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Abstract

In this report we will demonstrate the use of frames (over-complete “bases”) in
robust signal transmission. We begin by developing the necessary mathematical
theory for frames in finite dimensional vector spaces. More specifically we show
how to perform a frame expansion using the dual frame, we investigate the proper-
ties of the eigenvalues of the frame operator and we introduce the harmonic tight
frames, that are particularly well-suited for our application.

We then show how frames can be useful in lossy signal transmission, where the
signal is subject to errors modelled as the loss of some coefficients, referred to as
erasures. We find that uniform tight frames minimize the error from quantization
and minimize the average and worst-case MSE caused by a single erasure, as well
as giving nice results for the multiple erasure case.

Finally we demonstrate numerically the advantages of using frames to achieve
robust signal transmission.
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1 Preliminaries

Definition 1.1 Throughout this report we will denote matrices by upper-case and
vectors by lower-case letters, e.g.

A =
(
a11 a12

a21 a22

)
and v =

 v1
v2
v3

 .

Definition 1.2 For a complex matrix A = [aij ] ∈ Cn×m we denote by A∗ = [a∗ij ]
the Hermitian transpose of A, defined by

a∗ij = aji ∀i, j.

That is, A∗ is obtained by transposing A and complex conjugating each entry.

Definition 1.3 In CN we will use the inner product 〈·, ·〉 : CN × CN → C

〈x, y〉 =
N∑

i=1

xiyi = y∗x, for x, y ∈ CN .

Definition 1.4 For two matrices A,B ∈ CN×N we define the partial ordering
“≤” by

A ≤ B

⇔ x∗Ax ≤ x∗Bx ∀x ∈ CN ,

whenever the numbers x∗Ax and x∗Bx are real.

Definition 1.5 Kronecker’s delta function δij is defined by

δij =
{

1 if i = j,
0 if i 6= j.

Definition 1.6 In RN we denote the set of all unit vectors by SN−1:

SN−1 = {x ∈ RN
∣∣ ‖x‖ = 1}.

The set is called the unit ball in RN .
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2 Introduction

In this report we will demonstrate how over-complete bases, known as frames,
can be useful in signal transmission. We will show that the over-completeness of
the frame gives a robustness towards losses in the transmission.

The basis for this report has been the paper Quantized Frame Expansions with
Erasures by Goyal, Kovacevic and Kelner, [5]. All major results in the report are
from this paper. Our assignment has been to read and understand the paper and to
fill out the gaps in the argumentation where necessary. This has not been an easy
task, due to the lack of details in the paper. We have constructed and proved several
lemmas and propositions to facilitate the more complex proofs.

In the first section we will introduce the concept of a frame and go through
a number of their properties. When we have established the basic theory, we
will move on to introduce the application in signal transmission and describe how
frames can be useful. In the following section we continue by considering what
happens when erasures are introduced, and we arrive at a family of frames that are
particularly efficient for robust signal transmission. Finally we will demonstrate
some of the thoretical results numerically.

Remark: Since the report is mainly derived from [5], we will not cite the paper
every time a result from it is presented. In addition it should be noted that in order
to maintain a flow through the report, we have stated several helpful propositions
in Appendix A, B and C.
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3 Theory of frames

3.1 From bases to frames

Orthonormal bases (ONB) have a wide range of applications in applied mathe-
matics. The basic idea is to express a complicated (in some sense) function as a
linear combination of a family of simple functions. If {ei}i∈I , is an orthonormal
basis of a finite-dimensional vector space V , then for any f ∈ V we can write

f =
∑
i∈I

〈f, ei〉ei, (3.1)

where 〈·, ·〉 : V × V → C is the inner product of V . The scalars ci = 〈f, ei〉
are called the transform coefficients. In some cases, however, an ONB is not de-
sirable. For instance having an ONB imposes some heavy restrictions on the basis
functions. They must all be orthogonal to each other and of unit length. It might
be possible to have an expression similar to (3.1) where the “basis” functions can
be selected with greater flexibility. These considerations give rise to the theory of
frames - a generalization of bases.

3.2 Introduction to frames

In this section frames in finite dimensional spaces will be introduced and a
number of their properties will be examined. We begin by defining a frame by the
so-called frame-condition.

Definition 3.1 Let Φ = {ϕk}M
k=1 be a set of vectors in RN (or CN ). Φ is called a

frame if there exist 0 < A ≤ B <∞ such that

A ‖x‖2 ≤
M∑

k=1

|〈x, ϕk〉|2 ≤ B ‖x‖2 ∀x ∈ RN . (3.2)

If we can choose A = B the frame is called tight. The number r = M/N is called
the redundancy of the frame.

The scalarsA andB are called frame bounds. The maximal value ofA and minimal
value ofB are called the optimal frame bounds. The lower frame bound establishes
a fundamental property of the set of frame vectors as explained in the following
proposition.

Proposition 3.2 Given a set of vectors Φ = {ϕk}M
k=1 ⊂ RN , the following holds:

∃A > 0 : A ‖x‖2 ≤
M∑

k=1

|〈x, ϕk〉|2 ∀x ∈ RN ⇔ span{Φ} = RN .
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Proof. “⇒”: The proof is by contradiction. For a set of vectors Φ we always know
that span{Φ} ⊆ RN . In order to reach a contradiction we assume span{Φ} ⊂ RN .
From the assumption we get span{Φ}⊥ 6= {0}. For an x ∈ span{Φ}⊥\{0} it is
true that ∀k = 1, . . . ,M : 〈x, ϕk〉 = 0. This implies that

∑M
k=1 |〈x, ϕk〉|2 = 0

and since x 6= 0, we get ‖x‖ 6= 0, which forces A = 0.
“⇐”: Since span(Φ) = RN we cannot have 〈x, ϕk〉 = 0 for all k unless

x = 0. In other words,

∀x 6= 0 :
M∑

k=1

| 〈x, ϕk〉 |2 > 0. (3.3)

Define the function Λ by

Λ : SN−1 → R, Λx =
M∑

k=1

| 〈x, ϕk〉 |2 ∀x ∈ RN .

The domain of definition is the unit-ball in RN , so only x with ‖x‖ = 1 are consi-
dered. This is sufficient since all non-zero vectors can be scaled to unit-length. Λ
is continuous and due to its domain of definition it has compact support. Due to
Proposition C.1 this means that the infimum of the function occurs for some x, that
we will denote x0. We can let A =

∑M
k=1 | 〈x0, ϕk〉 |2 and then we have

∃x0 : A =
M∑

k=1

| 〈x0, ϕk〉 |2 = inf
‖x‖=1

M∑
k=1

| 〈x, ϕk〉 | > 0,

where the last inequality follows by (3.3). The infimum is smaller than or equal to
any other function value which means that

∀x, ‖x‖ = 1 :
M∑

k=1

| 〈x0, ϕk〉 |2 ≤
M∑

k=1

| 〈x, ϕk〉 |2,

or equivalently

∀x, ‖x‖ = 1 : A ‖x‖2 ≤
M∑

k=1

| 〈x, ϕk〉 |2.

This completes the proof when ‖x‖ = 1 and the general result follows by scaling
as mentioned earlier.

�

Assume that Φ = {ϕk}M
k=1 is a frame for RN . Since the lower bound implies that

the frame vectors span RN , we must always have M ≥ N . If we have a finite
number M of vectors that span RN , the Cauchy-Schwartz inequality yields

M∑
k=1

|〈x, ϕk〉|2 ≤
M∑

k=1

‖x‖2‖ϕk‖2 = ‖x‖2
M∑

k=1

‖ϕk‖2, (3.4)
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Name Abbr. Description Alternate name
Orthonormal basis ONB 〈ϕi, ϕj〉 = δij ,∀i, j
Uniform frame UNF ||ϕi|| = 1, ∀ i Unit-norm Frame
Tight frame TF A = B
Parseval tight frame PTF A = B = 1
Uniform tight frame UNTF A = B, ||ϕi|| = 1, ∀ i Unit-norm tight frame

Table 1: Short description of various frames, inspired by [7]. It is assumed that the considered set of
vectors form a frame. The abbreviations UNF and UNTF are related to their alternate names.

which shows that we can choose B =
∑M

k=1 ‖ϕk‖2. In other words, any finite
number of vectors that span RN will constitute a frame.

There exist different classes of frames as seen in Table 1. We have already
mentioned tight frames (TF), that satisfy A = B. Furthermore if A = B = 1 the
frame is called a Parseval tight frame (PTF). A frame where all the vectors have the
same norm is called equal-norm frame and if the norm is 1 it is called unit-norm or
uniform (UNF). Finally if a frame is both tight and uniform it is called a uniform
tight frame (UNTF). For reasons to follow our primary concern will be uniform
tight frames.

At this point we give a simple example to make the concept of a frame a little
more concrete.

Example 3.3 Consider in R2 the set of vectors Φ = {ϕk}3
k=1, where

ϕ1 =
(

0
1

)
, ϕ2 =

(
−
√

3
2

−1
2

)
, ϕ3 =

( √
3

2
−1

2

)
.

ϕ3
ϕ2

R2

ϕ1

Figure 1: The Mercedes Benz frame.
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For any x ∈ R2 we have by an elementary calculation

3∑
k=1

| 〈x, ϕk〉 |2 =
3
2
‖x‖2,

so the frame is tight with A = B = 3/2. This frame in particular is called the
Mercedes Benz frame. The frame is also uniform since

∀k = 1, 2, 3 : ‖ϕk‖ = 1.

The frame is therefore a uniform tight frame.

We are interested in obtaining an expression similar to (3.1) for frames. If this
is possible, we will have a way to express any vector from the considered space in
terms of the frame vectors. In order to do so, it will be useful to have an operator
to express the transform from the vector space to the transform coefficients.

Definition 3.4 For a frame Φ = {ϕk}M
k=1 ⊂ RN the corresponding analysis ope-

rator F is defined by

F : RN → RM : (Fx)k = 〈x, ϕk〉 ∀k ∈ {1, . . . ,M}, (3.5)

for an x ∈ RN .

Since the operator for each frame vector computes the inner product with x, the
operator can be conveniently expressed using a matrix containing all the frame
vectors conjugate transposed in the rows:

F =


— ϕ∗1 —
— ϕ∗2 —

...
— ϕ∗M —

 . (3.6)

We will let F refer both to the analysis operator and the matrix representation of it.
The frame condition (3.2) can be expressed in terms of the analysis operator:

Proposition 3.5 For a frame the frame condition (3.2) can be equivalently ex-
pressed by use of the partial ordering “≤” from Definition 1.4 as

AIN ≤ F ∗F ≤ BIN , (3.7)

where F is the corresponding analysis operator. The composed operator F ∗F is
called the frame operator. In particular for a tight frame F ∗F = AIN .

Proof. The left-hand side of (3.2) is rewritten

A‖x‖2 = A 〈x, x〉 = Ax∗x = x∗AINx.
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Similarly we get B‖x‖2 = x∗BINx. For F ∗F we get

x∗F ∗Fx = (Fx)∗(Fx) =
[
· · · 〈x, ϕk〉 · · ·

] 
...

〈x, ϕk〉
...


=

M∑
k=1

〈x, ϕk〉 〈x, ϕk〉 =
M∑

k=1

| 〈x, ϕk〉 |2.

Substituting the three expressions into (3.2) we obtain

x∗AINx ≤ x∗F ∗Fx ≤ x∗BINx,

which is equivalent to (3.7) by Definition 1.4.
For a tight frame we have A = B, and F ∗F = AIN follows directly.

�

We have now defined the frame operator F ∗F , but what happens when it is
applied to an x ∈ RN ? It turns out that it can help us get an expression similar to
(3.1) using frames. First of all, we know by (3.5) that

Fx =


〈x, ϕ1〉
〈x, ϕ2〉

...
〈x, ϕM 〉

 .

For F ∗Fx we get

F ∗Fx =

 | | |
ϕ1 ϕ2 · · · ϕM

| | |




〈x, ϕ1〉
〈x, ϕ2〉

...
〈x, ϕM 〉


= ϕ1 〈x, ϕ1〉 + ϕ2 〈x, ϕ2〉 + · · ·+ ϕM 〈x, ϕM 〉

=
M∑

k=1

〈x, ϕk〉 ϕk. (3.8)

In order to proceed we need the following lemma about the operator F ∗F .

Lemma 3.6 The frame operator F ∗F is self-adjoint and invertible.

Proof. The two postulates are considered seperately:

• Self-adjoint: (F ∗F )∗ = F ∗ (F ∗)∗ = F ∗F.
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• Invertible: From Proposition 3.11 that we will prove later, we know that all
the eigenvalues of F ∗F are nonzero. This implies that F ∗F is invertible.

�

By the lemma we know that (F ∗F )−1 exists. According to (3.8), we have for
x ∈ RN

x = (F ∗F ) (F ∗F )−1 x =
M∑

k=1

〈
(F ∗F )−1 x, ϕk

〉
ϕk.

We also know that F ∗F is self-adjoint, so (F ∗F )−1 is self-adjoint and we can
continue with

x =
M∑

k=1

〈
x, (F ∗F )−1 ϕk

〉
ϕk. (3.9)

The vectors (F ∗F )−1ϕk are very important and have their own name, as explained
by the following theorem.

Theorem 3.7 For a frame Φ = {ϕk}M
k=1 with bounds A and B and analysis ope-

rator F , the set Φ̃ = {ϕ̃k}M
k=1, where

ϕ̃k = (F ∗F )−1ϕk ∀k = 1, . . . ,M (3.10)

is a frame with boundsB−1 andA−1. The frame is called the canonical dual frame
of Φ and has the analysis operator

F̃ = F (F ∗F )−1 (3.11)

and frame operator

F̃ ∗F̃ = (F ∗F )−1. (3.12)

Proof. We begin by finding the expressions for F̃ and F̃ ∗F̃ . By hermitian trans-
position of (3.10) we get for the k’th dual frame vector (using Lemma 3.6)

ϕ̃∗k =
(
(F ∗F )−1ϕk

)∗ = ϕ∗k
(
(F ∗F )−1

)∗
= ϕ∗k ((F ∗F )∗)−1 = ϕ∗k(F

∗F )−1.

To form F̃ all the ϕ̃∗k are stacked:

F̃ =


— ϕ̃∗1 —
— ϕ̃∗2 —

...
— ϕ̃∗M —

 =


— ϕ∗1 —
— ϕ∗2 —

...
— ϕ∗M —

 (F ∗F )−1 = F (F ∗F )−1,
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which proves (3.11). F̃ ∗F̃ can then be found to be

F̃ ∗F̃ =
(
F (F ∗F )−1

)∗ (
F (F ∗F )−1

)
=
(
(F ∗F )−1

)∗
F ∗F (F ∗F )−1

= ((F ∗F )∗)−1 = (F ∗F )−1,

which proves (3.12).
Now to show that Φ̃ is a frame, we want to apply Proposition B.4. From equa-

tion (3.7) we know that AIN ≤ F ∗F ≤ BIN . By Lemma 3.6 F ∗F is self-adjoint
and hence so is (F ∗F )−1. Also, AIN and BIN are trivially self-adjoint. Further-
more it is easy to see that (F ∗F )−1 commutes with AIN , F ∗F and BIN , so by
Proposition B.4

(F ∗F )−1AIN ≤ (F ∗F )−1 (F ∗F ) ≤ (F ∗F )−1BIN ,

which reduces to

(F ∗F )−1 ≤ 1
A
IN

(F ∗F )−1 ≥ 1
B
IN .

Since we have proved (F ∗F )−1 is the frame operator for the dual frame, (3.7) gives
that Φ̃ is a frame with bounds B−1 and A−1.

