then set R := R ◦ (z, z). Otherwise set

S :=

I(z, v), if z = l(v),

I(z, s(v, w), v), if z ∈ {l(v, w), r(v, w)},
I(z), if z = s(v, w).

Compute M := NCAS(M(x), M(y)). For each macro node s in S (in

semiorder) we setR := R ◦ (s, M ∩ V (I(s))) if M ∩ V (I(s)) 6= ∅.
2. x 6= y: Compute z := NCAT M (x, y). There are two subcases:

If z is a boundary node then setR := R ◦ (z, z). Otherwise z must be a

spine node s(v, w). There are three cases:

64 CHAPTER 3. TREE INCLUSION

(a) If x ∈ {l(v, w), s(v, w)} and y ∈ {s(v, w), r(v, w)} compute

M := NCAI(x,y,s(v,w),v)(M(x), M(y)).

(b) If x = l(v, w) and y �T w compute M := NCAI(x,s(v,w),w)(M(x), w).

(c) If y = r(v, w) and x �T w compute M := NCAI(y,s(v,w),w)(w, M(y)).

Set R := R ◦ (z, M ∩ V (I(z))).

ReturnR.

Consider the two cases of procedure NCA. Case 1 handles the cases (i), (ii), and

(iii) from Proposition 3.5.4. Case 2 handles the cases (iv), (v), (vi) and (vii) from

Proposition 3.5.4.

DEEP(X). Initially, set (x, M(x)) := X [1] and R := []. For each i, 2 ≤ i ≤ |X |, set

(xi, M(xi)) := X [i] and compare x and xi:

1. x ⊳ xi: SetR := R ◦ (x, DEEPI(x)M(x)), and (x, M(x)) := (xi, M(xi)).

2. x ≺ xi: If xi ∈ {l(v, w), r(v, w)} and x = s(v, w) compute

N := DEEPI(xi,s(v,w))(M(x) ∪M(xi)).

Then, set (x, M(x)) := (x, N(x)) and if N(xi) := N ∩ I(xi) 6= ∅ set

R := R ◦ (xi, N(xi)). Otherwise (xi 6∈ {l(v, w), r(v, w)} or x 6= s(v, w))

set (x, M(x)) := (xi, M(xi)).

3. xi ≺ x: As above, with x and xi replaced by each other.

ReturnR.

The above DEEP procedure resembles the previous DEEP procedure implemented

on the macro tree. The biggest difference is that a mm-node set X may be deep

even though the set X |1 is not deep in TM . However, this can only happen

for nodes in the same cluster which is straightforward to handle (see Proposi-

tion 3.5.2(i) and (ii)).

MOP(X ,Y). Initially, set R := [],X ′ := X |1, Z := X |2, r := ⊥, s := ⊥, i := 1, and

j := 1. Repeat the following until i > |X | or h > |Y|:

If Z[i]1 = l(v, w) set j := j + 1 until Z[i]1 E Y [j]1 or Y [j]1 = s(v, w).

If Z[i]1 = s(v, w) set j := j + 1 until Z[i]1 E Y [j]1 or Y [j]1 = r(v, w).

Otherwise set j := j + 1 as long as Z[i]1 ⊲ Y [j]1.

Set (x, M(x)) := X ′[i], (z, M(z)) := Z[i], and (y, M(y)) := Y [j]. There

are two cases:

3.5. A FASTER TREE INCLUSION ALGORITHM 65

1. z ⊳ y: If s ⊳ y set R := R ◦ (r, s). Set r := (x, RIGHTI(x)(M(x))),

s := (y, LEFTI(y)(M(y))), and i := i + 1.

2. Either

(a) z = y,

(b) z = l(v, w) and y = s(v, w),

(c) z = s(v, w) and y = r(v, w).

If s ⊳ y then set R := R ◦ (r, s).

If s = y and LEFTOFI(z)(M(z), M(y)) = true then setR := R ◦ (r, s).

Compute (M1, M2, match x) := MOPI(z,y)(M(z), M(y)).

If M1 6= [] then compute M := MATCH(M(x), M(z), M1), and set

R := R ◦ ((x, M), (y, M2)). Set r := ⊥, s := ⊥, and j := j + 1. If

match x = false set i := i + 1.

ReturnR.

The above MOP procedure resembles the previous MOP procedure implemented

on the macro tree in one of the cases. Case 1 in the above iteration is almost the

same as the previous implementation of the procedure. Case 2(a) are due to the

fact that we can have nearest neighbor pairs within a macro-induced subtree I(x).

Cases 2(b) and 2(c) takes care of the special cases caused by the spine nodes.

FL(X , α). Initially, set R := [] and S := []. For each (x, M(x)) := X [i], 1 ≤ i ≤ |X |
there are 2 cases:

1. x ∈ {l(v, w), r(v, w)}. Compute N = FLI(x,s(v,w),v)(M(x), α). If N 6= ∅,
then for each macro node s ∈ {x, s(v, w), v} (in semiorder) set R :=

R◦(s, N∩V (I(s))) if N∩V (I(s)) 6= ∅. Otherwise, set U := U ◦parent(v).

2. x 6∈ {l(v, w), r(v, w)}. Compute N = FLI(x)(M(x), α). If N 6= ∅ set

R := R ◦ (x, N) and otherwise set U := U ◦ parent(x).

Subsequently, compute S := FLT M (U, α), and use this result to compute the

mm-node list S := [(S[i], FLI(S[i])(first(S[i]), α)) | 1 ≤ i ≤ |S|]. Merge the

mm-node lists S andRwith respect to semiorder and return the result.

The FL procedure is similar to PARENT . The cases 1 and 2 compute FL on a micro

tree. If the result is within the micro tree we add it to R and otherwise we store

the node in the macro tree which contains parent of the root of the micro tree in

a node list S. We then compute FL in the macro tree on the list S and use this to

compute the final result.

Finally, we give the trivial CANONICAL procedure.

66 CHAPTER 3. TREE INCLUSION

CANONICAL(X). For each node x ∈ V (TM) maintain a set N(x) ⊆ I(V (x)) ini-

tially empty. For each i, 1 ≤ i ≤ |X | set N(X [i]1) := N(X [i]1) ∪ X [i]2. Then,

setR := [] and traverse TM in any semiordering. For each node x ∈ V (TM),

if N(x) 6= ∅ setR := R ◦ (x, N(x)).

ReturnR.

3.5.5 Correctness of the Set Procedures

In this section we show the correctness of the mm-node set implementation of the

set procedures.

Lemma 3.5.6. Procedure PARENT(X) is correct.

Proof. Follows immediately by looking at all different kinds of macro nodes, and

by the comments below the implementation of the procedure.

Lemma 3.5.7. Procedure NCA(X) is correct.

Proof. Let (x, M(x)) := X [i]1 and (y, M(y)) := X [i]2. We will show that v ∈ S(R)

if and only if v ∈ ncaT (M(x), M(y)). We first show v ∈ ncaT (M(x), M(y)) ⇒
v ∈ S(R). There must exist u ∈ M(x) and w ∈ M(y) such that v = ncaT (u, w).

Consider the cases of Proposition 3.5.4. In case (i), (ii), and (iii) we have x = y.

This is Case 1 in the procedure. It follows immediately from the implementation

that v ∈ R. Case (iv)-(vi). This is Case 2(a)-(c) in the procedure since the input is

semiordered. Case (vii) is taken care of by both case 1 and 2 in the procedure (z is

a boundary node).

That v ∈ ncaT (M(x), M(y)) ⇐ v ∈ S(R) follows immediately from the imple-

mentation and Proposition 3.5.4.

Lemma 3.5.8. Procedure DEEP(X) is correct.

Proof. The input to DEEP is canonical and semiordered. Let u ∈ S(X) and M =

S(X) ∩ V (T (u)). We will show M = ∅ iff u ∈ S(R). At some point during the

execution of the procedure we have u ∈M(xi).

We first prove M = ∅ ⇒ u ∈ S(R). Consider the iteration where u ∈ M(xi). It

is easy to verify that either u ∈ S(R) after this iteration or u ∈M(x). Now assume

u ∈ M(x). It is easy to verify that we have u ∈ M(x) until (x, DEEPI(x)(M(x))) is

appended toR. Since M = ∅we have u ∈ DEEPI(x)(M(x)) and thus u ∈ S(R).

To prove the correctness of procedure MOP we need the following proposition.

3.5. A FASTER TREE INCLUSION ALGORITHM 67

Proposition 3.5.9. LetR = [(ri, M(ri)) | 1 ≤ i ≤ k] and S = [(si, M(si)) | 1 ≤ i ≤ l]

be deep, canonical lists. For any pair of nodes r ∈ M(ri), s ∈ M(sj) for some i and j,

then (r, s) ∈ mopT (S(R), S(S)) iff one of the following cases are true:

(i) ri = sj and (r, s) ∈ mopI(ri)
(M(ri), M(sj)).

(ii) ri = l(v, w), sj = s(v, w) and (r, s) ∈ mopI(ri,sj)
(M(ri), M(sj)).

(iii) ri = s(v, w), sj = r(v, w) and (r, s) ∈ mopI(ri,sj)(M(ri), M(sj)).

(iv) ri = l(v, w), sj = r(v, w), ri+1 6= s(v, w), sj−1 6= s(v, w), r = RIGHT(M(ri)),

s = LEFT(M(sj)), and (ri, sj) ∈ mopT M (R|1,S|1).

(v) ri, sj ∈ C ∈ CS, ri 6= sj , either ri or sj is the bottom boundary node w of C,

r = RIGHT(M(ri)), s = LEFT(M(sj)), and (ri, sj) ∈ mopT M (R|1,S|1).

(vi) ri ∈ C1 ∈ CS, sj ∈ C2 ∈ CS, C1 6= C2, r = RIGHT(M(ri)), s = LEFT(M(sj)),

and (ri, sj) ∈ mopT M (R|1,S|1).
The proposition follows immediately, by considering all cases for ri and sj , i.e.,

ri = sj , ri and sj are in the same cluster, and ri and sj are not in the same cluster.

Using Proposition 3.5.9 we get

Lemma 3.5.10. Procedure MOP(X ,Y) is correct.

Proof. Let (x, M(x)) = X ′[i] and (z, M(z)) = Z[i]. We call r, t a corresponding pair

in (M(x), M(z)) iff r and t are the ith node in the left to right order of M(x) and

M(z), respectively. Let

S := {(r, s) | r, tis a corresponding pair in (M(x), M(z)), and

(t, s) ∈ mopT (S(Z), S(Y))}.

We first show (vx, vy) ∈ S ⇒ (vx, vy) is a corresponding pair in (R[i]1,R[i]2). Let

(vz, vy) be the pair in mopT (S(Z), S(Y)), where vz ∈ M(zi) and vy ∈ M(yj), and

look at each of the cases from Proposition 3.5.9.

- Case (i), (ii), and (iii) of the proposition. This is case 2 in the procedure. We

have vx ∈M and vy ∈M2, which are both added toR.

- Case (iv), (v), and (vi) of the proposition. This is case 1 in the procedure.

Here we set r := (x, RIGHTI(x)(M(x))) and s := (y, LEFTI(y)(M(y))), where

such vx ∈ M(x) and vy ∈ M(y). We need to show that (r, s) is added to

R before r and s are changed. If the next case is (i) again then it follows

from the fact that (zi, yj) ∈ mopT M (Z|1,Y|1). If the next case is (ii) then we

must have s ⊳ y or s = y and LEFTOFI(z)(M(z), M(y)) = true since (zi, yj) ∈
mopT M (Z|1,Y|1).

68 CHAPTER 3. TREE INCLUSION

We now show if (vx, vy) is a corresponding pair in (R[i]1,R[i]2) then (vx, vy) ∈
S. Consider each of the two cases from the procedure. In case 1 we set r :=

(x, RIGHTI(x)(M(x))), s := (y, LEFTI(y)(M(y))) because z ⊳ y. The pair (r, s) is only

added to R if there is no other z′ ∈ Z|1, z ⊳ z′ such that z′ ⊳ y, or if z′ = ⊳y and

there are nodes in M(y) to the left of all nodes in M(z′). This corresponds to case

(iv), (v), or (vi) in Proposition 3.5.9. In case 2 it is straightforward to verify that it

corresponds to one of the cases (i), (ii), or (iii) in Proposition 3.5.9.

Lemma 3.5.11. Procedure FL(X , α) is correct.

Proof. We only need to show that case 1 and 2 correctly computes FL on a micro

tree. That the rest of the procedures is correct follows from case (iii) in Proposi-

tion 3.5.2 and the comments after the implementation.

That case 1 and 2 are correct follows from Proposition 3.5.2. Since we always

call DEEP on the output from FL(X , α) there is no need to compute FL in the

macro tree if N is nonempty.

Lemma 3.5.12. Procedure CANONICAL(X) is correct.

Proof. Follows immediately from the implementation of the procedure.

3.5.6 Complexity of the Tree Inclusion Algorithm

For the running time of the macro-node list implementation observe that, given

the data structure described in Section 3.5.2, all set procedures, except FL, per-

form a single pass over the input using constant time at each step. Procedure

FL(|X |) uses O(|X |) time to computeR and U since each step takes constant time.

Computing S takes time O(nT / log nT) and computing S takes time O(|S|). Merg-

ingR and S takes time linear in the length of the two lists. It follows that FL runs

in O(nT/ log nT) time. To summarize we have shown that,

Lemma 3.5.13. For any tree T there is a data structure using O(nT) space and O(nT)

expected preprocessing time which supports all of the set procedures in O(nT/ log nT)

time.

Next consider computing the deep occurrences of P in T using the procedure

EMB of Section 3.3 and Lemma 3.5.13. Since each node v ∈ V (P) contributes at

most a constant number of calls to set procedures it follows immediately that,

Theorem 3.5.14. For trees P and T the tree inclusion problem can be solved in O(nP nT

log nT
)

time and O(nP + nT) space.

Combining the results in Theorems 3.4.8, 3.5.14 and Corollary 3.4.11 we have

the main result of Theorem 3.1.1.

Chapter 4

Union-Find with Deletions

A union-find data structure maintains a collection of disjoint sets under the oper-

ations makeset, union and find. Kaplan, Shafrir and Tarjan [SODA 2002] designed

data structures for an extension of the union-find problem in which elements of

the sets maintained may be deleted. The cost of delete in their implementations

is the same as the cost of a find. They left open the question whether delete can

be implemented more efficiently than find. We resolve this open problem by pre-

senting a relatively simple modification of the classical union-find data structure

that supports delete, as well as makeset and union, in constant time, while still sup-

porting find in O(logn) worst-case time and O(α(⌊(M + N)/N⌋, n)) amortized

time. Here n is the number of elements in the set returned by the find operation,

and α(·, ·) is a functional inverse of Ackermann’s function.

4.1 Introduction

A union-find data structure maintains a collection of disjoint sets under the op-

erations makeset, union and find. A makeset operation generates a singleton set. A

union unites two sets into a new set, destroying the original sets. A find operation

on an element returns an identifier of the set currently containing it.

The union-find problem has many applications in a wide range of areas. For

an extensive list of such applications, and for a wealth of information on the prob-

lem and many of its variants, see the survey of Galil and Italiano [58].

A simple union-find data structure (attributed to McIlroy and Morris by Aho

et al. [1]), which employs two simple heuristics, union by rank and path compres-

sion, was shown by Tarjan [114] (see also Tarjan and van Leeuwen [117]) to be

very efficient. It performs a sequence of M finds and N makeset and unions in

O(N + M α(M, N)) total time. Here α(·, ·) is an extremely slowly growing func-

69

70 CHAPTER 4. UNION-FIND WITH DELETIONS

tional inverse of Ackermann’s function. In other words, the amortized cost of each

makeset and union is O(1), while the amortized cost of each find is O(α(M +N, N)),

only marginally more than a constant. Fredman and Saks [57] obtained a match-

ing lower bound in the cell probe model of computation, showing that this data

structure is essentially optimal in the amortized setting.

The union by rank heuristics on its own implies that find operations take

O(log n) worst-case time. Here n is the number of elements in the set returned

by the find operation. All other operations take constant worst-case time. It is

possible to trade a slower union for a faster find. Smid [109], building on a re-

sult of Blum [23], gave for any k a data structure that supports union in O(k)

time and find in O(logk n) time. When k = log n/ log log n, both union and find

take O(logn/ log log n) time. Fredman and Saks [57] (see also Ben-Amram and

Galil [19]) again show that this tradeoff is optimal, establishing an interesting

gap between the amortized and worst-case complexities of the union-find prob-

lem. Alstrup et al. [3] present union-find algorithms with simultaneously optimal

amortized and worst-case bounds.

4.1.1 Local Amortized Bounds

As noted by Kaplan et al. [75], the standard amortized bounds for find are global

in terms of the total number N of elements ever created whereas the worst-case

bounds are local in terms of the number n of elements in the set we are finding.

Obviously n may be much smaller than N . To state more local amortized bounds,

we need a non-standard parameterization of the inverse Ackermann function.

For integers k ≥ 0 and j ≥ 1, define Ackermann’s function Ak(j) as follows

Ak(j) =

j + 1 if k = 0,

A
(j+1)
k−1 (j) if k ≥ 1.

Here f (i)(x) is the function f iterated i times on x. In the standard definition of the

inverse Ackermann function we have α(i, j) = min{k | Ak(⌊i/j⌋) > i} for integers

i, j ≥ 0 [115]. To state more local amortized bounds we will use the following

definition of the inverse Ackermann function

ᾱ(i, j) = min{k ≥ 2 | Ak(i) > j} ,

for integers i, j ≥ 0. (For technical reasons, ᾱ(i, j) is defined to be at least 2 for

every i, j ≥ 0.) Relating to the standard definition of α, we have α(M, N) =

Θ(ᾱ(⌊M/N⌋, N)).

4.1. INTRODUCTION 71

Kaplan et al. [75] present a refined analysis of the classical union-find data

structure showing that the amortized cost of find is only O(ᾱ(⌊(M + N)/N⌋, n).

They state their results equivalently in terms of a three parameter function that

we will not define here. To get a purely local amortized cost for find, we note that

ᾱ(⌊(M + N)/N⌋, n) ≤ ᾱ(1, n) = O(α(n, n)) .

4.1.2 Union-Find with Deletions

In the traditional version of the union-find problem elements are created using

makeset. Once created, however, elements are never destroyed. Kaplan et al. [75]

consider a very natural extension of the union-find problem in which elements

may be deleted. We refer to this problem as the union-find with deletions problem,

or union-find-delete for short.

Let N∗ be the current number of elements in the whole data structure. Using

relatively straightforward ideas (see, e.g., [75]) it is possible to design a union-

find-delete data structure that uses only O(N∗) space, handles makeset, union and

delete in O(1) worst-case time, and find in O(log N∗) worst-case time and O(α(N∗))

amortized time. The challenge in the design of union-find-delete data structures

is to have an efficient find(x) in terms of n, the size of the set currently contain-

ing x, and not N∗.

Using an incremental background rebuilding technique for each set, Kaplan

et al. [75] describe a way of converting any data structure for the classical union-

find problem into a union-find-delete data structure. The time bounds for make-

set, find and union change by only a constant factor, while the time needed for

delete(x) is the same as the time needed for find(x) followed by union with a sin-

gleton set. As union is usually much cheaper than find, Kaplan et al. thus show

that in both the amortized and the worst-case settings, delete is not more expen-

sive than find. Combined with their refined amortized analysis of the classic

union-find data structure, this provides, in particular, a union-find-delete data

structure that implements makeset and union in O(1) time, and find and delete in

O(ᾱ(⌊(M + N)/N⌋, n) amortized time and O(log n) worst-case time. They leave

open, however, the question whether delete can be implemented faster than find.

4.1.3 Our Results

We solve the open problem and show that delete can be performed in constant

worst-case time, while still keeping the O(ᾱ(⌊(M+N)/N⌋, n)) = O(α(n, n)) amor-

tized cost and the O(log n) worst-case cost of find, and the constant worst-case cost

72 CHAPTER 4. UNION-FIND WITH DELETIONS

of makeset and union. We recall here that N is the total number of elements ever

created, M is the total number of finds performed, and n is the number of elements

in the set returned by the find. The data structure that we present uses linear space

and is a relatively simple modification of the classic union-find data structure. It

is at least as simple as the data structures presented by Kaplan et al.[75].

As a by-product we obtain a concise potential-based proof of the O(ᾱ(⌊(M +

N)/N⌋, n)) bound on the amortized cost of a find in the classical setting. We be-

lieve that our potential-based analysis is simpler than the one given by Kaplan

et al.

4.1.4 Our Techniques

Our union-find-delete data structure, like most other union-find data structures,

maintains the elements of each set in a rooted tree. As elements can now be

deleted, not all the nodes in these trees contain elements. Nodes that contain

elements are said to be occupied, while nodes that do not contain elements are

said to be vacant. When an element is deleted, the node containing it becomes

vacant. If proper measures are not taken, a tree representing a set may contain

too many vacant nodes. As a result, the space needed to store the tree, and the

time needed to process a find may become too large. Our data structure uses a

simple collection of local operations to tidy up a tree after each delete. This ensures

that at most half of the nodes in a tree are vacant. More importantly, the algo-

rithm employs local constant-time shortcut operations in which the grandparent,

or a more distant ancestor, of a node becomes its new parent. These operations,

which may be viewed as a local constant-time variant of the path compression

technique, keep the trees relatively shallow to allow a fast find.

As with the simple standard union-find, the analysis is the most non-trivial

part. The analysis of the new data structure uses two different potential func-

tions. The first potential function is used to bound the worst-case cost of find. Both

potential functions are needed to bound the amortized cost of find. The second po-

tential function on its own can be used to obtain a simple derivation of the refined

amortized bounds of Kaplan et al. [75] for union-find without deletions.

We end this section with a short discussion of the different techniques used

to analyze union-find data structures. The first tight amortized analysis of the

classical union-find data structure, by Tarjan [114] and Tarjan and van Leeuwen

[117], uses collections of partitions and the so-called accounting method. The refined

analysis of Kaplan et al. [75] is directly based on this method.

A much more concise analysis of the union-find data structure based on po-

4.2. PRELIMINARIES 73

tential functions can be found in Kozen [85] and Chapter 21 of Cormen et al. [39].

The amortized analysis of our new union-find-delete data structure is based on

small but crucial modifications of the potential function used in this analysis. As

a by product we get, as mentioned above, a simple proof of the local amortized

bounds of Kaplan et al. [75].

Seidel and Sharir [107] recently presented an intriguing top-down amortized

analysis of the union-find data structure. Our analysis is no less concise, though

perhaps less intuitive, and has the additional advantage of bounding the cost of

an amortized operation in terms of the size of the set returned by the operation.

4.2 Preliminaries

4.2.1 The Union-Find and Union-Find-Delete Problems

A classical union-find data structure supports the following operations:

• makeset(x): Create a singleton set containing x.

• union(A,B): Combine the sets identified by A and B into a new set, destroy-

ing the old sets.

• find(x): Return an identifier of the set containing x.

The only requirement from the identifier returned by a find is that the calls find(x)

and find(y) return the same identifier if and only if the two elements x and y are

currently contained in the same set. A union-find-delete data structure supports,

in addition to the above operations, a delete operation

• delete(x): Delete x from the set containing it.

A delete should not change the identifier attached to the set from which the ele-

ment was deleted. It is important to note that delete does not receive a reference

to the set currently containing x. It only receives a pointer to the element x itself.

Definitions

Let T be a rooted tree. The root of T is denoted by root(T). The set of all nodes in

T is denoted V (T), and the size of T is |V (T)|. The height of a node v, denoted by

h(v), is defined to be 0, if v is a leaf, and max{h(w)|w is a child of v}+1, otherwise.

The height of a tree is the height of its root. For a node v let p(v) denote the parent

of v. A node x ∈ V (T) is an ancestor of a node y ∈ V (T) if x is on the path from y

74 CHAPTER 4. UNION-FIND WITH DELETIONS

to the root of T—both y and the root included. Node x is a descendant of node y if

y is an ancestor of x.

4.2.2 Standard Worst-Case Bounds for Union-Find

We briefly review here the simple standard union-find data structure that sup-

ports makeset and union in constant time and find in O(logn) time. It forms the

basis of our new data structure for the union-find-delete problem.

The elements of a set are maintained in a rooted tree and the identifier of the

set is the root of the tree. When we refer to set A, A denotes the identifer of the

set, i.e., the root of the tree representing it. We will use TA to denote the tree

representing the set A. Each node v ∈ V (TA) has an assigned integer rank rank(v).

An important invariant is that the parent of a node always has strictly higher rank

than the node itself. The rank of a tree is defined to be the rank of the root of the

tree.

Operations We implement the operations as follows:

find(x): Follow parent pointers from x all the way to the root. Return the root as

the identifier of the set.

makeset(x): Create a new node x. Let p(x)← x, rank(x)← 0.

union(A,B): Recall that A and B are root nodes. If rank(A) ≥ rank(B) make B

a child of A. Otherwise make A a child of B. If rank(A)=rank(B), increase

rank(A) by one.

