Sparse and TV Kaczmarz solvers and the linearized Bregman method

Dirk Lorenz, Frank Schöpfer, Stephan Wenger, Marcus Magnor, March, 2014
Sparse Tomo Days, DTU

- Motivation
- Split feasibility problems
- Sparse Kaczmarz and TV-Kaczmarz
- Application to radio interferometry
- Motivation
- Split feasibility problems
- Sparse Kaczmarz and TV-Kaczmarz
- Application to radio interferometry

Underdetermined systems

- Seeking solutions of linear systems

$$
A x=b
$$

- Kaczmarz iteration:

$$
x^{k+1}=x^{k}-\frac{a_{r(k)}^{T} x_{k}-b_{r(k)}}{\left\|a_{r(k)}\right\|_{2}^{2}} a_{r(k)}
$$

a_{r}^{\top} : r-th row of $A, r(k)$: control sequence.

- Amounts to iterative projection onto hyperplane defined by $r(k)$-th equation. When initialized with 0 : Converges to solution of $\min \|x\|_{2}^{2}$ such that $A x=b$.

Aiming at sparse solutions?

Aiming at sparse solutions?

- Iterate

$$
x^{k+1}=x^{k}-\frac{a_{r(k)}^{\top} x_{k}-b_{r(k)}}{\left\|a_{r(k)}\right\|_{2}^{2}} a_{r(k)}
$$

Aiming at sparse solutions?

- Iterate

$$
\begin{aligned}
& z^{k+1}=z^{k}-\frac{a_{r(k)}^{\top} x_{k}-b_{r(k)}}{\left\|a_{r(k)}\right\|_{2}^{2}} a_{r(k)} \\
& x^{k+1}=S_{\lambda}\left(z^{k+1}\right)
\end{aligned}
$$

Aiming at sparse solutions?

- Iterate

$$
\begin{aligned}
& z^{k+1}=z^{k}-\frac{a_{r(k)}^{\top} x_{k}-b_{r(k)}}{\left\|a_{r(k)}\right\|_{2}^{2}} a_{r(k)} \\
& x^{k+1}=S_{\lambda}\left(z^{k+1}\right)
\end{aligned}
$$

- Theorem [L, Schöpfer, Wenger, Magnor 2014]: The sequence x^{k}, when initialized with $x^{0}=0$, converges to the solution of $\min \lambda\|\cdot\|_{1}+\frac{1}{2}\|\cdot\|_{2}^{2}$ such that $A x=b$.

Aiming at sparse solutions?

- Iterate

$$
\begin{aligned}
& z^{k+1}=z^{k}-\frac{a_{r(k)}^{\top} x_{k}-b_{r(k)}}{\left\|a_{r(k)}\right\|_{2}^{2}} a_{r(k)} \\
& x^{k+1}=S_{\lambda}\left(z^{k+1}\right)
\end{aligned}
$$

- Theorem [L, Schöpfer, Wenger, Magnor 2014]: The sequence x^{k}, when initialized with $x^{0}=0$, converges to the solution of $\min \lambda\|\cdot\|_{1}+\frac{1}{2}\|\cdot\|_{2}^{2}$ such that $A x=b$.
- Two interesting things:

1. Very similar to Kaczmarz. Other "minimum-J-solutions" possible?
2. Very similar to linearized Bregman iteration
(replace first equation by $z^{k+1}=z^{k}-t_{k} A^{\top}\left(A x^{k}-b\right)$)

Aiming at sparse solutions?

- Iterate

$$
\begin{aligned}
& z^{k+1}=z^{k}-\frac{a_{r(k)}^{\top} x_{k}-b_{r(k)}}{\left\|a_{r(k)}\right\|_{2}^{2}} a_{r(k)} \\
& x^{k+1}=S_{\lambda}\left(z^{k+1}\right)
\end{aligned}
$$

- Theorem [L, Schöpfer, Wenger, Magnor 2014]: The sequence x^{k}, when initialized with $x^{0}=0$, converges to the solution of $\min \lambda\|\cdot\|_{1}+\frac{1}{2}\|\cdot\|_{2}^{2}$ such that $A x=b$.
- Two interesting things:
l. Very similar to Kaczmarz. Other "minimum-J-solutions" possible?