�

Although there frequently exist other frames that are dual to Φ, the term canonical
will often be omitted. Using the (canonical) dual frame we can rewrite (3.9) and
we end up with the expression

x =
M∑

k=1

〈x, ϕ̃k〉 ϕk ∀x ∈ RN . (3.13)

In general it is not an easy task to compute the dual frame1, but if the frame is
tight there is a simple result. For a tight frame we know from Proposition 3.5 that
F ∗F = AIN . This means that (F ∗F )−1 = 1/A · IN and the definition of the dual
frame gives us ϕ̃k = 1/A · ϕk, ∀k = 1, . . . ,M . Insertion of this result into (3.9)
yields

x =
M∑

k=1

〈
x,

1
A
INϕk

〉
ϕk ∀x ∈ RN ,

or simpler

x =
1
A

M∑
k=1

〈x, ϕk〉 ϕk ∀x ∈ RN . (3.14)

Except for the scaling factor 1/A this is exactly the same expression as (3.1) for an
orthonormal basis! This is a very powerful result.

1This is discussed on page 365 in [1].
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Example 3.8 In Example 3.3 we found that the Mercedes Benz frame is tight with
A = 3/2. Now (3.14) gives us the following representation of any vector from R2:

x =
2
3

3∑
k=1

〈x, ϕk〉 ϕk ∀x ∈ R2.

If for instance we look at x0 = (5, 1)T , we find the following inner products:

〈x0, ϕ1〉 = 1,

〈x0, ϕ2〉 = −5
√

3 + 1
2

,

〈x0, ϕ3〉 =
5
√

3− 1
2

.

We form the sum:

x0 =
2
3

3∑
k=1

〈x0, ϕk〉 ϕk

=
2
3

(
1 ·
(

0
1

)
− 5

√
3 + 1
2

·

(
−
√

3
2

−1
2

)
+

5
√

3− 1
2

·

( √
3

2
−1

2

))
,

and we have hereby obtained an explicit expression for x0 in terms of the frame
vectors.

Let us look a bit more at the relationship between a frame and its dual. It turns
out that the dual frame of the dual is the original frame itself, as expressed by the
following theorem.

Theorem 3.9 Given a frame Φ and its dual Φ̃. The dual of Φ̃, denoted ˜̃Φ, is equal

to the original frame, that is ˜̃Φ = Φ.

Proof. Using the definition of the dual frame from Theorem 3.7 twice we get

ϕ̃k = (F ∗F )−1ϕk ∀k = 1, . . . ,M,˜̃ϕk = (F̃ ∗F̃ )−1ϕ̃k ∀k = 1, . . . ,M.

By the expression (3.12) and insertion of the first equation into the second we find˜̃ϕk =
(
(F ∗F )−1

)−1
ϕ̃k = (F ∗F )ϕ̃k

= (F ∗F )(F ∗F )−1ϕk = ϕk ∀k = 1, . . . ,M.

�

So there is in fact a duality between a frame and its dual. Using this relationship
we can see that the roles of the frame and its dual can be interchanged in (3.13),
which is expressed be the following theorem.
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Theorem 3.10 Given a frame Φ = {ϕk}M
k=1 and its dual Φ̃ = {ϕ̃k}M

k=1 for RN .
For any vector x ∈ RN it holds that

x =
M∑

k=1

〈x, ϕ̃k〉 ϕk and x =
M∑

k=1

〈x, ϕk〉 ϕ̃k ∀x ∈ RN . (3.15)

This is a useful fact. The latter is the frame expansion that we will use later on in
the application on robust signal transmission.

The coefficients of the frame expansion are the elements of Fx as expressed
by (3.6). Given the coefficients, the vector x can be reconstructed using the left-
inverse F †, given by F † = (F ∗F )−1F ∗. It is easy to see that F † acts as an inverse,
since

F †Fx = (F ∗F )−1F ∗Fx = x.

Using (3.11) the left-inverse can also be written in terms of the dual analysis ope-
rator:

F † = (F ∗F )−1F ∗ =
(
F (F ∗F )−1

)∗ = F̃ ∗, (3.16)

where it has been used that (F ∗F )−1 is self-adjoint. The left-inverse will be needed
later for reconstructing signals from their frame coefficients.

3.3 Properties of frames

In the following a number of properties of finite dimensional frames are stated
and proved. The main part of the properties are concerned with the eigenvalues of
the frame operator. The results will be needed in more advanced proofs later in the
report.

Proposition 3.11 Given a frame with frame bounds A and B, all the eigenvalues
of F ∗F belong to the interval [A,B]. In particular, for a tight frame all the eigen-
values are equal to A.

Proof. Take any eigenpair (λ, v) of F ∗F , where v is non-zero, then F ∗Fv = λv.
Multiplying by v∗ yields

v∗F ∗Fv = v∗λv = v∗λINv.

By applying (3.7) to v we get

v∗AINv ≤ v∗λINv ≤ v∗BINv,

which reduces to A ≤ λ ≤ B. Since for a tight frame B = A, all the eigenvalues
of a tight frame are equal to A.

�
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Proposition 3.12 For a frame {ϕk}M
k=1 ⊂ RN with analysis operator F the sum of

the eigenvalues of F ∗F equals the sum of the squared lengths of the frame vectors:

N∑
i=1

λi =
M∑
i=k

‖ϕk‖2.

If the frame is uniform as well, the sum of the eigenvalues equals M.

Proof. The eigenvalues of F ∗F are called {λi}N
i=1. By Proposition A.7 and

Proposition A.4 we have

N∑
i=1

λi = tr(F ∗F ) = tr(FF ∗).

Using (3.6) we see that the k’th diagonal element of

FF ∗ =


— ϕ∗1 —
— ϕ∗2 —

...
— ϕ∗M —


 | | |

ϕ1 ϕ2 · · · ϕM

| | |



can be written as ϕ∗kϕk = ‖ϕk‖2. Using this we obtain

tr(FF ∗) =
M∑

k=1

ϕ∗kϕk =
M∑

k=1

‖ϕk‖2,

or
N∑

i=1

λi =
M∑

k=1

‖ϕk‖2.

When the frame is uniform, all the lengths are 1 and this simplifies to

N∑
i=1

λi =
M∑

k=1

1 = M.

�

Proposition 3.13 Given a tight frame in RN with analysis operator F , the matrix
F ∗F has eigenvalue A with multiplicity N . If the frame is uniform, then addi-
tionally A = M/N = r holds.

Proof. By (3.7) we have F ∗F = AIN due to tightness of the frame. By Propo-
sition 3.11 we know that all the eigenvalues must be equal to A. Since an N ×N
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matrix has exactly N eigenvalues, the first part is proved. If the frame is uniform,
we have by Proposition 3.12

N∑
i=1

λi = M.

Since all eigenvalues are equal to A this simplifies to NA = M , or

A =
M

N
= r.

�

Let us continue with a result for tight frames. We know that the ϕ∗k constitute the
rows of F , but consider for now the columns of F instead. Denote by fi the i’th
column of F . For a tight frame we know that

F ∗F =


— f∗1 —
— f∗2 —

...
— f∗N —


 | | |

f1 f2 · · · fN

| | |

 = AIN

from which it is seen that

∀i, j = 1, . . . , N : f∗i fj = Aδij . (3.17)

In other words, the N columns of F are orthogonal. Since N ≤M we can extend
F by adding M − N orthogonal columns to obtain a basis for RM . This is done
using the Gram-Schmidt method. If in addition the frame is uniform, we have the
following result.

Proposition 3.14 Given a uniform tight frame Φ with analysis operator F of size
M ×N . Then there exists an orthogonal M ×M matrix U such that F is the first
N columns of

√
M/N · U .

Proof. By Proposition 3.13 we have F ∗F = M/N · IN . From the expression
(3.17) we get that

∀i = 1, . . . , N : ‖fi‖ = (f∗i fi)1/2 =
√
M/N.

This means that all of the N columns in the M × N matrix F has Euclidian
norm

√
M/N . Since Φ is a frame, the rows and hence also the columns span

an N -dimensional subspace of the M -dimensional space. We now append M −N
columns to F , such that the all the columns are linearly independent. Now the
columns span all M dimensions.

Apply the Gram-Schmidt procedure on the columns and scale each vector to
length

√
M/N to obtain an orthogonal basis. This does not affect the original
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columns of F , because (3.17) holds. Denote the obtained matrix by V . By scal-
ing all the columns by the factor

√
N/M we get an orthonormal basis, which is

equivalent to saying that the matrix U =
√
N/M · V is orthogonal.

Now by taking the first N columns of V =
√
M/N · U we get exactly F , and

the proof is complete.

�

To clarify the procedure described in the proof, we give the following example.

Example 3.15 Consider the Mercedes-Benz frame again. To the frame operator
F we append the vector (0, 0, 1)T , so we have the following matrix 0 1 0

−
√

3
2 −1

2 0√
3

2 −1
2 1

 .

We now apply the Gram-Schmidt procedure to obtain another vector a that is or-
thogonal to the other two:

a = f3 −
2∑

k=1

〈
fk

‖fk‖
, f3

〉
fk

‖fk‖

=

 0
0
1

− 1√
2

 0
− 1√

2
1√
2

+
1√
6


2√
6

− 1√
6

− 1√
6


=

 1
3
1
3
1
3

 .

This vector is scaled to the length
√
M/N =

√
3/2 and the obtained vector is√

3
2
a

‖a‖
=


1√
2

1√
2

1√
2

 .

This vector is appended to F instead of (0, 0, 1)T to get the matrix V . Now the
matrix

U =

√
2
3
V =

√
2
3


0 1 1√

2

−
√

3
2 −1

2
1√
2√

3
2 −1

2
1√
2

 =

 0 2√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

− 1√
6

1√
3


is orthogonal, since it is easily checked that

U∗U = UU∗ = I3.

As the proposition states, we have now found an orthogonal matrix U such that F
can be taken as the first 2 columns of V =

√
3/2 · U .
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3.4 Equivalence between frames

Consider the Mercedes Benz frame from Example 3.3. Rotate the three vectors
some fixed angle around the origo and look at the obtained system. Although we
have a new set of vectors, the relative position of the vectors have not changed.
They still form the Mercedes Benz star and they still form a frame, see Figure
2. In some sense the frame has not changed under this operation. We want to
formalize this notion of having frames that in some sense are the same. To do this
we introduce an equivalence relation between frames. It will be natural to include
not only rotations but also more general operations, e.g. reflection of the entire
frame in a hyperplane2 and change of sign of some of the frame vectors.

Definition 3.16 In the vector space RN two frames Φ = {ϕk}M
k=1 and Ψ =

{ψk}M
k=1, with analysis operators FΦ and FΨ respectively, are said to be equi-

valent if we can write

ψk = σkUϕk ∀k = 1, . . . ,M, (3.18)

where σk is either 1 or−1 and U is some unitary matrix. If Φ and Ψ are equivalent
we write

Φ ' Ψ.

Notice that σk = −1 corresponds to negating the k’th vector and that U captures
the unitary operations. In R2 this corresponds to rotations and reflections, while
in higher dimensional spaces the interpretation is more complex. We have ψ∗k =
σkϕ

∗
kU

∗. The ψ∗k are stacked to form the analysis operator FΨ from FΦ:
...

— ψ∗k —
...

 =


. . .

σk

. . .




...
— ϕ∗k —

...

U∗.

By letting Σ = diag(σ1, . . . , σM ) and using the analysis operators this can be
written

FΨ = ΣFΦU
∗. (3.19)

(3.19) is a useful way to express (3.18) using the analysis operators.

Theorem 3.17 The relation “'” from Definition 3.16 is an equivalence relation.

Proof. To prove that “'” is an equivalence relation we have to prove that it is
reflexive, symmetric and transitive. By F(RN ) we denote the set of frames for
RN .

2A hyperplane is a generalization of the concept of a line in the 2-dimensional space or a plane
in the 3-dimensional space. A reflection in a hyperplane in the 2-dimensional space therefore corre-
sponds to the reflection of all frame vectors in a line and similarly in higher dimensions.
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• Reflexive: ∀Φ ∈ F(RN ) : Φ ' Φ. Let U = IN and ∀k = 1, . . . ,M :
σk = 1. Then U is trivially unitary and

ϕk = σkUϕk ∀k = 1, . . . ,M.

• Symmetric: ∀Φ,Ψ ∈ F(RN ) : Φ ' Ψ ⇒ Ψ ' Φ. Assume that
Φ ' Ψ, then

ψk = σkUϕk ∀k = 1, . . . ,M.

Since U is unitary, multiplication by σkU
∗ yields

σkU
∗ψk = ϕk ∀k = 1, . . . ,M,

since σk · σk = 1 ∀k = 1, . . . ,M . U∗ is unitary since U is unitary, so the
relation is symmetric.

• Transitive: ∀Φ,Ψ,Ω ∈ F(RN ) : (Φ ' Ψ) ∧ (Ψ ' Ω) ⇒ Φ ' Ω. We
have

ψk = σkU1ϕk ∀k = 1, . . . ,M,

ωk = σ̃kU2ψk ∀k = 1, . . . ,M

for some sequences {σk}M
k=1, {σ̃k}M

k=1 and unitary matrices U1, U2. By
substituting the first expression into the second we obtain

ωk = σ̃kσkU2U1ϕk ∀k = 1, . . . ,M.

Let σ̂k = σ̃kσk, ∀k = 1, . . . ,M and the σ̂k will all be 1 or −1. Let U =
U2U1 and by Proposition B.3 U is unitary. We have

ωk = σ̂kUϕk ∀k = 1, . . . ,M.

�

Example 3.18 To illustrate the concept of equivalence between frames we give
the following example. In R2 take the Mercedes-Benz frame and rotate the three
vectors some fixed angle, see Figure 2. Another example is seen in Figure 3 where
two of the vectors are changed to go in the opposite directions. These two frames
are both equivalent to the Mercedes Benz frame from Figure 1.
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ψ1

ψ2

R2

ψ3

Figure 2: Rotated Mercedes-Benz frame

ψ2

ψ3

R2

ψ1

Figure 3: Flipped Mercedes-Benz frame

Corollary 3.19 Tightness of a frame Φ implies tightness of any frame equivalent
to Φ. The same is true for uniformity.

Proof. Consider now two equivalent frames Φ and Ψ in RN , with FΨ = ΣFΦU
∗

as in (3.19). If Φ is tight, it follows that Ψ is tight as well, since by Proposition 3.5
F ∗

ΦFΦ = AIN and

F ∗
ΨFΨ = (ΣFΦU

∗)∗ΣFΦU
∗ = UF ∗

ΦΣ∗ΣFΦU
∗

= UF ∗
ΦFΦU

∗ = UAINU
∗ = AIN ,

where it is used that Σ∗Σ = IM .
If Φ is uniform we have ∀k = 1, . . . ,M : ‖ϕk‖ = 1 and by (3.18)

‖ψk‖ = ‖σkUϕk‖ = |σk| · ‖Uϕk‖ = ‖ϕk‖ = 1 ∀k = 1, . . . ,M,

since a unitary matrix preserves the norm. Hence, Ψ is uniform as well.

�

As it is known from basic algebra an equivalence relation splits the considered
space into equivalence classes. This is useful when trying to get an overview of
the frames for a specific vector space. In one case there is a particularly simple
result: It turns out that there is only one equivalence class of uniform tight frames
if M = N + 1. To prove this we need the following lemma.

Lemma 3.20 Given two orthonormal bases {fk}N
k=1 and {gk}N

k=1 for a vector
space RN . Then the bases are equivalent with respect to “'”.

Proof. Let {fk}N
k=1 and {gk}N

k=1 be orthonormal bases of RN and {ek}N
k=1 be the

canonical basis of RN , that is ek = (0, 0, . . . , 0, 1, 0, . . . , 0) , ∀k = 1, . . . , N with
a 1 in the k’th position. If we can prove that {fk}N

k=1 is equivalent to {ek}N
k=1, then

the same holds for {gk}N
k=1 and transitivity of the equivalence relation will imply

that {fk}N
k=1 is equivalent to {gk}N

k=1.
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It is easily seen that the following holds:

∀k = 1, . . . , N fk =

 | | |
f1 f2 · · · fN

| | |

 ek.