Analysis Trivially, makeset and union take constant time. Since ranks are strictly

increasing when following parent pointers, the time of find applied to an element

in a set A is proportional to rank(A). We prove, by induction, that rank(A) ≤
log2 |A|, or equivalently, that

|A| ≥ 2rank(A) . (4.1)

When A is created with makeset(x), it has rank 0 and 20 = 1 elements. If C is the

set created by union(A,B), then |C| = |A|+ |B|. If C has the same rank as A, or the

same rank as B, we are trivially done. Otherwise, we have rank(A) = rank(B) = k

and rank(C) = k + 1, and then

|C| = |A|+ |B| ≥ 2k + 2k = 2k+1 .

This completes the standard analysis of union-find with worst-case bounds.

4.3. AUGMENTING WORST-CASE UNION-FIND WITH DELETIONS 75

v v

⇒ w

u w

(a)

v v

u ⇒ w

w

(b)

Figure 4.1: Deletion of u and tidying up the tree. Black nodes are occupied. In

(a) the parent of u is vacant, and thus bypassed when u is deleted. In (b) u gets

bypassed after the deletion since it has a single child.

4.3 Augmenting Worst-Case Union-Find with Dele-

tions

Each set in the data structure is again maintained in a rooted tree. In the standard

union-find data structure, reviewed in Section 4.2.2, the nodes of each tree were

identified with the elements of the set. In the new data structure, elements are

attached to nodes, not identified with them. Some nodes in a tree are occupied, i.e.,

have an element attached to them, while others are vacant, i.e., have no element

attached to them. An element can then be deleted by simply removing it from the

node it was attached to. This node then becomes vacant. The identifier of a set is

taken to be its root node. As the identifier of a set is a node, and not an element,

identifiers do not change as a result of delete.

A problem with this approach is that if we never remove vacant nodes from

the trees, we may end up consuming non-linear space. To avoid this, we require

our union-find trees to be tidy:

Definition 4.3.1. A tree is said to be tidy if it satisfies the following properties:

• Every vacant non-root node has at least two children,

• Every leaf is occupied and has rank 0.

It is easy to tidy up a tree (see Figure 4.1). First, we remove vacant leaves.

When a node becomes a leaf, its rank is reduced to 0. Next, if a vacant non-root

node v has a single child w, we make the parent of v the parent of w and remove v.

We call this bypassing v. The following lemma follows from the definition of a tidy

tree.

Lemma 4.3.2. At most half of the nodes in a tidy tree may be vacant.

76 CHAPTER 4. UNION-FIND WITH DELETIONS

Proof. Since every vacant non-root node has at least two children, the number

of leaves in the tree is at least the number of vacant nodes. Since all leaves are

occupied, at most half the nodes in a tidy tree can be vacant.

Tidy trees thus use linear space. However, tidyness on it own does not yield a

sublinear time bound on find. (Note, for example, that a path of occupied nodes

is tidy.) Our next goal is to make sure that the height of a tree is logarithmic in the

number of occupied nodes contained in it. Ideally, we would want all trees to be

reduced:

Definition 4.3.3. A tree is said to be reduced if it is either

• A tree composed of a single occupied node of rank 0, or

• A tree of height 1 with a root of rank 1 and occupied leaves of rank 0.

We will not manage to keep our trees reduced at all times. Reduced trees form,

however, the base case for our analysis.

4.3.1 Keeping the Trees Shallow during Deletions

This section contains our main technical contribution. We show how to imple-

ment deletions so that for any set A,

|A| ≥ (2/3)(6/5)rank(A) . (4.2)

Consequently, rank(A) ≤ log6/5(3|A|/2) = O(log |A| + 1). As the rank of a tree is

always an upper bound on its height, we thus need to follow at most O(log |A|+1)

parent pointers to get from any element of A to the root identifier.

The key idea is to associate the following value with each node v:

Definition 4.3.4. The value val(v) of a node v is defined as

val(v) =

(5/3)rank(p(v)) if v is occupied,

(1/2)(5/3)rank(p(v)) if v is vacant.

Here, if v is a root, p(v) = v. The value of a set A is defined as the sum the values

of all nodes in the tree TA representing A:

VAL(A) =
∑

v∈TA

val(v) .

4.3. AUGMENTING WORST-CASE UNION-FIND WITH DELETIONS 77

The value 5/3 in the definition of val(v) is chosen to satisfy Equation 4.2,

Lemma 4.3.5, Lemma 4.3.7, and Lemma 4.4.6 below. In fact, we could have chosen

any constant value in [(1 +
√

5)/2, 2).

We are going to implement deletions in such that we maintain the following

invariant.

VAL(A) ≥ 2rank(A) . (4.3)

Since the tree representing a set A contains exactly |A| occupied nodes, each of

value at most (5/3)rank(A), and at most |A| vacant nodes in TA, each of value at

most (5/3)rank(A)/2, it will follow that

|A| ≥ 2rank(A)

(3/2)(5/3)rank(A)
= (2/3)(6/5)rank(A),

so (4.3) will imply (4.2).

The essential operation used to maintain inequality (4.3)—and thus keep the

trees shallow—is to shortcut from a node v, giving v a parent higher up over v

in the tree. For example, path compression shortcuts from all nodes in a search

path directly to the root. Since ranks are strictly increasing up through the tree,

shortcutting from v increases the value of v by a factor of at least 5/3. This sug-

gests that we can make up for the loss of a deleted node by a constant number of

shortcuts from nearby nodes of similar rank.

Before proceeding, let us check that reduced trees satisfy (4.3).

Lemma 4.3.5. If the tree representing a set A is reduced then VAL(A) ≥ 2rank(A).

Proof. If A is of height 0, then VAL(A) = (5/3)0 = 1 and 2rank(A) = 1. If A is of

height 1, then VAL(A) ≥ (5/3)1 + (1/2)(5/3)1 = 5/2 while 2rank(A) = 2.

Let us for a moment assume that we have an implementation of delete that

preserves, i.e., does not decrease, value, and let us check that the other oper-

ations preserve (4.3). A makeset creates a reduced tree, so (4.3) is satisfied by

Lemma 4.3.5. Also, when we set C := union(A, B), we get VAL(C) ≥ VAL(A) +

VAL(B), and hence (4.3) follows just like (4.1).

4.3.2 Paying for a Deletion via Local Rebuilding

We now show how we can implement delete in constant time, while maintain-

ing (4.3). We will implement delete such that either the value of the set from which

the element is deleted is not decreased, or otherwise we end up with a reduced

tree representing the set.

78 CHAPTER 4. UNION-FIND WITH DELETIONS

Suppose we delete an element of A attached to a node u. As u becomes vacant,

we immediately loose half its value. Before u was vacant the tree was tidy, but

now we may have to tidy the tree (see also Figure 4.1). If u is not a leaf, the only

required tidying up is to bypass u if it has a single child. If instead u was a leaf,

we first delete u. If p(u) is now a leaf, its rank is reduced to zero, but that in itself

does not affect any value. If p(u) is vacant and now has only one child, we bypass

p(u). This completes the tidying up.

Lemma 4.3.6. Let v be the parent of the highest node affected by a delete(x), including

tidying up. If rank(v) = k, then VAL(A) is decreased by at most (9/10)(5/3)k, where A

is the set containing x.

Proof. It is easy to see that the worst-case is when v = p(p(u)), where u is a deleted

leaf and p(u) is bypassed. Now u lost at most (5/3)k−1 and p(u) lost (5/3)k/2,

while the other child of p(u) gained at least ((5/3)k− (5/3)k−1)/2 from the bypass.

Adding up, the total loss is (9/10)(5/3)k.

Below we show how to regain the loss from a delete using a pointer to the

node v from Lemma 4.3.6. To find nearby nodes to shortcut from, we maintain

two doubly linked lists for each node v; namely C(v) containing the children of v,

and G(v) containing the children of v that themselves have children. Thus, to

find a grandchild of v, we take a child of a child in G(v). Both lists are easily

maintained as children are added and deleted: if a child u is added to v, it is

added to C(v). If u is the first child of v, we add v to G(p(v)). Finally, we add u

to G(v) if C(u) is non-empty. Deleting a child is symmetric. Using these lists, we

implement a procedure to gain the lost value as follows:

PROCEDURE GAIN(v) Set x := v. Repeat the following until the value of the set

containing v is increased by (9/10)(5/3)rank(v).

1. While G(x) is non-empty do: Find a child y of x that have children.

There are two main cases.

(a) y is occupied.

Take any child z of y and shortcut to x (see Figure 4.2 (a)). If z is

the last child of y, remove y from G(x).

(b) y is vacant.

First note that since the tree is tidy, |C(y)| ≥ 2. There are two cases.

i. If |C(y)| > 2, take any child z of y and shortcut to x as above

(see Figure 4.2 (b)).

4.3. AUGMENTING WORST-CASE UNION-FIND WITH DELETIONS 79

ii. C(y) = {z, z′}. If both z and z′ are occupied, shortcut both z

and z′ to x and remove y (see Figure 4.2 (c)).

Otherwise, one of them, say z is vacant. Tidyness implies that

z has at least two children. If more than two, any one of them

can be shortcut to x (see Figure 4.2 (d)). If exactly two, then one

of them is shortcut to y and the other to x while z is removed

(see Figure 4.2 (e)).

2. If x is not the root, set x = p(x).

If x is the root, set rank(x) = h(x) and stop.

It is easy to verify that the procedure preserves tidyness. The following lemma

shows that procedure GAIN either regains the value lost due to a deletion or re-

turns a reduced tree in constant time.

Lemma 4.3.7. Let v be a node in a tidy tree. Then in O(1) time procedure GAIN(v)

either increases the value of the tree with (9/10)(5/3)rank(v) or returns a reduced tree.

Proof. If we stop in case 2 because x is the root, then the tree is a reduced tree. In

the other case we stop because we have gained enough value. We now show that

one of these cases will happen within constant time. First note that we cannot get

to case 2 twice in a row without getting to case 1 since p(x) ∈ G(p(p(x))). Clearly,

one iteration of case 1 takes constant time. It remains to show that one iteration

of case 1 increases the value with Ω((5/3)rank(v)). Let k = rank(v). Consider each

of the cases in case one:

• Case 1a. The value of z increases by at least

(1/2)((5/3)k − (5/3)k−1) = (1/5)(5/3)k .

We note that y may have rank much lower than k − 1, but that would only

increase our gain.

• Case 1(b)i. The gain is the same as in Case 1a.

• Case 1(b)ii. There are three cases:

In the first case (both z and z′ occupied), we get a gain of at least

2((5/3)k − (5/3)k−1)− (1/2)(5/3)k = (3/10)(5/3)k .

In the second case (z is vacant and has more than two children) we gain at

least

(1/2)((5/3)k − (5/3)k−2) = (8/25)(5/3)k .

80 CHAPTER 4. UNION-FIND WITH DELETIONS

x x

y ⇒ y z

z

(a)

x x

y ⇒ y z

z

(b)

x x

y ⇒ z z′

z z′

(c)

x x

y ⇒ v y

z z′ z z′

v

(d)

x x

y ⇒ v y

z z′ w z′

v w

(e)

Figure 4.2: The figure shows the cases from procedure GAIN. In (a) y is occupied.

In (b) y is vacant and has more than two children. In (c),(d), and (e) y is vacant

and has exactly two children. In (c) the children of y are occupied. In (d) and (e)

not both children of y are occupied. In (d) z has more than two children and in (e)

it has exactly two children.

4.4. FASTER AMORTIZED BOUNDS 81

In the second case (z is vacant and has exactly two children) we gain at least

(1/2)((5/3)k + 2(5/3)k−2) = (7/50)(5/3)k .

Since we gain at least (7/50)(5/3)k value at each iteration, we need at most 7

iterations of case 1.

Combining Lemmas 4.3.5, 4.3.6, and 4.3.7 we implement a deletion in constant

time so that either we have no loss, meaning that (4.3) is preserved, or obtaining

a reduced tree that satisfies (4.3) directly. Thus we have proved

Theorem 4.3.8. There is a data structure for the union-find-delete problem supporting

makeset, union, and delete in constant time, and find in O(logn) time. The size of the

data structure is proportional to the number of current elements in it.

4.4 Faster Amortized Bounds

We will now show that we can get fast amortized bounds for find, yet preserve the

previous worst-case bounds. All we have to do is to use path compression followed

by tidying up operations. Path compression of a path from node v ∈ T to node

u ∈ T makes every node on the path a child of u. When we perform a find from a

node v, we compress the path to the root. Our analysis is a new potential based

analysis that obtains local amortized bounds.

Before going further, we note that path compression consists of shortcuts that

increase value of the previous section, so intuitively, the path compression can

only help the deletions. Below, we first present our new analysis without the

deletions, and then we observe that deletions are only helpful.

Analysis

We assign a potential φ(x) to each node x in the forest. To define the potential we

need some extra functions. Define Q = ⌊M+N
N
⌋ and α′(n) = ᾱ(Q, n). Our goal is to

prove that the amortized cost of find is O(α′(n)) where n is the cardinality of the

set found. We also define rank′(v) = rank(v) + Q.

Definition 4.4.1. For a non-root node x we define

level(x) = max{k ≥ 0 | Ak(rank′(x)) ≤ rank′(p(x))} ,

and

index(x) = max{i ≥ 1 | A(i)
level(x)(rank′(x)) ≤ rank′(p(x))} .

82 CHAPTER 4. UNION-FIND WITH DELETIONS

We have

0 ≤ level(x) < ᾱ(rank′(x), rank′(p(x))) ≤ α′(rank′(p(x))) , (4.4)

and

1 ≤ index(x) ≤ rank′(x) . (4.5)

Definition 4.4.2. The potential φ(x) of a node x is defined as

φ(x) =

α′(rank′(x)) · (rank′(x) + 1) if x root,

(α′(rank′(x))− level(x)) · rank′(x)− index(x) + 1

if x not root and α′(rank′(x)) = α′(rank′(p(x))),

0 otherwise.

The potential Φ(x) of a set A is defined as the sum of the potentials of the nodes

in the tree TA representing the set A:

Φ(A) =
∑

x∈TA

φ(x) .

At first sight the potential function looks very similar to the standard one

from [39], but there are important differences. Using α(rank(x)) instead of α(N)

we get a potential function that is more locally sensitive. To get this change to

work, we use the trick that the potential of a node is only positive if α′(rank′(x)) =

α′(rank′(p(x))). Note that from Equation (4.4) and Equation (4.5) it follows that the

potential of such a node is strictly positive. We also note that the only potentials

that can increase are those of roots. All other nodes keep their ranks while the

ranks of their parents increase and that can only decrease the potential.

We will now analyze the change in potential due to the operations.

Lemma 4.4.3. The total increase in potential due to makeset operations is O(M + N).

Proof. When we create a new set A with rank 0, it gets potential

α′(Q)(Q + 1) = ᾱ(Q, Q)(Q + 1) = 2(Q + 1) = O((M + N)/N) .

Over N makeset operations, this adds up to a total increase of O(M + N).

Lemma 4.4.4. The operation union(A, B) increases the potential by at most one.

Proof. Suppose we make A the parent of B. If the rank of A is not increased, there

is no node that increases potential, so assume that rank′(A) is increased from k

to k + 1. Then k was also the rank of B. If α′(k + 1) > α′(k), then B gets zero

4.4. FASTER AMORTIZED BOUNDS 83

potential along with any previous child of A. The potential of B is reduced by

α′(k) · (k + 1). On the other hand, the potential of A is increased by

(α′(k) + 1) · (k + 2)− α′(k) · (k + 1) = α′(k) + k + 2 ,

which is less than α′(k) · (k +1) if k ≥ 2, since α′(k) ≥ 2. (Here we use the fact that

ᾱ(j, i) ≥ 2, for every i, j ≥ 0.) If k = 1 the increase in potential is one.

Finally, if α′(k + 1) = α′(k), then the potential of A increases by α′(k) while

the potential of B decreases by at least α′(k), since B was a root with potential

α′(k) · (k + 1) and now becomes a child with potential at most α′(k) · k.

Lemma 4.4.5. A path compression of length ℓ from a node v up to some node u decreases

the potential by at least ℓ− (2 · α′(rank′(u)) + 1). In particular, the amortized cost is at

most O(α′(rank′(u))).

Proof. The potential of the root does not change due to the path compression. We

will show that at least max{0, l− (2 · α′(rank′(u)) + 2)} nodes have their potential

decreased by at least one.

There can be at most α′(rank′(u)) nodes x on the compressed path that had

α′(rank′(x)) < α′(rank′(p(x))) before the operation. The potentials of these nodes

do not change.

If node x had α′(rank′(x)) = α′(rank′(p(x))) < α′(rank′(u)), then its potential

drops to 0, and the decrease in x’s potential is therefore at least one.

It remains to account for the nodes x with α′(rank′(x)) = α′(rank(u)). Let x be a

node on the path such that x is followed somewhere on the path by a node y 6= u

with level(y) = level(x) = k. There can be at most α′(rank′(u)) + 1 nodes on the

path that do not satisfy these constraints: The last node before u, u, and the last

node on the path for each level, since level(y) < α′(rank′(u)). Let x be a node that

satisfies the conditions. We show that the potential of x decreases by at least one.

Before the path compression we have

rank′(p(y)) ≥ Ak(rank′(y))

≥ Ak(rank′(p(x)))

≥ Ak(A
(index(x))
k (rank′(x)))

= A
(index(x)+1)
k (rank′(x)).

After the path compression rank′(p(x)) = rank′(p(y)) and thus rank′((p(x)) ≥
A

(index(x)+1)
k (rank′(x)), since rank′(x) does not change and rank′(p(y)) does not de-

crease. This means that either index(x) or level(x) must increase by at least one.

Thus φ(x) decreases by at least one.

84 CHAPTER 4. UNION-FIND WITH DELETIONS

We conclude that the amortized cost of find in a set A is

O(α′(rank′(A))) = O(ᾱ(Q, rank(A) + Q + c)) = O(ᾱ(Q, rank(A))).

The last step follows because ᾱ is defined to be at least 2. Recall that Q = ⌊M+N
N
⌋

and that rank(A) ≤ log2 |A|, so without deletions, this is the desired bound.

A simpler analysis To get a simpler potential based proof of the local amortized

bound we can replace α′(n) by α̂(n) = α(n, n) and use rank(x) instead of rank′(x)

in the potential function. This gives a proof more in style with the one in Cor-

men et al. [39], but still obtaining the local amortized bound α̂(n) for find instead

of α̂(N). With this definition of the potential function makeset no longer increases

the potential. A union might now increase the potential by 2, and Lemma 4.4.5

still hold.

4.4.1 Deletion and Path Compression

We now combine the path compression and amortized analysis with deletions.

The potential used in the amortization is identical for vacant and occupied nodes.

It is clear that deletions and tidying up can only decrease this potential, so they

have no extra amortized cost. Likewise, a path compression can only increase

value as it only performs shortcuts. However, after a path compression, there

may be some cleaning to do if some vacant nodes go down to 0 or 1 children. We

start the path compression from a tidy tree where each vacant node has at least

two children, and the compression takes at most one child from each node on the

path. Hence the only relevant tidying up is to bypass some of the nodes on the

path. The tidying up takes time proportional to the length of the path, so the cost

of a find is unchanged.

The tidying up does decrease value, but the loss turns out less than the gain

from the compression.

Lemma 4.4.6. Path compression followed by tidying up operations does not decrease the

value of a tree.

Proof. The path compression involves nodes v0, ..., vℓ starting in some occupied

node v0 and ending in the root which has some rank k. After the compression, all

nodes v0, .., vℓ−1 are children of the root vℓ. If node vi is not bypassed when tidying

up, its value gain is at least ((5/3)rank(vℓ) − (5/3)rank(vi+1))/2. If vi is bypassed, then

0 < i < ℓ, and vi is vacant, so the loss is (5/3)rank(vi+1)/2. However, then vi has a

child wi which gains at least ((5/3)rank(vℓ) − (5/3)rank(vi))/2, so the total change is

((5/3)rank(vℓ) − (5/3)rank(vi+1) − (5/3)rank(vi))/2 .

4.4. FASTER AMORTIZED BOUNDS 85

Since ranks are strictly increasing along a path, this change is positive for all but

i = ℓ− 1. On the other hand, the first node v0 is always occupied, and has a gain

of at least (5/3)rank(vℓ) − (5/3)rank(v1), where 1 ≤ ℓ− 1. We can use the value gained

by v0 to pay for the value lost by bypassing both v1 and vl−1. There are two cases.

If both vl−1 and v1 is bypassed we must have l ≥ 4. Combining the changes in

potential for the nodes v0, v1, and vl−1 we get,

(5/3)rank(l) − (5/3)rank(v1) − (1/2)(5/3)rank(v2) − (1/2)(5/3)rank(vl−1) > 0 .

If v1 is not bypassed, we get that the total gain for v0 and vl−1 is at least,

(5/3)rank(vl) − (5/3)rank(v1) − (1/2)(5/3)rank(vl) ,

which is always positive. Thus the overall change in value is positive, or zero if

the path has length 0 or 1 and no compression happens.

Since our values and hence (4.3) are preserved, for any set A, we get rank(A) =

O(log |A|). Thus our amortized cost of a find is

O(ᾱ(Q, O(log |A|)) = Θ(ᾱ(⌊M + N

N
⌋, |A|) .

Note that our replacing O(log |A|) by |A| in the second argument of ᾱ has no

asymptotic consequence. Summing up, we have proved

Theorem 4.4.7. A sequence of M finds and at most N makeset, union, and deletes

takes O(N +
∑M

i=1 ᾱ(⌊M+N
N
⌋, ni) time, where ni is the number of elements in the set re-

turned by the ith find. Meanwhile, the worst-case bounds of Theorem 4.3.8 are preserved.

The size of data structure at any time during the sequence is proportional to the number

of current elements in it.

86 CHAPTER 4. UNION-FIND WITH DELETIONS

Part II

Approximation Algorithms

87

Chapter 5

Introduction to Part II

The results in this part of the dissertation are concerning approximation algo-

rithms on graphs. Two problems are studied in this part: The asymmetric k-center

problem and its variants (Chapter 6) and the finite capacity dial-a-ride problem (Chap-

ter 7).

5.1 Overview

In this section we will give a short overview of the problems studied in this part

of the dissertation.

Asymmetry in k-Center Variants Given a complete graph on n vertices with

nonnegative (but possibly infinite) edge costs, and a positive integer k, the k-

center problem is to find a set of k vertices, called centers, minimizing the maxi-

mum distance to any vertex and from its nearest center. In Chapter 6 we examine

variants of the asymmetric k-center problem.

We provide an O(log∗ n)-approximation algorithm for the asymmetric weighted

k-center problem. Here, the vertices have weights and we are given a total bud-

get for opening centers. In the p-neighbor variant each vertex must have p (un-

weighted) centers nearby: we give an O(log∗ k)-bicriteria algorithm using 2k cen-

ters, for small p. In k-center with minimum coverage, each center is required to

serve a minimum of clients. We give an O(log∗ n)-approximation algorithm for

this problem. Finally, the following three versions of the asymmetric k-center

problem we show to be inapproximable: priority k-center, k-supplier, and outliers

with forbidden centers.

89

90 CHAPTER 5. INTRODUCTION TO PART II

Finite Capacity Dial-a-Ride Given a collection of objects in a metric space, a

specified destination point for each object, and a vehicle with a capacity of at

most k objects, the finite capacity dial-a-ride problem is to compute a shortest tour

for the vehicle in which all objects can be delivered from their sources to their

destinations while ensuring that the vehicle carries at most k objects at any point

in time. In the preemptive version of the problem an object may be dropped at

intermediate locations and then picked up later by the vehicle and delivered.

We study the hardness of approximation of the preemptive finite capacity

dial-a-ride problem. Let N denote the number of nodes in the input graph, i.e.,

the number of points that are either sources or destinations. We show that the

preemptive Finite Capacity Dial-a-Ride problem has no min{O(log1/4−ε N), k1−ε}-
approximation algorithm for any ε > 0 unless all problems in NP can be solved

by randomized algorithms with expected running time O(npolylogn).

5.2 Approximation Algorithms

Many interesting optimization problems turns out to be NP-hard. This, in the

words of Garey and Johnson, means “I can’t find an efficient algorithm, but nei-

ther can all these famous people” ([59, p. 3]).

Although the optimal solution to NP-hard optimization problems cannot be

found efficiently (unless P = NP), it might still be possible to find near-optimal

solutions efficiently. The goal in approximation algorithms is to find provably

good approximate solutions for optimization problems that are hard to solve ex-

actly.

Given an instance of a minimization problem, an δ-approximation algorithm

returns a feasible solution whose objective value is at most a factor δ greater than

the optimum. We say that the algorithm has approximation factor δ. Sometimes

approximation ratio or approximation guarantee is used instead of approxima-

tion factor.

