

Technische Universität Braunschweig

Sparse and TV Kaczmarz solvers and the linearized Bregman method

Dirk Lorenz, Frank Schöpfer, Stephan Wenger, Marcus Magnor, March, 2014 Sparse Tomo Days, DTU

- Motivation
- Split feasibility problems
- Sparse Kaczmarz and TV-Kaczmarz
- Application to radio interferometry

Motivation

- Split feasibility problems
- Sparse Kaczmarz and TV-Kaczmarz
- Application to radio interferometry

Underdetermined systems

Seeking solutions of linear systems

$$Ax = b$$
.

Kaczmarz iteration:

Technische

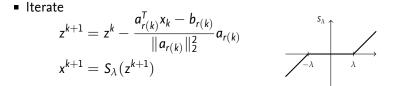
Braunschweig

$$x^{k+1} = x^k - \frac{a_{r(k)}^T x_k - b_{r(k)}}{\|a_{r(k)}\|_2^2} a_{r(k)}$$

 a_r^{T} : *r*-th row of A, r(k): control sequence.

Amounts to *iterative projection* onto hyperplane defined by r(k)-th equation. When initialized with 0: Converges to solution of min ||x||²₂ such that Ax = b.

$$x^{k+1} = x^{k} - \frac{a_{r(k)}^{\mathsf{T}} x_{k} - b_{r(k)}}{\|a_{r(k)}\|_{2}^{2}} a_{r(k)}$$



- Iterate $z^{k+1} = z^{k} - \frac{a_{r(k)}^{\mathsf{T}} x_{k} - b_{r(k)}}{\|a_{r(k)}\|_{2}^{2}} a_{r(k)}$ $x^{k+1} = S_{\lambda}(z^{k+1})$
- **Theorem** [L, Schöpfer, Wenger, Magnor 2014]: The sequence x^k , when initialized with $x^0 = 0$, converges to the solution of $\min \lambda \|\cdot\|_1 + \frac{1}{2} \|\cdot\|_2^2$ such that Ax = b.

Iterate

$$z^{k+1} = z^{k} - \frac{a_{r(k)}^{T} x_{k} - b_{r(k)}}{\|a_{r(k)}\|_{2}^{2}} a_{r(k)}$$

$$x^{k+1} = S_{\lambda}(z^{k+1})$$

- **Theorem** [L, Schöpfer, Wenger, Magnor 2014]: The sequence x^k , when initialized with $x^0 = 0$, converges to the solution of $\min \lambda \|\cdot\|_1 + \frac{1}{2} \|\cdot\|_2^2$ such that Ax = b.
- Two interesting things:
 - 1. Very similar to Kaczmarz. Other "minimum-J-solutions" possible?
 - 2. Very similar to linearized Bregman iteration (replace first equation by $z^{k+1} = z^k - t_k A^T (Ax^k - b)$)

Iterate

$$z^{k+1} = z^{k} - \frac{a_{r(k)}^{T} x_{k} - b_{r(k)}}{\|a_{r(k)}\|_{2}^{2}} a_{r(k)}$$

$$x^{k+1} = S_{\lambda}(z^{k+1})$$

- **Theorem** [L, Schöpfer, Wenger, Magnor 2014]: The sequence x^k , when initialized with $x^0 = 0$, converges to the solution of $\min \lambda \|\cdot\|_1 + \frac{1}{2} \|\cdot\|_2^2$ such that Ax = b.
- Two interesting things:
 - 1. Very similar to Kaczmarz. Other "minimum-J-solutions" possible?
 - 2. Very similar to linearized Bregman iteration (replace first equation by $z^{k+1} = z^k - t_k A^T (Ax^k - b)$)
- Approach: "Split feasibility problems" will answer the first and explain the second point.
- In a nutshell: Adapt the notion of "projection" to new objective.