Since {fk}N
k=1 is an orthonormal basis the matrix is unitary. By Definition 3.16

we get that {fk}N
k=1 ' {ek}N

k=1. The argument applies to {gk}N
k=1 as well, and

transitivity then yields {fk}N
k=1 ' {gk}N

k=1 as mentioned.

�

Theorem 3.21 Consider the vector space RN . All uniform tight frames Φ =
{ϕk}M

k=1 with M = N + 1 belong to the same equivalence class.

Proof. Let Φ be a uniform tight frame for RN with analysis operator F and M =
N + 1. By Proposition 3.14 there exists an orthogonal matrix U such that F is
the first N columns of F =

√
M/N · U . In an orthogonal matrix each row and

column has norm 1. That means that each row of F has norm
√
M/N , or since

M = N + 1

N+1∑
j=1

F
2
ij =

N + 1
N

for i = 1, 2, . . . , N + 1.

The uniformity of the frame implies that ‖ϕ∗k‖ = ‖ϕk‖ = 1,∀k = 1, 2, . . . , N + 1
or

N∑
j=1

F
2
ij = 1 for i = 1, 2, . . . , N + 1,

since the ϕ∗k constitute the rows of F . Subtraction of this from the previous expres-
sion leaves only the last term, so

F
2
i,N+1 =

1
N

for i = 1, 2, . . . , N + 1.

This means that the last column of F contains the vector

1√
N


±1
±1

...
±1


for some choice of signs. Since F is a scaled orthogonal matrix, the columns are
orthogonal to each other, and in particular the N first columns are orthogonal to
the last. In other words the span of the N first columns is equal to the orthogonal
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complement to (±1,±1, . . . ,±1). That is, if we denote the j’th column of F by
f j we have

span
{
f j

}N

j=1
= span

{
fN+1

}⊥
.

For a given fN+1 we have a fixed N -dimensional subspace with the orthonor-

mal basis
{√

N/M · fk

}N

k=1
, where the scaling factor

√
N/M comes from F =√

M/N · U . By Lemma 3.20 we know that all orthonormal bases of the subspace
are equivalent, so all frames with this choice of fN+1 are equivalent. For another
choice of fN+1 only the signs change. This can be handled by changing the signs
of the corresponding σk from Definition 3.16. So no matter which fN+1 is chosen,
the frames are equivalent.

�

It is not possible to generalize this result to when M exceeds N + 1. However,
in R2 the uniform tight frames are completely characterized, as expressed by the
following theorem.

Theorem 3.22 Consider the vector space R2 and a sequence of real scalars {αk}M
k=1.

The following statements are equivalent:

1. Φ = {ϕk = (cosαk, sinαk)}M
k=1 is a uniform tight frame,

2.
∑M

k=1 zk = 0, where zk = e2iαk for k = 1, . . . ,M .

Proof. “1. ⇒ 2.”: The analysis operator of Φ is

F =


cosα1 sinα1

cosα2 sinα2
...

...
cosαM sinαM

 .

Since the frame is uniform and tight, Proposition 3.13 gives

F ∗F =
(

cosα1 cosα2 · · · cosαM

sinα1 sinα2 · · · sinαM

)
cosα1 sinα1

cosα2 sinα2
...

...
cosαM sinαM


=
(

M
2 0
0 M

2

)
. (3.20)
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This yields the following:

M∑
k=1

cos2 αk =
M

2
, (3.21)

M∑
k=1

sin2 αk =
M

2
, (3.22)

M∑
k=1

cosαk sinαk = 0. (3.23)

By subtracting (3.22) from (3.21) we get

M∑
k=1

cos2 αk −
M∑

k=1

sin2 αk =
M

2
− M

2
,

and using the identity cos 2x = cos2 x− sin2 x we find

M∑
k=1

cos 2αk = 0. (3.24)

By multiplying (3.23) with 2 a similar result is found for the sine-function

2
M∑

k=1

cosαk sinαk = 2 · 0,

or equivalently

M∑
k=1

sin 2αk = 0. (3.25)

where the identity sin 2x = 2 sinx cosx has been used. Taking the sum of (3.24)
and i times (3.25) equals 0:

M∑
k=1

cos 2αk + i ·
M∑

k=1

sin 2αk = 0,

or equivalently

M∑
k=1

e2iαk = 0.

Let zk = e2iαk and we are done.
“2. ⇒ 1.”: Given that

∑M
k=1 e

2iαk = 0 we want to prove tightness and unifor-
mity of Φ = {ϕk = (cosαk, sinαk)}M

k=1.
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• Tightness: We immediately get that

M∑
k=1

cos 2αk =
M∑

k=1

Re e2iαk = 0,

M∑
k=1

sin 2αk =
M∑

k=1

Im e2iαk = 0,

since a complex number is zero if and only if both its real and imaginary
parts are zero. As in (3.24) and (3.25) we obtain

M∑
k=1

cos2 αk =
M∑

k=1

sin2 αk,

M∑
k=1

cosαk sinαk = 0.

As in (3.20) we obtain for the frame operator

F ∗F =

( ∑M
k=1 cos2 αk 0

0
∑M

k=1 sin2 αk

)
.

Since we have just shown that the diagonal elements are equal, the frame is
tight.

• Uniformity: For each frame element ϕk = (cosαk, sinαk) we have

‖ϕk‖ =
√

cos2 αk + sin2 αk = 1,

so the frame is uniform.

�

3.5 Construction of uniform tight frames

After having discussed a number of properties of finite dimensional frames,
it will be interesting to know how a frame can be constructed for any given M
and N . This will be useful when considering the application of frames on signal
transmission later on. The family of frames we will introduce are called harmonic
frames and they are uniform and tight as explained by the following theorem.

Theorem 3.23 Consider the complex vectorspace CN . Define the set of vectors
Φ = {ϕk+1}M−1

k=0 by

(ϕk+1)j+1 =
1√
N
W kj

M , j = 0, . . . , N − 1, k = 0, . . . ,M − 1 (3.26)
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where

WM = e2πi/M

is the M ’th complex root of unity. Then Φ is a uniform tight frame. It is called the
complex harmonic tight frame.

Proof. First we prove that Φ is a tight frame and then uniformity.

• Tight frame: Let F denote the analysis operator. According to Proposition
3.5 we can show that Φ is a tight frame by showing that F ∗F = AIN for
some constant A. We know that the frame vectors constitute the columns of
F ∗, so we know the (j + 1, k + 1)’th element of F ∗

F ∗
j+1,k+1 =

1√
N
W kj

M ,

and therefore

Fk+1,j+1 =
(

1√
N
W kj

M

)∗
.

Now we will show that F ∗F = M/NIN by showing that the (a, b)’th ele-
ment (F ∗F )ab = M/Nδab:

(F ∗F )ab =
M−1∑
p=0

F ∗
a,p+1Fp+1,b

=
M−1∑
p=0

1√
N
W

p(a−1)
M

(
1√
N
W

p(b−1)
M

)∗

=
1
N

M−1∑
p=0

e2πip(a−1)/Me−2πip(b−1)/M

=
1
N

M−1∑
p=0

e2πip(a−b)/M .

When a = b, that is along the diagonal, the terms all reduce to 1, and the
sum is therefore M/N . When a 6= b we rewrite to

(F ∗F )ab =
1
N

M−1∑
p=0

(
e2πi(a−b)/M

)p
,
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which is recognized as a geometric series. By Proposition C.2 we get

(F ∗F )ab =
1
N

1−
(
e2πi(a−b)/M

)M
1− e2πi(a−b)/M

=
1
N

1−
(
e2πi

)(a−b)

1− e2πi(a−b)/M

=
1
N

1− 1
1− e2πi(a−b)/M

= 0.

This means that F ∗F = M/NIN , so Φ is a tight frame.

• Uniformity: From the definition it is seen that

ϕk+1 =
1√
N


W k·0

M

W k·1
M
...

W
k·(N−1)
M

 , k = 0, . . . ,M − 1.

Since each entry is a power of a root of unity the absolute value is 1, and

‖ϕk+1‖ =
∣∣∣∣ 1√
N

∣∣∣∣
√∣∣W k·0

M

∣∣2 +
∣∣W k·1

M

∣∣2 + · · ·+
∣∣∣W k·(N−1)

M

∣∣∣2
=

1√
N

√
1 + 1 + · · ·+ 1

=
√
N√
N

= 1 for k = 0, . . . ,M − 1.

�

There exists an analogous version in the real case, which is stated below. It is a bit
more cumbersome and the proof will be omitted.

Theorem 3.24 Consider the real vectorspace RN . Define the set of vectors Φ =
{ϕk+1}M−1

i=0 by

ϕk+1 =

√
2
N

[
cos

kπ

M
, cos

3kπ
M

, . . . , cos
(N − 1)kπ

M
,

sin
kπ

M
, sin

3kπ
M

, . . . , sin
(N − 1)kπ

M

]T

for k = 0, 1, . . . ,M − 1 if N is even and by

ϕk+1 =

√
2
N

[
1√
2
, cos

2kπ
M

, cos
4kπ
M

, . . . , cos
(N − 1)kπ

M
,

sin
2kπ
M

, sin
4kπ
M

, . . . , sin
(N − 1)kπ

M

]T
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for k = 0, 1, . . . ,M − 1 if N is odd. Then Φ is a uniform tight frame. It is called
the real harmonic tight frame.

Example 3.25 In the following example we illustrate harmonic frames in R2 and
R3. In R2 our examples of frames have respectively 4 and 9 frame vectors.

Figure 4: The harmonic frame for R2

with 4 frame vectors.
Figure 5: The harmonic frame for R2

with 9 frame vectors.

In R3 the chosen frame has 20 frame vectors.

0
0.2

0.4
0.6

0.8 −1

0

1
−1

−0.5

0

0.5

1

y
x

z

Figure 6: The harmonic frame for R3 with 20 frame vectors. The vectors all have the same x-
coordinate and form a cone.

Notice how the frame vectors are “spread out” evenly. This is a nice property
of the harmonic tight frames.
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The existence of the harmonic frames for any given M and N combined with
Theorem 3.21 immediately yields the following nice result.

Corollary 3.26 Given the vector space RN and any uniform tight frame Φ =
{ϕi}M

i=1 with M = N + 1. Then Φ is equivalent to a harmonic tight frame.

This completes the introduction to the theory of frames. We have seen a number
of properties of frames, how to make a frame expansion, introduced an equivalence
relation and shown how to construct a (harmonic) frame for any given M and N .
We will now proceed to consider how frames can be useful in signal transmission.
More specifically we will investigate why it is advantageous to use frames instead
of orthonormal bases and which frames give the best robustness towards losses of
frame coefficients during transmission.
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4 Signal transmission

Digital signal transmission is a method of communication in which a sender
transmits digitally stored information to a recipient. Various methods and require-
ments exist, and the most common will be addressed in the following. There are
basically two different types of communication lines, referred to as one-way and
two-way transmission lines respectively. Which one to choose depends on the ap-
plication. A classical example of a two-way transmission is the telephone, where
the recipient can inform the sender that a part of the message was not heard, and
ask the sender to repeat the message. A one-way transmission could be a public
speech, where the recipient cannot inform the speaker that a certain part of the
message was not heard. This is analoguos to the case of a digital transmission
line. A two-way digital transmission line can inform the sender that a part of the
information was not received, in order for the sender to repeat this part until the
entire information stream has been received. It is however crucial that the receiver
can identify which pieces of information that did not arrive correctly. This is for
instance solved by partitioning the information into packages and equipping each
package with a unique checksum for identification.

Sender Receiver

Sender ReceiverError

Sender ReceiverError

Sender ReceiverErrorEncoder Decoder

Figure 7: An overview of different types of signal transmission. First a simple one-way transmission
line where errors are absent. Second, in real life errors do occur, in our case an error corresponds to
the loss of a package. Third, by using a two-way transmission line the receiver can inform the sender
about missing packages. Fourth, instead of using a two-way system a robust one-way system can be
used. This demands an intelligent way of sending the information with some redundancy.

In some applications, for instance streaming of video over the internet or digi-
tal radio, two-way communication is not possible, since it can take a variable time
to recover the lost parts. Instead one-way communication is used. In a one-way
transmission it is desired that the information is received without any losses. Un-
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fortunately it is usually not possible to send data without encountering missing
packages. Often the received information will not suffice, and in order to com-
pensate, the sender must send the information in an intelligent way such that the
receiver can reconstruct all (or almost all) the information based only on the re-
ceived data. This is often done by use of so-called “Error-correcting codes” that
are based on algebra. Here we will use another approach where the application
of frames will prove useful. As we will show in the following sections, frames
have very good ability to withstand these losses. However, first we must consider
a process known as quantization that is necessary in digital signal transmission.

4.1 Quantization

When operating with continuous signals in a digital communication system, it
is necessary to quantize the signal in order to achieve a discrete representation of
the signal. First the continuous signal is sampled in order to get a discrete signal,
the amplitude of each signal element is then rounded to the nearest value in a given
set of discrete values. This set of values can for instance be a set of integers, or a set
of numbers with a fixed number of decimals, depending on the required accuracy.

Example 4.1 This example will demonstrate the necessity of quantization. A piece
of equipment measures a continuous signal in the interval [0; 10[, and samples
this signal to a precision of the fifth decimal. Each element of the signal has a
range of one milion values, since it can assume all possible values in the inter-
val [0.00000; 9.99999]. In a digital communication system decimal numbers are
converted to a binary representation in order to be transmitted using bits. This
implies that at least a 20 bit representation (220 = 1048576) is needed in order to
represent each element of the signal.

The discrete signal is now to be sent through a digital transmission line, but the
transmission line is limited to transmit only seven bits per milli-second. In order
to send the signal in real-time, the values must be limited to seven bits, thus only
permitting 27 = 128 different values. For decimal numbers this means that the
signal can only assume values to the precision of one decimal, thus yielding the
range [0.0; 9.9]. This is due to the fact that for a one-decimal number in this inter-
val, a total of one hundred possible values can occur, but when a second decimal
is introduced, the total number of different values exceed 128, precisely a total of
1000 different values.

Quantization of a signal y, can be interpreted by adding an error vector η to the
signal. The quantized signal ŷ is given by

ŷ = y + η. (4.1)

An appropriate stepsize ∆ is chosen. In the previous example ∆ would be 0.1,
because the signal was rounded to precision of one decimal. The stepsize ∆ is
chosen depending on the application’s requirements and limitations. In uniform



4.1 Quantization 27

quantization each element ηi is a number within the interval
[
−∆

2 ; ∆
2

[
, with the

asssumption that the elements in η are uniformly distributed. The assumption that
η is uniformly distributed is based on the observation that each element can assume
a random value within the interval. In addition the elements in η are assumed to be
pairwise independent.

From basic statistics, (9.6.8) in [10], we know that if a stochastic variable X
is uniformly distributed on the interval [a, b], the mean is given by E[X] = a+b

2 ,
which yields

E[ηi] =
−∆/2 + ∆/2

2
= 0. (4.2)

The variance of X is σ2 = (b−a)2

12 , which for ηi gives σ2 = ∆2

12 . Since ηi and ηj

are assumed independent for i 6= j,

E[ηiηj ] = E[ηi]E[ηj ] = 0, for i 6= j.

The variance of the ηi can be expressed by

σ2 = E[η2
i ]− (E[ηi])2 = E[η2

i ]− 02 = E[ηiηi].

The two results can be summarized to

E[ηi] = 0 and E[ηiηj ] = δijσ
2. (4.3)

This quantization noise model makes it possible to evaluate the error introduced
when working with a frame expansion.

