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Underdetermined systems

Seeking solutions of linear systems

Ax = b.

Kaczmarz iteration:

xk+1 = xk −
aTr(k)xk − br(k)
‖ar(k)‖2

2
ar(k)

aTr : r-th row of A, r(k): control sequence.
Amounts to iterative projection onto hyperplane defined by r(k)-th
equation. When initialized with 0: Converges to solution of
min ‖x‖2

2 such that Ax = b.
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Aiming at sparse solutions?

Iterate

Sλ

−λ λ

Theorem [L, Schöpfer, Wenger, Magnor 2014]: The sequence xk, when
initialized with x0 = 0, converges to the solution of

min λ‖·‖1 +
1
2‖·‖

2
2 such that Ax = b.

Two interesting things:
1. Very similar to Kaczmarz. Other “minimum-J-solutions” possible?
2. Very similar to linearized Bregman iteration

(replace first equation by zk+1 = zk − tkAT(Axk − b))
Approach: “Split feasibility problems” will answer the first and explain
the second point.
In a nutshell: Adapt the notion of “projection” to new objective.

March, 2014 Dirk Lorenz Linearized Bregman Page 5 of 25



Aiming at sparse solutions?

Iterate

xk+1 = xk −
aTr(k)xk − br(k)
‖ar(k)‖2

2
ar(k)

Sλ

−λ λ

Theorem [L, Schöpfer, Wenger, Magnor 2014]: The sequence xk, when
initialized with x0 = 0, converges to the solution of

min λ‖·‖1 +
1
2‖·‖

2
2 such that Ax = b.

Two interesting things:
1. Very similar to Kaczmarz. Other “minimum-J-solutions” possible?
2. Very similar to linearized Bregman iteration

(replace first equation by zk+1 = zk − tkAT(Axk − b))
Approach: “Split feasibility problems” will answer the first and explain
the second point.
In a nutshell: Adapt the notion of “projection” to new objective.

March, 2014 Dirk Lorenz Linearized Bregman Page 5 of 25



Aiming at sparse solutions?

Iterate

zk+1 = zk −
aTr(k)xk − br(k)
‖ar(k)‖2

2
ar(k)

xk+1 = Sλ(zk+1)

Sλ

−λ λ

Theorem [L, Schöpfer, Wenger, Magnor 2014]: The sequence xk, when
initialized with x0 = 0, converges to the solution of

min λ‖·‖1 +
1
2‖·‖

2
2 such that Ax = b.

Two interesting things:
1. Very similar to Kaczmarz. Other “minimum-J-solutions” possible?
2. Very similar to linearized Bregman iteration

(replace first equation by zk+1 = zk − tkAT(Axk − b))
Approach: “Split feasibility problems” will answer the first and explain
the second point.
In a nutshell: Adapt the notion of “projection” to new objective.

March, 2014 Dirk Lorenz Linearized Bregman Page 5 of 25



Aiming at sparse solutions?

Iterate

zk+1 = zk −
aTr(k)xk − br(k)
‖ar(k)‖2

2
ar(k)

xk+1 = Sλ(zk+1)

Sλ

−λ λ

Theorem [L, Schöpfer, Wenger, Magnor 2014]: The sequence xk, when
initialized with x0 = 0, converges to the solution of

min λ‖·‖1 +
1
2‖·‖

2
2 such that Ax = b.

Two interesting things:
1. Very similar to Kaczmarz. Other “minimum-J-solutions” possible?
2. Very similar to linearized Bregman iteration

(replace first equation by zk+1 = zk − tkAT(Axk − b))
Approach: “Split feasibility problems” will answer the first and explain
the second point.
In a nutshell: Adapt the notion of “projection” to new objective.

March, 2014 Dirk Lorenz Linearized Bregman Page 5 of 25



Aiming at sparse solutions?

Iterate

zk+1 = zk −
aTr(k)xk − br(k)
‖ar(k)‖2

2
ar(k)

xk+1 = Sλ(zk+1)

Sλ

−λ λ

Theorem [L, Schöpfer, Wenger, Magnor 2014]: The sequence xk, when
initialized with x0 = 0, converges to the solution of

min λ‖·‖1 +
1
2‖·‖

2
2 such that Ax = b.