2. Very similar to linearized Bregman iteration (replace first equation by $z^{k+1}=z^{k}-t_{k} A^{T}\left(A x^{k}-b\right)$)

- Approach: "Split feasibility problems" will answer the first and explain the second point.
- In a nutshell: Adapt the notion of "projection" to new objective.
- Split feasibility problems
- Sparse Kaczmarz and TV-Kaczmarz
- Application to radio interferometry

Convex and split feasibility problems

- Convex feasibility problem (CFP):

Find x, such that

$$
x \in C_{i}, i=1, \ldots N_{C}
$$

C_{i} convex
, projecting onto C_{i}
"easy"

Convex and split feasibility problems

- Split feasibility problem (SFP):

Find x, such that

$$
x \in C_{i}, i=1, \ldots N_{C}, \quad A_{i} x \in Q_{i}, i=1, \ldots, N_{Q}
$$

C_{i}, Q_{i} convex, A_{i} linear, projecting onto C_{i} and Q_{i} "easy"
Constraints "split into two types"

Convex and split feasibility problems

- Split feasibility problem (SFP):

Find x, such that

$$
x \in C_{i}, i=1, \ldots N_{C}, \quad A_{i} x \in Q_{i}, i=1, \ldots, N_{Q}
$$

C_{i}, Q_{i} convex, A_{i} linear, projecting onto C_{i} and Q_{i} "easy"
Constraints "split into two types"

- Alternating projections:
$x^{k+1}=P_{C_{i}}\left(x^{k}\right)$
$i=\left(k \bmod N_{C}\right)+1$ "control sequence"

Convex and split feasibility problems

- Split feasibility problem (SFP):

Find x, such that

$$
x \in C_{i}, i=1, \ldots N_{C}, \quad A_{i} x \in Q_{i}, i=1, \ldots, N_{Q}
$$

C_{i}, Q_{i} convex, A_{i} linear, projecting onto C_{i} and Q_{i} "easy"
Constraints "split into two types"

- Alternating projections:
$x^{k+1}=P_{C_{i}}\left(x^{k}\right)$
$i=\left(k \bmod N_{C}\right)+1$ "control sequence"
- [1933 von Neumann (two subspaces), 1962 Halperin (several subspaces), Dijkstra, Censor, Bauschke, Borwein, Deutsch, Lewis, Luke...]

Tackling split feasibility problems

- Projecting onto $\{x \mid A x \in Q\}$ too expensive

Tackling split feasibility problems

- Projecting onto $\{x \mid A x \in Q\}$ too expensive
- Construct a separating hyperplane: For a given x^{k} :
- Set $w^{k}=A x^{k}-P_{Q}\left(A x^{k}\right)$
- Project onto

$$
H^{k}=\left\{x \mid\left\langle A^{T} w^{k}, x\right\rangle \leq\left\langle A^{T} w^{k}, x^{k}\right\rangle-\left\|w^{k}\right\|^{2}\right\}
$$

Tackling split feasibility problems

- Projecting onto $\{x \mid A x \in Q\}$ too expensive
- Construct a separating hyperplane: For a given x^{k} :
- Set $w^{k}=A x^{k}-P_{Q}\left(A x^{k}\right)$
- Project onto

$$
H^{k}=\left\{x \mid\left\langle A^{\top} w^{k}, x\right\rangle \leq\left\langle A^{\top} w^{k}, x^{k}\right\rangle-\left\|w^{k}\right\|^{2}\right\}
$$