5.3 Prior Publication

The results in Chapter 6, Section 4.1-Section 6.6 has previously appeared in:

4. ”Asymmetry in k-Center Variants”.

Inge Li Gørtz and Anthony Wirth.

In Proceedings of the 6th International Workshop on Approximation Algorithms

for Combinatorial Optimization Problems (APPROX), 2003.

5.4. ON CHAPTER 6: ASYMMETRY IN K-CENTER VARIANTS 91

An extended version has been accepted for publication in Theoretical Com-

puter Science, Special Issue on Approximation and Online Algorithms.

Chapter 7 is unpublished work.

5.4 On Chapter 6: Asymmetry in k-Center Variants

In Chapter 6 we investigate the asymmetric variants of the k-center problem.

Section 4.0-6.6 is a minor revision of the version of paper 4 accepted for TCS. In

this section we formally define the problem and relate our results to other work.

5.4.1 The k-Center Problem

Imagine you have a delivery service. You want to place your k delivery hubs

at locations that minimize the maximum distance between customers and their

nearest hubs. This is the k-center problem. Formally, given a complete graph on n

vertices with nonnegative (but possibly infinite) edge costs, and a positive integer

k, the k-center problem is to find a set of k vertices, called centers, minimizing the

maximum distance to any vertex and from its nearest center.

The k-center problem is NP-hard [76]. Without the triangle inequality the

problem is NP-hard to approximate within any factor. This can be shown by a

reduction from the dominating set problem. We henceforth assume that the edge

costs satisfy the triangle inequality. Hsu and Nemhauser [70], using the same re-

duction, showed that the metric k-center problem cannot be approximated within

a factor of (2− ǫ) unless P = NP. In 1985 Hochbaum and Shmoys [67] provided a

(best possible) factor 2 algorithm for the metric k-center problem.

In the asymmetric k-center problem the graph is a complete digraph. The edge

costs still obey the triangle inequality, but the cost of the edge from a node u to a

node v might not be the same as the cost of the edge from v to u. The motivation

for the asymmetric k-center problem, in our example, is that traffic patterns or

one-way streets might cause the travel time from one point to another to differ

depending on the direction of travel.

In 1996 Panigrahy and Vishwanathan [123, 96] gave the first approximation

algorithm for the asymmetric problem, with factor O(log∗ n). Archer [13] pro-

posed two O(log∗ k) algorithms based on many of the ideas of Panigrahy and

Vishwanathan. The complementary Ω(log∗ n) hardness result [35, 65, 34] shows

that these approximation algorithms are asymptotically optimal.

92 CHAPTER 5. INTRODUCTION TO PART II

Variants of the k-Center Problem

A number of variants of the k-center problem have already been explored in the

context of symmetric graphs.

Weighted k-Center Instead of a restriction on the number of centers, each vertex

has a weight and we have a budget W , that limits the total weight of centers.

Hochbaum and Shmoys [68] produced a factor 3 algorithm for this weighted k-

center problem, which has recently been shown to be tight [35, 34].

We give an O(log∗ n)-approximation algorithm for the asymmetric version of

the problem. Since the weighted k-center problem is a generalization of the stan-

dard k-center problem (set all weights to one) this is asymptotically optimal.

Priority k-Center In some cases some demand points might be more important

than others. Plesnik [98] studied the priority k-center problem, in which the effec-

tive distance to a demand point is enlarged in proportion to its specified priority.

Plesnik approximates the symmetric version within a factor of 2.

We show that the asymmetric version of the problem cannot be approximated

within any factor unless P = NP.

k-Center with Minimum Coverage Lim et al. [87] studied k-center with mini-

mum coverage problems, where each center is required to serve a minimum of

clients. This problem is motivated by trying to balance the workload and al-

low for economies of scale. Lim et al. defined two problems: the q-all-coverage

k-center problem, where each center must cover at least q vertices (including it-

self), and the q-coverage k-center problem, where each center must cover at least

q non-center nodes. For the q-all-coverage k-center problem Lim et al. gave a 2-

approximation algorithm, and a 3-approximation algorithm for the weighted and

priority versions of the problem. For the q-coverage k-center problem they gave

a 2-approximation algorithm, and a 4-approximation algorithm for the weighted

and priority versions of the problem.

We give a O(log∗ n)-approximation algorithm for the asymmetric version of

both the q-all-coverage k-center problem and the q-coverage k-center problem.

We also give a O(log∗ n)-approximation algorithm for the asymmetric weighted

version of both problems. Since the k-center with minimum coverage problems

are generalizations of the standard k-center problem this is asymptotically opti-

mal.

5.4. ON CHAPTER 6: ASYMMETRY IN K-CENTER VARIANTS 93

p-Neighbor k-Center Khuller et al. [77] investigated the p-neighbor k-center prob-

lem in which each vertex must have p centers nearby. This problem is motivated

by the need to account for facility failures: even if up to p − 1 facilities fail, ev-

ery demand point has a functioning facility nearby. They gave a 3-approximation

algorithm for all p, and a best possible 2-approximation algorithm when p < 4,

noting that the case where p is small is “perhaps the practically interesting case”.

For the asymmetric p-neighbor k-center problem we provide an O(log∗ k)-

bicriteria algorithm using 2k centers, for p ≤ n/k.

k-Supplier Hochbaum and Shmoys [68] studied the k-supplier problem, where

the vertex set is segregated into suppliers and customers. Only supplier vertices

can be centers and only the customer vertices need to be covered. Hochbaum and

Shmoys gave a 3-approximation algorithm and showed that it is the best possible.

We show that the asymmetric k-supplier problem cannot be approximated

within any factor unless P = NP.

Outliers and Forbidden Centers Charikar et al. [26] noted that a disadvantage

of the standard k-center formulation is that a few distant clients, outliers, can force

centers to be located in isolated places. They suggested a variant of the problem,

the k-center problem with outliers and forbidden centers, where a small subset of

clients may be denied service, and some points are forbidden from being centers.

Charikar et al. gave a (best possible) 3-approximation algorithm for the symmetric

version of this problem.

We show that the asymmetric k-center problem with outliers and forbidden

centers cannot be approximated within any factor unless P = NP.

k-Center with Dynamic Distances Bhatia et al. [20] considered the problem in a

network model, such as a city street network, in which the traversal times change

as the day progresses. This is known as the k-center problem with dynamic distances:

we wish to assign the centers such that the objective criteria are met at all times.

Bhatia et al. gave a 1 + β-approximation algorithm for the symmetric k-center

problem with dynamic distances, where β is the maximum ratio of an edge’s

greatest length to its smallest length. For the asymmetric version of the problem

Bhatia et al. gave a O(log∗ n+ν)-bicriteria algorithm using k(1+3/(ν +1)) centers.

94 CHAPTER 5. INTRODUCTION TO PART II

5.4.2 Our Techniques

The approximation algorithms for the weighted k-center, k-center with minimum

coverage, and priority k-center problems are obtained by adapting the techniques

for the standard k-center problem by Panigrahy and Vishwanathan [96]. The in-

approximability results are shown by reductions from the max coverage problem.

5.4.3 Asymmetry in Other Graph Problems

Asymmetry is also a significant impediment to approximation in many other

graph problems, such as facility location, k-median and the TSP.

The facility location and k-median problems are clustering problems similar to

the k-center problem. In the facility location problem we are given a set of facilities

and a set of cities. There is a cost of opening a facility and a cost of connecting

a city to a facility. The problem is to find a subset of facilities to open and an

assignment of all the cities to open facilities, such that the total cost of opening

facilities and connecting cities is minimized. In the k-median problem we again

have a set of facilities and a set of cities, and a cost of connecting cities to facilities,

but instead of a cost for opening a facility we instead have a bound k on the

number of facilities we are allowed to open. The problem is now to find at most

k facilities to open and an assignment of all the cities to open facilities, such as to

minimize the total connecting cost.

Both the facility location and k-median problems admit constant factor ap-

proximation algorithms in the symmetric case [89, 16], but are provably Ω(log n)

hard to approximate in the asymmetric case [12].

In the traveling salesman problem (TSP) we are given a graph with nonnegative

edge costs, and the problem is to find a minimum cost cycle visiting every vertex

exactly once.

There exists a 3/2-approximation algorithm by Christofedes [32] for the sym-

metric traveling salesman problem (STSP), whereas for the asymmetric traveling

salesman problem (ATSP) the best known approximation algorithm by Kaplan

et al. [73] achieves a factor of 4
3
log n. The best inapproximability results by Pa-

padimitriou and Vempala [97], shows that there is no α-approximation algorithm

for ATSP for α = 117
116
− ǫ and for STSP for α = 220

219
− ǫ unless P = NP.

5.5. ON CHAPTER 7: DIAL-A-RIDE 95

5.5 On Chapter 7: Dial-a-Ride

In Chapter 7 we look at the dial-a-ride problem. In this section we formally define

the problem, discuss its applications, and relate our results to other work.

5.5.1 Dial-a-Ride

Given a collection of objects in a metric space, a specified destination point for

each object, and a vehicle with a capacity of at most k objects, the finite capacity

dial-a-ride problem—dial-a-ride for short—is to compute a shortest tour for the ve-

hicle in which all objects can be delivered to their destinations while ensuring that

the vehicle carries at most k objects at any point in time. In the preemptive ver-

sion of the problem an object may be dropped at intermediate locations and then

picked up later by the vehicle and delivered. In the non-preemptive version of

the problem once an object is loaded on the vehicle it stays on until it is delivered

to its final destination.

The dial-a-ride problem is a generalization of the traveling salesman problem

(TSP) even for k = 1 and is thus NP-hard. Placing an object and its destination

at each vertex in the TSP instance yields an instance of the dial-a-ride problem.

In this instance the vehicle has to simply find a shortest path tour that visits all

the vertices, since any object that is picked up can be delivered immediately to its

destination point in the same location.

Approximating Arbitrary Metrics by Tree Metrics

In order to discuss the approximation algorithms for the dial-a-ride problem we

first review the results on approximating arbitrary metrics by tree metrics due to

Fakcharoenphol et al. [48].

Let V be a set of points, and consider a metric space M over V . For u, v ∈ V ,

the distance between u and v in the metric M is denoted dM(u, v).

Probabilistic Approximation of Metric Spaces A metric space N over V domi-

nates the metric space M over V if for all u, v ∈ V , we have dN(u, v) ≥ dM(u, v).

Let S be a family of metrics over V , and let D be a distribution over S. We say

that (S,D) α-probabilistically approximates a metric M over V if every metric

in S dominates M and for every pair of vertices u, v ∈ V , EN∈(S,D)[dN(u, v)] ≤
α · dM(u, v).

96 CHAPTER 5. INTRODUCTION TO PART II

Hierarchically Well-Separated Trees A k-hierarchically well-separated tree (k-

HST) is a rooted weighted tree such that the weight from any node to each of its

children is the same, and the edge weights along any root to leaf path decrease by

a factor of 2 in each step.

Height-Balanced Trees Charikar and Raghavachari [28] defines height-balanced

trees. Let the level i of a tree be all the edges which are the ith edge on the shortest

path from the root to some leaf. A height-balanced tree is a rooted weighted tree

such that,

1. For all leaves, the distance to the root is the same.

2. For all leaves, the path from the root to the leaf has the same number of

edges.

3. All edges in the same level have the same length.

Charikar and Raghavachari showed that a 2-HST can be 4-approximated by a

height-balanced tree.

Approximating Arbitrary Metrics Fakcharoenphol et al. [48] showed that any

metric space M over V can be O(log n)-probabilistic approximated by a set of 2-

HSTs. The points in V occur as the leaves of the 2-HSTs.

This result can be used to obtain approximation algorithms of various prob-

lems including buy-at-bulk network design (to be defined later) and dial-a-ride.

Take an instance I of the dial-a-ride problem on a general metric and turn it

into an instance I ′ on a height-balanced tree. Let OPT be the cost of the opti-

mal solution to I and let OPT
′ be the cost of the optimal solution to I ′. Then

E(OPT
′) ≤ O(logn ·OPT). A solution S ′ to I ′ can be turned into a solution S of I ,

such that the cost of S ′ is at most the cost of S. Thus, if we have a α-approximation

for instances of the form of I ′, we get an O(α · log n)-approximation algorithm for

general cases.

Previous Results

The unit-capacity case is also known as the Stacker Crane Problem. Guan [62]

showed NP-hardness of preemptive case on trees when k = 2. Frederickson and

Guan [55] showed that the unit-capacity non-preemptive case is NP-hard on trees.

For the unit-capacity non-preemptive case Frederickson et al. [56] gave an algo-

rithm with approximation factor 1.8 on general graphs.

5.5. ON CHAPTER 7: DIAL-A-RIDE 97

Let N denote the number of nodes in the input graph, i.e., the number of

points that are either sources or destinations. Charikar and Raghavachari [28]

studied the problem for general k. They gave an 2-approximation algorithm

for the preemptive case on trees. For the non-preemptive case they gave an

O(
√

k)-approximation on height-balanced trees. Using the results by Fakcharoen-

phol et al. [48] this gives an O(log N)-approximation algorithm for the preemptive

case and an O(
√

k log N)-approximation algorithm for the non-preemptive case.

Algorithm for the Preemptive Case on Trees The algorithm for the preemptive

case on trees can be used on any trees, not only height-balanced trees. The turning

point of an object d is the nearest common ancestor of its source and its destination.

The algorithm performs two depth-first traversals of the tree. In the first depth-

first traversal all objects are moved up in the tree from their source to their turning

point. In the second depth-first traversal all objects are moved down from their

turning point to their destination.

Charikar and Raghavachari used two lower bounds, which they denote as the

Steiner lower bound and the flow lower bound, to show that this is 2-approximation

algorithm. For object d let pd be the unique shortest path from its source to its

destination. The Steiner lower bounds states that the vehicle must visit all points

that lie on some path pd. The flow lower bound say that for any edge e the vehicle

has to traverse e at least 2 · ⌈fe/k⌉ times, where fe is the maximum number of

paths pd that passes e in one direction.

Algorithm for the Non-Preemptive Case on Trees In the non-preemptive case

the algorithm works on height-balanced trees, where all sources and destinations

are in the leaves. The algorithm visits all turning points in a depth-first order.

When a turning point v is visited all objects having v as a turning point are deliv-

ered to their destination.

Charikar and Raghavachari used, in addition to the flow and Steiner lower

bounds, a bound they call the wait lower bound. The idea of the wait lower bound

is as follows. Consider a vertex v that has several objects that need to be delivered

to different destinations. The optimal tour visits v a certain number of times. If

the tour visits v a large number of times, the contribution of v to the length of

the tour is large. If the tour visits v a small number of times, many objects must

be picked up on each visit. When a large number of objects are picked up in a

particular visit, then since none of the objects can be dropped off at intermediate

locations and the destination of these objects are distinct the average time spent

in the vehicle (wait time) for these items must be large. Therefore the contribution

98 CHAPTER 5. INTRODUCTION TO PART II

to the length of the tour is again large.

Approximation Factor O(k) As noted by Charikar and Raghavachari [28] us-

ing the O(1)-approximation algorithm in the general case (k > 1) gives an O(k)-

approximation algorithm. To see this first note that any solution using capacity

one is a valid solution. That is, OPTk ≤ OPT1, where OPTi is the value of the

optimal solution to the problem using a vehicle with capacity i. We will also use

OPTi to denote the actual solution. Given a solution SOLk to the problem using

a vehicle with capacity k we can construct a solution SOL1 to the problem using

a vehicle of capacity 1 of at most k times the cost. Follow the same route as SOLk

when the first object is picked up in SOLk pick up this object and deliver it to the

vertex where it is dropped off in SOLk. Then go back to the point were the ob-

ject was picked up, and keep following the route of SOLk until the next object is

picked up. Do the same for this object and so on. If an edge is traversed c times in

SOLk then it is traversed at most 2k · c times in SOL1. Therefore SOL1 ≤ 2k · SOLk,

and thus OPT1 ≤ 2k · OPTk.

We have not been able to find any references to a O(1)-approximation algo-

rithm for the preemptive Dial-a-Ride problem with unit capacity in the literature.

However, it is simple to construct a 3-approximation algorithm for the preemp-

tive case with unit capacity: Construct a TSP tour on the destination nodes. Start

at some source node si, use the shortest path to deliver item di to ti. From ti go

to the next destination node ti′ in the TSP tour and follow the shortest path from

ti′ to si′ , and then carry on to deliver di′ , and so on. The sum of shortest paths

is a lower bound on the optimal solution and so is the TSP tour on the destina-

tion nodes. Each shortest path is used twice, so the total cost is at most 3 times

the value of the optimal solution. Note that this is also a 3-approximation for the

non-preemptive dial-a-ride.

Approximation Factor O(N/k) We note that there is a trivial 3N
k

-approximation

algorithm. Let us first consider the case when k = N . Then all objects can be in the

vehicle at the same time. We can construct a tour by first taking a TSP tour on the

sources, picking up all objects, and then a TSP tour on the destinations, delivering

all objects. Both these TSP tours are a lower bound on value of the optimal solu-

tion as the vehicle will have to visit all of them. Using the 3/2-approximation [32]

to construct the TSP tours we get a tour of length 2 · 3
2
· OPTTSP ≤ 3 · OPT. For

k = N/c we do this c times each time picking up and delivering N/c objects. This

gives an algorithm with approximation factor 3c = 3N/k.

5.5. ON CHAPTER 7: DIAL-A-RIDE 99

5.5.2 Special Cases and Related Problems

Several papers have discussed fast implementations of exact algorithms for spe-

cial cases of the unit-capacity dial-a-ride problem (k = 1), e.g., when the underly-

ing graph is a cycle or a tree, [17, 53, 54, 55].

Guan [62] gave a linear time algorithm for the preemptive dial-a-ride problem

on a path, and showed that the non-preemptive dial-a-ride problem on a path is

NP-hard on the line for k ≥ 2.

In the k-delivery TSP all objects are identical and can be delivered to any of

the destination point. Charikar et al. [27] gave a 5-approximation algorithm for

both the preemptive and the non-preemptive problem.

Haimovich and Rinnooy Kan [64] gave an 3-approximation for the problem

when all objects initially are located at one central depot.

5.5.3 Our Results

We study the hardness of approximation of the preemptive finite capacity dial-a-

ride problem. We show that the preemptive Finite Capacity Dial-a-Ride problem

has no min{O(log1/4−ε N), k1−ε}-approximation algorithm for any ε > 0 unless all

problems in NP can be solved by randomized algorithms with expected running

time O(npolylogn).

To our knowledge, the TSP lower bound was the best known so far (recall that

the dial-a-ride problem generalizes TSP).

Our Techniques

Our results rely on the hardness results for the two network design problems

Buy-at-Bulk and SumFiber-ChooseRoute shown by Andrews [9] and Andrews

and Zhang [10].

Buy-at-Bulk In the Buy-at-Bulk problem we are given an undirected networkN ,

with lengths le on the edges, and a set {(si, ti)} of source-destination pairs. Each

source-destination pair (si, ti) has an associated demand δi. Each edge e has a

cost function fe, which is subadditive1, and fe(0) = 0. Since the cost function is

subadditive it exhibits economies of scale.

The goal is to route all demands δi from their source si to their destination

ti minimizing the total cost. The demands are unsplittable, i.e., demand δi must

follow a single path from si to ti. The cost of an edge e is fe(xe) where xe is the

1fe(x + y) ≤ fe(x) + fe(y).

100 CHAPTER 5. INTRODUCTION TO PART II

amount of demand routed through e in the solution. The total cost of the solution

is then
∑

e

fe(xe)le.

In this paper the cost function fe is the same for all edges. This is also known as

the uniform Buy-at-Bulk problem.

SumFiber-ChooseRoute In the SumFiber-ChooseRoute problem we are given an

undirected network N , with lengths le on the edges, and a set {(si, ti)} of source-

destination pairs. Each source-destination pair (si, ti) corresponds to a demand

δi. Each demand requires bandwidth equivalent to one wavelength. Each fiber

can carry k wavelengths, and the cost of deploying x fibers on edge e is x · le. The

problem is to specify a path from si to ti for all demands δi, and a wavelength for

the demand λi, minimizing the total cost. Let fe(λ) be the number of demands

assigned to wavelength λ that are routed through edge e. Then maxλ fe(λ) is the

number of fibers needed on edge e. Thus the total cost of the solution is

∑

e

le max
λ

fe(λ).

Hardness Both problems are NP-hard. Let N be the number of nodes in the net-

work. Andrews [9] shows that there is no O(log
1

4
−ε N)-approximation algorithm

for the uniform Buy-at-Bulk problem for any ε > 0 unless NP ⊆ ZPTIME(npolylogn).

Andrews and Zhang [10] show that there is no O(log
1

4
−ε N)-approximation

algorithm for the problem for any ε > 0 unless NP ⊆ ZPTIME(npolylogn).

The hardness results by Andrews [9] and Andrews and Zhang [10] are ob-

tained by a reduction using the Raz verifier for MAX3SAT(5) [102]. The Raz ver-

ifier for a MAX3SAT(5) instance φ is used to construct a random high-girth net-

work. For each demand they define a set of canonical paths on which the demand

can be carried. These canonical paths correspond to accepting interactions and are

short paths directly connecting the source and the destination. They show that if φ

is satisfiable then the optimal solution to the instance of SumFiber-ChooseRoute

has small cost, and if φ is unsatisfiable then the optimal solution has high cost.

More precisely, the cost if φ is unsatisfiable is a factor of γ more than if φ is satis-

fiable. Hence if there were an α-approximation for SumFiber-ChooseRoute with

α < γ, then we would be able to determine if φ was satisfiable.

Hardness of Dial-a-Ride To get our hardness result for Dial-a-Ride we show a

relationship between the Buy-at-Bulk problem with cost function h(x) = ⌈x
k
⌉ and

5.5. ON CHAPTER 7: DIAL-A-RIDE 101

Dial-a-Ride problem in the high-girth networkN constructed from the MAX3SAT

instance. More precisely, let B be a Buy-at-Bulk instance in the network N with

source destination pairs S and cost function h(x) = ⌈x
k
⌉, and let D be an instance

of the preemptive Dial-a-Ride instance in N with the same source-destination

pairs S. We show that

OPT
N
B ≤ OPT

N
D ≤ 7 · OPT

N
B , (5.1)

where OPT
N
B is the value of the optimal solution to B, and OPT

N
D is the value of

the optimal solution to D.

We show hardness results for Buy-at-Bulk problem with cost function h(x) =

⌈x
k
⌉. This is obtained by changing the parameters in the network used by An-

drews and Zhang [10]. Combining this result with Equation 5.1 we get our hard-

ness results for Dial-a-Ride.

102 CHAPTER 5. INTRODUCTION TO PART II

Chapter 6

Asymmetry in k-Center Variants

In this chapter we explore three concepts: the k-center problem, some of its vari-

ants, and asymmetry. The k-center problem is fundamental in location theory.

Variants of k-center may more accurately model real-life problems than the orig-

inal formulation. Asymmetry is a significant impediment to approximation in

many graph problems, such as k-center, facility location, k-median and the TSP.

We provide an O(log∗ n)-approximation algorithm for the asymmetric weighted

k-center problem. Here, the vertices have weights and we are given a total bud-

get for opening centers. In the p-neighbor variant each vertex must have p (un-

weighted) centers nearby: we give an O(log∗ k)-bicriteria algorithm using 2k cen-

ters, for small p. In k-center with minimum coverage, each center is required to

serve a minimum of clients. We give an O(log∗ n)-approximation algorithm for

this problem.

Finally, the following three versions of the asymmetric k-center problem we

show to be inapproximable: priority k-center, k-supplier, and outliers with forbidden

centers.

6.1 Introduction

Imagine you have a delivery service. You want to place your k delivery hubs

at locations that minimize the maximum distance between customers and their

nearest hubs. This is the k-center problem—a type of clustering problem that is

similar to the facility location [89] and k-median [16] problems. The motivation

for the asymmetric k-center problem, in our example, is that traffic patterns or

one-way streets might cause the travel time from one point to another to differ

depending on the direction of travel. Traditionally, the k-center problem was

solved in the context of a metric; in this chapter we retain the triangle inequality,

103

104 CHAPTER 6. ASYMMETRY IN K-CENTER VARIANTS

but abandon the symmetry.

Symmetry is a vital concept in graph approximation algorithms. Recently,

the k-center problem was shown to be Ω(log∗ n) hard to approximate [35, 65, 34],

even though the symmetric version has a factor 2 approximation. Facility location

and k-median both have constant factor algorithms in the symmetric case, but

are provably Ω(log n) hard to approximate without symmetry [12]. The traveling

salesman problem is a little better, in that no super-constant hardness is known,

but without symmetry no algorithm better than 4
3
log n) [73] has been found either.

Definition 6.1.1 (k-Center). Given G = (V, E), a complete graph with nonnega-

tive (but possibly infinite) edge costs, and a positive integer k, find a set S of k

vertices, called centers, with minimum covering radius. The covering radius of a

set S is the minimum distance R such that every vertex in V is within distance R

of some vertex in S.