Example 4.2 The following example demonstrates the quantization error η. We
wish to quantize a randomly picked signal y = {yi}4

i=1 with the stepsize ∆ = 0.2,
thus yielding the quantized signal ŷ.

yi

2.5468
7.5846
1.2548
0.9518

→

ηi ŷi

0.0532 2.6
0.0154 7.6
−0.0548 1.2
0.0482 1.0

We will now study the use of frames in one-way signal transmission. Using (3.15)
we can perform a frame expansion of a signal x:

x =
M∑

k=1

〈x, ϕk〉 ϕ̃k.

Instead of sending just the signal itself, the frame coefficients

y =


〈x, ϕ1〉
〈x, ϕ2〉

...
〈x, ϕM 〉
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are sent. This process is referred to as encoding, whereas the reconstruction from
the received coefficients is called decoding. If the analysis operator of the frame is
called F , the frame coefficients are computed by y = Fx. The new signal y is then
quantized by adding an error η to y, thus yielding the quantized frame expansion

ŷ = Fx+ η, (4.4)

where η is a vector containing all the error-elements. For the receiver, who only
has access to ŷ, it is impossible to reconstruct the original signal x perfectly, due
to the noise. The quantization error introduced in the reconstruction is the subject
of the next section.

4.2 Reconstruction Error

The goal of this section is to determine which frames that minimize the error
between the original signal and a signal reconstructed from the quantized frame
coefficients. To measure the error of an appoximation to a signal we will use the
so-called MSE.

Definition 4.3 Given a discrete signal x of length N , and an approximation x̂ to
x, the mean-squared-error MSE is defined by

MSE =
1
N
E
[
||x− x̂||2

]
. (4.5)

If quantization was not present, we know that we can achieve a perfect reconstruc-
tion using the left-inverse F † to the analysis operator F as described in (3.15) and
(3.16):

x = F †Fx =
M∑

k=1

〈x, ϕk〉 ϕ̃k,

where F † = F̃ ∗ and F̃ is the dual analysis operator. If quantization is applied to
the signal, we send ŷ = Fx+ η instead of y = Fx. The reconstructed signal x̂ is
then

x̂ = F̃ ∗(Fx+ η) =
M∑

k=1

(〈x, ϕk〉+ ηk)ϕ̃k. (4.6)

As mentioned our task is to minimize the MSE, so we begin by considering ‖x−x̂‖

||x− x̂|| =

∣∣∣∣∣
∣∣∣∣∣

M∑
k=1

〈x, ϕk〉ϕ̃k −
M∑

k=1

(〈x, ϕk〉+ ηk)ϕ̃k

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣−

M∑
k=1

ηkϕ̃k

∣∣∣∣∣
∣∣∣∣∣ . (4.7)
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The mean-squared error (MSE) is then

MSE =
1
N
E
[
||x− x̂||2

]
=

1
N
E

∣∣∣∣∣
∣∣∣∣∣

M∑
k=1

ηkϕ̃k

∣∣∣∣∣
∣∣∣∣∣
2
 ,

which can be rewritten using linearity of the inner product,

MSE =
1
N
E

[〈
M∑

k=1

ηkϕ̃k,
M∑
i=1

ηiϕ̃i

〉]

=
1
N
E

[
M∑

k=1

M∑
i=1

〈ηkϕ̃k, ηiϕ̃i〉

]

=
1
N
E

[
M∑
i=1

M∑
k=1

ηiηkϕ̃
∗
i ϕ̃k

]
.

Linearity of the mean and the use of (4.3) allows us to rewrite the expression as

MSE =
1
N

M∑
i=1

M∑
k=1

E [ηiηk] ϕ̃∗i ϕ̃k

=
1
N

M∑
i=1

M∑
k=1

δikσ
2ϕ̃∗i ϕ̃k.

The only non-zero terms are for i = k, so this reduces to

MSE =
1
N
σ2

M∑
k=1

||ϕ̃k||2.

Using Proposition 3.12, Proposition A.7 and (3.12), it can be futher reduced to

MSE = N−1σ2tr(F̃ ∗F̃ )

= N−1σ2tr((F ∗F )−1).

Since the frame operator F ∗F is self-adjoint, there exists some unitary matrix V
such that

F ∗F = V ΛV ∗

where Λ = diag{λi}N
i=1. This implies by the use of Proposition B.2

(F ∗F )−1 = (V ΛV ∗)−1 = (V ∗)−1Λ−1V −1 = V Λ−1V ∗.
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By Proposition A.5, and that V is unitary, the mean squared error can be rewritten
as

MSE = N−1σ2tr(V Λ−1V ∗)

= N−1σ2tr(V ∗V Λ−1)

= N−1σ2tr(Λ−1).

Since tr(Λ−1) is the same as the sum of all the inverted eigenvalues of F ∗F , we
arrive at the simple expression for the MSE

MSE =
1
N
σ2

N∑
i=1

1
λi
. (4.8)

This expression can help determine which frames minimize the MSE. For conve-
nience we will only consider uniform frames. The result is stated in the following
theorem. A lemma is however needed in order to complete the proof. The lemma is
a well-known result, see for instance (39.9) in [11], and the proof will be omitted.

Lemma 4.4 Let {ai}N
i=1 be a sequence of real numbers. Denote by µH and µ the

harmonic and the arithmetic mean respectively,

µH =
N∑N
i=1

1
ai

µ =
1
N

N∑
i=1

ai.

The following inequality holds with equality if and only if all the ai are equal:

µH ≤ µ.

Theorem 4.5 When encoding with a uniform frame and decoding with the left-
inverse (4.6) under the noise model (4.3), the MSE is minimum if and only if the
frame is tight.

Proof. Due to Proposition 3.12 the sum of the eigenvalues of F ∗F is equal to M .
To minimize the MSE is therefore equivalent to minimizing the sum

∑N
i=1 λ

−1
i

subject to the constraint that
∑N

i=1 λi = M is constant. To do that we notice that
the first and the second sums are closely related to the harmonic mean µH and the
usual arithmetic mean µ of the λi respectively.

By Lemma 4.4 we know that µH ≤ µ. This is equivalent to µ−1
H ≥ µ−1:

1
N

N∑
i=1

1
λi

= µ−1
H ≥ µ−1 =

N∑N
i=1 λi

which is equivalent to
N∑

i=1

1
λi
≥ N2

M
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where N2/M is constant. Clearly the sum is minimized if and only if equality
holds which is true if and only if all the λi are equal according to Lemma 4.4. This
is equivalent to having a tight frame.

�

We emphasize that the theorem states that uniform tight frames should be used in
order to achieve an MSE as small as possible. Depending of the type of frame,
different bounds of the MSE exist.

Theorem 4.6 Consider recontruction (4.6) with noise η satisfying (4.3) and the
mean-squared error (MSE) from Definition 4.3. For any frame, the MSE is given
by (4.8) and satisfies

B−1σ2 ≤ MSE ≤ A−1σ2. (4.9)

For a uniform frame,
N

M
σ2 ≤ MSE ≤ A−1σ2. (4.10)

For a uniform tight frame,

MSE =
N

M
σ2 = r−1σ2. (4.11)

Proof. The bounds in (4.9) follow from Proposition 3.11, where the eigenvalues
λi ∈ [A,B] ∀i, so by inversion 1/λi ∈ [1/B, 1/A] ∀i, and

N∑
i=1

B−1 ≤
N∑

i=1

1
λi
≤

N∑
i=1

A−1. (4.12)

By multiplication of 1
N σ

2

1
N
σ2

N∑
i=1

B−1 ≤ 1
N
σ2

N∑
i=1

1
λi
≤ 1
N
σ2

N∑
i=1

A−1,

which in terms of the MSE is simplified to

1
N
σ2N

B
≤ MSE ≤ 1

N
σ2N

A
.

This directly yields the bounds in (4.9). For a uniform tight frame the bounds are
equal, sinceA = B = r = M/N , and (4.11) follows. If the frame is only uniform,
we know by Theorem 4.5 that the MSE cannot be lower than for a tight frame,
which gives the lower bound in (4.10).

�

Notice the particularly simple expression for the MSE for a uniform tight frame,
which only depends on the redundancy of the frame.

This completes the considerations concerning the error from quantization. In
the following section we will investigate what happens if some of the information
is lost during the transmission.
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5 Erasures

5.1 Introducing erasures

When dealing with one-way signal transmission, it is an essential property to
be able to tolerate a certain amount of losses during the transmission. This is due
to the fact, that the recipient does not have any means of communicating to the
sender that a certain part of a signal has not been received. If this option was
possible, the sender could just send the missing part again, and therefore complete
the signal transmission. Instead the reciever must obtain enough information from
the remaining signal, in order to compensate for the missing parts. It might not be
possible to obtain a perfect recontruction, but typically some norm-difference in
comparison to the original signal is allowed. The following example demonstrates
the importance of the ability to withstand erasures.

Example 5.1 Given a signal made of a linear combination of cosine-functions that
is to be sent through a one-way transmission line, we will here demonstrate the
consequences of using a non-robust series expansion. The signal is here shown
in Figure 8. We construct a series expansion of the signal using an ONB (the
Discrete Fourier Transform), and send it to the receiver. During the transmission
a single element of the series expansion is lost, and the missing element is in this
case replaced with a zero. The signal is then recontructed with the remaining
information. As seen in Figure 9, the signal does not give a good reconstruction.

1.5

3

−0.5

2

t

1098765

1.0

4

0.5

0.0

−1.0

10

Figure 8: Original signal to be sent us-
ing a one-way transmission line, using a
ONB series expansion.

0.0 5.0

1.5

−0.5

−1.0

7.52.5

1.0

0.5

10.0

0.0

t

Figure 9: Recontructed signal with one
erasure using an ONB series expansion.
It is far from close to the original.

Fortunately some frames have very good abilities to withstand losses due to their
over-completeness. In general these losses are referred to as erasures, and the
index set corresponding to the erasures is denoted E. It should be emphasized
that we assume that the recipient knows this index set. If a signal ŷ loses |E|
elements, {ŷk}k∈E , during a transmission, the goal is to reconstruct the signal as
well as possible using the remaining information. To do so, the recipient uses the
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frame consisting of the frame vectors corresponding to the coefficients that were
received. More precisely, ΦE = {ϕk}k/∈E is used, where it is assumed that ΦE

is still a frame. This assumption is used throughout the rest of this report, since it
gives rise to a number of nice results. Furthermore this does not pose a problem,
since we will show that the assumption holds for the harmonic tight frames. The
resulting (M − |E|) × N analysis operator FE is then the matrix with ϕ∗k as the
k’th row, where k /∈ E.

It will be important that the frames we use are as stable towards erasures as
possible. The frame is not suited for the application if the remaining vectors after
only a few erasures is no longer a frame. We introduce the concept of maximal
robustness in the following definition.

Definition 5.2 Let Φ = {ϕi}M
i=1 be a frame in RN . The frame Φ is said to have

maximal robustness if span{ϕi}i∈P = RN for any set P ⊆ {1 . . .M} where
|P | = N .

As the definition says, a frame is called maximally robust if it can withstand up to
M − N erasures and still span the considered space. The next example demon-
strates that not all frames, even tight frames, are maximally robust.

Example 5.3 This example shows that even though we have a frame, it is not
necessarily maximally robust. Figure 10 illustrates the uniform tight frame Φ =
{ϕi}4

i=1 ∈ R2 given by

ϕ1 =
(

1
0

)
, ϕ2 =

(
0
1

)
, ϕ3 =

(
−1
0

)
, ϕ4 =

(
0
−1

)
.

In figure 11 the two vectors ϕ2 and ϕ4 are removed, corresponding to losses of the
second and fourth coefficient. It is easy to see that the two remaining vectors do
not span R2, thus not being maximally robust. There exist similar examples, where
even one erasure leads to a incomplete set.

ϕ1

ϕ2

ϕ4

ϕ3

Figure 10: Example of a non-robust
frame in R2 before erasures occur.

ϕ1ϕ3

Figure 11: The remaining vectors after
two erasures. They do not span R2.

If a number of frame elements are removed from the frame, it is not always possible
to maintain the frame bounds. It is clear that if |E| is greater than M −N , then the
span of the remaining vectors does not cover RN . The first subject of attention is
to which extent erasures can occur, and still maintain a frame.
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Theorem 5.4 Let e ∈ N and Φ = {ϕk}M
k=1 ⊂ RN be a uniform tight frame, with

M/N > e. For any set E, where |E| = e, then ΦE = {ϕk}M
k=1, k /∈E is a uniform

frame, and has the lower frame bound AE = M/N − e and upper frame bound
BE = M/N .

Proof. The frame bound of a tight frame is

M∑
k=1

|〈x, ϕk〉|2 = A ∀x ∈ SN−1. (5.1)

If a set E, with |E| = e, of frame elements, ϕi, i ∈ E, is deleted from the frame,
this corresponds to removing all the terms |〈x, ϕi〉|2 ∀i ∈ E from the sum in
(5.1). Since Φ is a uniform tight frame, ||ϕi|| = 1∀i, then by the Cauchy-Schwartz
inequality we have that

0 ≤ |〈x, ϕi〉| ≤ ||x|| · ||ϕi|| = 1, ∀x ∈ SN−1. (5.2)

This implies that
0 ≤

∑
i∈E

|〈x, ϕi〉|2 ≤ e, (5.3)

yielding

A− e ≤
M∑

k=1, k /∈E

|〈x, ϕk〉|2 ≤ A ∀x ∈ SN−1. (5.4)

For a tight frame A = M/N , and due to the assumption that M/N > e, the lower
frame bound is still positive, and the upper frame bound is still maintained, thus
ΦE is still a frame. The frame is of course still uniform since the remaining frame
vectors have not been changed.

�

The theorem says that any uniform tight frame is stable towards any number of
erasures lower than M/N . It is an extended version of Theorem 4.1 in [5]. For an
arbitrary, but fixed, number of erasures e, we are now able construct frames that can
withstand e erasures by selecting a sufficiently large M . This is not satisfactory,
however. This is due to the fact that if one for instance wishes to send a signal
using a one-way communication-line, it will be necessary to send a signal of double
length, in order to maintain a frame, with just two erasures. For more erasures the
signal length must be even larger.

Fortunately is it possible to contruct frames that have more robustness to era-
sures than this. An important example of such frames is the class of harmonic
frames. This is the content of the following theorem.

Theorem 5.5 Let Φ = {ϕk}M
k=1 be a complex harmonic frame in CN given by

Theorem 3.23 or a real harmonic frame in RN given by Theorem 3.24. Then any
subset of N or more vectors from Φ form a frame. In other words, a harmonic
frame is maximally robust.
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The proof of Theorem 5.5 is a bit messy and not very enlightening and will not be
given here. It can be found in Appendix A.6 in [5].

The harmonic frames are maximally robust and from Section 3.5 we know how
to construct them for any given N -dimensional space and with any number M of
frame vectors. Hence they form a nice family of frames for our application.

We are now ready to investigate how the MSE is affected by erasures.

5.2 MSE after occurences of erasures

In section 4.2 the MSE was calculated for the error introduced by quantization.
In the following the effect of erasures is taken into consideration, and the MSE is
calculated. In Section 5.3, the MSE is calculated for a frame with only a single
erasure. This result is in Section 5.4 expanded to the general case with e erasures.

Recall that for a given frame Φ we assume to have a new frame ΦE after the
erasures have occured. This gives rise a new analysis operator FE . The new frame
operator is then given by the expression F ∗

EFE , with eigenvalues {λE,i}N
i=1. Then

{1/λE,i}N
i=1 are the eigenvalues for (F ∗

EFE)−1. Since the new frame is used for
the reconstruction, the MSE is by (4.8)

MSEE =
σ2

N

N∑
i=1

1
λE,i

. (5.5)

Expressed using trace we have

MSEE = N−1σ2tr
(
(F ∗

EFE)−1
)
. (5.6)

This is the general expression of the MSE after e erasures that we will use in the
following sections to reach some relatively nice expressions both with a single
erasure and more.