- - $x^{k+1}=P_{C_{i}}\left(x^{k}\right)$ for a constraint $u \in C_{i}$
- $x^{k+1}=P_{H^{k}}\left(x^{k}\right)$
for a constraint $A_{i} x \in Q_{i}$

Tackling split feasibility problems

- Projecting onto $\{x \mid A x \in Q\}$ too expensive
- Construct a separating hyperplane: For a given x^{k} :
- Set $w^{k}=A x^{k}-P_{Q}\left(A x^{k}\right)$
- Project onto

$$
H^{k}=\left\{x \mid\left\langle A^{\top} w^{k}, x\right\rangle \leq\left\langle A^{\top} w^{k}, x^{k}\right\rangle-\left\|w^{k}\right\|^{2}\right\}
$$

- - $x^{k+1}=P_{C_{i}}\left(x^{k}\right)$ for a constraint $u \in C_{i}$
- $x^{k+1}=P_{H^{k}}\left(x^{k}\right)$
for a constraint $A_{i} x \in Q_{i}$

Tackling split feasibility problems

- Projecting onto $\{x \mid A x \in Q\}$ too expensive
- Construct a separating hyperplane: For a given x^{k} :
- Set $w^{k}=A x^{k}-P_{Q}\left(A x^{k}\right)$
- Project onto

$$
H^{k}=\left\{x \mid\left\langle A^{\top} w^{k}, x\right\rangle \leq\left\langle A^{\top} w^{k}, x^{k}\right\rangle-\left\|w^{k}\right\|^{2}\right\}
$$

- - $x^{k+1}=P_{C_{i}}\left(x^{k}\right)$ for a constraint $u \in C_{i}$
- $x^{k+1}=P_{H^{k}}\left(x^{k}\right)$
for a constraint $A_{i} x \in Q_{i}$

Tackling split feasibility problems

- Projecting onto $\{x \mid A x \in Q\}$ too expensive
- Construct a separating hyperplane: For a given x^{k} :
- Set $w^{k}=A x^{k}-P_{Q}\left(A x^{k}\right)$
- Project onto

$$
H^{k}=\left\{x \mid\left\langle A^{\top} w^{k}, x\right\rangle \leq\left\langle A^{\top} w^{k}, x^{k}\right\rangle-\left\|w^{k}\right\|^{2}\right\}
$$

- - $x^{k+1}=P_{C_{i}}\left(x^{k}\right)$ for a constraint $u \in C_{i}$
- $x^{k+1}=P_{H^{k}}\left(x^{k}\right)$
for a constraint $A_{i} x \in Q_{i}$

Tackling split feasibility problems

- Projecting onto $\{x \mid A x \in Q\}$ too expensive
- Construct a separating hyperplane: For a given x^{k} :
- Set $w^{k}=A x^{k}-P_{Q}\left(A x^{k}\right)$
- Project onto

$$
H^{k}=\left\{x \mid\left\langle A^{\top} w^{k}, x\right\rangle \leq\left\langle A^{T} w^{k}, x^{k}\right\rangle-\left\|w^{k}\right\|^{2}\right\}
$$

- - $x^{k+1}=P_{C_{i}}\left(x^{k}\right)$ for a constraint $u \in C_{i}$
- $x^{k+1}=P_{H^{k}}\left(x^{k}\right)$
for a constraint $A_{i} x \in Q_{i}$
- Converges to feasible point.

Tackling split feasibility problems

- Projecting onto $\{x \mid A x \in Q\}$ too expensive
- Construct a separating hyperplane: For a given x^{k} :
- Set $w^{k}=A x^{k}-P_{Q}\left(A x^{k}\right)$
- Project onto

$$
H^{k}=\left\{x \mid\left\langle A^{\top} w^{k}, x\right\rangle \leq\left\langle A^{T} w^{k}, x^{k}\right\rangle-\left\|w^{k}\right\|^{2}\right\}
$$