Kariv and Hakimi [76] showed that the k-center problem is NP-hard. With-

out the triangle inequality the problem is NP-hard to approximate within any

factor (there is a straightforward reduction from the dominating set problem).

We henceforth assume that the edge costs satisfy the triangle inequality. Hsu

and Nemhauser [70], using the same reduction, showed that the metric k-center

problem cannot be approximated within a factor of (2 − ǫ) unless P = NP. In

1985 Hochbaum and Shmoys [67] provided a (best possible) factor 2 algorithm

for the metric k-center problem. In 1996 Panigrahy and Vishwanathan [123, 96]

gave the first approximation algorithm for the asymmetric problem, with factor

O(log∗ n). Archer [13] proposed two O(log∗ k) algorithms based on many of the

ideas of Panigrahy and Vishwanathan. The complementary Ω(log∗ n) hardness

result [35, 65, 34] shows that these approximation algorithms are asymptotically

optimal.

6.1.1 Variants of the k-Center Problem

A number of variants of the k-center problem have been explored in the context

of symmetric graphs. Perhaps some delivery hubs are more expensive to estab-

lish than others. Instead of a restriction on the number of centers we can use, each

vertex has a weight and we have a budget W , that limits the total weight of cen-

ters. Hochbaum and Shmoys [68] produced a factor 3 algorithm for this weighted

k-center problem, which has recently been shown to be tight [35, 34].

Hochbaum and Shmoys [68] also studied the k-supplier problem, where the

vertex set is segregated into suppliers and customers. Only supplier vertices can

6.1. INTRODUCTION 105

be centers and only the customer vertices need to be covered. Hochbaum and

Shmoys gave a 3-approximation algorithm and showed that it is the best possible.

Khuller et al. [77] investigated the p-neighbor k-center problem where each ver-

tex must have p centers nearby. This problem is motivated by the need to account

for facility failures: even if up to p − 1 facilities fail, every demand point has a

functioning facility nearby. They gave a 3-approximation algorithm for all p, and

a best possible 2-approximation algorithm when p < 4, noting that the case where

p is small is “perhaps the practically interesting case”.

Maybe some demand points are more important than others. Plesnik [98]

studied the priority k-center problem, in which the effective distance to a demand

point is enlarged in proportion to its specified priority. Plesnik approximates the

symmetric version within a factor of 2.

Charikar et al. [26] note that a disadvantage of the standard k-center formula-

tion is that a few distant clients, outliers, can force centers to be located in isolated

places. They suggest a variant of the problem, the k-center problem with out-

liers and forbidden centers, where a small subset of clients may be denied service,

and some points are forbidden from being centers. Charikar et al. gave a (best

possible) 3-approximation algorithm for the symmetric version of this problem.

Lim et al. [87] studied k-center with minimum coverage problems, where each

center is required to serve a minimum of clients. This problem is motivated by

trying to balance the workload and allow for economies of scale. Lim et al. defined

two problems: the q-all-coverage k-center problem, where each center must cover at

least q vertices (including itself), and the q-coverage k-center problem, where each

center must cover at least q non-center nodes. For the q-all-coverage k-center

problem Lim et al. gave a 2-approximation algorithm, and a 3-approximation al-

gorithm for the weighted and priority versions of the problem. For the q-coverage

k-center problem they gave a 2-approximation algorithm, and a 4-approximation

algorithm for the weighted and priority versions of the problem.

Bhatia et al. [20] considered a network model, such as a city street network,

in which the traversal times change as the day progresses. This is known as the

k-center problem with dynamic distances: we wish to assign the centers such that the

objective criteria are met at all times.

6.1.2 Results and Organization

Table 6.1 gives an overview of the best known results for the various k-center

problems. In this chapter we explore asymmetric variants that are not yet in the

literature.

106 CHAPTER 6. ASYMMETRY IN K-CENTER VARIANTS

Problem Symmetric Asymmetric

k-center 2 [67] O(log∗ k) [13]

k-center with dynamic distances 1 + β † [20] O(log∗ n + ν) ‡ [20]

weighted k-center 3 [68] O(log∗
n) [60]

q-all-coverage k-center (weighted) 2 (3) [87] O(log∗
n)

q-coverage k-center (weighted) 2 (4) [87] O(log∗
n)

p-neighbor k-center 3 (2 §) [29] O(log∗
k) ¶ [60]

priority k-center 2 [98] Inapproximable [60]

k-center with outliers and 3 [26] Inapproximable [60]
forbidden centers

k-suppliers 3 [68] Inapproximable [60]

Table 6.1: An overview of the approximation results for k-center variants. The re-

sults in this chapter are in boldface. †β is the maximum ratio of an edge’s greatest

length to its smallest length. ‡This is a bicriteria algorithm using k(1 + 3/(ν + 1))

centers. §For p < 4. ¶This is a bicriteria algorithm using 2k centers, for p ≤ n/k

Section 6.2 contains the definitions and notation required to develop the re-

sults. In Section 6.3 we briefly review the algorithms of Panigrahy and Vish-

wanathan [96], and Archer [13]. The techniques used in the standard k-center

problem are often applicable to the variants.

Our first result, in Section 6.4, is an O(log∗ n)-approximation for the asymmet-

ric weighted k-center problem. In Section 6.5 we develop an O(log∗ k) approxi-

mation for the asymmetric p-neighbor k-center problem, for p ≤ n/k. As noted

by Khuller et al. [77], the case where p is small is the most interesting case in prac-

tice. This a bicriteria algorithm, allowing 2k centers to be used rather than just

k. It can, however, be converted to an O(log k)-approximation algorithm using

only k centers. Turning to hardness, we show that the asymmetric versions of

the k-center problem with outliers (and forbidden centers), the priority k-center

problem, and the k-supplier problem are NP-hard to approximate within any fac-

tor (Section 6.6). Finally, in Section 6.7 we provide O(log∗ n)-approximation algo-

rithms for the asymmetric q-all-coverage and q-coverage k-center problems and

their weighted versions.

6.2. DEFINITIONS 107

6.2 Definitions

To avoid any uncertainty, we note that log stands for log2 by default, while ln

stands for loge.

Definition 6.2.1. For every integer i > 1, logi x = log(logi−1 x), and log1 x = log x.

We let log∗ x represent the smallest integer i such that logi x ≤ 2.

The input to the asymmetric k-center problem is a distance function d on every

ordered pair of vertices—distances are allowed to be infinite—and a bound k on

the number of centers. Note that we assume that the edges are directed.

Definition 6.2.2. Vertex c covers vertex v within r, or c r-covers v, if dcv ≤ r. We

extend this definition to a sets so that a set C r-covers a set A if for every a ∈ A

there is some c ∈ C such that c covers a within r. Often we abbreviate “1-covers”

to “covers”.

Many of the algorithms for k-center and its variants do not, in fact, operate on

graphs with edge costs. Rather, they consider bottleneck graphs [68], in which

only those edges with distance lower than some threshold are included, and they

appear in the bottleneck graph with unit cost. Since the optimal value of the

covering radius must be one of the n(n− 1) distance values, many algorithms es-

sentially run through a sequence of bottleneck graphs of every possible threshold

radius in ascending order. This can be thought of as guessing the optimal radius

ROPT. The approach works because the algorithm either returns a solution, within

the specified factor of the current threshold radius, or it fails, in which case ROPT

must be greater than the current radius.

Definition 6.2.3 (Bottleneck Graph Gr). For r > 0, define the bottleneck graph Gr

of the graph G = (V, E) to be the graph Gr = (V, Er), where Er = {(i, j) : dij ≤ r}
and all edges have unit cost.

Most of the following definitions apply to bottleneck graphs.

Definition 6.2.4 (Power of Graphs). The tth power of a graph G = (V, E) is the

graph Gt = (V, E(t)), t > 1, where E(t) is the set of ordered pairs of distinct vertices

that have a path of at most t edges between them in G.

Definition 6.2.5. For i ∈ N define

Γ+
i (v) = {u ∈ V | (v, u) ∈ Ei} ∪ {v}, Γ−

i (v) = {u ∈ V | (u, v) ∈ Ei} ∪ {v} ,

i.e., in the bottleneck graph there is a path of length at most i from v to u, respec-

tively u to v.

108 CHAPTER 6. ASYMMETRY IN K-CENTER VARIANTS

Notice that in a symmetric graph Γ+
i (v) = Γ−

i (v). We extend this notation to

sets so that Γ+
i (S) = {u ∈ V | u ∈ Γ+

i (v) for some v ∈ S} , with Γ−
i (S) defined

similarly. We use Γ+(v) and Γ−(v) instead of Γ+
1 (v) and Γ−

1 (v).

Definition 6.2.6. For i ∈ N define

Υ+
i (v) = Γ+

i (v) \ Γ+
i−1(v), Υ−

i (v) = Γ−
i (v) \ Γ−

i−1(v) ,

i.e., the nodes for which the path distance from v is exactly i, and the nodes for

which the path distance to v is exactly i, respectively.

For a set S, the extension follows the pattern Υ+
i (S) = Γ+

i (S) \Γ+
i−1(S). We use

Υ+(v) and Υ−(v) instead of Υ+
1 (v) and Υ−

1 (v).

We call x a parent of y, and y a child of x, if x ∈ Υ−(y). If Υ−(y) is empty we

call y an orphan.

Definition 6.2.7 (Center Capturing Vertex (CCV)). A vertex v is a center capturing

vertex (CCV) if Γ−(v) ⊆ Γ+(v), i.e., v covers every vertex that covers v.

In the graph GROPT
the optimum center that covers v must lie in Γ−(v); for a

CCV v, it lies in Γ+(v), hence the name. In symmetric graphs all vertices are CCVs

and this property leads to the standard 2-approximation.

The following three problems, related to k-center, are all NP-complete [59].

Definition 6.2.8 (Dominating Set). Given a graph G = (V, E), and a weight func-

tion w : V → Q+ on the vertices, find a minimum weight subset D ⊆ V such that

every vertex v ∈ V is covered by D, i.e., Γ+(D) = V .

Definition 6.2.9 (Set Cover). Given a universe U consisting of n elements, a col-

lection S = {S1, . . . , Sk} of subsets of U , and a weight function w : S → Q+, find

a minimum weight sub-collection of S that includes all elements of U .

Definition 6.2.10 (Max Coverage). Given 〈U ,S, k〉, with U and S as above, find a

sub-collection of k sets that includes the maximum number of elements of U .

6.3 Asymmetric k-Center Review

The O(log∗ n) algorithm of Panigrahy and Vishwanathan [96] has two phases,

the halve phase, sometimes called the reduce phase, and the augment phase. As

described above, the algorithm guesses ROPT, and works in the bottleneck graph

GROPT
. In the halve phase we find a CCV v, include it in the set of centers, mark

every vertex in Γ+
2 (v) as covered, and repeat until no CCVs remain unmarked.

6.4. ASYMMETRIC WEIGHTED K-CENTER 109

The CCV property ensures that, as each CCV is found and vertices are marked,

the unmarked portion of the graph can be covered with one fewer center. Hence

if k′′ CCVs are obtained, the unmarked portion of the graph can be covered with

k′ = k−k′′ centers. The authors then prove that this unmarked portion, CCV-free,

can be covered with only k′/2 centers if we use radius 5 instead of 1. That is to

say, k′/2 centers suffice in the graph G5
ROPT

.

The k-center problem in the bottleneck graph is identical to the dominating

set problem. This is a special case of set cover in which the sets are the Γ+ terms.

In the augment phase, the algorithm recursively uses the greedy set cover proce-

dure. Since the optimal cover uses at most k′/2 centers, the first cover has size at

most k′

2
log 2n

k′ .

The centers in this first cover are themselves covered, using the greedy set

cover procedure, then the centers in the second cover, and so forth. After O(log∗ n)

iterations the algorithm finds a set of at most k′ vertices that, together with the

CCVs, O(log∗ n)-covers the unmarked portion, since the optimal solution has k′/2

centers. Combining these with the k′′ CCVs, we have k centers covering the whole

graph within O(log∗ n).

Archer [13] presents two O(log∗ k) algorithms, both building on the work by

Panigrahy and Vishwanathan [96]. The algorithm more directly connected with

the earlier work nevertheless has two fundamental differences. Firstly, in the re-

duce phase Archer shows that the CCV-free portion of the graph can be covered

with 2k′/3 centers within radius 3. Secondly, he constructs a set cover-like integer

program and solves the relaxation to get a total of k′ fractional centers that cover

the unmarked vertices. From these fractional centers, he obtains a 2-cover of the

unmarked vertices with k′ log k′ (integral) centers. These are the seed for the aug-

ment phase, which thus produces a solution with an O(log∗ k′) approximation to

the optimum radius. We now know that all of these approximation algorithms

are asymptotically optimal [35, 65, 34].

6.4 Asymmetric Weighted k-Center

Recall the application in which the costs of delivery hubs vary. In this situation,

rather than having a restriction on the number of centers used, each vertex has a

weight and we have a budget W that restricts the total weight of centers used.

Definition 6.4.1 (Weighted k-Center). Given a weight function on the vertices,

w : V → Q+, and a bound W ∈ Q+, find a set S ⊆ V of total weight at most W , so

that S covers V with minimum radius.

110 CHAPTER 6. ASYMMETRY IN K-CENTER VARIANTS

Hochbaum and Shmoys [68] gave a 3-approximation algorithm for the sym-

metric weighted version, applying their approach for bottleneck problems. We

propose an O(log∗ n)-approximation for the asymmetric version, based on Pani-

grahy and Vishwanathan’s technique for the unweighted problem. Note that in

light of the complementary hardness result just announced [35, 65, 34], this algo-

rithm is asymptotically the best possible. There is another variant that has both

the k and the W restrictions, but we will not expand on that problem here.

First, a brief sketch of the algorithm, which works with bottleneck graphs. In

the reduce phase, having found a CCV, v, we pick the lightest vertex u in Γ−(v)

(which might be v itself) as a center in our solution. We then mark everything in

Γ+
3 (u) as covered, and continue looking for CCVs. We can show that there exists

a 49-cover of the unmarked vertices with total weight less than a quarter of the

optimum. Finally, we recursively apply a greedy procedure for weighted sets and

elements O(log∗ n) times, similar to the one used for set cover. The total weight of

centers in our solution set is at most W .

The following lemma concerning vertex-weighted digraphs is the key to our re-

duce phase and is analogous to Lemma 4 in Panigrahy and Vishwanathan’s pa-

per [96] and Lemma 16 in Archer’s [13].

Lemma 6.4.2. Let G = (V, E) be a digraph with weighted vertices, but unit edge costs.

Then there is a subset S ⊆ V , w(S) ≤ w(V)/2, such that every vertex with positive

indegree is reachable in at most 3 steps from some vertex in S.

Proof. To construct the set S repeat the following, to the extent possible: Select

a vertex v with positive outdegree and if possible select one with indegree zero

(that is, Υ−(v) is empty). Compare sets {v} and Υ+(v): add the lighter set to S

and remove Γ+(v) from G.

It is clear that the weight of S is no more than half the weight of V . We must

now show that S 3-covers all non-orphan vertices.

The children of a selected vertex v, Υ+(v), are clearly 1-covered. Assume v is

not in S (trivial otherwise): if v was an orphan initially then ignore it. If v is an

orphan when selected, but not initially, then at some previous stage in the proce-

dure some parent of v must have been removed by the selection of a grandparent

(a vertex in Υ−
2 (v)), so v is 2-covered. Note that if one of v’s parents had been

selected then v would already have been removed from G.

Now assume v has at least one parent when it is selected. Consequently, at that

state in the procedure, there are no vertices that have children, but are orphans,

otherwise on of them would have been selected instead of v. We conclude that

the sets of parents of v, S1 = Υ−(v), parents of S1, S2 = Υ−(S1), and parents of S2,

6.4. ASYMMETRIC WEIGHTED K-CENTER 111

S3 = Υ−(S2), are not empty. Although these sets might not be pairwise disjoint,

if they contained any of v’s children, then v would be 3-covered.

After v is removed, there are three possibilities for S2: (i) Some vertex in S3 is

selected, removing part of S2; (ii) Some vertex in S2 is selected and removed; (iii)

Some vertex in S1 is selected, possibly making some S2 vertices childless. One of

these events must happen, since S1 and S2 are non-empty. As a consequence, v is

3-covered.

Henceforth call the vertices that have not yet been covered/marked active.

Using Lemma 6.4.2 we can show that after removing the CCVs from the graph,

we can cover the active set with half the weight of an optimum cover if we are

allowed to use distance 7 instead of 1.

Lemma 6.4.3. Consider a subset A ⊆ V that has a cover consisting of vertices of total

weight W , but no CCVs. Assume there exists a set C1 that 3-covers exactly V \ A. Then

there exists a set of vertices S of total weight W/2 that, together with C1, 7-covers A.

Proof. Let U be a subset of the optimal centers that covers A. We call u ∈ U a near

center if it can be reached in 4 steps from C1, and a far center otherwise. Since C1

5-covers all of the nodes covered by near centers, it suffices to choose S to 6-cover

the far centers, so that S will 7-cover all the nodes they cover.

Define an auxiliary graph H on the (optimal) centers U as follows. There is

an edge from x to y in H if and only if x 2-covers y in G (and x 6= y). The idea is

to show that any far center has positive indegree in H . As a result, Lemma 6.4.2

shows there exists a set S ∈ U with |S| ≤W/2 such that S 3-covers the far centers

in H , and thus 6-covers them in G.

Let x be any far center: note that x ∈ A. Since A contains no CCVs, there exists

y such that y covers x, but x does not cover y. Since x 6∈ Γ+
4 (C1), y 6∈ Γ+

3 (C1),

and thus y ∈ A (since everything not 3-covered by C1 is in A). Thus there exists a

center z ∈ U , which is not x, but might be y, that covers y and therefore 2-covers

x. Hence x has positive indegree in the graph H .

As we foreshadowed, we will use the greedy heuristic to complete the algo-

rithm. We now analyze the performance of this heuristic in the context of the

dominating set problem in node-weighted graphs. All vertices V are available as

potential members of the dominating set (i.e. centers), but we need only domi-

nate the active vertices A. The heuristic is to select the most efficient vertex: the

one that maximizes w(A(v))/w(v), where A(v) ≡ A ∩ Γ+(v).

112 CHAPTER 6. ASYMMETRY IN K-CENTER VARIANTS

Lemma 6.4.4. Let 〈G = (V, E), w : V → Q+, A ⊆ V 〉 be an instance of the dominating

set problem in which a set A is to be dominated. Also, let w∗ be the weight of an optimum

solution for this instance. The greedy algorithm gives an approximation guarantee of

2 + ln(w(A)/w∗) .

Proof. In every application of the greedy selection there must be some vertex v ∈
V for which

w(A(v))

w(A)
≥ w(v)

w∗
(6.1)

otherwise no optimum solution of weight w∗ would exist. This is certainly true of

the most efficient vertex v, so make v a center and make all the vertices it covers

inactive, leaving A′ active. Now,

w(A′) = w(A)− w(A(v)) ≤ w(A)

(

1− w(v)

w∗

)

< w(A) exp

(

−w(v)

w∗

)

.

After j steps, the remaining active vertices, Aj , satisfy

w(Aj) < w(A0)

j
∏

i=1

exp

(

−w(vi)

w∗

)

, (6.2)

where vi is the ith center picked (greedily) and A0 is the original active set.

Assume that after some number of steps, say j, there are still some active

elements, but the upper bound in (6.2) has just dropped below w∗. That is to say,

j
∑

i=1

w(vi) > w∗ ln(w(A0)/w∗) .

Before we picked the vertex vj we had

j−1
∑

i=1

w(vi) ≤ w∗ ln(w(A0)/w∗) , and so,

j
∑

i=1

w(vi) ≤ w∗ + w∗ ln(w(A0)/w∗) ,

for (6.1) tells us that w(vj) is no greater than w∗. To cover the remainder, Aj, we

just use Aj itself, at a cost less than w∗. Hence the total weight of the solution is at

most w∗(2 + ln(w(A0)/w∗)).

On the other hand, if the upper bound on w(Aj) never drops below w∗ before

Aj becomes empty, then we have a solution of weight at most w∗ ln(w(A0)/w∗).

We now show that this tradeoff between covering radius and optimal cover

size leads to an O(log∗ n) approximation.

6.4. ASYMMETRIC WEIGHTED K-CENTER 113

Lemma 6.4.5. Given A ⊆ V , such that A has a cover of weight W , and a set C1 ⊆ V

that covers V \ A, we can find in polynomial time a set of vertices of total weight at most

4W that, together with C1, covers A (and hence V) within a radius of O(log∗ n).

Proof. We will be applying the greedy algorithm of Lemma 6.4.4. The approx-

imation guarantee is 2 + ln(w(A)/W), which is less than log1.5(w(A)/W) when

w(A) ≥ 4W .

Our first attempt at a solution, S0, is all vertices of weight no more than W .

Only these vertices could be in the optimum center set and their total weight is at

most nW . Since C1 covers S0 \ A, consider A0 = S0 ∩ A, which has a cover of size

W . Lemma 6.4.4 shows that the greedy algorithm results in a set S1 that covers

A0 and has weight

w(S1) ≤W log1.5(
Wn

W
) = W log1.5 n ,

assuming n ≥ 4. The set C1 covers S1 \ A, so we need only consider A1 = S1 ∩ A.

We continue this procedure and note that at the ith iteration we have w(Si) ≤
W log1.5(w(Si−1)/W). By induction, after O(log∗ n) iterations the weight of our

solution set, Si, is at most 4W .

All the algorithmic tools can now be assembled to form an approximation

algorithm.

Theorem 6.4.6. The weighted k-center problem can be approximated within a factor of

O(log∗ n) in polynomial time.

Proof. Guess the optimum radius, ROPT, and work in the bottleneck graph GROPT
.

Initially, the active set A is V . Repeat the following as many times as possible:

Pick a CCV v in A, add the lightest vertex u in Γ−(v) to our solution set of centers,

and remove the set Γ+
3 (u) from A. Since v is covered by an optimum center in

Γ−(v), u is no heavier than this optimum center. Moreover, since the optimum

center lies in Γ+(v), Γ+
3 (u) includes everything covered by it.

Let C1 be the centers chosen in this first phase. We know the remainder of the

graph, A, has a cover of total weight W ′ = W − w(C1), because of our choices

based on CCV and weight.

Lemma 6.4.3 shows that we can cover the remaining uncovered vertices with

weight no more than W ′/2 if we use covering radius 7. Applying the lemma

again, we can cover the remaining vertices with weight W ′/4 centers if we allow

radius 49. So let the active set A be V \ Γ+
49(C1), and recursively apply the greedy

algorithm as described in the proof of Lemma 6.4.5 on the graph G49
ROPT

. As a

result, we have a set of size W ′ that covers A within radius O(log∗ n).

114 CHAPTER 6. ASYMMETRY IN K-CENTER VARIANTS

6.5 Asymmetric p-Neighbor k-Center

Imagine that we wish to place k facilities so that the maximum distance of a de-

mand point from its pth-closest facility is minimized. As a consequence, failures

in p− 1 facilities do not cause severe network performance loss.

Definition 6.5.1 (Asymmetric p-Neighbor k-Center Problem). For every subset S

and vertex v in V , let dp(S, v) denote the distance from the pth closest vertex in

S to v. The problem is to find a subset S of at most k vertices that minimizes

maxv∈V \S dp(S, v).

We show how to approximate the asymmetric p-neighbor k-center problem

within a factor of O(log∗ k) if we allow ourselves to use 2k centers. Our algorithm

is restricted to the case p ≤ n/k, but this is reasonable as p should not be too

large [77].

We use the same techniques as before, including bottleneck graphs, but in

the augment phase we use the greedy algorithm for the constrained set multicover

problem [122]. That is, each element, e, needs to be covered re times, but each

set can be picked at most once. The p-neighbor k-center problem has re = p for

all e. We say that an element e is active if it occurs in fewer than p sets chosen so

far. The greedy heuristic is to pick the set that covers the most active elements.

It can be shown that this algorithm achieves an approximation factor of Hn =

O(log n) [122, Section 13.2]. However the following result is more appropriate to

our application.

Lemma 6.5.2. Let k be the value of the optimum solution to the Constrained Set Multi-

cover problem. The greedy algorithm gives approximation guarantee of log1.5(np/k).

Proof. The same kind of averaging argument used for standard set cover shows

that the greedy choice of a set reduces the total number of unmarked element

copies by a factor 1 − 1/k. So after i steps, the number of copies of elements

yet to be covered is np(1 − 1/k)i < np(e−1/k)i. Hence after k ln(np/k) steps the

number of uncovered copies of elements is less than k. A naive cover of these

last k element copies leads the total number of sets in the solution to be at most

k + k ln(np/k). Since p ≥ 2, this greedy algorithm has an approximation factor

less than log1.5(np/k).