Two interesting things:
1. Very similar to Kaczmarz. Other “minimum-J-solutions” possible?
2. Very similar to linearized Bregman iteration

(replace first equation by zk+1 = zk − tkAT(Axk − b))

Approach: “Split feasibility problems” will answer the first and explain
the second point.
In a nutshell: Adapt the notion of “projection” to new objective.

March, 2014 Dirk Lorenz Linearized Bregman Page 5 of 25



Aiming at sparse solutions?

Iterate

zk+1 = zk −
aTr(k)xk − br(k)
‖ar(k)‖2

2
ar(k)

xk+1 = Sλ(zk+1)

Sλ

−λ λ

Theorem [L, Schöpfer, Wenger, Magnor 2014]: The sequence xk, when
initialized with x0 = 0, converges to the solution of

min λ‖·‖1 +
1
2‖·‖

2
2 such that Ax = b.

Two interesting things:
1. Very similar to Kaczmarz. Other “minimum-J-solutions” possible?
2. Very similar to linearized Bregman iteration

(replace first equation by zk+1 = zk − tkAT(Axk − b))
Approach: “Split feasibility problems” will answer the first and explain
the second point.
In a nutshell: Adapt the notion of “projection” to new objective.

March, 2014 Dirk Lorenz Linearized Bregman Page 5 of 25



Motivation

Split feasibility problems

Sparse Kaczmarz and TV-Kaczmarz

Application to radio interferometry

March, 2014 Dirk Lorenz Linearized Bregman Page 6 of 25



Convex and split feasibility problems

Convex feasibility problem (CFP):
Find x, such that

x ∈ Ci, i = 1, . . .NC

, Aix ∈ Qi, i = 1, . . . ,NQ

Ci

, Qi

convex

, Ai linear

, projecting onto Ci

and Qi

“easy”

Constraints “split into two types”
Alternating projections:

xk+1 = PCi(xk)
i = (k mod NC) + 1 “control sequence”
[1933 von Neumann (two subspaces), 1962 Halperin (several
subspaces), Dijkstra, Censor, Bauschke, Borwein, Deutsch, Lewis,
Luke…]
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Tackling split feasibility problems

Projecting onto {x | Ax ∈ Q } too expensive

Construct a separating hyperplane: For a given xk:

Set wk = Axk − PQ (Axk)
Project onto

Hk = {x | 〈ATwk, x〉 ≤ 〈ATwk, xk〉 − ‖wk‖2}

xk+1 = PCi(x
k)

for a constraint u ∈ Ci
xk+1 = PHk (xk)
for a constraint Aix ∈ Qi

Converges to feasible point.
E.g.: Q = {b}: xk+1 = xk + tkAT(Axk − b)
 minimum norm solution of Ax = b
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Towards sparse solutions with generalized projections

D : X × X → R abstract “distance function”
PC(x) = argminy∈C D(x, y)

D(x, y) = ‖x− y‖2 orthogonal projection
J : X → R convex, z ∈ ∂J(x)

Dz(x, y) = J(y)− J(x)− 〈z, y− x〉
Bregman distance Bregman projection
J : Rn → R continuous, α-strongly convex ( =⇒ ∇J∗ is 1/α-Lipschitz)
Good news! Bregman projections onto hyperplanes H = {aTx = β}
are simple:
if z ∈ ∂J(x)

PH(x) = ∇J∗(z− t̄a), t̄ = argmin
t

J∗(z− ta) + tβ

Moreover: z− t̄a ∈ ∂J(Ph(x)) new subgradient in PH(x).
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Convergence

Theorem: [Schöpfer, L., Wenger 2013] Cyclic (or random) Bregman
projections converge to a feasible point: x̄ ∈ Ci and Aix̄ ∈ Qi.

Application to
min J(x) s.t. Ax = b

Multiple possibilities, e.g.