5.3 MSE with one erasure

At first we wish to study the case of just one erasure from a uniform tight frame
Φ. The goal of the section is to prove Theorem 5.14. The theorem states that among
all uniform frames the tight frames minimize the average and the maximum MSE
over all possible single erasures. We begin by finding the MSE for a single erasure
when the frame is tight and then we proceed to the theorem.

To compute the MSE for one erasure from a uniform tight frame we proceed as
follows. Since the frame vectors are named arbitrarily, we can for convenience turn
our attention to the case where 〈ϕ1, x〉 is the erased component. The remaining
frame is then denoted Φ{1} = Φ\{ϕ1} with analysis operator F1. Since the frame
operators in question can be written as F ∗F =

∑M
k=1 ϕkϕ

∗
k = M

N I and F ∗
1F1 =∑M

k=2 ϕkϕ
∗
k, we have

F ∗
1F1 =

M

N
I − ϕ1ϕ

∗
1. (5.7)
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To calculate the MSE we know by (5.6) that we need tr (F ∗
1F1)

−1. To invert F ∗
1F1

we use Proposition C.6 which yields 3

(F ∗
1F1)−1 =

(
M

N
I − ϕ1ϕ

∗
1

)−1

=
N

M
I +

N2

M(M −N)
ϕ1ϕ

∗
1.

Since the MSE can be calculated by use of the trace, we find the trace

tr(F ∗
1F1)−1 = tr

(
N

M
I +

N2

M(M −N)
ϕ1ϕ

∗
1

)
,

and by use of linearity of trace, Proposition A.4 and that ϕi are of unit-norm, we
then get

tr(F ∗
1F1)−1 =

N

M
tr(IN ) +

N2

M(M −N)
tr(ϕ1ϕ

∗
1)

=
N2

M
+

N2

M(M −N)
tr(ϕ∗1ϕ1)

=
N2

M

(
1 +

1
M −N

)
.

Combined with (5.6) we then obtain

MSE1 =
σ2

N

N2

M

(
1 +

1
M −N

)
=
(

1 +
1

M −N

)
MSE0, (5.8)

where MSE0 is the mean square error from quantization for a uniform tight frame
given by (4.11). Notice that the MSE does not depend on which particular erasure
has occured but only on M − N . This is a surprisingly simple result and we will
state it in a theorem.

Theorem 5.6 Consider encoding with a uniform tight frame Φ = {ϕk}M
k=1 ⊂ RN

and decoding with the left-inverse (4.6) under the noise model (4.3). The mean
squared error resulting from one single erasure is given by

MSE1 =
(

1 +
1

M −N

)
MSE0,

where MSE0 is given by (4.11).

After having determined the MSE for a single erasure we will proceed to prove
Theorem 5.14. In order to do so, we need a number of lemmas. Most of them will
be proved but some will only be stated. The following pages have been challenging
for our part, due to the lack of details in this part of [5]. It is possible that the reader
will also find that it takes some effort to read.

3Substitute A = M/N · IN , B = ϕ1, C = 1 and D = ϕ∗1.
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Lemma 5.7 Let w ∈ CN with ||w|| = 1. The eigenvalues of IN − ww∗ are 0
and 1 with multiplicity 1 and N − 1 respectively. Futhermore w is an eigenvector
corresponding to the eigenvalue 0.

Proof. We begin by finding bounds for the eigenvalues {λi}N
i=1 for IN − ww∗.

Let (λ, v) be an eigenpair of IN − ww∗, then (IN − ww∗)v = λv holds, and by
taking the inner product with v we deduce

〈(IN − ww∗)v, v〉 = 〈λv, v〉 ,

or

||v||2 − ||w∗v||2 = λ||v||2,

that can be rewritten to

||w∗v||2 = (1− λ)||v||2. (5.9)

Since w∗v is a scalar, then ||w∗v|| = |w∗v|, and the following holds

||w∗v||2 = |w∗v|2 = |〈v, w〉 |2

≤ ||v||2||w||2 = ||v||2, (5.10)

by use of the Cauchy-Schwartz inequality. From this we get (1− λ)||v||2 ≤ ||v||2
which implies that λ ≥ 0. On the other hand, since ||w∗v||2 and ||v||2 are none-
negative, (5.9) implies that λ ≤ 1. So all eigenvalues belong to the interval [0, 1].

w is an eigenvector of IN − ww∗ corresponding to the eigenvalue 0, since

((IN − ww∗)− 0 · IN )w = INw − ww∗w

= w − w||w||2 = w − w = 0.

We now wish to prove that the remaining eigenvalues are all 1. First note that the
matrix IN −ww∗ is self-adjoint since (IN −ww∗)∗ = I∗N − (ww∗)∗ = IN −ww∗.
Hence the spectral theorem applies, and we can write IN − ww∗ = UΛU∗ where
U is unitary and Λ = diag{λi}N

i=1. This is then rewritten to

IN − U∗ww∗U = Λ.

By using the linearity of trace (Proposition A.2) we find that

tr(IN )− tr(U∗ww∗U) = tr(Λ).

Using the cyclic property of trace (Proposition A.5), the expression can be rewritten
as

tr(IN )− tr(w∗UU∗w) =
N∑

i=1

λi,
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and using Proposition A.7, we can deduce that

N∑
i=1

λi = N − ||w||2 = N − 1.

We know that λi ∈ [0, 1] and that a single eigenvalue is equal to 0. This forces the
remaining N − 1 eigenvalues to be equal to 1.

�

Lemma 5.8 Let M ∈ CN×N and let w ∈ CN with ||w|| = 1. Then the following
inequality holds, with equality if and only if w is an eigenvector of M :

w∗M∗Mw ≥ |w∗Mw|2 .

Proof. First we show that the matrix IN − ww∗ is positive semidefinite, that is
for any x ∈ CN , x∗(IN − ww∗)x ≥ 0. The left hand side is rewritten to

x∗(IN − ww∗)x = x∗x− x∗ww∗x

= ||x||2 − (w∗x)∗(w∗x)

= ||x||2 − ||w∗x||2.

The inequality (5.10) implies that ||x||2 − ||w∗x||2 ≥ 0 thus proving that
IN − ww∗ is positive semidefinite. This means that

0 ≤ (Mw)∗(IN − ww∗)(Mw) = w∗M∗Mw − (w∗M∗w)(w∗Mw).

By rearranging we then get

w∗M∗Mw ≥ (w∗Mw)∗(w∗Mw),

which is equivalent to

w∗M∗Mw ≥ |w∗Mw|2 . (5.11)

After having proved that the inequality holds, we proceed to the equality part.
Let eN = w and choose {ei}N−1

i=1 to be normalized eigenvectors such that {ei}N
i=1

forms an orthonormal basis of CN . Due to Lemma 5.7 we have

(IN − ww∗)ei =
{
ei for i = 1, . . . , N − 1
0 for i = N.

(5.12)

Using the orthonormal basis any vector from CN can be written as a linear
combination of the eigenvectors, for instance there exist constants {ci}N

i=1 so that

Mw =
N∑

i=1

ciei. (5.13)
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The equality corresponding to (5.11) is equivalent to

〈(IN − ww∗)Mw,Mw〉 = 0. (5.14)

(5.12) and (5.13) can be used to rewrite the left hand side of (5.14):

〈(IN − ww∗)Mw,Mw〉 =

〈
(IN − ww∗)

N∑
i=1

ciei,
N∑

i=1

ciei

〉

=

〈
N∑

i=1

ci(IN − ww∗)ei,
N∑

i=1

ciei

〉

=

〈
N−1∑
i=1

ciei,
N∑

i=1

ciei

〉
.

From this it is seen that

〈(IN − ww∗)Mw,Mw〉 =
N−1∑
i=1

|ci|2,

which is zero if and only if {ci}N−1
i=1 are all 0. This has major consequences for

(5.13), where all but the last term disappear:

Mw = cNeN = cNw. (5.15)

But this is equivalent to saying that w is an eigenvector of M , which completes the
proof, since all arguments work in both directions.

�

Definition 5.9 The definition is adopted from [12].

• A subset C of RN is said to be convex, if for any x, y ∈ C and any t ∈ [0, 1],
it holds that

(1− t)x+ ty ∈ C.

• A function f : C → R on a convex set C is said to be convex, if for any
x, y ∈ C and any t ∈ [0, 1], it holds that

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

If “≤” can be replaced by “<” the function is said to be strictly convex.

For a function f on the interval I ⊂ R the convexity can equivalently be expressed
by

d2

dx2
f(x) ≥ 0 for x ∈ I,

where again the term “strictly” is used if “≤” can be replaced by “<”.
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Lemma 5.10 Let V be a bounded convex set and f : V → R be a strictly convex
function. Then f has a unique minimizer in V .

Proof. See Proposition 1.2 in [3].

Lemma 5.11 Let f : V → R be a convex function and let {λi}M
i=1 be a sequence

of real positive numbers with sum 1. Then for all sequences {xi}M
i=1 ⊂ VM it

holds that

f

(
M∑
i=1

λixi

)
≤

M∑
i=1

λif(xi). (5.16)

Proof. See page 39-40 in [12].

Lemma 5.12 Let f be a convex function over a bounded set V ⊂ R and let VM =
V ×· · ·×V ,M times. Consider sequences x = {xi}M

i=1 ∈ VM with the constraint∑M
i=1 xi = N , and assume N/M ∈ V . Then the function F : VM → R : F (x) =∑M
i=1 f(xi) has a unique minimizer among all such sequences x and the minimum

occurs if and only if xi = N/M, ∀i.

Proof. First notice that F is convex, since it is a sum of convex functions. From
Lemma 5.10 we then know that F has a unique global minimizer in VM . To
determine this minimizer we need the result from Lemma 5.11. In the notation of
Lemma 5.11 we let λi = 1/M, ∀i. This means that

M∑
i=1

λixi =
M∑
i=1

1
M
xi =

1
M

M∑
i=1

xi =
N

M
.

This can be used to rewrite the inequality (5.16) to

Mf

(
N

M

)
≤

M∑
i=1

f(xi), ∀x,

which in terms of the function F is equivalent to

F

(
N

M
,
N

M
, . . . ,

N

M

)
≤ F (x), ∀x.

In other words, (N/M,N/M, . . . , N/M) is a minimizer of F , and we already
know that the minimizer is uniquely determined. This means that F is minimized
over VM if and only if xi = N/M, ∀i.

�

Lemma 5.13 Let F ∗F be the frame operator of the frame Φ = {ϕi}M
i=1 ⊂ RN ,

M > N , and define the numbers vi = ϕ∗i (F
∗F )−1ϕi,∀i = 1, . . . ,M . Then

vi ∈ ]0, 1[,∀i.
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Proof. Denote the frame bounds of Φ by A and B. Then 1/B and 1/A are frame
bounds for the dual frame with frame operator (F ∗F )−1. This means that

ϕ∗i (F
∗F )−1ϕi ≥

1
B
> 0, ∀i.

This establishes the lower bound.
For the upper bound we proceed as follows. Using the dual frame vectors we

expand ϕi:

ϕi =
M∑

k=1

〈
ϕi, (F ∗F )−1ϕk

〉
ϕk.

On the other hand we can make the straightforward expansion

ϕi =
M∑

k=1

δikϕk.

By Proposition C.3 we get

M∑
k=1

|δik|2 =
M∑

k=1

|
〈
ϕi, (F ∗F )−1ϕk

〉
|2 +

M∑
k=1

|δik −
〈
ϕi, (F ∗F )−1ϕk

〉
|2.

Notice that the left hand side is equal to 1 and rewrite the right hand side to get

1 = |
〈
ϕi, (F ∗F )−1ϕi

〉
|2 +

M∑
k=1,k 6=i

|
〈
ϕi, (F ∗F )−1ϕk

〉
|2

+
M∑

k=1

|δik −
〈
ϕi, (F ∗F )−1ϕk

〉
|2.

All the terms are positive, so they are all (and in particular the first) less than or
equal to 1, which means that

ϕ∗i (F
∗F )−1ϕi ≤ 1, ∀i.

Now assume ϕ∗i (F
∗F )−1ϕi = 1. From Proposition C.4 we get that Φ\{ϕi}, is in-

complete, but this contradicts our assumption that the deletion of any frame vector
from Φ leaves a frame. This means that ϕ∗i (F

∗F )−1ϕi < 1,∀i, and the proof is
complete.

�

We have now completed the lemmas and are ready to prove the main result.
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Theorem 5.14 Consider encoding with a uniform tight frame and decoding with
the left-inverse (4.6) under the noise model (4.3). The MSE averaged over all
possible erasures of one frame element,

MSE1 =
1
M

M∑
k=1

MSE{k},

is minimum if and only if the original frame is tight. Also, a tight frame minimizes
the maximum distortion caused by one erasure

max
k=1,2,...,M

MSE{k}.

Proof. We wish to consider the average MSE over all possible single erasures.
Recall that for reconstruction of a signal with the erasure set E we used FE instead
of F , where F is the analysis operator for the entire frame. The present reconstruc-
tion is with a single erasure, so |E| = 1. Let i denote the index of the erased frame
element ϕi from F . We can express our frame operator F ∗F in the following way

F ∗F =

 | | |
ϕ1 ϕ2 · · · ϕM

| | |




— ϕ∗1 —
— ϕ∗2 —

· · ·
— ϕ∗M —

 =
M∑

k=1

ϕkϕ
∗
k.

A single erasure corresponds to removing one term in the expression. Removing
the i’th term from the sum, we then define

Hi =
M∑

k=1,k 6=i

ϕkϕ
∗
k = F ∗F − ϕiϕ

∗
i ,

where Hi corresponds to the frame operator with the i’th element removed. By
(5.6), the i’th MSE can be expressed as

MSE{i} = N−1σ2tr
(
H−1

i

)
.

By averaging over all possible erasures we get

MSE1 =
1
M

M∑
i=1

σ2

N
tr
(
H−1

i

)
. (5.17)

Our task is now to show that this expression is minimized if and only if the original
frame is tight. By Proposition C.6 we can rewrite H−1

i = (F ∗F − ϕiϕ
∗
i )
−1 to 4

H−1
i = (F ∗F )−1 + (F ∗F )−1ϕi

[
1− ϕ∗i (F

∗F )−1ϕi

]−1
ϕ∗i (F

∗F )−1.

4Substitute A = F ∗F , B = ϕi, C = 1 and D = ϕ∗i .
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To find the trace of H−1
i , we will begin by using linearity of the trace:

tr(H−1
i ) = tr

(
(F ∗F )−1

)
+
[
1− ϕ∗i (F

∗F )−1ϕi

]−1 tr
(
(F ∗F )−1ϕiϕ

∗
i (F

∗F )−1
)
,

since
[
1− ϕ∗i (F

∗F )−1ϕi

]
is a scalar. By use of the cyclic property of trace (Propo-

sition A.5), the expression can be rewritten as

tr(H−1
i ) = tr

(
(F ∗F )−1

)
+
[
1− ϕ∗i (F

∗F )−1ϕi

]−1 tr
(
ϕ∗i (F

∗F )−2ϕi

)
.

Observing that ϕ∗i (F
∗F )−2ϕi is a scalar yields

tr(H−1
i ) = tr

(
(F ∗F )−1

)
+

ϕ∗i (F
∗F )−2ϕi

1− ϕ∗i (F ∗F )−1ϕi
.

Substituting in (5.17) gives

MSE1 =
σ2

MN

M∑
i=1

(
tr
(
(F ∗F )−1

)
+

ϕ∗i (F
∗F )−2ϕi

1− ϕ∗i (F ∗F )−1ϕi

)

=
σ2

N
tr
(
(F ∗F )−1

)
+

σ2

MN

M∑
i=1

ϕ∗i (F
∗F )−2ϕi

1− ϕ∗i (F ∗F )−1ϕi
. (5.18)

We recognize the first term from Theorem 4.5, and so we know that this is mini-
mized if and only if the frame is tight. This means that we can turn our attention to
the second term.