Motivation

- Split feasibility problems
- Sparse Kaczmarz and TV-Kaczmarz
- Application to radio interferometry

• Convex feasibility problem (CFP): Find *x*, such that

$$x \in C_i, i = 1, \dots N_C$$

C_i convex , projecting onto C_i "easy"

• Split feasibility problem (SFP): Find x, such that

$$x \in C_i, i = 1, \dots, N_C, \quad A_i x \in Q_i, i = 1, \dots, N_Q$$

C_i, *Q_i* convex, *A_i* linear, projecting onto *C_i* and *Q_i* "easy" Constraints "split into two types"

• Split feasibility problem (SFP): Find x, such that

$$x \in C_i, i = 1, \dots N_C, \quad A_i x \in Q_i, i = 1, \dots, N_Q$$

 C_i , Q_i convex, A_i linear, projecting onto C_i and Q_i "easy" Constraints "split into two types"

Alternating projections:

$$x^{k+1} = P_{C_i}(x^k)$$

 $i = (k \mod N_C) + 1$ "control sequence"



• Split feasibility problem (SFP): Find x, such that

$$x \in C_i, i = 1, \dots, N_C, \quad A_i x \in Q_i, i = 1, \dots, N_Q$$

 C_i , Q_i convex, A_i linear, projecting onto C_i and Q_i "easy" Constraints "split into two types"

Alternating projections:

 [1933 von Neumann (two subspaces), 1962 Halperin (several subspaces), Dijkstra, Censor, Bauschke, Borwein, Deutsch, Lewis, Luke...]

- Projecting onto $\{x \mid Ax \in Q\}$ too expensive

- Projecting onto $\{x \mid Ax \in Q\}$ too expensive
- Construct a separating hyperplane: For a given x^k:

• Set
$$w^k = Ax^k - P_Q(Ax^k)$$

Project onto

$$H^{k} = \{x \mid \langle A^{\mathsf{T}} w^{k}, x \rangle \leq \langle A^{\mathsf{T}} w^{k}, x^{k} \rangle - \|w^{k}\|^{2}\}$$

- Projecting onto $\{x \mid Ax \in Q\}$ too expensive
- Construct a separating hyperplane: For a given x^k:

• Set
$$w^k = Ax^k - P_Q(Ax^k)$$

Project onto

$$H^{k} = \{ x \mid \langle A^{\mathsf{T}} w^{k}, x \rangle \leq \langle A^{\mathsf{T}} w^{k}, x^{k} \rangle - \| w^{k} \|^{2} \}$$

•
$$x^{k+1} = P_{C_i}(x^k)$$

for a constraint $u \in C_i$
 $x^{k+1} = P_{uk}(x^k)$

- Projecting onto $\{x \mid Ax \in Q\}$ too expensive
- Construct a separating hyperplane: For a given x^k:

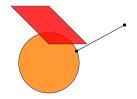
• Set
$$w^k = Ax^k - P_Q(Ax^k)$$

Project onto

$$H^{k} = \{ x \mid \langle A^{\mathsf{T}} w^{k}, x \rangle \leq \langle A^{\mathsf{T}} w^{k}, x^{k} \rangle - \| w^{k} \|^{2} \}$$

•
$$x^{k+1} = P_{C_i}(x^k)$$

for a constraint $u \in C_i$
• $x^{k+1} = P_{u,k}(x^k)$



- Projecting onto $\{x \mid Ax \in Q\}$ too expensive
- Construct a separating hyperplane: For a given x^k:

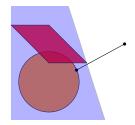
• Set
$$w^k = Ax^k - P_Q(Ax^k)$$

Project onto

$$H^{k} = \{ x \mid \langle A^{\mathsf{T}} w^{k}, x \rangle \leq \langle A^{\mathsf{T}} w^{k}, x^{k} \rangle - \| w^{k} \|^{2} \}$$

•
$$x^{k+1} = P_{C_i}(x^k)$$

for a constraint $u \in C_i$
• $x^{k+1} = P_{H^k}(x^k)$



- Projecting onto $\{x \mid Ax \in Q\}$ too expensive
- Construct a separating hyperplane: For a given *x*^{*k*}:

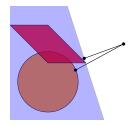
• Set
$$w^k = Ax^k - P_Q(Ax^k)$$

Project onto

$$H^{k} = \{ x \mid \langle A^{\mathsf{T}} w^{k}, x \rangle \leq \langle A^{\mathsf{T}} w^{k}, x^{k} \rangle - \| w^{k} \|^{2} \}$$

•
$$x^{k+1} = P_{C_i}(x^k)$$

for a constraint $u \in C_i$
• $x^{k+1} = P_{H^k}(x^k)$



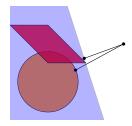
- Projecting onto $\{x \mid Ax \in Q\}$ too expensive
- Construct a separating hyperplane: For a given x^k:

• Set
$$w^k = Ax^k - P_Q(Ax^k)$$

Project onto

$$H^{k} = \{ x \mid \langle A^{\mathsf{T}} w^{k}, x \rangle \leq \langle A^{\mathsf{T}} w^{k}, x^{k} \rangle - \| w^{k} \|^{2} \}$$

- $x^{k+1} = P_{C_i}(x^k)$ for a constraint $u \in C_i$ • $x^{k+1} = P_{\mu k}(x^k)$
 - for a constraint $A_i x \in Q_i$
- Converges to feasible point.