1. only one “difficult constraints”: Ax ∈ Q = {b}
2. many simple constraints Ci = {aTi x = bi}

In both cases: Convergence to minimum-J solution
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Sparse solutions

J(x) = λ‖x‖1 does not work - not strongly convex

J(x) = λ‖x‖1 +
1
2‖x‖2: strongly convex with constant 1

Bregman projection onto hyperplanes H = {aTx = β}: if z ∈ ∂J(x)

PH(x) = ∇J∗(z− t̄a), t̄ = argmin
t

J∗(z− ta) + tβ

∇J∗ = (∂J)−1:
J ∂J

λ

∇J∗

λ

∇J∗(z) = Sλ(z)
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Basic algorithm and special cases:

Variant 1: One difficult constraint Ax = b
Variant 2: Many simple constraints aTr x = br
In general: Block-processing Arx = br

Iteration:
1. Pick a constraint and set wk = Arxk − br, βk = (ATr wk)

Txk − ‖wk‖2
2

2. Calculate
zk+1 = zk − tkATr wk

xk+1 = ∇J∗(zk+1)

with appropriate stepsize tk (depending on wk and βk)
J(x) = ‖x‖2

2/2, variant 1.: Landweber iteration
J(x) = ‖x‖2

2/2, variant 2.: Kaczmarz method
J(x) = λ‖x‖1 + ‖x‖2

2/2, variant 1.: Linearized Bregman!
J(x) = λ‖x‖1 + ‖x‖2

2/2, variant 2.: Sparse Kaczmarz!
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Inexact stepsizes are allowed

Linearized Bregman:

tk =
‖Axk − b‖2

‖AT(Axk − b)‖2 =
‖wk‖2

‖ATwk‖2 , or tk ≤
1
‖A‖2

However: To compute exact stepsize, solve one-dimensional
piecewise quadratic optimization problem (can be done in O(n log n),
usually faster).
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Stepsize comparison
‖xn − x†‖

10−8

10−4

100

100 200 300
constant stepsize

exact

A ∈ R1000×2000 Gauß, x† 20 non-zeros (Gauß)

‖xn − x†‖

10−8

10−4

100

100 200 300 400 500
constant stepsize

exact

A ∈ R2000×6000 partial DCT, x† 50 non-zeros (high dynamic range)
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Really helps for sparse images

binarytomo.m from AIRtools
Standard Kaczmarz vs. Sparse Kaczmarz, 50 sweeps:
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Online compressed sensing

Assume that linear measurements bk = aTk x of some x can be
acquired, but time consuming/costly/harmful…

Idea: Start reconstructing x as soon as first measurements arrived and
for every new measurement:
1. add “hyperplanes” in sparse Kaczmarz, or
2. enlarge matrix A for linearized Bregman.
Observe residual:

0 5 10 15 2010−14

10−6

102

residual

Reconstruction error drops down precisely when residuum starts to
stay small! Stop measuring when that happens
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TV-Kaczmarcz

How to treat
min ‖|∇u|‖1 subject to Au = b?

Introduce constraint p = ∇u, add regularization:

min
u,p

λ‖|p|‖1 +
1
2

(
‖u‖2 + ‖p‖2

)
s.t Au = b,

∇u = p.

Treat Au = b by Kaczmarz (uk+1 = uk −
aTr(k)u

k−br(k)
‖ar(k)‖2 ar(k))

Treat ∇u− p = 0 by linearized Bregman steps (with dynamic
stepsize, uses two-dimensional shrinkage)
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Parallel beam geometry
16384 pixels, 3128 measurements
500 Kaczmarz sweeps

0 100 200 300 400 500
10−2

10−1

100

101

1 LB step
100 LB steps
‖Au− b‖
‖∇u− p‖

original 1 LB step per sweep 100 LB steps per sweep
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Radio interferometry

Very Large Array telescope: a number of radio telescopes record radio
emission from the sky. Each pair of telescopes gives one sample of
the Fourier-transform of the image

After a small rotation of the earth, the sampling pattern also rotates.
Half-day observation:
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Compressed online radio interferometry

Make radio interferometry measurement, start reconstructing

Every 7.5 minutes make new measurement (and do 300 iterations)
Monitor the residual after new measurements have arrived

0 5,000 10,000 15,000 20,000 25,000

10−4

10−2

100
residual

error

Drop of the residual after 5,400 iterations (2.5 hours), no further
increase of quality expected

Sagittarius A West Reconstruction
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Conclusion

New approach to sparse recovery via split feasibility problems

Recover linearized Bregman with a different proof of convergence
Exact stepsizes greatly improve convergence
Obtained new sparse Kaczmarz solver
Numerous generalizations possible, no new theory required
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Sparse and TV Kaczmarz solvers and the
linearized Bregman method
Dirk Lorenz, Frank Schöpfer, Stephan Wenger, Marcus Magnor, March, 2014
Sparse Tomo Days, DTU
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