- - $x^{k+1}=P_{C_{i}}\left(x^{k}\right)$ for a constraint $u \in C_{i}$
- $x^{k+1}=P_{H^{k}}\left(x^{k}\right)$
for a constraint $A_{i} x \in Q_{i}$
- Converges to feasible point.
- E.g.: $Q=\{b\}: x^{k+1}=x^{k}+t_{k} A^{T}\left(A x^{k}-b\right)$ \rightsquigarrow minimum norm solution of $A x=b$

Towards sparse solutions with generalized projections

- $D: X \times X \rightarrow \mathbf{R}$ abstract "distance function"
$P_{C}(x)=\operatorname{argmin}_{y \in C} D(x, y)$

Towards sparse solutions with generalized projections

- $D: X \times X \rightarrow \mathbf{R}$ abstract "distance function"
$P_{C}(x)=\operatorname{argmin}_{y \in C} D(x, y)$
- $D(x, y)=\|x-y\|^{2} \rightsquigarrow$ orthogonal projection

Towards sparse solutions with generalized projections

- $D: X \times X \rightarrow \mathbf{R}$ abstract "distance function"
$P_{C}(x)=\operatorname{argmin}_{y \in C} D(x, y)$
- $D(x, y)=\|x-y\|^{2} \rightsquigarrow$ orthogonal projection
- J : $X \rightarrow \mathbf{R}$ convex, $z \in \partial J(x)$

$$
D^{z}(x, y)=J(y)-J(x)-\langle z, y-x\rangle
$$

Bregman distance \rightsquigarrow Bregman projection

Towards sparse solutions with generalized projections

- $D: X \times X \rightarrow \mathbf{R}$ abstract "distance function"
$P_{C}(x)=\operatorname{argmin}_{y \in C} D(x, y)$
- $D(x, y)=\|x-y\|^{2} \rightsquigarrow$ orthogonal projection
- J : $X \rightarrow \mathbf{R}$ convex, $z \in \partial J(x)$

$$
D^{z}(x, y)=J(y)-J(x)-\langle z, y-x\rangle
$$

Bregman distance \rightsquigarrow Bregman projection

- J : $\mathbf{R}^{n} \rightarrow \mathbf{R}$ continuous, α-strongly convex $\left(\Longrightarrow \nabla J^{*}\right.$ is l / α-Lipschitz $)$

Towards sparse solutions with generalized projections

- $D: X \times X \rightarrow \mathbf{R}$ abstract "distance function"
$P_{C}(x)=\operatorname{argmin}_{y \in C} D(x, y)$
- $D(x, y)=\|x-y\|^{2} \rightsquigarrow$ orthogonal projection
- J : $X \rightarrow \mathbf{R}$ convex, $z \in \partial J(x)$

$$
D^{z}(x, y)=J(y)-J(x)-\langle z, y-x\rangle
$$

Bregman distance \rightsquigarrow Bregman projection

- J : $\mathbf{R}^{n} \rightarrow \mathbf{R}$ continuous, α-strongly convex $\left(\Longrightarrow \nabla J^{*}\right.$ is l / α-Lipschitz)
- Good news! Bregman projections onto hyperplanes $H=\left\{a^{\top} x=\beta\right\}$ are simple:
if $z \in \partial J(x)$

$$
P_{H}(x)=\nabla J^{*}(z-\bar{t} a), \quad \bar{t}=\underset{t}{\operatorname{argmin}} J^{*}(z-t a)+t \beta
$$

Moreover: $z-\bar{t} a \in \partial J\left(P_{h}(x)\right)$ new subgradient in $P_{H}(x)$.

Convergence

- Theorem: [Schöpfer, L., Wenger 2013] Cyclic (or random) Bregman projections converge to a feasible point: $\bar{x} \in C_{i}$ and $A_{i} \bar{x} \in Q_{i}$.

Convergence

- Theorem: [Schöpfer, L., Wenger 2013] Cyclic (or random) Bregman projections converge to a feasible point: $\bar{x} \in C_{i}$ and $A_{i} \bar{x} \in Q_{i}$.
- Application to

$$
\min J(x) \text { s.t. } A x=b
$$

Multiple possibilities, e.g.