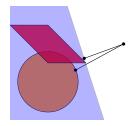
- Projecting onto $\{x \mid Ax \in Q\}$ too expensive
- Construct a separating hyperplane: For a given x^k:

• Set
$$w^k = Ax^k - P_Q(Ax^k)$$

Project onto

$$H^{k} = \{ x \mid \langle A^{\mathsf{T}} w^{k}, x \rangle \leq \langle A^{\mathsf{T}} w^{k}, x^{k} \rangle - \| w^{k} \|^{2} \}$$

- $x^{k+1} = P_{C_i}(x^k)$ for a constraint $u \in C_i$ • $x^{k+1} = P_{uk}(x^k)$
 - for a constraint $A_i x \in Q_i$
- Converges to feasible point.
- E.g.: $Q = \{b\}$: $x^{k+1} = x^k + t_k A^T (Ax^k b)$ \rightsquigarrow minimum norm solution of Ax = b



• $D: X \times X \to \mathbf{R}$ abstract "distance function" $P_{\mathsf{C}}(x) = \operatorname{argmin}_{y \in \mathsf{C}} D(x, y)$

- $D: X \times X \to \mathbf{R}$ abstract "distance function" $P_{\mathsf{C}}(x) = \operatorname{argmin}_{y \in \mathsf{C}} D(x, y)$
- $D(x, y) = ||x y||^2 \rightsquigarrow \text{ orthogonal projection}$

- $D: X \times X \to \mathbf{R}$ abstract "distance function" $P_{C}(x) = \operatorname{argmin}_{y \in C} D(x, y)$
- $D(x, y) = ||x y||^2 \rightsquigarrow \text{ orthogonal projection}$
- $J: X \to \mathbf{R}$ convex, $z \in \partial J(x)$

$$D^{z}(x,y) = J(y) - J(x) - \langle z, y - x \rangle$$

Bregman distance ~~ Bregman projection

- $D: X \times X \to \mathbf{R}$ abstract "distance function" $P_{\mathsf{C}}(x) = \operatorname{argmin}_{y \in \mathsf{C}} D(x, y)$
- $D(x, y) = ||x y||^2 \rightsquigarrow \text{ orthogonal projection}$
- $J: X \to \mathbf{R}$ convex, $z \in \partial J(x)$

$$D^{z}(x,y) = J(y) - J(x) - \langle z, y - x \rangle$$

Bregman distance ~>> Bregman projection

• $J: \mathbf{R}^n \to \mathbf{R}$ continuous, α -strongly convex ($\implies \nabla J^*$ is $1/\alpha$ -Lipschitz)

- $D: X \times X \rightarrow \mathbf{R}$ abstract "distance function" $P_{C}(x) = \operatorname{argmin}_{y \in C} D(x, y)$
- $D(x, y) = ||x y||^2 \rightsquigarrow \text{ orthogonal projection}$
- $J: X \to \mathbf{R}$ convex, $z \in \partial J(x)$

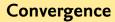
$$D^{z}(x,y) = J(y) - J(x) - \langle z, y - x \rangle$$

Bregman distance ~>> Bregman projection

- $J: \mathbf{R}^n \to \mathbf{R}$ continuous, α -strongly convex ($\implies \nabla J^*$ is $1/\alpha$ -Lipschitz)
- Good news! Bregman projections onto hyperplanes H = {a^Tx = β} are simple:
 - if $z \in \partial J(x)$

$$P_H(x) = \nabla J^*(z - \overline{t}a), \quad \overline{t} = \underset{t}{\operatorname{argmin}} J^*(z - ta) + t\beta$$

Moreover: $z - \overline{t}a \in \partial J(P_h(x))$ new subgradient in $P_H(x)$.



■ Theorem: [Schöpfer, L., Wenger 2013] Cyclic (or random) Bregman projections converge to a feasible point: x̄ ∈ C_i and A_ix̄ ∈ Q_i.