If p ≤ n/k the approximation guarantee above is less than log1.2(n/k). We can

now apply the standard recursive approach [96]. Recall that Panigrahy and Vish-

wanathan use O(log∗ n) iterations to get down to 2k centers, which gives them

6.5. ASYMMETRIC P -NEIGHBOR K-CENTER 115

a O(log∗ n) approximation because of the halve phase. They also state that us-

ing O(logn) iterations instead they would get down to k centers without the

halve phase. Since we do not have anything similar to the halve phase, for the

p-neighbor k-center problem we need O(log n) iterations to get down to k cen-

ters. There is no analogy to Lemma 4 [96], in which Panigrahy and Vishwanathan

show that all vertices with positive indegree can be 2-covered by half the number

of centers.

The approximation guarantee can be lowered to O(log∗ k), with 2k centers,

using Archer’s LP-based priming, which we describe now in detail.

We first solve the LP for the constrained set multicover problem. Let yv be the

(fractional) extent to which a vertex is a center:

minimize
∑

v∈V

yv

subject to
∑

u∈Γ−(v)

yu ≥ p, v ∈ A

−yv ≥ −1, v ∈ V

yv ≥ 0, v ∈ V .

In the solution each vertex is covered by an amount p of fractional centers, out

of a total of k. We can now use the greedy method to obtain an initial set of k2 ln k

centers that 2-covers every vertex in the active set with at least p centers.

Let A be the active vertices (the vertices that are covered fewer than p times)

and let A(v) = Γ+(v) ∩ A. Let y′(v) = yv · av, where av is the number of times

v still needs to be covered, and let y′(S) =
∑

v∈S y′(v) for all S ⊆ V . Note that

v ∈ A ⇔ av > 0 and thus y′(A) = y′(V). The function y′ indicates the extent to

which an optimal fractional center is not yet covered. We will see that when the

value of y′(V) is low, we can be sure that we have found a reasonable cover of all

the vertices.

Start with an empty set S and repeat the following until y′(V) < p: Choose the

vertex v from T = V − S maximizing y′(Γ+(v)), add it to S, and set au = au − 1

for all vertices u ∈ A(v).

Lemma 6.5.3. Once y′(V) < p, the set S 2-covers every vertex with at least p centers.

Proof. For every v, let α(v) be its active parents, α(v) = {u : u ∈ Γ−(v), au ≥ 1},
and let β(v) be its inactive parents, β(v) = {u : u ∈ Γ−(v), au = 0} .

Since y′(V) < p we have
∑

u∈α(v)

yu ≤
∑

u∈α(v)

y′
u < p .

116 CHAPTER 6. ASYMMETRY IN K-CENTER VARIANTS

By the first LP constraint we have

∑

u∈α(v)

yu +
∑

u∈β(v)

yu =
∑

u∈Γ−(v)

yu ≥ p ,

and thus
∑

u∈β(v) yu > 0. We conclude that there must be at least one vertex in

β(v). The p vertices covering this vertex 2-cover v.

The following lemma corresponds to Archer’s Lemma 4 [13].

Lemma 6.5.4. There exists v ∈ T such that

y′(A(v)) ≥ y′(A)

y(T)
.

Proof. We take a weighted average of y′(A(v)) over v ∈ T .

1

y(T)

∑

v∈T

yv · y′(A(v)) =
1

y(T)

∑

v∈T

∑

u∈A(v)

yv · y′(u)

=
1

y(T)

∑

u∈A

y′(u)
∑

v∈Γ−(u)∩T

yv

≥ 1

y(T)

∑

u∈A

y′(u)

The inequality follows from the fact that for all u ∈ A, y′(u) ≥ 0 and y(Γ−(u)∩T) ≥
1 (otherwise there would be more than p− 1 members of Γ−(u) in S). Since some

term is at least as large as the weighted average, the lemma follows.

Lemma 6.5.5.

|S| ≤ k2 ln k .

Proof. Due to Lemma 6.5.4, the vertex v chosen in every application of the greedy

method has y′(Γ+(v)) = y′(A(v)) ≥ y′(A)/y(T). In this proof we focus on one

iteration at a time and let A′ stand for the active vertices after the iteration and A

for those before. Now,

y′(A′) = y′(A)− y(A(v))

≤ y′(A)− y′(A(v))/p

≤ y′(A)− y′(A)

y(T) · p

≤ y′(A)− y′(A)

kp

= y′(V)(1− 1

kp
)

6.6. INAPPROXIMABILITY RESULTS 117

since y(B) ≥ y′(B)/p for any set B and y(T) ≤ k. Initially, y′(V) = kp, so y′(V) < p

after at most kp ln k iterations. Since p ≤ k—otherwise no solution exists—we

have |S| ≤ k2 ln k.

Repeatedly applying the greedy procedure for constrained set multicover, this

time for O(log∗ k) iterations, we get 2k centers that cover all active vertices within

O(log∗ k). Alternatively, we could carry out O(log k) iterations and stick to just k

centers.

6.6 Inapproximability Results

In this section we give inapproximability results for the asymmetric versions

of the k-center problem with outliers, the priority k-center problem, and the k-

supplier problem. These problems all admit constant factor approximation algo-

rithms in the symmetric case.

6.6.1 Asymmetric k-Center with Outliers

A disadvantage of the standard k-center problem is that a few distant clients can

force centers to be located in isolated places. This situation is averted in the fol-

lowing variant problem, in which a small subset of clients may be denied service,

and some points are forbidden from being centers.

Definition 6.6.1 (k-Center with Outliers and Forbidden Centers). Find a set S ⊆
C, where C is the set of vertices allowed to be centers, such that |S| ≤ k and S

covers at least p nodes, with minimum radius.

Theorem 6.6.2. For any function α(n), the asymmetric k-center problem with outliers

(and forbidden centers) cannot be approximated within a factor of α(n) in polynomial

time, unless P = NP.

Proof. We reduce instance 〈U,S, k〉 of max coverage to our problem. Construct

vertex sets A and B so that for each set S ∈ S there is vS ∈ A, and for each

element e ∈ U there is ve ∈ B. From each vertex vS ∈ A, create an edge of unit

length to vertex ve ∈ B if e ∈ S. Let p = |B|+ k.

If the optimum value of the max coverage instance is |U|, then the k nodes in A

that correspond to some optimal sub-collection will cover p nodes within radius 1.

Our α(n)-approximation algorithm will thus return k centers that cover p nodes

in some finite distance. If the maximum coverage with k sets is less than |U|,
then the optimum covering radius for p nodes, using k centers, is infinite. Since

118 CHAPTER 6. ASYMMETRY IN K-CENTER VARIANTS

our approximation can distinguish between these two cases, the approximation

problem must be NP-complete.

Note that the proof never relied on the fact that the B vertices were forbidden

from being centers—setting p to |B|+ k ensured this.

6.6.2 Asymmetric Priority k-Center

Perhaps some demand points have a greater need for centers to be closer to them

than others. This situation is captured by the priority k-center problem, in which

the distance to a demand vertex is effectively enlarged by its priority. Note that

the triangle inequality still holds for the original distances.

Definition 6.6.3 (Priority k-Center). Given a priority function p : V → Q+ on the

vertices, find S ⊆ V , |S| ≤ k, that minimizes R so that for every v ∈ V there exists

a center c ∈ S for which pvdcv ≤ R.

Theorem 6.6.4. For any polynomial time computable function α(n), the asymmetric

k-center problem with priorities cannot be approximated within a factor of α(n) in poly-

nomial time, unless P = NP.

Proof. The construction of the sets A and B is similar to the proof of Theorem 6.6.2.

Again, we have the unit length set-element edges from A to B, but this time we

make the set A a complete digraph, with edges of length ℓ, as in Figure 6.1. Give

the nodes in set A priority 1 and the nodes in set B priority ℓ.

If there exists a collection of k sets that cover all elements, then there exist k

elements of A that cover every vertex in A and B within radius ℓ. If there do not

exist k such sets, then the optimal covering radius using k centers is ℓ2 + ℓ: some

vertex in B is at distance ℓ + 1 from its nearest center and has priority ℓ. Since we

can set ℓ equal α(n), our algorithm can distinguish between the two types of max

coverage instance. Therefore the approximation problem is NP-complete.

6.6.3 Asymmetric k-Supplier

In the k-supplier problem the vertex set is segregated into suppliers and cus-

tomers. Only supplier vertices can be centers and only customer vertices need

to be covered.

Definition 6.6.5 (k-Supplier). Given a set of suppliers Σ and a set of customers C,

find a subset S ⊆ Σ that minimizes R such that S covers C within R.

6.6. INAPPROXIMABILITY RESULTS 119

A

B

Figure 6.1: k-center with priorities. Solid lines have length 1, dotted lines length

ℓ.

Theorem 6.6.6. For any function α(n), the asymmetric k-supplier problem cannot be

approximated within a factor of α(n) in polynomial time, unless P = NP.

Proof. By a reduction from the max coverage problem similar to the proof of The-

orem 6.6.2.

120 CHAPTER 6. ASYMMETRY IN K-CENTER VARIANTS

6.7 Asymmetric k-Center with Minimum Coverage

In this section we give approximation algorithms and inapproximability results

for various asymmetric k-center with minimum coverage problems. These prob-

lems have been studied by Lim et al. [87] in the symmetric setting. In k-center

with minimum coverage, each center is required to serve a minimum of clients.

Lim et al. studies the following problems:

• The q-all-coverage k-center problem, where each center must cover at least q

vertices (including itself).

• The q-coverage k-center problem, where each center must cover at least q non-

center nodes.

• The q-coverage k-supplier problem, where each supplier must cover at least q

demands.

Furthermore, Lim et al. studied both the weighted and the priority versions of

these problems.

For the q-all-coverage k-center problem Lim et al. gave an 2-approximation

algorithm, and an 3-approximation algorithm for the weighted and priority ver-

sions of the problem. For the q-coverage k-center problem they provided an 2-

approximation algorithm, and an 4-approximation algorithm for the weighted

and priority versions of the problem. For the q-coverage k-supplier problem they

gave an 3-approximation algorithm for both the basic, the weighted, and the pri-

ority version.

6.7.1 Inapproximability Results

Since the q-all-coverage k-center problem and the q-cover k-center problem are

generalizations of the k-center problem (set q = 1 and q = 0, respectively), the

priority version of these problems cannot be approximated within any factor in

the asymmetric case unless P = NP. Since the q-coverage k-supplier problem

is a generalization of the k-supplier problem (q = 0), it cannot be approximated

within any factor in the asymmetric version unless P = NP.

6.7.2 q-All-Coverage k-Center

In this section we give a O(log∗ n)-approximation algorithm for the asymmetric

q-all-coverage k-center problem.

6.7. ASYMMETRIC K-CENTER WITH MINIMUM COVERAGE 121

Definition 6.7.1 (q-All-Coverage k-Center). Given G = (V, E), a complete graph

with nonnegative (but possibly infinite) edge costs, and a positive integer k, find

a set S of k vertices, called centers, with minimum covering radius, such that each

center covers at least q vertices.

Our algorithm is based on Panigrahy and Vishwanathan’s technique for the

asymmetric k-center problem[96]. As before, the algorithm guesses ROPT, and

works in the bottleneck graph GROPT
.

First we note that if we are in the right bottleneck graph any node either has

out-degree at least q− 1 or is covered by a node with out-degree at least q− 1. We

will modify the definition of a CCV to reflect this.

Definition 6.7.2. Let Γq−(v) = {u | u ∈ Γ−(v) and deg(u) ≥ q − 1}. Node v is a

CCVq if Γq−(v) ∈ Γ+(v).

It follows immediately, that if v is a CCVq then v covers a center in the optimal

solution.

In the halve phase we find a CCVq v, include it in the set of centers, mark

every vertex in Γ+
2 (v) as covered, and repeat until no CCVqs remain unmarked.

The CCVq property ensures that, as each CCVq is found and vertices are marked,

the unmarked portion of the graph can be covered with one fewer center. Hence

if k′′ CCVqs are obtained, the unmarked portion of the graph can be covered with

k′ = k − k′′ centers.

We will prove that this unmarked portion, CCVq-free, can be covered with

only k′/2 centers if we use radius 5 instead of 1. That is to say, k′/2 centers suffice

in the graph G5
ROPT

.

Panigrahy and Vishwanathan [96] show the following lemma.

Lemma 6.7.3 (Panigrahy and Vishwanathan [96]). Let G = (V, E) be a digraph with

unit edge costs. Then there is a subset S ⊆ V , |S| ≤ |V |/2, such that every vertex with

positive indegree is reachable in at most 2 steps from some vertex in S.

We can use this to show a lemma analog to that for the standard asymmetric

k-center problem.

Lemma 6.7.4. Consider a subset A ⊆ V that has a cover consisting of vertices of size k,

but no CCVqs. Assume there exists a set C1 that 3-covers exactly V \A, and every vertex

in C1 3-covers at least q vertices. Then there exists a set of vertices S of size k/2 that,

together with C1, 5-covers A, and every vertex in S covers at least q vertices.

Proof. Let U be a subset of the optimal centers that covers A. We call u ∈ U a near

center if it can be reached in 4 steps from C1, and a far center otherwise. Since C1

122 CHAPTER 6. ASYMMETRY IN K-CENTER VARIANTS

5-covers all of the nodes covered by near centers, it suffices to choose S to 4-cover

the far centers, so that S will 5-cover all the nodes they cover. We also need to

ensure that any vertex in S 5-covers at least q vertices.

Define an auxiliary graph H on the (optimal) centers U as follows. There is

an edge from x to y in H if and only if x 2-covers y in G (and x 6= y). The idea is

to show that any far center has positive indegree in H . As a result, Lemma 6.7.3

shows there exists a set S ∈ U with |S| ≤ k/2 such that S 2-covers the far centers

in H , and thus 4-covers them in G. Since S ∈ U and U is the set of optimal centers,

all vertices in S covers at least q vertices.

Let u be any far center: note that u ∈ A. Since A contains no CCVqs, there

exists v ∈ Γq−(u) that is not covered by u. Since u 6∈ Γ+
4 (C1), v 6∈ Γ+

3 (C1), and thus

v ∈ A (since everything not 3-covered by C1 is in A). Thus there exists a vertex

w ∈ U , which is not u, but might be v, that covers v and therefore 2-covers u.

Hence u has positive indegree in H .

In the augment phase we use the greedy set cover algorithm, which has ap-

proximation guarantee 1 + ln(n/OPT), where n is the number of elements. Only

nodes that have degree at least q−1 in the bottleneck graph Gi before the removal

of CCVs are possible centers. It is easy to check wether it is possible to cover the

graph with only these nodes. If not then we are not in the right bottleneck graph.

Applying the greedy algorithm for set cover O(log∗ n)-times we get down to

2k′ centers.

Lemma 6.7.5. Given A ⊆ V , such that A has a cover of size k, where all centers in the

cover covers at least q vertices, and a set C1 ⊆ V that covers V \ A, where all centers

in C1 covers at least q vertices. We can then find in polynomial time a set of centers of

size most 2k that, together with C1, covers A (and hence V) within a radius of O(log∗ n),

such that all centers cover at least q vertices.

Proof. We will be apply the greedy set cover algorithm recursively. The initial

set of centers S0 is constructed as follows. For any vertex v for which Γ+(v) ∩ A

is non-empty, and which has out-degree at least q − 1 construct a set containing

Γ+(v).

The greedy algorithm for set cover has approximation guarantee O(log(n/k)),

which is less than log1.5(n/k) when n ≥ 2k. Applying this algorithm thus results

in a set S1 that covers A and has size at most O(k log(n/k)).

The set C1 covers S1 \ A, so we need only consider A1 = S1 ∩ A. Remove all

sets with Γ+(v) ∩A = ∅. We apply the greedy set cover algorithm again to obtain

a set S2 of size at most

k(log1.5(|A1|/k)) = k(log1.5(k log1.5(n/k)/k)) = k(log1.5(log1.5(n/k))) .

6.7. ASYMMETRIC K-CENTER WITH MINIMUM COVERAGE 123

We continue this procedure and note that at the ith iteration we have

|Si| ≤ k log1.5(|Si−1|/k) .

By induction, after O(log∗ n) iterations the size of our solution set, Si, is at most

2k.

We can now combine the results to get

Theorem 6.7.6. The q-all-coverage k-center problem can be approximated within a factor

of O(log∗ n) in polynomial time.

Proof. Guess the optimum radius, ROPT, and work in the bottleneck graph GROPT
.

Initially, the active set A is V . Repeat the following as many times as possible:

Pick a CCVq v in A, add v to our solution set of centers, and remove the set Γ+
2 (u)

from A. Since v is covered by an optimum center in Γ−(v), and this optimum

center lies in Γ+(v), Γ+
2 (v) includes everything covered by it.

Let C1 be the centers chosen in this first phase. We know the remainder of the

graph, A, has a cover of total size k′ = k − |C1|.
Lemma 6.7.4 shows that we can cover the remaining uncovered vertices with

at most k′/2 centers if we use covering radius 5. Let the active set A be V \
Γ+

5 (C1), and recursively apply the greedy algorithm as described in the proof of

Lemma 6.4.5 on the graph G5
ROPT

. As a result, we have a set of size k that covers A

within radius O(log∗ n).

6.7.3 Approximation of q-Coverage k-Center

Definition 6.7.7 (q-Coverage k-Center). Given G = (V, E), a complete graph with

nonnegative (but possibly infinite) edge costs, and a positive integer k, find a set S

of k vertices, called centers, with minimum covering radius, such that each center

covers at least q vertices in V \ S.

We use the algorithm from the previous section to find a set S of centers for

the (q + 1)-all-coverage k-center problem. First we note that the centers found

in the halve phase all cover at least q non-centers, since when we pick a CCVq+1

as v a center we mark Γ+
2 (v) as covered and thus none of these at least q vertices

will later be picked as centers. The potentially problematic centers are the centers

found in the augment phase. These centers all cover q vertices, but they might

not cover q non-centers.

Lemma 6.7.8. Given a set of centers S that covers all vertices, and for all v ∈ S v covers

at least q vertices. We can find a set S ′ ⊆ S of centers that 2 covers all vertices, such that

each center v ∈ S ′ 2-covers at least q vertices from V \ S.

124 CHAPTER 6. ASYMMETRY IN K-CENTER VARIANTS

Proof. Let P be the set of problematic centers, i.e., centers that do not cover q non-

centers. To construct the set S ′ repeat the following as long as P is non-empty:

Pick a center v from P . Remove all vertices Γ+(v)∩S except v from S, and remove

all vertices in Γ−(v) ∩ P from P . When P is empty set S ′ = S ′ ∪ S.

Let v be a center in S ′. We need to show that v 2-covers at least q non-center

vertices. If v was never in P then clearly v covers at least q non-center vertices, as

S ′ ⊆ S. Assume v was initially in P . Then either v was picked or some center in

Γ+(v) was picked. If v was picked, then since v covers at least q vertices and all

vertices covered by v now are non-centers, v covers at least q non-centers. If some

center u ∈ Γ+(v) was picked then as u covers at least q non-center v 2-covers at

least q vertices.

We must now show that S ′ 2-covers all vertices. Assume v ∈ S was picked.

Since all vertices in Γ−(v) are removed from P , and thus v remains a center and

thus v ∈ S ′. Assume v ∈ S was not picked by the procedure. If v 6∈ S ′ then it

must be the case that some vertex u ∈ Gamma−(v) was picked. As just argued

u ∈ S ′. All vertices in Γ+(v) are 2-covered by u. Therefore, S ′ 2-covers all vertices

covered by S.

Using Lemma 6.7.8 we can now show

Theorem 6.7.9. The q-coverage k-center problem can be approximated within factor

O(log∗ n) in polynomial time.

Proof. Apply the algorithm from the previous section to find a set S of centers for

the (q + 1)-all-coverage k-center problem. Let α be the actual approximation ratio

obtained by the (q + 1)-all-coverage k-center algorithm on this instance.

Now apply the procedure from Lemma 6.7.8 on S in the graph Gα
ROPT

. This

gives us a set of centers that 2α-covers all the vertices, and all the centers 2α-

covers at least q non-center vertices. Since α = O(log∗ n) this gives an O(log∗ n)-

approximation.

6.7.4 Weighted Versions

We can approximate the weighted version of the q-all-coverage k-center problem

and the q-coverage k-center problem with a factor of O(log∗ n) by adapting our

algorithm for the weighted set cover to the approaches above.

Chapter 7

Finite Capacity Dial-a-Ride

We study hardness of approximation of the preemptive Finite Capacity Dial-a-Ride

problem. Let k be the capacity of the vehicle and N the number of nodes in

the input graph. We show that the problem has no min{O(log1/4−ε N), k1−ε}-
approximation algorithm for any ε > 0 unless all problems in NP can be solved

by randomized algorithms with expected running time O(npolylogn).

7.1 Finite Capacity Dial-a-Ride

In the Finite Capacity Dial-a-Ride problem—or Dial-a-Ride for short—the input is

a metric space, a set of objects, where each object di specifies a source si and a

destination ti, and an integer k—the capacity of the vehicle used for making the

deliveries. The goal is to compute a shortest tour for the vehicle in which all ob-

jects can be delivered to their destinations (from their sources) while ensuring that

the vehicle carries at most k objects at any point in time. There are two variants

of the problem: the non-preemptive case, in which an object once loaded on the

vehicle it stays on until it is delivered to its destination, and the preemptive case

in which an object may be dropped at intermediate locations and then picked up

later by the vehicle and delivered.

The Dial-a-Ride problem generalizes the traveling salesman problem (TSP)

even for k = 1 and is therefore NP-hard. By placing an object and its destination

in each vertex in the TSP instance yields an instance of the Dial-a-Ride problem.

In this instance the vehicle has to simply find a shortest path tour that visits all

the vertices, since any object that is picked up can be delivered immediately to its

destination point in the same location.

125

126 CHAPTER 7. FINITE CAPACITY DIAL-A-RIDE

7.1.1 Applications

The Dial-a-Ride problem has several practical applications [88] such as trans-

portation of elderly and/or disabled persons, certain courier services, and shared

taxi services [110]. Although single-vehicle Dial-a-Ride systems are not very com-

mon, single-vehicle Dial-a-Ride algorithms are used as subroutines in large scale

multi-vehicle Dial-a-Ride environments and is therefore important.

7.1.2 Previous Results

Guan [62] proved that the unit-capacity preemptive case is NP-hard for trees

when k ≥ 2. Frederickson and Guan [55] showed that the unit-capacity non-

preemptive case is NP-hard even on trees. For this case Frederickson et al. [56]

gave an algorithm with approximation factor 1.8 on general graphs. We have

not been able to find any references to a O(1)-approximation algorithm for the

preemptive Dial-a-Ride problem with unit capacity in the literature. However, it

is simple to construct a 3-approximation algorithm for the preemptive case with

unit capacity (see Section 5.5.1).

Let N denote the number of nodes in the input graph, i.e., the number of

points that are either sources or destinations. The first non-trivial approximation

algorithms for the Finite Capacity Dial-a-Ride problem for general k were given

by Charikar and Raghavachari [28]. As noted by Charikar and Raghavachari an

O(k)-approximation algorithm can be obtained by taking the O(1)-approximation

algorithm for the unit-capacity case (k = 1).

As noted by Charikar and Raghavachari [28] using the O(1)-approximation

algorithm in the general case when k > 1 gives a O(k)-approximation algorithm.

To see this first note that any solution using capacity one is a valid solution. That

is, OPTk ≤ OPT1, where OPTi is the value of the optimal solution to the problem

using a vehicle with capacity i. We will also use OPTi to denote the actual solu-

tion. Given a solution SOLk to the problem using a vehicle with capacity k we can

construct a solution SOL1 to the problem using a vehicle of capacity 1 of at most

k times the cost. Follow the same route as SOLk when the first object is picked up

in SOLk pick up this object and deliver it to the vertex where it is dropped off in

SOLk. Then go back to the point were the object was picked up, and keep follow-

ing the route of SOLk until the next object is picked up. Do the same for this object

and so on. If an edge is traversed c times in SOLk then it is traversed at most 2k · c
times in SOL1. Therefore SOL1 ≤ 2k · SOLk, and thus OPT1 ≤ 2k · OPTk.

We note that there also is a trivial 3N
k

-approximation algorithm. Let us first

consider the case when k = N . Then all objects can be in the vehicle at the same

7.1. FINITE CAPACITY DIAL-A-RIDE 127

time. We can construct a tour by first taking a TSP tour on the sources, picking

up all objects, and then a TSP tour on the destinations, delivering all objects. Both

these TSP tours are a lower bound on value of the optimal solution as the vehicle

will have to visit all of them. Using the 3/2-approximation [32] to construct the

TSP tours we get a tour of length 2 · 3
2
·OPTTSP ≤ 3 ·OPT. For k = N/c we do this

c times each time picking up and delivering N/c objects. This gives an algorithm

with approximation factor 3c = 3N/k.