This part is more tricky and requires some more work. The idea is similar to
the one used in the proof of Theorem 4.5: A function of the λi was minimized with
respect to the constraint that

∑N
i=1 λi was constant. Now we will introduce the

numbers vi that will be used in a similar fashion:

vi = ϕ∗i (F
∗F )−1ϕi for i = 1, . . . ,M.

(F ∗F )−1 is the dual frame operator and we know that the bounds for the dual
frame are 1/B and 1/A. Due to this, and ||ϕi|| = 1, we see that vi ∈

[
1
B ,

1
A

]
. The

sum of the vi is constant, but this requires a number of steps to be seen. Using the
definition of vi and the fact that it is a scalar we find

M∑
i=1

vi =
M∑
i=1

ϕ∗i (F
∗F )−1ϕi

=
M∑
i=1

tr
(
ϕ∗i (F

∗F )−1ϕi

)
.



44 5 ERASURES

The cyclic permutation property and linearity of the trace yield

M∑
i=1

vi =
M∑
i=1

tr
(
(F ∗F )−1ϕiϕ

∗
i

)
= tr

(
M∑
i=1

(F ∗F )−1ϕiϕ
∗
i

)

= tr

(
(F ∗F )−1

M∑
i=1

ϕiϕ
∗
i

)
.

Recognizing
∑M

i=1 ϕiϕ
∗
i as F ∗F , this simplifies to

M∑
i=1

vi = tr
(
(F ∗F )−1(F ∗F )

)
= tr(IN ) = N. (5.19)

Since we are interested in minimizing the second expression in (5.18), we now turn
our attention to the numerator. By use of Lemma 5.8 we obtain the inequality

ϕ∗i (F
∗F )−2ϕi ≥

∣∣ϕ∗i (F ∗F )−1ϕi

∣∣2 = |vi|2 = v2
i ,

since vi is positive. Using this inequality the second expression from (5.18) can be
rewritten as

M∑
i=1

ϕ∗i (F
∗F )−2ϕi

1− ϕ∗i (F ∗F )−1ϕi
≥

M∑
i=1

v2
i

1− vi
. (5.20)

Observe that the function f(x) = x2

1−x for x ∈]0, 1[ is strictly convex since

d2

dx2
f(x) =

2
(1− x)3

> 0 for x ∈]0, 1[.

Since N/M ∈]0, 1[ and f is convex over ]0, 1[, we know by Lemma 5.12, that the
right hand side of (5.20) is minimized if and only if vi = N/M,∀i.

To prove that this is equivalent to having a tight frame we proceed as follows:
If Φ is tight, then F ∗F = M/N · IN , so (F ∗F )−1 = N/M · IN . This implies that

vi = ϕ∗i (F
∗F )−1ϕi =

N

M
||ϕi||2 =

N

M
∀i.

Equality holds in (5.20), since the denominators on each side are the same and

ϕ∗i (F
∗F )−2ϕi = ϕ∗i

(
N

M
IN

)2

ϕi =
(
N

M

)2

= v2
i ,

which means that for a tight frame the left hand side of (5.20) attains its minimum.
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Conversely, if vi = N/M,∀i, then the right hand side of (5.20) is mini-
mized, and according to Lemma 5.8 equality holds if and only if ϕi is an eigen-
vector of (F ∗F )−1. Denote the corresponding eigenvalue by νi and we have
(F ∗F )−1ϕi = νiϕi, which by multiplication by ϕ∗i yields

ϕ∗i (F
∗F )−1ϕi = νi.

But this means that νi = vi = N/M , and thus all eigenvalues of (F ∗F )−1 are
equal. Hence the dual frame of Φ is tight, which in turn implies that Φ itself is
tight. This completes the proof of the first part of the theorem.

We now wish to prove that the maximum MSE caused by one erasure is mini-
mized if the frame is tight. Let FM×N denote the set of all uniform frames withM
vectors for RN . For a given frame Φ ∈ FM×N there exist an erasure that gives an
MSE larger than the MSE for all other erasures from this frame. Since this is true
for all frames in FM×N , there exists a frame Φ̂ that has the lowest maximum MSE
in comparison to all the other frames. That is, Φ̂ minimizes the maximum MSE
caused by one erasure among all frames in FM×N .

Consider now Φ̂. We know that the maximum is always greater than or equal
to the average:

max
k=1,...,M

MSE{k}
(
Φ̂
)
≥ MSE1

(
Φ̂
)
,

so we have a lower bound for the maximum value. In the first part of this proof, we
showed that the average MSE is minimized if and only if the frame is tight. When
the frame is tight, each erasure contributes equally to the average due to (5.8). This
means that the maximum value of MSE{k} can be equal to the average by choosing
a tight frame. Since the maximum value cannot be lowered further, this proves that
the minimax solution is obtained when the frame is tight.

�

The theorem says that among the uniform frames the tight frames will give the best
performance when considering the MSE caused by a single erasure. To elaborate
this further, we give the following example.

Example 5.15 This example will illustrate what Theorem 5.14 states, namely that
a tight frame has better robustness towards single erasures both in average and in
worst-case.

Consider in R2 the Mercedes Benz frame Φ and the frame Ψ with analysis
operators

F =

 0 1
−
√

3
2 −1

2√
3

2 −1
2

 and G =

 1 0
0 1
1√
2

1√
2
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respectively, see Figures 12 and 13. Now consider the deletion of one frame vector.
The MSE can be computed by (4.8). For each erasure of a vector from Φ a non-tight
frame is left with eigenvalues λ(F ∗

1F1) = {3
2 ,

1
2}. The MSE is then

MSE =
σ2

N

(
1

3/2
+

1
1/2

)
=

8
3
σ2

N
.

Since this is the case for each erasure, the average case and worst-case values will
also be 8/3 · σ2/N .

For Ψ the erasure of ψ3 results in a tight frame with λ(G∗
{3}G{3}) = {1, 1}

and an MSE of 2σ2/N . This is better than for Φ, even though the original frame
Ψ was not tight. However if instead ψ1 or ψ2 is deleted, we get λ(G∗

{1}G{1}) =

λ(G∗
{2}G{2}) = {1 +

√
1/2, 1−

√
1/2} and

MSE =
σ2

N

(
1

1 +
√

1/2
+

1
1 +

√
1/2

)
= 4

σ2

N
,

which is much poorer than for Φ. In average and worst-case Ψ gives 10/3 · σ2/N
and 4 · σ2/N which is worse than the 8/3 · σ2/N for Φ. So the tight frame has
better performance in both cases, which was the result of Theorem 5.14.

ϕ3
ϕ2

R2

ϕ1

Figure 12: The Mercedes Benz frame Φ.

ψ3

ψ2

ψ1

Figure 13: The non-tight frame Ψ.

5.4 MSE with more than one erasure

The natural thing to do next would be to try and extend Theorem 5.14 to cover
more than one erasure. Unfortunately a similar result is not true for an arbitrary
number of erasures, in fact already in the case of two erasures it is not true that all
tight frames minimize the MSE, which is seen from the following example.

Example 5.16 This example will illustrate that not all tight frames minimize the
MSE in the case of two erasures.
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Consider in R2 the uniform frames Φ and Ψ with analysis operators

F =


0 1
9
10

√
1−

(
9
10

)2
0 1

−
√

1−
(

9
10

)2 9
10

 and G =


0 1
3
5

4
5

0 1
3
5

4
5


respectively, see Figures 14 and 15.

Figure 14: The tight frame Φ. Figure 15: The non-tight frame Ψ.

Φ is tight and Ψ is non-tight, since it is easy to show that

F ∗F =
(

2 0
0 2

)
and G∗G =

(
43
25 0
0 57

25

)
.

However, using the same procedure as in Example 5.15 we find (numerically) the
average and worst-case MSE’s summarized by Table 2. It is clear that the tight
frame has poorer perfomance in this case.

Frame MSE2 max MSE
Φ 4.9985 10.5263
Ψ 3.5885 5.5556

Table 2: Comparison of MSE’s. The factor σ2/N has been omitted for simplicity. Even though Φ is
tight, the MSE is larger in both cases than for Ψ that is non-tight.

However, inspired by the nice properties in the case of zero and one erasure, and
the overall simplicity of tight frames compared to general frames, we will consider
the MSE for a tight frame in the case where an arbitrary number of erasures can
occur.

Let Φ be a uniform tight frame and assume that e erasures have occured at
positions given by the index set E. Assume furthermore that ΦE is a frame, and
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let FE denote the corresponding analysis operator. By (5.6) we know that the MSE
depends on the trace of (F ∗

EFE)−1. Since Φ is tight, F ∗
EFE can be written as

F ∗
EFE =

M

N
IN −QQ∗,

where Q is an N × e matrix with columns {ϕk}k∈E . To arrive at a nice expression
for the MSE, we perform a number of steps. First we use Proposition C.6 5:

(F ∗
EFE)−1 =

N

M
IN +

N

M
INQ

(
Ie −Q∗N

M
INQ

)−1

Q∗N

M
IN

=
N

M
IN +

N2

M2
Q

(
Ie −

N

M
Q∗Q

)−1

Q∗. (5.21)

We compute tr(F ∗
EFE)−1 from (5.21):

tr(F ∗
EFE)−1 = tr

[
N

M
IN +

N2

M2
Q

(
Ie −

N

M
Q∗Q

)−1

Q∗

]

=
N2

M
+
N2

M2
tr

[
Q

(
Ie −

N

M
Q∗Q

)−1

Q∗

]
.

To simplify this, we can make a series expansion of the matrix inversion using
Neumann’s theorem (Theorem A.5.3 in [1])(

Ie −
N

M
Q∗Q

)−1

=
∞∑

k=0

(
N

M
Q∗Q

)k

,

which together with the cyclic property of trace gives the following

tr(F ∗
EFE)−1 =

N2

M
+
N2

M2
tr

[(
Ie −

N

M
Q∗Q

)−1

Q∗Q

]

=
N2

M
+
N2

M2
tr

[ ∞∑
k=0

(
N

M
Q∗Q

)k

Q∗Q

]

=
N2

M
+
N2

M2

∞∑
k=0

(
N

M

)k

tr
(
(Q∗Q)k+1

)
.

This is inserted into (5.6):

MSEE =
σ2

N

(
N2

M
+
N2

M2

∞∑
k=0

(
N

M

)k

tr
(
(Q∗Q)k+1

))

=
Nσ2

M

(
1 +

1
M

∞∑
k=0

(
N

M

)k

tr
(
(Q∗Q)k+1

))

=

(
1 +

1
M

∞∑
k=0

(
N

M

)k

tr
(
(Q∗Q)k+1

))
MSE0,

5Let A = M/N · IN , B = Q, C = Ie, D = Q∗
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where MSE0 is the MSE for a uniform tight frame with zero erasures as in (4.11).
To simplify this expression further, we proceed as follows. Let {µi}e

i=1 denote the
eigenvalues of Q∗Q. By Proposition A.8, we can rewrite the series

∞∑
k=0

(
N

M

)k

tr
(
(Q∗Q)k+1

)
=

∞∑
k=0

(
N

M

)k e∑
i=1

µk+1
i

=
e∑

i=1

µi

∞∑
k=0

(
N

M
µi

)k

(5.22)

=
e∑

i=1

µi

1− (N/M)µi
,

where the convergence of
∑∞

k=0

(
N
M µi

)k
will be addressed shortly. The expression

for the MSEE simplifies to the following theorem.

Theorem 5.17 Consider encoding with a maximally robust uniform tight frame
Φ = {ϕk}M

k=1 ⊂ RN with analysis operator F and decoding with the left-inverse
(4.6) under the noise model (4.3). Let E with e = |E| and 1 < e ≤M −N be the
index set of erasures. The MSE is then

MSEE =

(
1 +

e∑
i=1

µi

1− (N/M)µi

)
MSE0 (5.23)

where Q is an N × e matrix with {ϕk}k∈E in the columns and {µi}e
i=1 are the

eigenvalues of Q∗Q.

The series in (5.22) is geometric and is convergent if and only if |(N/M)µi| < 1.
We will show that |(N/M)µi| ≤ 1, where equality holds if and only if ΦE is not a
frame. To do that we need the following lemma.

Lemma 5.18 Let A ∈ Cm×n. Then the non-zero eigenvalues of A∗A and AA∗

are equal.

Proof. Without loss of generality we can assumem > n. Make the singular value
decomposition (SVD) of A:

A = UΣV ∗,

where U ∈ Rm×m and V ∈ Rn×n are unitary and Σ ∈ Rm×n has the singular
values {σi}n

i=1 in the diagonal and zeros everywhere else. Notice that by hermitian
transposition we get the SVD of A∗:

A∗ = V Σ∗U∗.
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Now use the SVDs and the fact that U and V are unitary to find expressions for
A∗A and AA∗:

A∗A = V Σ∗U∗UΣV ∗ = V Σ∗ΣV ∗

= V


|σ1|2

|σ2|2
. . .

|σn|2

V ∗

and

AA∗ = UΣV ∗V Σ∗U∗ = UΣΣ∗U∗

= U


|σ1|2

|σ2|2 0
. . .

|σn|2
0 0

U∗.

From this it can be seen that {|σi|2}n
i=1 are the eigenvalues ofA∗A and {|σi|2}n

i=1∪
{0}m−n

i=1 are the eigenvalues of AA∗. Except for the zeros the eigenvalues are the
same, and the proof is complete.

�

Denote by {µi}e
i=1 the eigenvalues for Q∗Q. By Lemma 5.18 we know that these

eigenvalues are equal to the non-zero eigenvalues of QQ∗. F ∗F and QQ∗ can be
expressed as

F ∗F =
M∑

k=1

ϕkϕ
∗
k and QQ∗ =

e∑
k=1

ϕkϕ
∗
k.

Now let v be a normalized eigenvector for QQ∗ corresponding to the eigenvalue
µi. We then have

v∗F ∗Fv = v∗

(
M∑

k=1

ϕkϕ
∗
k

)
v

= v∗QQ∗v + v∗

(
M∑

k=e+1

ϕkϕ
∗
k

)
v

= µi +
M∑

k=e+1

|v∗ϕk|2 ≥ µi (5.24)

Since Φ is tight, F ∗F = (M/N)IN , and since v is normalized, we have that
v∗F ∗Fv = (M/N)||v|| = M/N . This means that µi ≤ M/N , thus proving that
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|(N/M)µi| ≤ 1. Equality in (5.24) holds if and only if the summation in (5.24)
has sum 0, which is true if and only if v is orthogonal to all the vectors in ΦE =
{ϕk}M

k=e+1. Then the remaining vectors do not span the entire N -dimensional
space, and hence ΦE cannot be a frame. Due to our earlier stated assumption that
ΦE is a frame, we must then have |(N/M)µi| < 1 and the series in (5.22) will be
convergent.

We summarize the results for the MSE for different numbers of erasures in the
following theorem.

Theorem 5.19 Consider encoding with a maximally robust uniform frame Φ =
{ϕk}M

k=1 ⊂ RN with analysis operator F and decoding with the left-inverse (4.6)
under the noise model (4.3). Let E with e = |E| and e = 0, . . . ,M −N be the in-
dex set of erasures and FE the corresponding analysis operator for reconstruction
and let {λi}N

i=1 be the eigenvalues of F ∗
EFE . Then MSE is given by (4.8):

MSEE =
σ2

N

N∑
i=1

1
λi
.

• If e = 0, the MSE is minimized if and only if the frame is tight. In this case
the MSE is given by (4.11):

MSE0 =
N

M
σ2

• If e = 1, then the average and maximum MSE among all posible single
erasures is minimized if and only if the frame is tight, by Theorem 5.14. In
this case Theorem 5.6 gives:

MSE1 =
(

1− 1
M −N

)
MSE0,

for any single erasure, independently of which erasure it is.

• If e > 1, then the MSE for a tight frame is by Theorem 5.17

MSEE =

(
1 +

e∑
i=1

µi

M −Nµi

)
MSE0,

where Q is an N × e matrix with {ϕk}k∈E in the columns and {µi}e
i=1 are

the eigenvalues of Q∗Q.