1. only one "difficult constraints": $A x \in Q=\{b\}$
2. many simple constraints $C_{i}=\left\{a_{i}^{\top} x=b_{i}\right\}$

Convergence

- Theorem: [Schöpfer, L., Wenger 2013] Cyclic (or random) Bregman projections converge to a feasible point: $\bar{x} \in C_{i}$ and $A_{i} \bar{x} \in Q_{i}$.
- Application to

$$
\min J(x) \text { s.t. } A x=b
$$

Multiple possibilities, e.g.

1. only one "difficult constraints": $A x \in Q=\{b\}$
2. many simple constraints $C_{i}=\left\{a_{i}^{\top} x=b_{i}\right\}$

- In both cases: Convergence to minimum-J solution

Sparse solutions

- $J(x)=\lambda\|x\|_{1}$ does not work - not strongly convex

Sparse solutions

- $J(x)=\lambda\|x\|_{1}$ does not work - not strongly convex
- $J(x)=\lambda\|x\|_{1}+\frac{1}{2}\|x\|^{2}$: strongly convex with constant 1

Sparse solutions

- $J(x)=\lambda\|x\|_{1}$ does not work - not strongly convex
- $J(x)=\lambda\|x\|_{1}+\frac{1}{2}\|x\|^{2}$: strongly convex with constant 1
- Bregman projection onto hyperplanes $H=\left\{a^{\top} x=\beta\right\}$: if $z \in \partial J(x)$

$$
P_{H}(x)=\nabla J^{*}(z-\bar{t} a), \quad \bar{t}=\underset{+}{\operatorname{argmin}} J^{*}(z-t a)+t \beta
$$

Sparse solutions

- $J(x)=\lambda\|x\|_{1}$ does not work - not strongly convex
- $J(x)=\lambda\|x\|_{1}+\frac{1}{2}\|x\|^{2}$: strongly convex with constant 1
- Bregman projection onto hyperplanes $H=\left\{a^{\top} x=\beta\right\}$: if $z \in \partial J(x)$

$$
P_{H}(x)=\nabla J^{*}(z-\bar{t} a), \quad \bar{t}=\operatorname{argmin} J^{*}(z-t a)+t \beta
$$

- $\nabla J^{*}=(\partial J)^{-1}$:

Sparse solutions

- $J(x)=\lambda\|x\|_{1}$ does not work - not strongly convex
- $J(x)=\lambda\|x\|_{1}+\frac{1}{2}\|x\|^{2}$: strongly convex with constant 1
- Bregman projection onto hyperplanes $H=\left\{a^{\top} x=\beta\right\}$: if $z \in \partial J(x)$

$$
P_{H}(x)=\nabla J^{*}(z-\bar{t} a), \quad \bar{t}=\operatorname{argmin} J^{*}(z-t a)+t \beta
$$

- $\nabla J^{*}=(\partial J)^{-1}$:

- $\nabla J^{*}(z)=S_{\lambda}(z)$

Basic algorithm and special cases:

- Variant l: One difficult constraint $A x=b$
- Variant 2: Many simple constraints $a_{r}^{\top} x=b_{r}$
- In general: Block-processing $A_{r} x=b_{r}$

Basic algorithm and special cases:

- Variant 1: One difficult constraint $A x=b$
- Variant 2: Many simple constraints $a_{r}^{\top} x=b_{r}$
- In general: Block-processing $A_{r} x=b_{r}$

Iteration:

1. Pick a constraint and set $w^{k}=A_{r} x^{k}-b_{r}, \beta_{k}=\left(A_{r}^{T} w_{k}\right)^{T} x^{k}-\left\|w^{k}\right\|_{2}^{2}$
2. Calculate

$$
\begin{aligned}
z^{k+1} & =z^{k}-t_{k} A_{r}^{T} w^{k} \\
x^{k+1} & =\nabla J^{*}\left(z^{k+1}\right)
\end{aligned}
$$

with appropriate stepsize t_{k} (depending on w^{k} and β_{k})