Preemptive Charikar and Raghavachari gave a 2-approximation algorithm for

trees for the preemptive Dial-a-Ride problem. Using the results on probabilis-

tic approximation of metric spaces by tree metrics [48] this gives an O(log N)-

approximation for arbitrary metrics.

Non-Preemptive For the non-preemptive Dial-a-Ride problem, Charikar and

Raghavachari gave an O(
√

k)-approximation algorithm for special instances on

height-balanced trees. Using the results on probabilistic approximation of metric

spaces by tree metrics [48] this gives an O(
√

k log N)-approximation algorithm for

arbitrary metrics. When the points lie on a line Charikar and Raghavachari note

that they have a 2-approximation algorithm.

Relation between Preemptive and Non-Preemptive Charikar and Raghava-

chari showed that the ratio of the cost of the optimal non-preemptive solution

to the cost of the optimal preemptive solution can be as large as Ω(k2/3).

7.1.3 Our Results and Techniques

We show that there is no min{O(log1/4−ε N), k1−ε}-approximation algorithm for

the preemptive Finite Capacity Dial-a-Ride problem for any ε > 0 unless NP ⊆
ZPTIME(npolylogn)1.

To our knowledge, the TSP lower bound was the best known so far.

7.1.4 Buy-at-Bulk and SumFiber-ChooseRoute

Our results rely on the hardness results for the two network design problems

Buy-at-Bulk and SumFiber-ChooseRoute.

1
ZPTIME(npolylogn) is the class of problems solvable by a randomized algorithm that always

returns the right answer and has expected running time O(npolylogn), where n is the size of the

input.

128 CHAPTER 7. FINITE CAPACITY DIAL-A-RIDE

Buy-at-Bulk In the Buy-at-Bulk problem we are given an undirected networkN ,

with lengths le on the edges, and a set {(si, ti)} of source-destination pairs. Each

source-destination pair (si, ti) has an associated demand δi. Each edge e has a cost

function fe(x), which is a function of the amount of demand using edge e. The

function fe is subadditive2, and fe(0) = 0. Since the cost function is subadditive it

exhibits economies of scale.

The goal is to route all demands δi from their source si to their destination

ti minimizing the total cost. The demands are unsplittable, i.e., demand δi must

follow a single path from si to ti. The cost of an edge e is fe(xe) where xe is the

amount of demand routed through e in the solution. The total cost of the solution

is then
∑

e

fe(xe)le.

In this chapter the cost function fe is the same for all edges. This is also known as

the uniform Buy-at-Bulk problem.

The Buy-at-Bulk problem includes as a special case the Steiner tree problem

and is therefore NP-hard. Let N be the number of nodes in the network. For the

uniform Buy-at-Bulk problem the best known approximation algorithm achieves

an approximation factor of O(log N) due to the work of Awerbuch and Azar [18],

and Fakcharoenphol et al. [48]. The algorithm uses the result from [48] to turn the

metric given by the shortest paths in the network into a tree. In a tree there is only

one way to route the flows.

Andrews [9] shows that there is no O(log
1

4
−ε N)-approximation algorithm for

the uniform Buy-at-Bulk problem for any ε > 0 unless NP ⊆ ZPTIME(npolylogn).

SumFiber-ChooseRoute In the SumFiber-ChooseRoute problem we are given an

undirected network N , with lengths le on the edges, and a set {(si, ti)} of source-

destination pairs. Each source-destination pair (si, ti) corresponds to a demand

δi. Each demand requires bandwidth equivalent to one wavelength. Each fiber

can carry k wavelengths, and the cost of deploying x fibers on edge e is x · le. The

problem is to specify a path from si to ti for all demands δi, and a wavelength for

the demand λi, minimizing the total cost. Let fe(λ) be the number of demands

assigned to wavelength λ that are routed through edge e. Then maxλ fe(λ) is the

number of fibers needed on edge e. Thus the total cost of the solution is

∑

e

le max
λ

fe(λ).

2fe(x + y) ≤ fe(x) + fe(y).

7.2. RELATION BETWEEN BUY-AT-BULK AND DIAL-A-RIDE 129

The SumFiber-ChooseRoute problem is NP-hard. Andrews and Zhang [10]

give an O(log N)-approximation algorithm for SumFiber-ChooseRoute, and show

that there is no O(log
1

4
−ε N)-approximation algorithm for the problem for any

ε > 0 unless NP ⊆ ZPTIME(npolylogn).

7.1.5 Our Techniques

Andrews and Zhang show that their hardness result for SumFiber-ChooseRoute

using a network constructed from an interactive 2-prover system for MAX3SAT.

Andrews [9] states that this network can be used to show the same results for the

uniform Buy-at-Bulk network design problem with cost function f(x) = L + x.

The function f(x) is asymptotically the same as the function h(x) = ⌈x
k
⌉ when

L = k − 1. Using the almost the same construction we show that Buy-at-Bulk

with cost function h(x) has no O(log
1

4
−ε n)-approximation algorithm for any ε > 0

unless NP ⊆ ZPTIME(npolylogn), when k = Ω(log
1

4
+ 7ε

11 N). By changing some of the

parameters in the network construction we are also able to show that the problem

is not approximable within a factor of k1−ε for any ε > 0 when k < log
1

4 N .

We then show the same hardness results for Dial-a-Ride by showing a relation

between this problem and the Buy-at-Bulk problem with cost function h(x).

7.2 Relation between Buy-at-Bulk and Dial-a-Ride

The following lemma shows a connection between the Buy-at-Bulk problem with

cost function h(x) = ⌈x
k
⌉ and the Dial-a-Ride problem.

Lemma 7.2.1. Let OPTB be the value an optimal solution to the Buy-at-Bulk instance

B with source destination pairs S in graph G and cost function h(x) = ⌈x
k
⌉, and let

OPTD be the value an optimal solution to the preemptive Dial-a-Ride instance D with

source-destination pairs S in the graph G. Then

OPTB ≤ OPTD.

Proof. We will abuse notation and let OPTi stand for both the value of the optimal

solution and the solution itself. We can turn the optimal solution to the Dial-a-

Ride instance OPTD into a solution to Buy-at-Bulk instance B the following way:

We route a demand δi from its source si to its destination ti by the same edges

as item δi passes in the Dial-a-Ride solution. Clearly, this is a valid solution. The

cost of this solution is no larger than the cost of the Dial-a-Ride solution. To see

this consider an edge in our solution to the Buy-at-Bulk instance. This edge is

130 CHAPTER 7. FINITE CAPACITY DIAL-A-RIDE

s1 t2

t1 s2

100

100
1 1

Figure 7.1: The value of the optimal solution to Buy-at-Bulk is 2 (thick edges),

whereas the value of the optimal solution to Dial-a-Ride is 202.

only used by items that are in the vehicle when it is crossing this edge in the Dial-

a-Ride solution. Thus the Dial-a-Ride solution must have used this edge at least

⌈xe

k
⌉ times where xe is the number of items using the edge. This is at least the

same as the Buy-at-Bulk solution will have to pay for this edge.

Since the optimal solution to the Buy-at-Bulk instance might be disconnected,

there is in general no way to turn the solution to the Buy-at-Bulk instance B into

a solution to the Dial-a-Ride instance D at a cost bounded in terms of OPTB (see

Figure 7.1. But on the network used to construct the hardness result for Buy-at-

Bulk we can show that in the case were the MAX3SAT instance φ is satisfiable it

is possible to turn the solution to the Buy-at-Bulk instance into a solution to the

Dial-a-Ride instance at cost at most 7 · OPTB .

7.3 The Network

In this section we describe the network by Andrews and Zhang [10] used to show

the hardness. The network is constructed randomly from an interactive proof

system for MAX3SAT.

7.3.1 Interactive Proof Systems

To show the hardness of Buy-at-Bulk Andrews and Zhang construct a reduction

using the Raz verifier for MAX3SAT(5) [102].

A MAX3SAT(5) formula has n variables and 5n/3 clauses. Each variable ap-

pears in exactly 5 distinct clauses and each clause contains exactly 3 literals. The

MAX3SAT(5) problem is to find an assignment that maximizes the number of

satisfied clauses. A MAX3SAT(5) formula is called a yes-instance if it is satisfi-

able, and a no-instance if no assignment satisfies more than a 1 − ε fraction of the

clauses for some fixed constant ε > 0. It follows from the PCP-theorem [15] that

it is NP-hard to distinguish between yes-instances and no-instances.

A Raz-verifier is an interactive two-prover system. An interactive two-prover

system for MAX3SAT(5) consists of a polynomial time verifier with access to a

7.3. THE NETWORK 131

source of randomness and two computationally unbounded provers. The verifier

sends a polynomial size query to each prover and receives a polynomial size an-

swer. The provers try to convince the verifier that the formula is satisfiable (yes-

instance). The provers cannot communicate with each other and are restricted to

see only the queries addressed to them.

A Raz-verifier for MAX3SAT(5) with ℓ repetitions is defined as follows. A ver-

ifier interacts with two provers, a clause prover (prover 0) and a variable prover

(prover 1). Given a MAX3SAT(5) formula φ, the verifier sends prover 0 a clause

query that consists of ℓ clauses c1, . . . , cℓ chosen uniformly at random. To prover

1 it sends a variable query that consists of one variable vi chosen uniformly at

random from each of the ℓ clauses. Prover 0 sends back the assignment of every

variable in the ℓ clauses c1, . . . , cℓ, and prover 1 sends back the assignment of the

ℓ variables v1, . . . , vℓ. The verifier accepts φ if all the ℓ clauses are satisfied and the

two provers give consistent assignments to the ℓ variables v1, . . . , vℓ. The verifier

rejects φ otherwise.

If φ is satisfiable the verifier accepts with probability 1. If φ is unsatisfiable then

regardless of how the provers answer the verifier accepts with very low probabil-

ity. We call this probability the error probability and denote it by η.

Proof System Parameters Let R be the random bits, Qi the random query sent to

prover i, and Ai the answer returned by prover i. We will use lowercase letters to

denote specific values of these strings. Each random string r uniquely identifies

a pair of queries q0 and q1. Each query may have many different answers. We say

a ∈ q if a is an answer to query q. We assume that the verifier appends the name

of the prover to the query and the provers append the query name to its answer

string. This way, an interaction is uniquely identified by the triple (r, a0, a1). If

the verifier accepts the answers a0 and a1 from the provers we say that (r, a0, a1)

is an accepting interaction. Note that two different random string might result in

the same prover-0 query (or prover-1 query), but in that case they will result in

different prover-1 (prover-0) queries.

Let m(Qi) denote the number of distinct possible values of Qi. By padding

random bits, we can assume,

m(Q0) ≤ m(Q1) < 2m(Q0).

For a suitable choice of ℓ, the Raz verifier has the following properties. Here |x|
denotes the number of bits in the string x.

132 CHAPTER 7. FINITE CAPACITY DIAL-A-RIDE

1.

|R| = O(log2 n)

|Qi| = O(log2 n)

|Ai| = O(log2 n)

η = 2−Ω(log n).

2. All possible queries occur with equal probability. Formally, for each i and

for any q ∈ {0, 1}|Qi|: Pr[Qi = q] ∈ {0, 1/m(Qi)}.

7.3.2 Description of the Network

Andrews and Zhang [10] take the two prover system for MAX3SAT and turn it

into an instance of the SumFiber-ChooseRoute problem. The construction is very

similar to the one used by Andrews [9] to show hardness of Buy-at-Bulk. For

each demand they define a set of canonical paths on which the demand can be

carried. These canonical paths correspond to accepting interactions and are short

paths directly connecting the source and the destination. They show that if φ

is satisfiable then the optimal solution to the instance of SumFiber-ChooseRoute

has small cost, and if φ is unsatisfiable then the optimal solution has high cost.

More precisely, the cost if φ is unsatisfiable is a factor of γ more than if φ is satis-

fiable for γ = O(log
1

4
−ε n). Hence if there were an α-approximation for SumFiber-

ChooseRoute with α < γ, then we would be able to determine if φ was satisfiable.

The Basic Network N0

Andrews and Zhang first construct a basic network N0, which is used as the base

case in the random construction. Given an instance φ, first construct the two-

prover interactive proof system. The proof system is turned into an instance of

SumFiber-ChooseRoute as follows. For each possible answer a there is an answer

edge (also denoted by a). For each random string r there is a source node sr, a

destination node tr, and a demand dr of one to be routed from sr to tr. For each

accepting interaction (r, a0, a1) there is a canonical path p. This path starts at node

sr passes through a0 and a1 and ends at tr. To make this possible we place edges

between sr and a0, between a0 and a1, and between a1 and tr. The edge between a0

and a1 is refered to as a center edge, and the edge between sr and a0, and between

a1 and tr as a demand edge. For each query q the answer edges a ∈ q are grouped

together (see Figure 7.2). The answer edges have length h > 1 and the other edges

have length 1.

7.3. THE NETWORK 133

sr tr′

sr′

tr

sr′′ tr′′

Figure 7.2: The basic network N0. For each of the three random strings r, r′ and

r′′, four canonical paths corresponding to four accepting interactions, are shown

(r solid, r′ dashed, and r′′ dotted). The long thick edges are the answer edges.

The Expanded Network N2

Before defining the final network N2 Andrews and Zhang first define a random

networkN1 in terms ofN0 and two parameters X and Z. The network essentially

replicates N0 in the vertical direction XZ times. Each answer edge a0 (resp. a1)

of N0 has XZ copies, denoted by a0,x,z (a1,x,z) where 0 ≤ x < X and 0 ≤ z < Z.

The center edges and the demands are created as follows. For each random string

r, there are created X demands dr,x and X source and destination nodes sr,x and

tr,x, where 0 ≤ x < X . Each of the X demands dr,x routes one unit of flow

from sr,x to tr,x. For each accepting interaction (r, a0, a1), the demand dr,x has a

canonical path that starts at sr,x passes through a0,x′,z′ and a1,x′′,z′′ and ends at tr,x.

The answer edges a0,x′,z′ and a1,x′′,z′′ are chosen randomly. More precisely, x′ and

x′′ are chosen uniformly at random from the range {0, 1, . . . , X − 1} and z′ and

z′′ are chosen uniformly at random from the range {0, 1, . . . , Z − 1}. To make the

canonical paths feasible, N1 has center edges connecting a0,x′,z′ and a1,x′′,z′′ , and

edges connecting sr,x to a0,x′,z′ , and a1,x′′,z′′ to tr,x.

The network N1 is used to construct the final network N2. The network N2

is essentially a concatenation of N1 in the horizontal direction Y times for some

parameter Y , where each level is constructed randomly and independently. Each

answer edge is indexed by a0,x,z,y (resp. a1,x,z,y) where y ∈ {0, 1, . . . , Y − 1}. As

in N1, there are created X demands dr,x, 0 ≤ x < X , for each random string

r. For each accepting interaction (r, a0, a1), the demand dr,x has a canonical path

starting at sr,x followed by answer edges a0,x,z,0 and a1,x,z,0 chosen uniformly at

134 CHAPTER 7. FINITE CAPACITY DIAL-A-RIDE

random at level y = 0. At each subsequent level y, the answer edges are chosen

uniformly at random until the path ends at tr,x. The center edges and demand

edges are defined by the canonical paths. Each canonical path also requires an

edge between each consecutive pair of levels. See Figure 7.3.

In Section 7.4 we will define the parameters used in the network.

7.4 Hardness of Buy-at-Bulk with Cost Function ⌈x
k
⌉

We will use the network by Andrews and Zhang to show hardness of Buy-at-

Bulk with cost function ⌈x
k
⌉. The only change is in the parameters. We show two

hardness results: one depending on N (the number of nodes in the graph) and

one depending only on k.

7.4.1 Hardness with Dependence on N

To show that the Buy-at-Bulk problem with cost function ⌈x
k
⌉ is hard to approxi-

mate within a factor of O(log1/4−ε N) for any ε > 0 we change one of the parame-

ters used by Andrews and Zhang.

Parameters We now define the parameters. To define X , Y , and Z, we use the

following auxiliary parameters, which are useful in the proofs.

• ℓ = logα n for some constant α.

• σ = log
α
4 n.

The parameters of the network N2 can now be defined:

• Z = 2|r|

k min{m(Q0),m(Q1)}
.

• Y =
√

ℓ = log
α
2 n.

• X = (26+|r|+|a0|+|a1|Y Z)2l+1 = 2O(logα+2 n).

• h = 2|r|

(m(Q0)+m(Q1))Z
.

• k = log
α
4
+4 n.

• η = 1
σ2 log n

.

Recall, that η is the error parameter of the proof system. The only parameter we

have changed compared to Andrews and Zhang [10] is h. Andrews and Zhang

has h = 2|r|

log k(m(Q0)+m(Q1))Z
.

7.4. HARDNESS OF BUY-AT-BULK WITH COST FUNCTION ⌈X
K
⌉ 135

sr tr

Figure 7.3: The network N2 with parameters X = 1, Z = 3, and Y = 3. For the

random strings r four canonical paths corresponding to four accepting interac-

tions, are shown.

Satisfiable Instances

We will now bound the value of the optimal solution to the Buy-at-Bulk instance

when φ is satisfiable. An answer edge is said to be bought if any demand is routed

136 CHAPTER 7. FINITE CAPACITY DIAL-A-RIDE

through it. We show,

Lemma 7.4.1. If φ is satisfiable, then the Buy-at-Bulk instance has a solution of total cost

at most 2|r|(2Y + 1)X + (m(Q0) + m(Q1))hXY Z.

Proof. Since φ is satisfiable there are two provers that always cause the verifier

to accept. We route the demand on answer edge a if and only if for these two

provers a is the answer to query q. For each string r there must be some accepting

interaction (r, a0, a1) for which both a0 and a1 have been bought. Each of the

demands dr,x, for 0 ≤ x < X , has one canonical path that corresponds to (r, a0, a1).

The demand dr,x is routed along this path.

There are 2Y + 1 length one edges on this path and thus the total number of

edges of length one needed is at most 2|r|(2Y + 1)X .

Now look at the cost of the answer edges. Consider an answer edge a that is

bought in the solution. Assume without loss of generality that a is a prover-0 an-

swer edge. There are 2|r|X demands, and 2|r|X
m(Q0)

of these can be routed through a

since each prover-i query is equally likely. Each of these demands has XZ choices

of answer edges, namely the XZ answer edges corresponding to the answer a.

Hence, each demand has probability 1
XZ

to pass through a, and the expected num-

ber of demands passing through a is thus

2|r|X

m(Q0)
· 1

XZ
≤ k .

Since the cost function is ⌈x
k
⌉ the the expected cost of an answer edges is one. The

expected total cost of the answer edges is therefore XZY (m(Q0) + m(Q1))h.

This solution has expected cost

2|r|(2Y + 1)X + (m(Q0) + m(Q1))hXY Z ,

and the cost of the optimal solution must therefore have cost no higher than that.

Unsatisfiable Instances

In this section we lower bound the cost of the optimal solution to the Buy-at-

Bulk problem when φ is unsatisfiable. The only parameter we have changed is h.

Except Lemma 7, all of the lemmas of Andrews and Zhang [11] still hold without

modification. In this section we give the new proof of Lemma 7. We first state

some of the concepts and lemmas by Andrews and Zhang that we need in the

proof.

7.4. HARDNESS OF BUY-AT-BULK WITH COST FUNCTION ⌈X
K
⌉ 137

Let p be a canonical path passing through answer edges a0,x′,z′,y and a1,x′′,z′′,y.

Then p is routable at level y if both a0,x′,z′,y and a1,x′′,z′′,y are bought. A demand

is routable at level y if one of its canonical paths is routable at level y. The idea

is to show that with high probability: 1) if many demands are routable on 3Y/4

levels, then then the number of bought edges is high, and 2) if a demand routable

at at most 3Y/4 levels the length of its route is at least Y 2/4. That is, either we

buy many of the expensive answer edges or many demands have a long route. In

both cases the total cost is large.

Let Sy be the answer edges bought at level y. Let Ey(ai) be the set of XZ edges

corresponding to answer ai on level y, and let

wy(ai) = |Ey(ai) ∩ Sy|/(XZ) ,

i.e., wy(ai) is the fraction of edges that are bought. A prover-i query is called heavy

if
∑

ai∈qi

wy(ai) > 100σ.

A demand dr,x is heavy if the string r causes the verifier to send a heavy query to

either prover 0 or prover 1. Let B(y, Sy) be the bad event that |Sy| ≤ σ(m(Q0) +

m(Q1))XZ and the number of non-heavy demands that are routable at level y is

more than 2Xη2|r|104σ2.

The following two lemmas are the same as in Andrew and Zhang’s paper [11],

only SumFiber-ChooseRoute is replaced by Buy-at-Bulk.

Lemma 7.4.2.

Pr[B(y, Sy) for some y, Sy] = o(1).

This probability is with respect to the random construction of the network.

Lemma 7.4.3. Suppose that B(y, Sy) does not occur for any y, Sy. Then for any solution

to our Buy-at-Bulk instance that buys σ(m(Q0) + m(Q1))XY Z/10 answer edges, there

are at most (X2|r|)(77/375 + 24η103σ2) demands that are routable at more than 3Y/4

levels.

The Incidence Graph Andrews and Zhang defines a graph called the incidence

graph G2, which has the following properties:

• For any route in N2 of length l the corresponding route in G2 is at most 4l.

• Disjoint components in N2 map to disjoint components in G2.

138 CHAPTER 7. FINITE CAPACITY DIAL-A-RIDE

This makes it possible to bound the length of the path used for routing a de-

mand dr,x inN2 by considering the route in bothN2 and in G2. The main idea is to

show that G2 is a random graph and hence is unlikely to have many short cycles.

This implies that most demands cannot be routed on canonical paths. Andrews

and Zhang show the following lemma:

Lemma 7.4.4. Demand dr,x must satisfy one of the following conditions:

1. The node dr,x in G2 is at distance at most ℓ away from a cycle of length ℓ.

2. The route for dr,x in G2 has length at least ℓ.

3. The route for dr,x in N2 has length at least Y 2/4.

4. Demand dr,x is routable at more than 3Y/4 levels.

Let B(G2) be the bad event that more than X nodes in G2 are at distance at

most ℓ from any cycle of length ℓ. Andrews and Zhang show the following lemma

using the fact that G2 is constructed in a random fashion and a result similar to

the Erdös-Sachs theorem that states that high-girth3 graphs exist.

Lemma 7.4.5.

Pr[B(G2)] ≤
1

3
.

Bounding the Cost of the Solution Andrews and Zhang bound the cost of the

solution in the case where φ is unsatisfiable using Lemma 7.4.2-7.4.5. The fol-

lowing lemma is identical to the one in used by Andrews and Zhang [10] except

SumFiber-ChooseRoute is substituted by Buy-at-Bulk.

Lemma 7.4.6. With probability 2
3
− o(1), if the instance φ of 3SAT is unsatisfiable then

the cost of any solution to our instance of Buy-at-Bulk is at least the minimum of V1 and

V2, where

V1 =
σh

10
(m(Q0) + m(Q1))XY Z,

V2 =
Y 2

4k

(

(X2|r|)(1− 77

375
− o(1))−X

)

.

We are now ready to prove the main lemma of this section.

Lemma 7.4.7. Let γ = log
α
4
−5 n. If there exists a γ-approximation algorithm, A, for

Buy-at-Bulk with cost function f(x) = ⌈x
k
⌉, then there exists a randomized O(npolylog n)

time algorithm for 3SAT.

3The girth of a graph is the length of the minimum cycle in the graph.

7.4. HARDNESS OF BUY-AT-BULK WITH COST FUNCTION ⌈X
K
⌉ 139

Proof. For any 3SAT instance φ we construct the network N2 from the two-prover

system and then apply a γ-approximation algorithm A for Buy-at-Bulk. We de-

clare φ to be satisfiable if and only if A returns a solution of cost at most γ2|r|(3Y +

1)X .

If the 3SAT instance φ is satisfiable then by Lemma 7.4.1 there is a solution to

our instance of Buy-at-Bulk of cost at most

2|r|(2Y+1)X+

(m(Q0) + m(Q1))hXY Z = 2|r|(2Y + 1)X +
(m(Q0) + m(Q1))2

|r|

(m(Q0) + m(Q1))Z
XY Z

= 2|r|(2Y + 1)X + 2|r|XY

= 2|r|(3Y + 1)X.

Hence, the γ-approximation algorithm returns a solution of cost at most γ2|r|(3Y +

1)X , and we declare φ satisfiable.

If φ is unsatisfiable then by Lemma 7.4.6 and our choice of h, with probabil-

ity 2/3 − o(1), any solution have cost at least the minimum of Ω(σ2|r|XY) and

Ω(ℓ
k
X2|r|). Both these expressions are strictly larger than γ2|r|(3Y + 1)X :

1. Ω(σ2|r|XY) > γ2|r|(3Y + 1)X . Follows immediately for large n from σ > γ.