This theorem is the main and final theoretical result of this report. It captures
the behavior of frames with respect to the error from quantization and erasures.
The conclusion that can be drawn from this is, that uniform tight frames may not
always be the optimal choice. But due to the MSE-minimization in the 0 and 1
erasure case and simplicity in the multiple erasure case, they are well-suited for
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the application on robust signal transmission. The maximally robust frames, for
instance the harmonic tight frames, are especially good, since they can withstand a
maximal number of erasures.

The final section of the report contains a few numerical demonstrations of the
use of frames in signal transmission.
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6 Numerical analysis

In this section we use numerical examples to demonstrate the advantages of
using frames for signal transmission where erasures can occur. Inspired by the
theoretical results we will only use uniform tight frames. More specifically we will
use the real harmonic tight frames from Theorem 3.24.

The main part of this project has been concerned with the theoretical results for
finite dimensional frames, and numerical investigations have only played a minor
role in the last phase. We want to stress that the experiments made in this section
are not intended to be an accurate description of a transmission line but merely a
simple demonstration of the benefits of frames, and the results should be seen for
illustration purposes only.

6.1 A model of a signal transmission system

For a signal of length N the intuitive way to implement an encoding using
the frame expansion is to use an analysis operator F of size M × N for some
M ≥ N . The reconstruction is performed using (F ∗

EFE)−1F ∗
E where FE is the

operator left when the rows corresponding to the erasure set E have been removed.
However, this method has a major drawback since the computational effort taken to
find (F ∗

EFE)−1 is very large, since N will be a quite large number in practice. To
avoid the large matrix-inversion we will divide the signal into smaller subsignals.

Our signal transmission system consists of an encoding part, a lossy transmis-
sion and a decoding. We begin by describing the encoding. For a signal x, now of
length |x| = pN , the following steps are performed:

1. Choose an appropriate uniform tight frame Φ = {ϕk}M
k=1 ⊆ RN . Denote

the analysis operator by F .

2. Divide the signal x into smaller parts {xi}p
i=1 each of length N and arrange

the parts in the columns of an N × p matrix X

X =


| | |
| | |
x1 x2 · · · xp

| | |
| | |

 .

3. Make the frame expansion of each column, yi = Fxi, i = 1, . . . , p. This
corresponds to introducing the matrix Y ∈ RM×p, given by Y = FX

Y =


| | |
| | |
y1 y2 · · · yp

| | |
| | |

 .
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4. Denote the rows of Y by {zk}M
k=1,

Y =


— z1 —
— z2 —

...
— zM —

 .

5. The vectors {zk}M
k=1 are now ready to be sent as packages through a trans-

mission line.

During the transmission of {zk}M
k=1 the erasures described by the index set E

occur. This means that the set of vectors {zk}k∈E are lost, and the signal must
be restored using the remaining information. Losing the vector zk is equivalent to
losing the k’th vector-element in every vector {yi}p

i=1. Since we are sending the
vectors {zk}M

k=1, we have the same erasure set for all the {yi}p
i=1, thus enabling us

to use the same analysis operator in the reconstruction of all {yi}p
i=1. We proceed

by using the analysis operator FE for the decoding process:

1. Stack the received row-vectors {zk}k/∈E to obtain the matrix Y .

2. Reconstruct an approximation X to the original matrix X , by computing

X = (F ∗
EFE)−1F ∗

EY .

3. Rearrange the matrix X , in order to obtain the reconstructed signal x.

In the following section, we will use this method to simulate the transmission
of a sound sample.

6.2 Test setup

We will use MATLAB to perform our numerical experiments. Quantization
issues will be ignored, since MATLAB automatically performs quantization to 16
digits.

In our experiments we will use a 30s sound sample of the song “Gravedigger”
by Dave Matthews Band. The sample rate is is 44.1 kHz, so each second contains
44100 numbers. Each second is treated as a separate signal, which is then given as
input to the algorithm described above. One reason for this is size of the involved
matrices. Furthermore we wish to illustrate that this method can be used to ensure
a continuous data flow, for instance streaming of a music signal. In this way, the
receiver can decode each second separately as they arrive, and be able to play the
sound continuously.

As mentioned earlier we will encode using the harmonic tight frames. To do
that we have implemented a function harmonic that for a given dimension N
and desired number of vectors M computes the analysis operator. The code can be
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seen in Appendix D.2. Furthermore the rest of the scripts and functions used in the
tests can be seen in Appendix D.1 - D.4.

In all the tests the analysis operator will be of size 330 × 300, so the frame
should be able to withstand up to 30 erasures. A given second of the signal will
then be reshaped to a matrix of size 300×147 as described in the previous section.
This size turned out to be efficient for computations in MATLAB.

6.3 Test results

The aim of the theory described in this report was to improve the robustness of
signal transmission by using frames instead of an ONB. To illustrate the sensitivity
of an ONB, we have constructed the following example.

Example 6.1 To show the advantage of a frame over an ONB, the seconds of the
signal gravedigger are subjected to an increasing number of erasures, beginning
with 0 and ending with 29. The differences in norm between the original and the
reconstructed signal in the two cases are shown in Figure 16.
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Figure 16: The seconds of the signal gravedigger are subjected to an increasing number of erasures
as shown by the lower plot. The top plot illustrates the errors when using a 300 × 300 ONB and the
middle plot shows the errors when using the frame expansion instead. Notice the different scales on
the y-axes. The frame expansion has much better performance since the error is almost zero up to
more than 25 erasures.

We can see that when using an ONB a quite large error is quickly introduced. Even
for a few erasures the signal is distorted. For the frame the error is kept nearly
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zero for up to around 25 erasures. This clearly demonstrates the supremacy of the
frame expansion. The price of the extra accuracy is of course the extra data that
must be sent. In this example an extra 10 % needs to be sent.

A substantial error is however introduced by using the frame, when the number of
erasures approaches the limit. In theory the frame operator F ∗

EFE for a harmonic
tight frame is invertible, as long as |E| ≤ (M−N). This is the content of Theorem
5.5. In practice, however, computations with F ∗

EFE can be problematic, since the
matrix can be numerically close to singularity. This can be described by the so-
called condition number of a matrix, see Definition C.5. If the condition number is
large, the matrix is numerically close to singular and said to be ill-conditioned. In
our tests, reconstruction using (F ∗

EFE)−1, when F ∗
EFE was singular (or close to),

it gave rise to a high level of error. This is demonstrated in the following example.

Example 6.2 The signal is sent using the described method. Each second is sub-
jected to a random number of erasures between 24 and 32 and the absolute diffe-
rence between the original and the reconstructed signal is plotted together with the
number of erasures, see Figure 17.
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Figure 17: The signal gravedigger. For each second a random number of erasures between 24
and 32 is applied and the absolute difference between the reconstruction and the original signal is
measured. It is clear that when the number of erasures exceeds 30, the difference is very large, since
the completeness is lost. On the other hand notice the sixth second. Even though the number of
erasures is only 29 there is a relatively large distortion. This is due to a high condition number for
F ∗

EFE used for the reconstruction.
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A large error is observed whenever the number of erasures exceeds the limit of
30. This is no surprise since the remaining frame vectors do not span the entire
space. Notice however that there is a relatively large error in the sixth second, even
though the number of erasures is only 29. The reason is an ill-conditioned frame
operator. This results in a poor reconstruction.

As seen in the example above, high levels of error can occur even for non-singular
frame operators. But how often does this happen? In order to have an idea of this
we perform the following experiment.

Example 6.3 The first second of the signal is subjected to e = 1, . . . , 33 randomly
chosen erasures. For each e this is repeated 1000 times in order to have a large
amount of data. The difference in norm between the original and the reconstructed
signal is measured. For each e it is noted how often this error is larger than 10−3,
a tolerance chosen after multiple tests. Table 3 summarizes the results.

Erasures ≤19 20 21 22 23
Probability for error (%) 0% 0.3% 0.5% 1.5% 1.5%

Erasures 24 25 26 27 28
Probability for error (%) 1.9% 4.0% 8.1% 13% 18.9%

Erasures 29 30 ≥31
Probability for error (%) 32.2% 46.7% 100%

Table 3: The probability that the decoding will result in a high level of error (larger than 10−3) for
a given number of erasures. The table is calculated using 1000 tests on the first second of the signal
for each number of random erasures with a harmonic tight frame Φ = {ϕk}330

k=1 in R300.

It is very seldom to have a large error with 20 erasures or less, and even for up
to 25 the error-rate is negligible. After this the rate increases and is quite large for
29 and 30 erasures. When e exceeds 30, F ∗

EFE is singular and there will always
be a large error when attempting to reconstruct using (F ∗

EFE)−1.

As the example demonstrates the error increases rapidly when the number of era-
sures approaches the limit. The reason for this is as mentioned that F ∗

EFE is (close
to) singular which makes the inversion unstable numerically. Is there a way to
circumvent this problem? We find inspiration in the way erasures are typically
handled when using the Discrete Fourier Transform (DFT). Here a zero is intro-
duced instead of the coefficient lost in transmission and the signal is reconstructed
using the same operator that was used for encoding. That is, no operator FE is
introduced. This implies that it is only necessary to invert the frame operator once
for the entire signal. The problem with this approach is that some noise is intro-
duced even for a small number of erasures, but the large errors from the inversion
are avoided.

Inspired by this we develop three different methods to handle the problem:
allzeros, excesszeros and allornone. The original method using simply FE will be
referred to as normal. In allzeros each erased coefficient is replaced by a zero and
reconstructed using (F ∗F )−1. In excesszeros the approach is the following: The
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erasure set E is split into two sets, E0 and E1. E0 contains the first M − N − δ
erasures, where δ ∈ N, and E1 the rest. The erasures from E1 are handled by
introduction of zeros and the erasures in E0 by reconstruction using FE0 . The
parameter δ is useful since it can be seen from Table 3 that singularity problems
can occur before the limit M − N . In allornone the number M − N − δ is also
used. If e < M − N − δ the normal method is used and if e ≥ M − N − δ all
erasures are handled by the introduction of zeros. The methods are summarized in
Table 4.

Name Delimiter Description Result
normal None The error set E is removed from the

frame expansion y, and the signal is
reconstructed using the frame opera-
tor F ∗

EFE

Low error
as long as
|E| / M − N ,
else a very high
error.

allzeros None The elements from the frame expan-
sion at the indexes from E are all set
to zero, and the frame operator F ∗F
is used for reconstruction.

Medium error
for all E, the
error increases
with |E|.

excesszeros M−N−δ The error set E is devided into two
sets E0 and E1, where |E0| = M −
N − δ. The errors in E0 are re-
moved from the frame expansion,
end the elements in the frame expan-
sion at the indexes E1 are all set to
zero. The signal is reconstructed u-
sing F ∗

E0
FE0 .

Very high error
for |E1| > 0.

allornone M−N−δ If |E| ≤M −N − δ the signal is re-
constructed using the approach nor-
mal. If |E| > 0 the method allzeros
is used instead.

Low error for all
E, difficult to
determine good
δ in general.

condition Condition
number of
F ∗

EFE

For small condition numbers of the
frame operator F ∗

EFE the normal
method is used. Otherwise the allze-
ros method is used.

Very low error.

Table 4: Overview of the five reconstruction methods.

The advantage of allzeros is that the large errors from the inversion will be
avoided at the price of introducing a small noise everywhere even for few erasures.
excesszeros is an attempt to avoid this small added noise by only inserting zeros
when the number of erasures is high. As the next example will show, large errors
will still occur for this approach. An alternative is allornone where either FE is
used (up toM−N−δ erasures) or instead zeros are introduced and F is used. The
example will show that the performance is better, but large errors can still occur.

These considerations gives rise to the introduction of yet another approach,
that we will denote condition. Since the problem is often the inversion, it could
be useful to test whether F ∗

EFE has a large condition number, instead of testing
whether the number of erasures exceeds M − N − δ. If the condition number is
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large, the matrix is close to singular and the method allzeros will be used. If the
condition number is sufficiently low, the normal method with FE will be used. As
the following example will show, this method turns out to give the best results.

Example 6.4 The 30 sec sample gravedigger is transmitted with a random number
of erasures between 26 and 32 applied to each second and reconstructed using the
five different methods normal, allzeros, excesszeros, allornone and condition. The
results are shown in Figure 18.

0 5 10 15 20 25 30
0

1

2
normal, 194.7488

|s
1−

s2
1|

0 5 10 15 20 25 30
0

1

2
allzeros, 262.1318

|s
1−

s2
2|

0 5 10 15 20 25 30
0

1

2
excesszeros, 83105.3217

|s
1−

s2
3|

0 5 10 15 20 25 30
0

1

2
allornone, 136.0196

|s
1−

s2
4|

0 5 10 15 20 25 30
0

1

2
cond, 45.8639

|s
1−

s2
5|

0 5 10 15 20 25 30
26

28

30

32

second of signal

N
um

be
r 

of
 e

rr
or

s

Number of errors
Redundancy M−N

Figure 18: Comparison of the five reconstruction methods. From top to bottom: normal, allzeros,
excesszeros, allornone, condition and the number of erasures in each second. The title of each plot
gives the name of the used reconstruction method and the sum of the norm differences for each
second.

The absolute difference between the original signal and the reconstructions are
seen in the first five plots and the number of errors in the last. For normal there
are few but dominating errors whenever there is a large number of erasures. When
there are few erasures the error is negligible. For allzeros there is some noise no
matter how many erasures have occured. This is what we expected and this type
of noise is undesired. The first attempt to fix it, excesszeros, fails severely, since
a number of large errors are introduced. We expect the errors to be a result of
a numerically unstable inversion but these errors are larger than we would have
expected. This could perhaps be an indication of a mistake in the implementation.
The next attempt, allornone, has much better performance. However noise is still
introduced in a lot of the seconds. This is fixed by condition where the noise is
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only introduced exactly when the inversion is undesirable due to a large condition
number. It is interesting to compare normal and condition. Both have (almost)
no error for few erasures and when there is a large number of erasures condition
reduces the large inversion error to a small noise.

To summarize the results of this section, we have seen that the harmonic tight
frames significantly reduces the distortion caused by erasures during the transmis-
sion, compared to the performance of an ONB. Furthermore we have developed
a good method to handle the inversion problems when the frame operator is ill-
conditioned in order to minimize the distortion.
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7 Conclusion

In the report we have proved a number of theoretical results for frames in finite
dimensional vector spaces. The highlights of the first section was the development
of the frame expansion using the dual frame, the properties of the eigenvalues of
the frame operator, and the construction of the harmonic tight frames, that have
maximal robustness towards erasures.

The theoretical results gave rise to the application of frames on robust signal
transmission. We saw that frames show stability towards quantization and erasures
of the frame coefficients. The main result here was Theorem 5.19 that stated that
uniform tight frames minimize quantization error, minimize the average and worst-
case MSE caused by one erasure and give a relatively simple expression for the
MSE for multiple erasures.

Finally we performed a few numerical experiments to illustrate the use of
frames on signal transmission. We saw that the harmonic tight frames indeed do
give very good robustness towards erasures in the transmission, since the error
from reconstruction was surprisingly small even for a relatively large number of
erasures.

During the work with this report we have met a number of different challenges:
Grasping a complicated, new mathematical subject, reading and understanding a
scientific paper and not least discovering and filling out all the gaps in the proofs.
We have come across a wide range of mathematical subjects, especially in func-
tional analysis and linear algebra. Furthermore we have constructed several proofs
of our own and improved our ability to explain mathematical concepts.

In addition we have seen a strong interaction between mathematics and appli-
cations, and feel inspired to continue our studies in applied mathematics.
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A Properties of trace

Definition A.1 Given a square matrixA, the trace is defined by the following map:

tr : Cn×n → C : tr(A) =
n∑

i=1

aii. (A.1)

In other words, the trace of a square matrix is the sum of the diagonal elements.