Basic algorithm and special cases:

- Variant l: One difficult constraint $A x=b$
- Variant 2: Many simple constraints $a_{r}^{\top} x=b_{r}$
- In general: Block-processing $A_{r} x=b_{r}$

Iteration:

1. Pick a constraint and set $w^{k}=A_{r} x^{k}-b_{r}, \beta_{k}=\left(A_{r}^{T} w_{k}\right)^{T} x^{k}-\left\|w^{k}\right\|_{2}^{2}$
2. Calculate

$$
\begin{aligned}
& z^{k+1}=z^{k}-t_{k} A_{r}^{\top} w^{k} \\
& x^{k+1}=\nabla J^{*}\left(z^{k+1}\right)
\end{aligned}
$$

with appropriate stepsize t_{k} (depending on w^{k} and β_{k})

- $J(x)=\|x\|_{2}^{2} / 2$, variant 1.: Landweber iteration
- $J(x)=\|x\|_{2}^{2} / 2$, variant 2.: Kaczmarz method
- $J(x)=\lambda\|x\|_{1}+\|x\|_{2}^{2} / 2$, variant 1.: Linearized Bregman!
- J $J(x)=\lambda\|x\|_{1}+\|x\|_{2}^{2} / 2$, variant 2.: Sparse Kaczmarz!

Inexact stepsizes are allowed

- Linearized Bregman:

$$
t_{k}=\frac{\left\|A x^{k}-b\right\|^{2}}{\left\|A^{T}\left(A x^{k}-b\right)\right\|^{2}}=\frac{\left\|w^{k}\right\|^{2}}{\left\|A^{T} w^{k}\right\|^{2}}, \quad \text { or } \quad t_{k} \leq \frac{1}{\|A\|^{2}}
$$

- However: To compute exact stepsize, solve one-dimensional piecewise quadratic optimization problem (can be done in $\mathcal{O}(n \log n)$, usually faster).

Stepsize comparison

$$
A \in \mathbf{R}^{1000 \times 2000} \text { Gauß, } x^{+} 20 \text { non-zeros (Gauß) }
$$

Stepsize comparison

Stepsize comparison

Stepsize comparison

- Sparse Kaczmarz and TV-Kaczmarz
- Application to radio interferometry

Really helps for sparse images

- binarytomo.m from AlRtools
- Standard Kaczmarz vs. Sparse Kaczmarz, 50 sweeps:

Sparse Kaczmarz

Online compressed sensing

- Assume that linear measurements $b_{k}=a_{k}^{T} x$ of some x can be acquired, but time consuming/costly/harmful...

Online compressed sensing

- Assume that linear measurements $b_{k}=a_{k}^{T} x$ of some x can be acquired, but time consuming/costly/harmful...
- Idea: Start reconstructing x as soon as first measurements arrived and for every new measurement:

1. add "hyperplanes" in sparse Kaczmarz, or
2. enlarge matrix A for linearized Bregman.

Online compressed sensing

- Assume that linear measurements $b_{k}=a_{k}^{T} x$ of some x can be acquired, but time consuming/costly/harmful...
- Idea: Start reconstructing x as soon as first measurements arrived and for every new measurement:
l. add "hyperplanes" in sparse Kaczmarz, or

2. enlarge matrix A for linearized Bregman.

- Observe residual:

Online compressed sensing

- Assume that linear measurements $b_{k}=a_{k}^{T} x$ of some x can be acquired, but time consuming/costly/harmful...
- Idea: Start reconstructing x as soon as first measurements arrived and for every new measurement:
l. add "hyperplanes" in sparse Kaczmarz, or

2. enlarge matrix A for linearized Bregman.