2. Ω(ℓ
k
X2|r|) > γ2|r|(3Y + 1)X . Follows from

ℓ

k · γ =
logα n

log(α/4)+4 n · log(α/4)−5 n
=

logα n

log(α/2)−1 n
= log

α
2
+1 n,

and Ω(log
α
2
+1 n) > 3 log

α
2 n + 1 = 3Y + 1 for large n.

The construction of the network takes time O(npolylog n) since the network N2 has

size O(npolylog n). Hence we have described a randomized O(npolylog n) time al-

gorithm for 3SAT that has one-sided error probability at most 1/3 + o(1). It is

possible to convert this into a randomized algorithm that never makes an error

and has expected running time O(npolylog n).

The size of the Buy-at-Bulk instance is N = O(22+|r|+|a0|+|a1|XY Z) = 2O(logα+2 n).

For any constant ε > 0, if we set α = 11
2ε
− 2 then γ = Ω(log

1

4
−ε N):

N = 2O(log
11
2ε n) ⇔ log N = O(log

11

2ε n),

and

γ = log
α
4
−5 n = log

11

2ε
(1

4
−ε) n = Ω(log

1

4
−ε N).

140 CHAPTER 7. FINITE CAPACITY DIAL-A-RIDE

In the above construction we had k = log
α
4
+4 n = Ω(log

1

4
+ 7ε

11 N). A closer look at

the proofs in the paper by Andrews and Zhang [11] reveals that the value of the

hidden constant in Ω(log
1

4
+ 7ε

11 N) does not matter. To summarize, we have shown

Theorem 7.4.8. For any ε > 0 there is no O(log
1

4
−ε N)-approximation algorithm for the

Buy-at-Bulk problem with cost function f(x) = ⌈x
k
⌉, where k = Ω(log

1

4
+ 7ε

11 N), unless

all problems in NP can be solved by a randomized algorithm with expected running time

O(npolylog n).

7.4.2 Hardness with Dependence on k

In this section we show that if k < log
1

4 N then Buy-at-Bulk with cost function

f(x) = ⌈x
k
⌉ cannot be approximated within a factor of k1−ε for any ε > 0. We use

the same network as before and only change a few of the variables.

In the previous section we had k = log
α
4
+4 n. If we allow k to be more than a

constant factor smaller than that we must change other variables too, to make the

proofs correct.

Change of Variables If k gets smaller then Z increases. This results in a problem

in the proof of Lemma 7.4.2, where we want to ensure

log(2e(2|a0| + 2|a1|)) = o
(104σ2η2|r|X − 3 log Y

3σ(m(Q0) + m(Q1))XZ

)

. (7.1)

We will therefore change Z, such that the value of Z no longer depends on k, in

order to keep Equation 7.1 correct. Let c > 1 be a constant such that k = log
α
4
+4 n/c

and set

Z =
2|r|

c · k ·min{m(Q0), m(Q1)}
=

2|r|

log
α
4
+4 n ·min{m(Q0), m(Q1)}

.

Clearly, the value of the right hand side of Equation 7.1 stays the same, as the

value of Z is the same as before.

The new definition of Z will change the number of times an answer edge is

used in the satisfiable case to 2|r|X
m(Q0)

· 1
XZ
≤ ck. Thus the cost for each answer edge

in this case is c · h. To ensure that the cost of the solution when φ is satisfiable

stays the same we set

h =
2|r|

c · (m(Q0) + m(Q1))Z
.

The total cost of the answer edges in the satisfiable case is then

c · h(m(Q0) + m(Q1))XY Z = c(m(Q0) + m(Q1))XY Z · 2|r|

c · (m(Q0) + m(Q1))Z

= 2|r|XY .

7.4. HARDNESS OF BUY-AT-BULK WITH COST FUNCTION ⌈X
K
⌉ 141

No other of the proofs by Andrews and Zhang [11], except the one for the Lemma

7, are affected by the change in Z.

Let Φ be the value of the Buy-at-Bulk solution when φ is satisfiable, and let V1

and V2 be as in Lemma 7.4.6. Setting h as above we ensure that the values of Φ

and V1 are the same as before. V2 is not changed by the changes in h and Z, and it

increases when k decreases. We can therefore show,

Theorem 7.4.9. If there exists a k1−ε-approximation algorithm for Buy-at-Bulk with

cost function f(x) = ⌈x
k
⌉, for any ε > 0 and k < log

1

4 n, then there exists a randomized

O(npolylog n) time algorithm for 3SAT.

Proof. Let γ = k1−ε. For any 3SAT instance φ we construct the network N2 from

the two-prover system and then apply a γ-approximation algorithm A for Buy-

at-Bulk. We declare φ to be satisfiable if and only if A returns a solution of cost at

most γ2|r|(3Y + 1)X .

If the 3SAT instance φ is satisfiable then there is a solution to our instance

of Buy-at-Bulk of cost at most Φ = 2|r|(3Y + 1)X . Hence, the γ-approximation

algorithm returns a solution of cost at most γ2|r|(3Y + 1)X , and we declare φ

satisfiable.

If φ is unsatisfiable then by Lemma 7.4.6 and our choice of h, with probabil-

ity 2/3 − o(1), any solution have cost at least the minimum of Ω(σ2|r|XY) and

Ω(ℓ
k
X2|r|). We want to show Vi > k1−ε · Φ for any ε > 0. To do this we need to

express k in terms of n instead of N .

Since k < log
1

4 N we have k ≤ log
1

4
−ǫ N for some ǫ > 0. Recall, that log N =

O(logα+2 n). By setting α ≥ 5
2ǫ
− 2 we ensure k < log

α
4
−1 n for large n. Setting

α = 5
2ǫ
− 2 we get

k ≤ log
1

4
−ǫ N = O(log(1

4
−ǫ)(α+2) n) = O(log

5

8ǫ
− 5

2 n) ,

and

log
α
4
−2 n = log

5

8ǫ
− 5

2 n .

We are now ready to show Vi > k1−ε · Φ. There are two cases.

1. V1 > k1−ε · Φ: Since k ≤ log
α
4
−1 n we have σ = log

α
4 n > k and thus

Ω(σ2|r|XY) > k1−ε · 2|r|(3Y + 1)X , since ε > 0.

2. V2 > γ · Φ: Note that

ℓ = logα n > 3 logα−2 n + logα/2−2 n ≥ k2(3Y + 1) > k2−ε(3Y + 1),

for log n ≥ 2, when α > 0. Since we can set α to anything greater than 5
2ǫ
− 2

we can ensure α > 0. Thus Ω(ℓ
k
X2|r|) > k1−ε · 2|r|(3Y + 1)X .

142 CHAPTER 7. FINITE CAPACITY DIAL-A-RIDE

From Theorem 7.4.8 and Theorem 7.4.9 we get

Corollary 7.4.10. For any ε > 0, there is no min{O(log
1

4
−ε N), k1−ε}-approximation

algorithm for Buy-at-Bulk with cost function f(x) = ⌈x
k
⌉ unless all problems in NP can

be solved by a randomized algorithm with expected running time O(npolylog n).

7.5 Routing in the Network

Let B be the instance of Buy-at-Bulk constructed in Section 7.4, and let D be an

instance of the preemptive Dial-a-Ride with the same source-destination pairs S

also in N2.

Let SOLB denote the solution used to give the bound of the cost of the optimal

solution in Lemma 7.4.1, and let OPTD be the optimal solution to the Dial-a-Ride

instance. In this section we show how construct a tour for the vehicle of cost at

most 7 · SOLB, in the case when φ is satisfiable.

Let N f
2 be the graph consisting of the edges bought in Buy-at-Bulk solution

SOLB. Recall that in SOLB all demands are routed on canonical paths. For each

demand d, let pd be the canonical path that d is routed on in the Buy-at-Bulk

solution SOLB . We will say that an edge e ∈ N f
2 is used by a item d if e is on the

path pd.

7.5.1 The Tour when N f
2 is Connected

We will first explain how to construct the tour whenN f
2 is connected. We will say

that the tour is using an edge in the forward direction if it goes from left to right

when the graph is drawn as in Figure 7.3, and backwards otherwise.

Assume without that any edge inN f
2 is used by at most k items (we will show

in the end of the section how to get rid of this assumption). We will ensure that

the tour has the following properties:

(i) The tour only uses edges from N f
2 .

(ii) An item d will only be in the vehicle when the vehicle is on an edge e ∈ pd.

(iii) When the vehicle goes forward on an edge it is either empty or carries all

items using that edge.

Algorithm Start at vertex s = sr,x for some r, x and pick up d = dr,x. Item d is

now the active item. We will deliver d ensuring the above properties.

7.5. ROUTING IN THE NETWORK 143

Follow path pd. Whenever there is an edge e on pd used by items other than

the active item d do:

1. If all such items are present at the left endpoint of e, pick up all these items,

and traverse e. At the right endpoint of e drop off all items not going in the

same direction as d and proceed along pd as before.

2. If some items using the edge are not at the left endpoint, the vehicle drops

of d and goes to pick up these items as follows. Let d′ be such an item. The

vehicle follows pd′ backwards from e until it encounters d′. It then picks up

d′ and goes forward on path pd′ . On the way to e the same problem may

happen again—we need to go forward on an edge that is used by other

flows, and the corresponding items are not there. This is taken care of the

same way as before.

When d reaches its destination td it is dropped off and d is no longer the active

item. The vehicle then traverses the route followed until now backwards until it

gets to an undelivered item d′ left at some node on the route. It picks up d′ (d′ is

now the active item) and deliver it in the same way as d. When d′ and all items

that were left ”hanging ” in the graph due to the delivery of d′ are delivered, the

vehicle goes back to the point where d′ was picked up when it became the active

item. It then keeps following the route constructed when delivering the previous

active item backwards to find other hanging items.

When all items are delivered the vehicle takes the shortest route back to the

starting point.

Analysis It is easy to verify that the tour made by the algorithm satisfies prop-

erty (i), (ii), and (iii). We will say that the part of the tour followed by the vehicle

while an item d was active belongs to d, and we denote this route by rd.

Lemma 7.5.1. For any item d, the route rd, has the following properties:

(iv) The route rd only goes backwards on an edge e to fetch ”missing” items. If d′ is

such an item then e ∈ pd′ .

(v) If rd goes backwards on edge e it returns to the right endpoint of e through e.

(vi) When route rd traverses an edge e in the forward direction the vehicle contains all

items using e.

Proof. It follows immediately from the description of the algorithm that the route

only goes backwards to fetch missing items, and that if d′ is such an item then

144 CHAPTER 7. FINITE CAPACITY DIAL-A-RIDE

e ∈ pd′ (property (iv)). Property (vi) also follows directly from the description. We

need to show property (v) and thereby also that it is possible to fetch all missing

items before traversing an edge.

All canonical paths go through all levels of the graph in increasing order.

Therefore an item missing at the left endpoint of some edge at level i can be

fetched at a level smaller than i or at i if the edge is not the first edge on level

i. It is therefore possible to fetch all items missing at a certain node, since there

are no cyclic dependencies.

When the vehicle follows the canonical paths of the missing items using edge

e at level i, it only traverses the edges of these canonical paths on levels smaller

than or equal to i. Therefore the only way the vehicle can return to the right

endpoint of e using canonical paths for items using e is through e.

The properties of the lemma gives us the following two corollaries.

Corollary 7.5.2. For any item d, the route rd traverses each edge in N f
2 at most once in

each direction.

Proof. Follows from the properties in Lemma 7.5.1. While d is active the vehicle

is—due to property (vi)—only going forward on an edge when it is carrying all

items going on that edge. This can clearly happen only once per edge. When the

vehicle is going backward on e it returns to the right endpoint of e using e due to

property (v). Due to property (v) it carries all items using e when returning to the

right endpoint of e, and due to property (iv) it can thus only go backwards on e

once, since no more items using edge e are missing.

Corollary 7.5.3. For any two items d1 and d2 the routes rd1
and rd2

are disjoint.

Proof. Follows from the properties in Lemma 7.5.1. Consider an edge e. By prop-

erty (vi) e is only traversed in the forward direction in rdi
when the vehicle carries

all the items using that edge. Thus, only one of rd1
and rd2

can traverse e in the

forward direction. If rdi
goes backwards on edge e it also goes forward due to

property (v).By the previous argument only one of the routes can go forward on

e, and thus also only one of them can go backwards.

Lemma 7.5.4. All items are delivered to their destination.

Proof. By contradiction. Recall, we assume that N f
2 is connected. Assume some

subset of items S are not delivered. Consider an item d ∈ S. Item d cannot

have been left hanging at some node in network, since then it would have been

picked up and delivered when the vehicle goes back on the tour rd′ , where d′ is

7.5. ROUTING IN THE NETWORK 145

the element that was active when d was left at the node. Thus d must still be at its

source sd.

Since d is still at sd the path pd does not share any edges with any path pd′

where d′ is a delivered item. Assume d shared an edge e with a delivered item d′.

Due to property (ii) the vehicle crossed e containing d′, since d′ is delivered. Due

to property (vi) of Lemma 7.5.1 d must have been in the vehicle when it crossed

e, and thus d would no longer be at its source node sd.

Since SOLB are using canonical paths for each item, the graph N f
2 has the

property that if two canonical paths pd and pd′′ meet at some vertex then they

must share an edge adjacent to that vertex. Therefore pd cannot share any vertices

with any path pd′ where d′ is a delivered item. This is true for all items d ∈ S,

contradicting that N f
2 is connected.

Lemma 7.5.5. When N f
2 is connected the tour has length at most 4 · SOLB.

Proof. Let l(rd) denote the length of the route rd. The sum of the parts of the tour

where there is an active item is of length
∑

d∈D,d active l(rd).

Now consider the parts of the tour when there is no active item. This happens

when we are going backwards on the tour belonging to some item d to find the

next item to be the active item. The total length of these parts of the tour is at

most
∑

d∈D,d active l(rd), since each route rd is traversed at most once backwards to

find non-delivered items. When we traverse a route rd backwards to find hanging

items, we stop each time we meet such an item d′ and deliver it. That item is then

the active item, and by Corollary 7.5.3 rd′ and rd are disjoint. When this item is

delivered, we go backwards on rd′—which was disjoint from rd—and then return

to rd where d′ was picked up. The route rd is thus traversed at most once to find

non-delivered items.

Adding together the length of the tour when there is an active item and the

length of tour when there are no active items, we get 2 ·∑d∈D, d active l(rd).

Using Corollary 7.5.2 and Corollary 7.5.3 we get that the tour uses each edge

in N f
2 at most 4 times, and thus the cost of the tour is at most 4 · SOLB .

Edges used by than k items We assumed that any edge in N f
2 is used by at

most k items. We can get rid of this assumption by a minor modification of the

algorithm. Let Se be the set of items using edge e. Then the solution SOLB paid

⌈Se

k
⌉· le for this edge. As before, when we want to traverse e we go backwards and

pick up all items in Se. We then go forward and back on e carrying as many items

from Se as possible each time until all items from Se are on the right endpoint of

e. The number of times we traverse e is ⌈Se

k
⌉, and thus Lemma 7.5.5 still holds.

146 CHAPTER 7. FINITE CAPACITY DIAL-A-RIDE

sd

td
v

sd′ td′

Figure 7.4: An example network with two demands, that each has two canonical

paths. The network N f
2 (solid edges) is disconnected, but N c

2 (all edges) is con-

nected. We can connectN f
2 by adding the edges on the path from sd to v and from

v to td′ .

7.5.2 N c
2 Connected andN f

2 Disconnected

Let N c
2 be the graph induced by the canonical paths. If N c

2 is connected but N f
2

is disconnected we can add edges from N c
2 to N f

2 to connect it. We can do this

by adding edges of total length equal to the number of connected components

minus one times the length of a canonical path inN c
2 .

First we note that since N c
2 consists of the union of canonical paths, then for

any component C in N f
2 there must be another component C ′ in N f

2 such that

some item d routed in C has a canonical path p that intersect with a canonical

path p′ for an item d′ routed in C ′. We connect C and C ′ by adding the following

edges: All edges on p from sd to the intersecting edge e (including e), and all

edges on p′ from e to td′ (see Figure 7.4). We call these added edges a connecting

path from C ′ to C. Since N c
2 is connected we can make N f

2 connected by adding

c − 1 connecting paths, where c is the number of connected components in N f
2 .

We add these connecting paths in such a way that all components can be reached

from one component—called the start component—using a path that when going

from component C to a component C ′ uses a connecting path from C to C ′ (not

from C ′ to C). Since the length of a connecting path is the same as the length of a

canonical path the total length is c− 1 times the length of a canonical path. Since

each connected component consists of at least one canonical path the total length

of the connecting paths is at most the same as the sum of all edges in N f
2 , i.e.,

SOLB.

We now describe the tour. Start in the start component Cs in N f
2 and deliver

the items in this component as described in the previous section. Every time that

the vehicle has delivered an item d that has an adjacent connecting path from Cs to

7.5. ROUTING IN THE NETWORK 147

sd

td

sd′ td′

Figure 7.5: An example network with two demands, that each has two canonical

paths. The the two components are connected with a component edge (dashed).

another component C, it follows this connecting path to C and delivers the items

in C the same way. When all items in a component C are delivered the vehicle

returns to the starting point in C and from there to the previous component C ′ if

such a component exists. It then carries on delivering the items in C ′.

Lemma 7.5.6. When N c
2 is connected the optimal solution to the Dial-a-Ride instance

has cost at most 6 · SOLB.

Proof. If N f
2 is connected it follows from Lemma 7.5.5. If N f

2 is not connected we

use the approach described above. To deliver the items in a single component we

use no more time than in the previous section. By Lemma 7.5.5 the contribution

from these parts of the tour is at most 4 · SOLB in total. To get to the next compo-

nent and back again we use a connecting path and the sum of the edges used to

get to and from connected components is thus at most 2 · SOLB .

7.5.3 N c
2 Disconnected

If N c
2 is disconnected we connect it by adding edges of length one between a

source node in one component and a source node in another component (see Fig-

ure 7.5). We call these edges component edges. We add the minimum number of

component edges, i.e., l−1 where l is the number of connected components. This

can be seen as constructing a tree on the components.

Since we add the component edges between disjoint components inN c
2 , which

are also disjoint components in N2, we do not introduce any new cycles in N2.

Therefore the component edges cannot decrease the cost of the optimal solution

to the Buy-at-Bulk instance or to the Dial-a-Ride instance: Let C1 and C2 be two

components connected by a component edge e. If some item d with source sd in

148 CHAPTER 7. FINITE CAPACITY DIAL-A-RIDE

C1 is using e, then it has to use it again to get back to C1, since sd ∈ C1 and the

only connection between C1 and C2 goes through e.

We also need to add edges in the incidence graph G2 corresponding to the

component edges inN2. For each component edge e inN2, between sd and s′d, we

will add an edge of length one between d and d′ in G2. Since G2 has the property

that disjoint components inN2 map to disjoint components in G2, we do not intro-

duce any new cycles in G2. Therefore all the lemmas and theorems in Section 7.4

still hold.

Constructing the Tour The vehicle first delivers the items in a component C in

N c
2 as described in the previous section. When it gets to the source node in the

component that has a component edge to a source node in another component

C ′, it goes to C ′ and delivers the items in C ′ the same way. When all items in a

component are delivered it returns to the starting point of this component and fol-

lows the component edge back to the previous component C if such a component

exists. It then carries on delivering the items in component C.

Lemma 7.5.7. The optimal solution to the Dial-a-Ride instance has cost at most 7·OPTB .

Proof. The cost of delivering the items in the original components ofN2 is at most

6·SOLB due to Lemma 7.5.6. The total length of the new edges is l−1 which is less

than 1/2 · SOLB , since each connected component has a canonical path of length

greater than two. The new edges are used twice: once in each direction.

7.6 Hardness of Preemptive Dial-a-Ride

In the previous section we showed that the value optimal solution to the Dial-

a-Ride instance D, OPTD, is at most 7 times value of the optimal solution to the

corresponding Buy-at-Bulk instance B, OPTB (Lemma 7.5.7). In Section 7.4 we

gave an upper bound on OPTB when φ is satisfiable. Putting together the results

of Lemma 7.5.7 and Lemma 7.4.1, we get

Lemma 7.6.1. If φ is satisfiable, then the Dial-a-Ride instance has a solution of total cost

7 · 2|r|(2Y + 1)X + (m(Q0) + m(Q1))hXY Z.

We have showed that OPTB ≤ OPTD (Lemma 7.2.1) and given a lower bound

on OPTB when φ is unsatisfiable (Lemma 7.4.6). Using these two lemmas together

with Lemma 7.6.1, we get

7.6. HARDNESS OF PREEMPTIVE DIAL-A-RIDE 149

Lemma 7.6.2. Let γ = log
α
4
−5 n. If there exists a γ-approximation algorithm for the

Finite Capacity Dial-a-Ride problem, then there exists a randomized O(npolylog n) time

algorithm for 3SAT.

The proof is the same as the proof of Lemma 7.4.7. In the Dial-a-Ride instance

N is the number of sources and destinations, which is at most twice the number of

demands. Recall, that we have 2|r|X demands, and thus N = 2·2|r|X = 2O(logα+2 n).

By the same calculations as in the Buy-at-Bulk case, we get

Corollary 7.6.3. Let k = Ω(log
1

4
+ 7ε

11 N). Then there is no O(log
1

4
−ε N)-approximation

algorithm to the preemptive Finite Capacity Dial-a-Ride problem on general graphs for

any constant ε > 0 unless NP ⊆ ZPTIME(npolylogn).

By changing the variables as in Section 7.4.2 and using Lemma 7.2.1 and Lem-

ma 7.4.6, we get

Corollary 7.6.4. Let k < log
1

4 N . Then there is no k1−ε-approximation algorithm to the

preemptive Finite Capacity Dial-a-Ride problem on general graphs for any constant ε > 0

unless NP ⊆ ZPTIME(npolylogn).

The proof is the same as the proof of Theorem 7.4.9. To summerize we have

shown,

Theorem 7.6.5. There is no min{O(log
1

4
−ε N), k1−ε}-approximation algorithm to the

preemptive Finite Capacity Dial-a-Ride problem on general graphs for any constant ε > 0

unless NP ⊆ ZPTIME(npolylogn).

150 CHAPTER 7. FINITE CAPACITY DIAL-A-RIDE

Chapter 8

Future Work

In this chapter we will discuss possible directions for future work.

8.1 Multiple Dispatching

Our algorithm uses optimal space, so the first obvious thing to do would be to try

to improve the running time. Another question is how to make our data structure

dynamic. One way would be to use retroactive data structures, introduced by

Demaine et al. [40]. In a retroactive data structure it is possible to insert, delete,

or change an update operation performed at a given time in the past. All such

retroactive changes potentially affect all existing versions between the time of

modification and the present time. A data structure is partially retroactive if, in

addition to supporting updates and queries on the current version of the data

structure, it supports insertion and deletion of updates at past times. A data

structure is fully retroactive if, in addition to allowing updates in the past, it can

answer queries about the past. A fully retroactive data structure can be seen as

a partially retroactive version of a partially persistent data structure. One way

to construct a dynamic bridge color data structure would be to make a partially

retroactive fully persistent data structure for the tree color problem. That seems

not to be the easiest way to get around the problem. Instead it is possible to solve

the bridge color problem within the same time and space bound as our solution

using partial persistence (see [99]). A fully retroactive predecessor data structure

and a fully retroactive tree color data structure would thus give a dynamic data

structure for our problem. Demaine et al. [40] gave a number of fully retroactive

data structures, but provided no general way to obtain a fully retroactive version

of a data structure. They gave a fully retroactive predecessor data structure using

O(log2 n) time per operation and O(n logn) space.

151

152 CHAPTER 8. FUTURE WORK

It would also be interesting to see if similar ideas could be used to solve the

bridge color problem for d > 2. In that case, the bridges would be hyperedges

between d trees.

In some object oriented languages classes can inherit from more than one class,

and the class hierarchy is thus a DAG. Constructing a data structure for the dis-

patching problem in that case requires other ideas than those used to solve the

bridge color problem.

8.2 Tree Inclusion

As the space is optimal, the obvious direction would be to get the worst-case

running time down, i.e., below O(nP nT / log nT).

We plan to try to adapt our tree inclusion algorithm to the queries made in

core XPATH (see e.g.[61]), and implement it to see if we can improve the running

times.

For some applications considering unordered trees is more natural. However,

in [91, 80] this problem was proved to be NP-complete. Constructing approxi-

mation algorithms for optimization variants of the tree inclusion problem would

be interesting, and would make a connection between the two different research

areas presented in the dissertation.

8.3 Union-find with Deletions

As the time and space complexities of our algorithm are asymptotically optimal,

there is not much to do here. One possibility would be to look into whether our

algorithm will work for the entire optimal worst case range, i.e., union in O(k)

and find in O(logk n) time.

Another possibility would be to see if our potential function can be used to

give local amortized bounds for the two one-pass variants of path compression

path halving and path splitting.