Proposition A.2 The trace is a linear map.

Proof. Let A,B ∈ Cn×n and c1, c2 ∈ C. We want to show that tr(c1A+ c2B) =
c1tr(A)+c2tr(B). LetD = c1A+c2B. Then we have dii = c1aii+c2bii from the
properties of summation and multiplication by scalar of matrices. But this implies

tr(c1A+ c2B) = tr(D) =
n∑

i=1

dii =
n∑

i=1

(c1aii + c2bii)

= c1

n∑
i=1

aii + c2

n∑
i=1

bii = c1tr(A) + c2tr(B).

�

Proposition A.3 For a matrix A ∈ Cn×n the following holds

tr(A∗) = tr(A).

Proof.

tr(A∗) =
n∑

i=1

a∗ii =
n∑

i=1

aii =
n∑

i=1

aii = tr(A),

where Definition 1.2 has been used.

�

Proposition A.4 For A ∈ Cn×m and B ∈ Cm×n we have

tr(AB) = tr(BA).

Proof. Notice first that AB is n × n and BA is m ×m. Due to the structure of
matrix multiplication we have for the diagonal elements of AB and BA respec-
tively

(AB)ii =
m∑

j=1

aijbji for i = 1, . . . , n,

(BA)jj =
n∑

i=1

bjiaij for j = 1, . . . ,m.
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Using that the trace is the sum of the diagonal elements by Definition A.1 we have

tr(AB) =
n∑

i=1

(AB)ii =
n∑

i=1

m∑
j=1

aijbji

=
m∑

j=1

n∑
i=1

bjiaij =
m∑

j=1

(BA)jj = tr(BA),

where we have used that the order of summation can be interchanged.

�

Proposition A.5 Consider n complex matrices A1, A2, . . . , Ak such that the pro-
duct A1A2 · · ·Ak exists and is square. Furthermore assume that all products of
the form Ai+1 · · ·AkA1A2 · · ·Ai for any i ∈ N, i ≤ k exist and are square. Then
the trace of the product is invariant to cyclic permutation of the matrices, that is
for any i ∈ N, i ≤ k

tr(A1A2 · · ·Ak) = tr(Ai+1 · · ·AkA1A2 · · ·Ai).

Proof. Consider the matrices A = A1A2 · · ·Ak−1 and B = Ak. Since by as-
sumption the products AB and BA exist and are square, there exist numbers
n,m ∈ N such that A is n × m and B is m × n. By Proposition A.4 we have
tr(AB) = tr(BA) or

tr(A1A2 · · ·Ak) = tr(AkA1A2 · · ·Ak−1).

Repeat this argument k − 1 times to include all the cyclic permutations and the
proof is complete.

�

Proposition A.6 The trace is invariant to similarity transformation, that is given
a square matrix A then for any invertible matrix P such that the product P−1AP
exists

tr(P−1AP ) = tr(A).

Proof. By Proposition A.5 the trace is invariant to cyclic permutation, which im-
plies

tr(P−1AP ) = tr(PP−1A) = tr(A).

�

Proposition A.7 For an n × n matrix A with eigenvalues {λi}n
i=1 counted with

multiplicity, the sum of the eigenvalues equals the trace of A, that is

tr(A) =
n∑

k=1

λk.
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Proof. See for instance Theorem 7.9 in [2].

�

Proposition A.8 LetA be an n×n matrix with eigenvalues {λi}n
i=1. Then for any

k ∈ N

tr
(
Ak
)

=
n∑

i=1

λk
i .

Proof. By spectral decomposition A = UΛU∗, where Λ = diag ({λi}n
i=1) and

U is unitary. Then U∗U = In and

Ak = (UΛU∗)k = UΛkU∗.

Λk = diag ({λi}n
i=1) and by Proposition A.5

tr
(
Ak
)

= tr
(
UΛkU∗

)
= tr

(
ΛkU∗U

)
= tr

(
Λk
)

=
n∑

i=1

λk
i .

�
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B Special matrices and their properties

Definition B.1 A matrix U ∈ Cn×n is called unitary if

UU∗ = U∗U = In.

Proposition B.2 For a matrix U ∈ Cn×n the following are equivalent

1. U is unitary,

2. U−1 = U∗.

Proof. The proof follows directly from Definition B.1.

�

Proposition B.3 The product of two unitary n× n matrices is unitary.

Proof. Let U1 and U2 be two n× n unitary matrices. Then

U1
∗U1 = U1U1

∗ = In and U2
∗U2 = U2U2

∗ = In.

From this it is easy to see that

(U1U2)(U1U2)∗ = U1U2U2
∗U1

∗ = U1U1
∗ = In,

(U1U2)∗(U1U2) = U2
∗U1

∗U1U2 = U2
∗U2 = In,

and hence the product U1U2 is unitary.

�

Proposition B.4 Let U1, U2, U3 be self-adjoint operators. If U1 ≤ U2, U3 ≥ 0,
and U3 commutes with U1 and U2, then U1U3 ≤ U2U3.

Proof. See Theorem 68.9 in [6].
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C Other useful results

Proposition C.1 Let f : S → R be a continuous function defined on a compact,
connected topological space S. Then the image f(S) of S under f is a closed and
bounded interval [c, d] in R.

Proof. A proof for this proposition can be found in [8] on page 50.

Proposition C.2 For a geometric series it holds that if x 6= 1 then

n−1∑
k=0

axk = a
1− xn

1− x
.

Proof. Consider the product

(1− x)(a+ ax+ ax2 + · · ·+ axn−1).

By carrying out the multiplication a telescoping series arises:

a+ ax− ax+ ax2 − ax2 + · · ·+ axn−1 − axn−1 − axn = a− axn.

Now divide by (1− x) on both sides and we have

a+ ax+ ax2 + · · ·+ axn−1 = a
1− xn

1− x
,

which completes the proof.

Proposition C.3 Let {ϕi}M
i=1 be a frame forHN with frame operator F ∗F . If x ∈

HN has the representation x =
∑M

i=1 ciϕi for some scalar coefficients {ci}M
i=1,

then

M∑
i=1

|ci|2 =
M∑
i=1

|
〈
x, (F ∗F )−1x

〉
|2 +

M∑
i=1

|ci −
〈
x, (F ∗F )−1x

〉
|2.

Proof. A proof for this proposition can be found in [1] page 5.

Proposition C.4 The removal of a vector ϕj from a frame {ϕi}M
i=1 for HN leaves

either a frame or an incomplete set. More precisely

if
〈
ϕj , (F ∗F )−1ϕj

〉
6= 1, then {ϕi}i6=j is a frame for HN ,

if
〈
ϕj , (F ∗F )−1ϕj

〉
= 1, then {ϕi}i6=j is incomplete.

Proof. A proof for this proposition can be found in [1] page 100.

Definition C.5 For a nonsingular matrix A the condition number is

κ(A) = ‖A‖ · ‖A−1‖.
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From [4] Definition 8.11.1.

Proposition C.6 For the regular matrices A and C, and some matrices B and D
of appropriate size, the following holds

(A−BCD)−1 = A−1 +A−1B
(
C−1 −DA−1B

)−1
DA−1,

assuming that
(
C−1 −DA−1B

)−1 makes sense.

Proof. A proof can be found in [13] on page 451.
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D MATLAB listings

D.1 signaltrans.m

1 function [s2,n] = signaltrans(s1,F,index,mode)
2
3 % Simulation of signal transmission.
4 % s1: The signal to transmit
5 % F: The analysis operator for the frame expansion
6 % index: Specifies the frame vectors that are kept
7 % mode: Chooses the reconstruction mode to use: normal,
8 % allzeros, excesszeros, allornone, condition.
9 %

10 % Returns the reconstructed signal s2 and the norm difference n
11 % between s1 and s2.
12 %
13 % Authors: Martin McKinnon Edwards and Jakob Heide Jørgensen
14 % Date: June 19, 2007.
15
16 [M,N] = size(F);
17 % N: package size - it is assumed to divide length of s1
18 % M: number of frame vectors
19 len = length(s1);
20 s1resh = reshape(s1,N,len/N);
21
22 % FRAME EXPANSION
23 y = F*s1resh;
24
25 switch mode
26 case ’normal’
27 z = y(index,:);
28 FE = F(index,:);
29 [M-length(index)],[cond(FE’*FE)]
30 FE_PSinv = (FE’*FE)\(FE’);
31 case ’allzeros’
32 E = setdiff(1:M, index);
33 y(E,:) = 0;
34 z = y;
35 FE_PSinv = (F’*F)\(F’);
36 case ’excesszeros’
37 allE = setdiff(1:M, index)
38 limit = 20;
39 if length(allE) <= limit
40 z = y(index,:);
41 FE = F(index,:);
42 FE_PSinv = (FE’*FE)\(FE’);
43 else
44 E1 = allE(1:limit)
45 E2 = allE(limit+1:end)
46 y(E2,:)=0;
47 indexkeep = setdiff(1:M,E1);
48 length(indexkeep)
49 z = y(indexkeep,:);
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50 FE = F(indexkeep,:);
51 FE_PSinv = (FE’*FE)\(FE’);
52 excessmax = max(max(abs(FE_PSinv)))
53 excesscond = cond(FE’*FE)
54 end
55 case ’allornone’
56 allE = setdiff(1:M, index);
57 if length(allE) <= M-N - 2
58 z = y(index,:);
59 FE = F(index,:);
60 FE_PSinv = (FE’*FE)\(FE’);
61 else
62 E = setdiff(1:M, index);
63 y(E,:) = 0;
64 z = y;
65 FE_PSinv = (F’*F)\(F’);
66 end
67 case ’condition’
68 FE = F(index,:);
69 c = cond(FE’*FE);
70 if c < 1/eps
71 z = y(index,:);
72 FE_PSinv = (FE’*FE)\(FE’);
73 cond1max = max(max(abs(FE_PSinv)));
74 else
75 E = setdiff(1:M, index);
76 y(E,:) = 0;
77 z = y;
78 FE_PSinv = (F’*F)\(F’);
79 cond2max = max(max(abs(FE_PSinv)));
80 end
81 otherwise
82 error(’wrong input of variable mode’);
83 end
84
85 % RECONSTRUCT
86 xhat = FE_PSinv*z;
87 s2 = reshape(xhat,1,len)’;
88 n = norm(s1-s2);

D.2 harmonic.m

1 function F = harmonic(M,N)
2
3 % Creates the analysis operator for a harmonic tight frame
4 % in RˆN with M vectors
5 %
6 % Authors: Martin McKinnon Edwards and Jakob Heide Jørgensen
7 % Date: June 19, 2007.
8
9 F = zeros(M,N);

10
11 if ˜mod(N,2) % N even
12 for k = 0:(M-1)
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13 l = 1:2:(N-1);
14 F(k+1,:) = sqrt(2/N)*[cos(l*k*pi/M), sin(l*k*pi/M)];
15 end
16 else % N odd
17 for k = 0:(M-1)
18 l = 2:2:(N-1);
19 F(k+1,:) = sqrt(2/N)*[1/sqrt(2), cos(l*k*pi/M), sin(l*k*pi

/M)];
20 end
21 end

D.3 transmissionplot.m

1 % Script to call the function signaltrans.m for each of the
2 % five reconstruction modes.
3 %
4 % Authors: Martin McKinnon Edwards and Jakob Heide Jørgensen
5 % Date: June 19, 2007.
6
7
8 close all
9 clc

10 clear
11
12 % Load the sound sample
13 load ’lyde/gravedigger30’;
14 s1 = (sum(s1’)/2)’;
15 f = 44100;
16
17 % Setup variables for the five reconstructions
18 s1resh = reshape(s1, f, 30);
19 s2resh1 = zeros(size(s1resh));
20 s2resh2 = zeros(size(s1resh));
21 s2resh3 = zeros(size(s1resh));
22 s2resh4 = zeros(size(s1resh));
23 s2resh5 = zeros(size(s1resh));
24
25 % Setup the size of the frame and the lower and upper bound
26 % for the number of erasures introduced.
27 M = 330;
28 N = 300;
29 lower = 26;
30 upper = 32;
31
32 F = harmonic(M,N);
33
34 % Simulate the transmission of each of the 30 secs using
35 % the five methods
36 for i = 1:30
37 e(i) = lower + round((upper-lower)*rand);
38 index = leftset(M,e(i));
39 [tempsig1, n1(i)] = signaltrans(s1resh(:,i),F,index,’normal’);
40 s2resh1(:,i) = tempsig1;
41 [tempsig2, n2(i)] = signaltrans(s1resh(:,i),F,index,’allzeros’
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);
42 s2resh2(:,i) = tempsig2;
43 [tempsig3, n3(i)] = signaltrans(s1resh(:,i),F,index,’

excesszeros’);
44 s2resh3(:,i) = tempsig3;
45 [tempsig4, n4(i)] = signaltrans(s1resh(:,i),F,index,’allornone

’);
46 s2resh4(:,i) = tempsig4;
47 [tempsig5, n5(i)] = signaltrans(s1resh(:,i),F,index,’cond’);
48 s2resh5(:,i) = tempsig5;
49 end
50
51 s21 = s2resh1(:);
52 s22 = s2resh2(:);
53 s23 = s2resh3(:);
54 s24 = s2resh4(:);
55 s25 = s2resh5(:);
56
57 % Plot the results
58 figure
59 numplots = 6;
60 maxy = 2;
61
62 subplot(numplots,1,1), plot(linspace(0,30,44100*30),abs(s1-s21))
63 title([’normal, ’, num2str(sum(n1))],’FontSize’,13)
64 ylabel(’|s1-s21|’,’FontSize’,13)
65 axis([0,30,0,maxy]);
66
67 subplot(numplots,1,2), plot(linspace(0,30,44100*30),abs(s1-s22))
68 title([’allzeros, ’, num2str(sum(n2))],’FontSize’,13)
69 ylabel(’|s1-s22|’,’FontSize’,13)
70 axis([0,30,0,maxy]);
71
72 subplot(numplots,1,3), plot(linspace(0,30,44100*30),abs(s1-s23))
73 title([’excesszeros, ’, num2str(sum(n3))],’FontSize’,13)
74 ylabel(’|s1-s23|’,’FontSize’,13)
75 axis([0,30,0,maxy]);
76
77 subplot(numplots,1,4), plot(linspace(0,30,44100*30),abs(s1-s24))
78 title([’allornone, ’, num2str(sum(n4))],’FontSize’,13)
79 ylabel(’|s1-s24|’,’FontSize’,13)
80 axis([0,30,0,maxy]);
81
82 subplot(numplots,1,5), plot(linspace(0,30,44100*30),abs(s1-s25))
83 title([’cond, ’, num2str(sum(n5))],’FontSize’,13)
84 ylabel(’|s1-s25|’,’FontSize’,13)
85 axis([0,30,0,maxy]);
86
87 subplot(numplots,1,numplots), plot((1:30)-.5,e,’-or’,’LineWidth’

,2)
88 hold on, plot([0,30],[M-N,M-N],’-g’,’LineWidth’,2)
89 legend(’Number of errors’,’Redundancy M-N’)
90 xlabel(’second of signal’,’FontSize’,13)
91 ylabel(’Number of errors’,’FontSize’,13)
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92 grid on

D.4 leftset.m

1 function index = leftset(M,e)
2
3 % Determines the index of the frame vectors to keep from the
4 % number M of frame vectors and the number e of erasures.
5 %
6 % Authors: Martin McKinnon Edwards and Jakob Heide Jørgensen
7 % Date: June 19, 2007.
8
9

10 % Compute a set of e indexes taken from 1:M
11 E = round(M*rand(1,e));
12 index = setdiff(1:M,E);
13
14 % Check if doubles are present. If so, repeat the computation
15 while length(index) ˜= M-e
16 E = round(M*rand(1,e));
17 index = setdiff(1:M,E);
18 end
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