- Observe residual:

Online compressed sensing

- Assume that linear measurements $b_{k}=a_{k}^{T} x$ of some x can be acquired, but time consuming/costly/harmful...
- Idea: Start reconstructing x as soon as first measurements arrived and for every new measurement:
l. add "hyperplanes" in sparse Kaczmarz, or

2. enlarge matrix A for linearized Bregman.

- Observe residual:

- Reconstruction error drops down precisely when residuum starts to stay small! Stop measuring when that happens

TV-Kaczmarcz

- How to treat

$$
\min \||\nabla u|\|_{1} \text { subject to } A u=b ?
$$

- Introduce constraint $p=\nabla u$, add regularization:

$$
\begin{aligned}
\min _{u, p} \lambda\||p|\|_{1}+\frac{1}{2}\left(\|u\|^{2}+\|p\|^{2}\right) \quad \text { s.t } \quad A u & =b, \\
\nabla u & =p .
\end{aligned}
$$

- Treat $A u=b$ by Kaczmarz $\left(u^{k+1}=u^{k}-\frac{a_{r(k)}^{\top} u^{k}-b_{r(k)}}{\left\|a_{r(k)}\right\|^{2}} a_{r(k)}\right)$
- Treat $\nabla u-p=0$ by linearized Bregman steps (with dynamic stepsize, uses two-dimensional shrinkage)
- Parallel beam geometry
- 16384 pixels, 3128 measurements
- 500 Kaczmarz sweeps

original
—— 1 LB step
.......... 100 LB steps
$\longrightarrow\|A u-b\|$

100 LB steps per sweep

- Application to radio interferometry

Radio interferometry

- Very Large Array telescope: a number of radio telescopes record radio emission from the sky. Each pair of telescopes gives one sample of the Fourier-transform of the image

Radio interferometry

- Very Large Array telescope: a number of radio telescopes record radio emission from the sky. Each pair of telescopes gives one sample of the Fourier-transform of the image

- After a small rotation of the earth, the sampling pattern also rotates. Half-day observation:

Compressed online radio interferometry

- Make radio interferometry measurement, start reconstructing

Compressed online radio interferometry

- Make radio interferometry measurement, start reconstructing
- Every 7.5 minutes make new measurement (and do 300 iterations)

Compressed online radio interferometry

- Make radio interferometry measurement, start reconstructing
- Every 7.5 minutes make new measurement (and do 300 iterations)
- Monitor the residual after new measurements have arrived

Compressed online radio interferometry

- Make radio interferometry measurement, start reconstructing
- Every 7.5 minutes make new measurement (and do 300 iterations)
- Monitor the residual after new measurements have arrived

- Drop of the residual after 5,400 iterations (2.5 hours), no further increase of quality expected

Conclusion

- New approach to sparse recovery via split feasibility problems

Conclusion

- New approach to sparse recovery via split feasibility problems
- Recover linearized Bregman with a different proof of convergence

Conclusion

- New approach to sparse recovery via split feasibility problems
- Recover linearized Bregman with a different proof of convergence
- Exact stepsizes greatly improve convergence

Conclusion

- New approach to sparse recovery via split feasibility problems
- Recover linearized Bregman with a different proof of convergence
- Exact stepsizes greatly improve convergence
- Obtained new sparse Kaczmarz solver

Conclusion

- New approach to sparse recovery via split feasibility problems
- Recover linearized Bregman with a different proof of convergence
- Exact stepsizes greatly improve convergence
- Obtained new sparse Kaczmarz solver
- Numerous generalizations possible, no new theory required

Sparse and TV Kaczmarz solvers and the linearized Bregman method

Dirk Lorenz, Frank Schöpfer, Stephan Wenger, Marcus Magnor, March, 2014
Sparse Tomo Days, DTU

- Motivation
- Split feasibility problems
- Sparse Kaczmarz and TV-Kaczmarz
- Application to radio interferometry