8.4 Asymmetric k-Center

The approximation factor of our algorithms for the weighted k-center and k-

center with minimum coverage problems are essentially the best possible, and

the algorithms run in Õ(n2) time. Further effort into these problems does not

8.5. DIAL-A-RIDE 153

seem warranted. Getting down to k centers in the p-neighbor k-center problem is

an open problem.

8.5 Dial-a-Ride

Closing the gap between the O(log N) upper bound and our Ω(log
1

4
−ε N) lower

bound in the preemptive case would be interesting. The O(log N) algorithms

relies on the a results on approximating arbitrary metrics by tree metrics [48].

The O(logn) is tight for approximating metrics by tree metrics, and thus another

approach is needed to get an approximation guarantee below O(log N).

We are currently working on showing similar hardness results for the non-

preemptive Dial-a-Ride problem. The best known upper bound for this problem

is O(
√

k log N) and it seems to get its hardness for other reasons than the pre-

emptive version. It is not possible to directly adapt the techniques used for the

preemptive version to the non-preemptive version. The result showing the re-

lation between the preemptive Dial-a-Ride and the buy-at-bulk problem in the

network N2 heavily relies on the preemptiveness of the problem. A first step in

narrowing down the gap would be to get an algorithm with better approxima-

tion guarantee than O(
√

k) on trees or to show that this is the best possible. The

O(
√

k)-approximation algorithm always picks up k objects and deliver all these

before picking up any new objects. We will call an algorithm that always pick

up a group of items and deliver all of them without any intermixed pickups and

deliveries for a fetch-deliver algorithm. It is possible to give examples where a

fetch-deliver algorithm will give a tour of length k/ log k more than the optimal

tour (this is on a line and not on the special instances of height-balanced trees that

the O(
√

k)-approximation algorithm works on). This indicates that we should try

to find an approximation algorithm that is not a fetch-deliver algorithm. In trying

to show hardness for the problem, it will possibly be a good idea to exploit this

property too.

We would also like to investigate other similar routing problems like Dial-a-

Ride with time-windows, Dial-a-Ride where all objects are initially located at one

depot (symmetric and asymmetric), k-delivery TSP, and the famous asymmetric

TSP.

154 CHAPTER 8. FUTURE WORK

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Com-

puter Algorithms. Addison-Wesley, Reading, 1974.

[2] L. Alonso and R. Schott. On the tree inclusion problem. In Proceedings of

Mathematical Foundations of Computer Science, pages 211–221, 1993.

[3] S. Alstrup, A. M. Ben-Amram, and T. Rauhe. Worst-case and amortised

optimality in union-find. In Proceedings of the Thirty-First Annual ACM Sym-

posium on Theory of Computing (STOC’99), pages 499–506, May 1999.

[4] S. Alstrup, I. L. Gørtz, T. Rauhe, and M. Thorup. Worst-case union-find

with fast deletions. Technical Report TR-2003-25, IT University Technical

Report Series, 2003.

[5] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Minimizing di-

ameters of dynamic trees. In Automata, Languages and Programming, pages

270–280, 1997.

[6] S. Alstrup, J. Holm, and M. Thorup. Maintaining center and median in

dynamic trees. In Scandinavian Workshop on Algorithm Theory, pages 46–56,

2000.

[7] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems (extended

abstract). In IEEE Symposium on Foundations of Computer Science (FOCS),

pages 534–543, 1998.

[8] S. Alstrup and T. Rauhe. Improved labeling scheme for ancestor queries. In

SODA ’02: Proceedings of the 13th annual ACM-SIAM symposium on Discrete

algorithms, pages 947–953, 2002.

[9] M. Andrews. Hardness of buy-at-bulk network design. In 45th Annual IEEE

Symposium on Foundations of Computer Science, pages 115–124, October 2004.

155

156 BIBLIOGRAPHY

[10] M. Andrews and L. Zhang. Bounds on fiber minimization in optical net-

works with fixed fiber capacity. In IEEE INFOCOM, 2005.

[11] M. Andrews and L. Zhang. Bounds on fiber minimization in optical net-

works with fixed fiber capacity (full version). Unpublished manuscript,

2005.

[12] A. Archer. Inapproximability of the asymmetric facility location and

k-median problems. Unpublished manuscript available at www.orie.

cornell.edu/∼aarcher/Research, 2000.

[13] A. Archer. Two O(log∗ k)-approximation algorithms for the asymmetric k-

center problem. In K. Aardal and B. Gerads, editors, Integer Programming

and Combinatorial Opimization (IPCO), volume 2081 of Lecture Notes in Com-

puter Science, pages 1–14, Berlin Heidelberg, 2001. Springer-Verlag.

[14] A. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verifi-

cation and hardness of approximation problems. In Proceedings of the 33rd

IEEE Symposium on the Foundations of Computer Science (FOCS), pages 14–23,

1992.

[15] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verifi-

cation and the hardness of approximation problems. Journal of the ACM,

45(3):501–555, 1998.

[16] V. Arya, N. Garg, R. Khandekar, K. Munagala, A. Meyerson, and V. Pandit.

Local search heuristic for k-median and facility location problems. In Pro-

ceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC),

pages 21–29, 2001.

[17] M. J. Atallah and S. R. Kosaraju. Efficient solutions to some transportation

problems with applications to minimizing robot arm travel. SIAM Journal

on Computing, 17(5):849–869, 1988.

[18] B. Awerbuch and Y. Azar. Buy-at-bulk network design. In Proceedings of the

38th Annual Symposium on Foundations of Computer Science (FOCS ’97), pages

542–547, 1997.

[19] A. M. Ben-Amram and Z. Galil. A generalization of a lower bound tech-

nique due to fredman and saks. Algorithmica, 30, 2001.

BIBLIOGRAPHY 157

[20] R. Bhatia, S. Guha, S. Khuller, and Y. J. Sussmann. Facility location with

dynamic distance function. In Scandinavian Workshop on Algorithm Theory

(SWAT), pages 23–34, 1998.

[21] P. Bille. A survey on tree edit distance and related problems. To appear in

Theorectical Computer Science (TCS), 2005.

[22] P. Bille and I. L. Gørtz. The tree inclusion problem: In optimal space and

faster. Technical Report TR-2005-54, IT University of Copenhagen, January

2005.

[23] N. Blum. On the single-operation worst-case time complexity of the disjoint

set union problem. SIAM Journal on Computing, 15(4):1021–1024, 1986.

[24] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and

D. A. Moon. Common LISP object system specification X3J13 document

88-002R. ACM SIGPLAN Notices, 23, 1988. Special Issue, September 1988.

[25] C. Chambers. Object-oriented multi-methods in Cecil. In O. L. Madsen,

editor, ECOOP ’92, European Conference on Object-Oriented Programming,

Utrecht, The Netherlands, volume 615 of Lecture Notes in Computer Science,

pages 33–56. Springer-Verlag, New York, NY, 1992.

[26] M. Charikar, S. Khuller, D. M. Mount, and G.Narasimhan. Algorithms for

facility location problems with outliers. In Proceedings of the Twelfth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA’01), pages 642–651,

Jan. 2001.

[27] M. Charikar, S. Khuller, and B. Raghavachari. Algorithms for capacitated

vehicle routing. SICOMP: SIAM Journal on Computing, 31(3):665–682, 2002.

[28] M. Charikar and B. Raghavachari. The finite capacity dial-a-ride problem.

In 39th Annual IEEE Symposium on Foundations of Computer Science, pages

458–467, November 1998.

[29] S. Chaudhuri, N. Garg, and R. Ravi. The p-neighbor k-center problem. In-

formation Processing Letters, 65(3):131–134, 13 Feb. 1998.

[30] B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring

technique. Algorithmica, 1(2):133–162, 1986.

[31] W. Chen. More efficient algorithm for ordered tree inclusion. Journal of

Algorithms, 26:370–385, 1998.

158 BIBLIOGRAPHY

[32] N. Christofedes. Worst-case analysis of a new heuristic for the traveling

salesman problem. Technical report, Graduate School of Industrial Admin-

istration, Carnegie-Mellon University, Pittsburg, PA, 1976.

[33] M. J. Chung. O(n2.5) algorithm for the subgraph homeomorphism problem

on trees. Journal of Algorithms, 8(1):106–112, 1987.

[34] J. Chuzhoy, S. Guha, E. Halperin, G. Kortsarz, S. Khanna, and S. Naor.

Asymmetric k-center is log∗ n-hard to approximate. In Proceedings of the 36th

annual ACM symposium on Theory of computing (STOC), pages 21–7, 2004.

[35] J. Chuzhoy, S. Guha, S. Khanna, and S. Naor. Asymmetric k-center is log∗ n-

hard to approximate. Technical Report 03-038, Elec. Coll. Comp. Complex-

ity, 2003.

[36] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. Multijava: modu-

lar open classes and symmetric multiple dispatch for java. In OOPSLA ’00:

Proceedings of the 15th ACM SIGPLAN conference on Object-oriented program-

ming, systems, languages, and applications, pages 130–145, New York, NY,

USA, 2000.

[37] R. Cole, R. Hariharan, and P. Indyk. Tree pattern matching and subset

matching in deterministic o(n log3 n)-time. In Proceedings of the tenth an-

nual ACM-SIAM symposium on Discrete algorithms, pages 245–254. Society

for Industrial and Applied Mathematics, 1999.

[38] I. A. Computer. Dylan interim reference manual, 1994.

[39] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. MIT Press, 2001.

[40] E. D. Demaine, J. Iacono, and S. Langerman. Retroactive data structures.

In SODA ’04: Proceedings of the fifteenth annual ACM-SIAM symposium on

Discrete algorithms, pages 281–290, 2004.

[41] P. F. Dietz. Fully persistent arrays. In F. Dehne, J.-R. Sack, and N. San-

toro, editors, Proceedings of the Workshop on Algorithms and Data Structures,

volume 382 of Lecture Notes in Computer Science, pages 67–74, Berlin, Aug.

1989. Springer-Verlag.

[42] P. F. Dietz and R. Raman. Persistence, amortization and randomization.

In Proc. 2nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

78–88, 1991.

BIBLIOGRAPHY 159

[43] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. M. auf der Heide, H. Rohnert,

and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. In

29th Annual Symposium on Foundations of Computer Science (FOCS), pages

524–531. IEEE Computer Society Press, 1988.

[44] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data struc-

tures persistent. Journal of Computer and Systems Sciences, 38(1):86–124, 1989.

[45] M. Dubiner, Z. Galil, and E. Magen. Faster tree pattern matching. In Pro-

ceedings of the 31st IEEE Symposium on the Foundations of Computer Science

(FOCS), pages 145–150, 1990.

[46] C. Dutchyn, P. Lu, D. Szafron, S. Bromling, and W. Holst. Multi-dispatch

in the java virtual machine: Design and implementation. In 6th USENIX

Conference on Object-Oriented Technologies, 2001.

[47] D. Eppstein and S. Muthukrishnan. Internet packet filter manegement and

rectangle geometry. In Proceedings of the 12th annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), 2001.

[48] Fakcharoenphol, Rao, and Talwar. A tight bound on approximating arbi-

trary metrics by tree metrics. JCSS: Journal of Computer and System Sciences,

69(3):385–497, 2004.

[49] P. Ferragina and S. Muthukrishnan. Efficient dynamic method-lookup for

object oriented languages. In European Symposium on Algorithms, volume

1136 of Lecture Notes in Computer Science, pages 107–120, 1996.

[50] P. Ferragina, S. Muthukrishnan, and M. de Berg. Multi-method dispatch-

ing: A geometric approach with applications to string matching problems.

In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Com-

puting, pages 483–491, May 1999.

[51] R. Fleischer. A simple balanced search tree with O(1) worst-case update

time. International Journal of Foundations of Computer Science, 7:137–149, 1996.

[52] G. N. Frederickson. Ambivalent data structures for dynamic 2-edge-

connectivity and k smallest spanning trees. In IEEE Symposium on Foun-

dations of Computer Science, pages 632–641, 1991.

[53] G. N. Frederickson. A note on the complexity of a simple transportation

problem. SIAM Journal on Computing, 22(1):57–61, 1993.

160 BIBLIOGRAPHY

[54] G. N. Frederickson and D. J. Guan. Preemptive ensemble motion planning

on a tree. SIAM Journal on Computing, 22(1):1130–1152, 1992.

[55] G. N. Frederickson and D. J. Guan. Non-preemptive ensemble motion plan-

ning on a tree. Journal of Algorithms, 15(1):29–60, 1993.

[56] G. N. Frederickson, M. S. Hecht, and C. E. Kim. Approximation algorithms

for some routing problems. SIAM Journal on Computing, 7(2):178–193, 1978,

May.

[57] M. Fredman and M. Saks. The cell probe complexity of dynamic data struc-

tures. In Proceedings of the 21st Annual ACM Symposium on Theory of Com-

puting (STOC ’89), pages 345–354, May 1989.

[58] Z. Galil and G. F. Italiano. Data structures and algorithms for disjoint set

union problems. ACM Computing Surveys, 23(3):319, Sept. 1991.

[59] M. R. Garey and D. S. Johnson. Computers and intractability : a guide to the

theory of NP-completeness. W. H. Freeman, San Francisco, 1979.

[60] I. L. Gørtz and A. I. Wirth. Asymmetry in k-center variants. In Proceedings of

the 6th International Workshop on Approximation Algorithms for Combinatorial

Optimization Problems (APPROX), volume 2764 of Lecture Notes in Computer

Science, pages 59–70. Springer-Verlag, 2003.

[61] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing

XPath queries. In Proceedings of the Twenty-Eighth International Conference

on Very Large Data Bases (VLDP), pages 95–106, 2002.

[62] D. J. Guan. Routing a vehicle of capacity greater than one. Discrete Applied

Mathematics, 81(1-3), 1998.

[63] T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic dictionaries. Journal

of Algorithms, 41(1):69–85, 2001.

[64] M. Haimovich and A. H. G. Rinnooy Kan. Bounds and heuristics for capac-

itated routing problems. Mathematics of Operations Research, 10(4):527–542,

1985.

[65] E. Halperin, G. Kortsarz, and R. Krauthgamer. Tight lower bounds for the

asymmetric k-center problem. Technical Report 03-035, Elec. Coll. Comp.

Complexity, 2003.

BIBLIOGRAPHY 161

[66] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common an-

cestors. SIAM Journal of Computing, 13(2):338–355, 1984.

[67] D. S. Hochbaum and D. B. Shmoys. A best possible approximation al-

gorithm for the k-center problem. Mathematics of Operations Research,

10(2):180–184, 1985.

[68] D. S. Hochbaum and D. B. Shmoys. A unified approach to approximate

algorithms for bottleneck problems. Journal of the ACM, 33(3):533–550, July

1986.

[69] C. M. Hoffmann and M. J. O’Donnell. Pattern matching in trees. Journal of

the Association for Computing Machinery (JACM), 29(1):68–95, 1982.

[70] W. L. Hsu and G. L. Nemhauser. Easy and hard bottelneck location prob-

lems. Discrete Appl. Math., 1:209–216, 1979.

[71] G. F. Italiano and R. Raman. Topics in data structures. In M. J. Atallah,

editor, Algorithms and Theory of Computation Handbook. CRC Press, 1998.

[72] H. Kaplan. Persistent data structures. In D. Mehta and S. Sahni, editors,

Handbook on Data Structures and Applications. CRC Press, 2005.

[73] H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko. Approxima-

tion algorithms for asymmetric tsp by decomposing directed regular multi-

graphs. In Proceedings of the 44th Annual IEEE Symposium on Foundations of

Computer Science (FOCS), pages 56–67, 2003.

[74] H. Kaplan, N. Shafrir, and R. E. Tarjan. Meldable heaps and boolean union-

find. In Proceedings of the 34rd annual ACM symposium on Theory of computing,

pages 573–582, New York, NY, USA, 2002. ACM Press.

[75] H. Kaplan, N. Shafrir, and R. E. Tarjan. Union-find with deletions. In Pro-

ceedings of the 13th Annual ACM-SIAM Symposium On Discrete Mathematics

(SODA-02), pages 19–28, Jan. 2002.

[76] O. Kariv and S. L. Hakimi. An algorithmic approach to network location

problems. I. The p-centers. SIAM Journal on Applied Mathematics, 37(3):513–

538, Dec. 1979.

[77] Khuller, Pless, and Sussmann. Fault tolerant K-center problems. Theoretical

Computer Science (TCS), 242, 2000.

162 BIBLIOGRAPHY

[78] P. Kilpeläinen. Tree Matching Problems with Applications to Structured Text

Databases. PhD thesis, University of Helsinki, Department of Computer

Science, November 1992.

[79] P. Kilpeläinen and H. Mannila. Retrieval from hierarchical texts by partial

patterns. In Proceedings of the 16th Ann. Int. ACM SIGIR Conference on Re-

search and Development in Information Retrieval, pages 214–222. ACM Press,

1993.

[80] P. Kilpeläinen and H. Mannila. Ordered and unordered tree inclusion.

SIAM Journal of Computing, 24:340–356, 1995.

[81] P. Klein. Computing the edit-distance between unrooted ordered trees. In

Proceedings of the 6th annual European Symposium on Algorithms (ESA) 1998.,

pages 91–102. Springer-Verlag, 1998.

[82] P. Klein, S. Tirthapura, D. Sharvit, and B. Kimia. A tree-edit-distance algo-

rithm for comparing simple, closed shapes. In Proceedings of the 11th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 696–704, 2000.

[83] D. E. Knuth. The Art of Computer Programming, Volume 1. Addison Wesley,

1969.

[84] S. R. Kosaraju. Efficient tree pattern matching. In Proceedings of the 30th

IEEE Symposium on the Foundations of Computer Science (FOCS), pages 178–

183, 1989.

[85] D. L. Kozen. The Design and Analysis of Algorithms. Springer, Berlin, 1992.

[86] C. Levcopoulos and M. Overmars. A balanced search tree with O(1)

worstcase update time. Acta Informatica, 26:269–277, 1988.

[87] A. Lim, B. Rodrigues, F. Wang, and Z. Xu. k-center problems with minimum

coverage. In Proceedings of 10th International Computing and Combinatorics

Conference (COCOON), pages 349–359. Springer-Verlag, 2004.

[88] O. Madsen, H. Ravn, and J. Rygaard. A heuristic algorithm for a dial-a-ride

problem with time windows, multiple capacities, and multiple objectives.

Annals of Operations Research, 60:193–208, 1995.

[89] M. Mahdian, Y. Ye, and J. Zhang. An 1.52-approximation algorithm for the

uncapacitated facility location problem, 2002. Manuscript.

BIBLIOGRAPHY 163

[90] H. Mannila and K. J. Räihä. On query languages for the p-string data model.

Information Modelling and Knowledge Bases, pages 469–482, 1990.

[91] J. Matoušek and R. Thomas. On the complexity of finding iso- and other

morphisms for partial k-trees. Discrete Mathematics, 108:343–364, 1992.

[92] K. Mehlhorn and S. Näher. Bounded ordered dictionaries in O(log log n)

time and O(n) space. Information Processing Letters, 35:183–189, 1990.

[93] S. Muthukrishnan and M. Müller. Time and space efficient method-lookup

for object-oriented programs (extended abstract). In Proceedings of the Sev-

enth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 42–51, Jan.

1996.

[94] A. Nierman and H. V. Jagadish. Evaluating structural similarity in XML

documents, 2002.

[95] M. H. Overmars. The design of dynamic data structures. volume 156 of

Lecture Notes in Computer Science. Springer-Verlag, 1983.

[96] R. Panigrahy and S. Vishwanathan. An O(log∗ n) approximation algorithm

for the asymmetric p-center problem. Journal of Algorithms, 27(2):259–268,

May 1998.

[97] C. H. Papadimitriou and S. Vempala. On the approximability of the travel-

ing salesman problem (extended abstract). In Proceedings of the thirty-second

annual ACM symposium on Theory of computing (STOC), pages 126–133, 2000.

[98] Plesnik. A heuristic for the p-center problem in graphs. Discrete Ap-

plied Mathematics and Combinatorial Operations Research and Computer Science,

17:263–268, 1987.

[99] C. K. Poon and A. Kwok. Space optimal packet classification for 2d conflict-

free filters. In Proceedings of the 7th International Symposium on Parallel Archi-

tectures, Algorithms and Networks, pages 260–265, 2004.

[100] R. Raman. Eliminating Amortization: On Data Structures with Guaranteed Re-

sponse Time. PhD thesis, University of Rochester, Computer Science Depart-

ment, October 1992. Technical Report TR439.

[101] R. Ramesh and I. Ramakrishnan. Nonlinear pattern matching in trees. Jour-

nal of the Association for Computing Machinery (JACM), 39(2):295–316, 1992.

164 BIBLIOGRAPHY

[102] R. Raz. A parallel repetition theorem. SIAM Journal on Computing,

27(3):763–803, June 1998.

[103] T. Richter. A new algorithm for the ordered tree inclusion problem. In

Proceedings of the 8th Annual Symposium on Combinatorial Pattern Matching

(CPM), in Lecture Notes of Computer Science (LNCS), volume 1264, pages 150–

166. Springer, 1997.

[104] N. Sarnak and R. E. Tarjan. Planar point location using persistent search

trees. Communications of the ACM, 29:669–679, 1986.

[105] T. Schlieder and H. Meuss. Querying and ranking XML documents. J. Am.

Soc. Inf. Sci. Technol., 53(6):489–503, 2002.

[106] T. Schlieder and F. Naumann. Approximate tree embedding for querying

XML data. In ACM SIGIR Workshop On XML and Information Retrieval, 2000.

[107] R. Seidel and M. Sharir. Top-down analysis of path compression. SIAM J.

Comput., 34(3):515–525, 2005.

[108] R. Shamir and D. Tsur. Faster subtree isomorphism. Journal of Algorithms,

33:267–280, 1999.

[109] M. Smid. A data structure for the union-find problem having good single-

operation complexity. ALCOM: Algorithms Review, Newsletter of the ESPRIT

II Basic Research Actions Program Project no. 3075 (ALCOM), 1, 1990.

[110] L. Suen, A. Ebrahim, and M. Oksenhendler. Computerized dispatching for

shared-ride taxi operations. Transportation and Planning Technology, 33:33–

48, 1981.

[111] K.-C. Tai. The tree-to-tree correction problem. Journal of the Association for

Computing Machinery (JACM), 26:422–433, 1979.

[112] R. E. Tarjan. Testing flow graph reproducibility. In Proceddings of the 5th

Annual ACM Symposium on Theory of Computing (STOC), pages 96–107, 1973.

[113] R. E. Tarjan. Finding dominators in directed graphs. SIAM Journal of Com-

puting, 3:62–89, 1974.

[114] R. E. Tarjan. Efficiency of a good but not linear disjoint set union algorithm.

Journal of the ACM, 22:215–225, 1975.

[115] R. E. Tarjan. Data Structures and Network Algorithms. SIAM, 1983.

BIBLIOGRAPHY 165

[116] R. E. Tarjan. Class notes: Disjoint set union. COS 423, Princeton University,

1999.

[117] R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algo-

rithms. Journal of the ACM, 31(2):245–281, Apr. 1984.

[118] A. Termier, M. Rousset, and M. Sebag. Treefinder: a first step towards XML

data mining. In IEEE International Conference on Data Mining (ICDM), 2002.

[119] M. Thorup. Space efficient dynamic stabbing with fast queries. In Proceed-

ings of the thirty-fifth annual ACM symposium on Theory of Computing (STOC),

pages 649–658, New York, NY, USA, 2003. ACM Press.

[120] P. van Emde Boas. Preserving order in a forest in less than logarithmic time

and linear space. Information Processing Letters, 6:80–82, 1978.

[121] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of

an efficient priority queue. Math. Systems Theory, 10:99–127, 1977.

[122] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin Heidel-

berg, 2001.

[123] S. Vishwanathan. An O(log∗ n) approximation algorithm for the asymmet-

ric p-center problem. In Proceedings of the Seventh Annual ACM-SIAM Sym-

posium on Discrete Algorithms, pages 1–5, Jan. 1996.

[124] H. Yang, L. Lee, and W. Hsu. Finding hot query patterns over an xquery

stream. The VLDB Journal, 13(4):318–332, 2004.

[125] L. H. Yang, M. L. Lee, and W. Hsu. Efficient mining of XML query patterns

for caching. In Proceedings of the 29th VLDB Conference, pages 69–80, 2003.

[126] A. C. Yao. Should tables be sorted? Journal of the ACM, 28(3):615–628, 1981.

[127] P. Zezula, G. Amato, F. Debole, and F. Rabitti. Tree signatures for XML

querying and navigation. In LNCS 2824, pages 149–163, 2003.

[128] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance

between trees and related problems. SIAM Journal of Computing, 18:1245–

1262, 1989.

[129] K. Zhang, D. Shasha, and J. T. L. Wang. Approximate tree matching in the

presence of variable length don’t cares. Journal of Algorithms, 16(1):33–66,

1994.