- Theorem: [Schöpfer, L., Wenger 2013] Cyclic (or random) Bregman projections converge to a feasible point: x̄ ∈ C_i and A_ix̄ ∈ Q_i.
- Application to

$$\min J(x)$$
 s.t. $Ax = b$

Multiple possibilities, e.g.

- 1. only one "difficult constraints": Ax $\in Q = \{b\}$
- 2. many simple constraints $C_i = \{a_i^T x = b_i\}$

- Theorem: [Schöpfer, L., Wenger 2013] Cyclic (or random) Bregman projections converge to a feasible point: x̄ ∈ C_i and A_ix̄ ∈ Q_i.
- Application to

$$\min J(x)$$
 s.t. $Ax = b$

Multiple possibilities, e.g.

- 1. only one "difficult constraints": Ax $\in Q = \{b\}$
- 2. many simple constraints $C_i = \{a_i^T x = b_i\}$
- In both cases: Convergence to minimum-J solution

• $J(x) = \lambda \|x\|_1$ does not work - not strongly convex

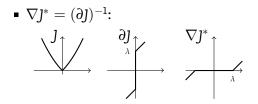
- $J(x) = \lambda ||x||_1$ does not work not strongly convex
- $J(x) = \lambda ||x||_1 + \frac{1}{2} ||x||^2$: strongly convex with constant 1

- $J(x) = \lambda ||x||_1$ does not work not strongly convex
- $J(x) = \lambda ||x||_1 + \frac{1}{2} ||x||^2$: strongly convex with constant 1
- Bregman projection onto hyperplanes $H = \{a^T x = \beta\}$: if $z \in \partial J(x)$

$$P_H(x) = \nabla J^*(z - \overline{t}a), \quad \overline{t} = \operatorname*{argmin}_t J^*(z - ta) + t\beta$$

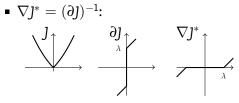
- $J(x) = \lambda ||x||_1$ does not work not strongly convex
- $J(x) = \lambda ||x||_1 + \frac{1}{2} ||x||^2$: strongly convex with constant 1
- Bregman projection onto hyperplanes $H = \{a^T x = \beta\}$: if $z \in \partial J(x)$

$$P_{H}(x) = \nabla J^{*}(z - \overline{t}a), \quad \overline{t} = \underset{t}{\operatorname{argmin}} J^{*}(z - ta) + t\beta$$



- $J(x) = \lambda ||x||_1$ does not work not strongly convex
- $J(x) = \lambda ||x||_1 + \frac{1}{2} ||x||^2$: strongly convex with constant 1
- Bregman projection onto hyperplanes $H = \{a^T x = \beta\}$: if $z \in \partial J(x)$

$$P_{H}(x) = \nabla J^{*}(z - \overline{t}a), \quad \overline{t} = \underset{t}{\operatorname{argmin}} J^{*}(z - ta) + t\beta$$



•
$$\nabla J^*(z) = S_\lambda(z)$$

Basic algorithm and special cases:

- Variant 1: One difficult constraint Ax = b
- Variant 2: Many simple constraints $a_r^T x = b_r$
- In general: Block-processing $A_r x = b_r$

Basic algorithm and special cases:

- Variant 1: One difficult constraint Ax = b
- Variant 2: Many simple constraints $a_r^T x = b_r$
- In general: Block-processing $A_r x = b_r$

Iteration:

- 1. Pick a constraint and set $w^k = A_r x^k b_r$, $\beta_k = (A_r^T w_k)^T x^k \|w^k\|_2^2$
- 2. Calculate

$$\begin{aligned} \mathbf{z}^{k+1} &= \mathbf{z}^k - \mathbf{t}_k \mathbf{A}_r^\mathsf{T} \mathbf{w}^k \\ \mathbf{x}^{k+1} &= \nabla J^*(\mathbf{z}^{k+1}) \end{aligned}$$

with appropriate stepsize t_k (depending on w^k and β_k)

Basic algorithm and special cases:

- Variant 1: One difficult constraint Ax = b
- Variant 2: Many simple constraints $a_r^T x = b_r$
- In general: Block-processing A_rx = b_r

Iteration:

- 1. Pick a constraint and set $w^k = A_r x^k b_r$, $\beta_k = (A_r^T w_k)^T x^k \|w^k\|_2^2$
- 2. Calculate

$$z^{k+1} = z^k - t_k A_r^T w^k$$
$$x^{k+1} = \nabla J^*(z^{k+1})$$

with appropriate stepsize t_k (depending on w^k and β_k)

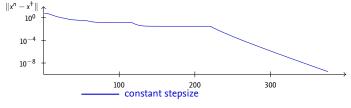
- $J(x) = ||x||_2^2/2$, variant 1.: Landweber iteration
- $J(\mathbf{x}) = \|\mathbf{x}\|_2^2/2$, variant 2.: Kaczmarz method
- $J(\mathbf{x}) = \lambda \|\mathbf{x}\|_1 + \|\mathbf{x}\|_2^2/2$, variant 1.: Linearized Bregman!
- $J(x) = \lambda ||x||_1 + ||x||_2^2/2$, variant 2.: Sparse Kaczmarz!

Inexact stepsizes are allowed

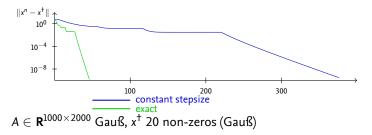
Linearized Bregman:

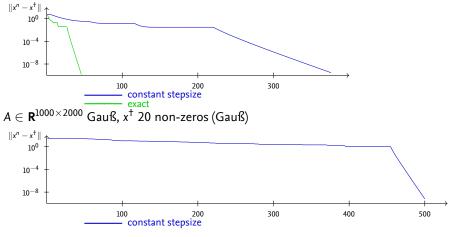
$$t_k = rac{\|Ax^k - b\|^2}{\|A^T (Ax^k - b)\|^2} = rac{\|w^k\|^2}{\|A^T w^k\|^2}, \quad ext{or} \quad t_k \leq rac{1}{\|A\|^2}$$

 However: To compute exact stepsize, solve one-dimensional piecewise quadratic optimization problem (can be done in O(n log n), usually faster).

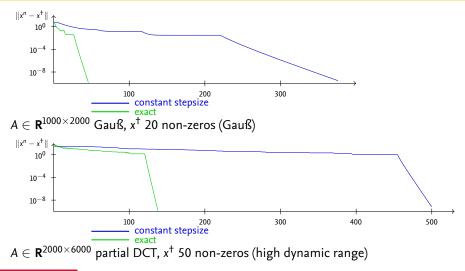


 $A \in \mathbf{R}^{1000 \times 2000}$ Gauß, x[†] 20 non-zeros (Gauß)





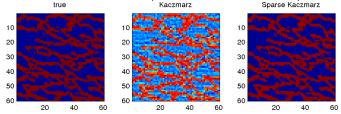
 $A \in \mathbf{R}^{2000 \times 6000}$ partial DCT, x⁺ 50 non-zeros (high dynamic range)



- Motivation
- Split feasibility problems
- Sparse Kaczmarz and TV-Kaczmarz
- Application to radio interferometry

Really helps for sparse images

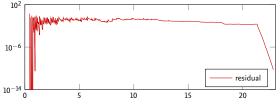
- binarytomo.m from AIRtools
- Standard Kaczmarz vs. Sparse Kaczmarz, 50 sweeps:



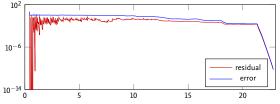
• Assume that linear measurements $b_k = a_k^T x$ of some x can be acquired, but time consuming/costly/harmful...

- Assume that linear measurements $b_k = a_k^T x$ of some x can be acquired, but time consuming/costly/harmful...
- Idea: Start reconstructing x as soon as first measurements arrived and for every new measurement:
 - 1. add "hyperplanes" in sparse Kaczmarz, or
 - 2. enlarge matrix A for linearized Bregman.

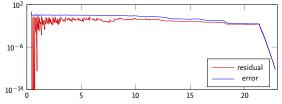
- Assume that linear measurements $b_k = a_k^T x$ of some x can be acquired, but time consuming/costly/harmful...
- Idea: Start reconstructing x as soon as first measurements arrived and for every new measurement:
 - 1. add "hyperplanes" in sparse Kaczmarz, or
 - 2. enlarge matrix A for linearized Bregman.
- Observe residual:



- Assume that linear measurements $b_k = a_k^T x$ of some x can be acquired, but time consuming/costly/harmful...
- Idea: Start reconstructing x as soon as first measurements arrived and for every new measurement:
 - 1. add "hyperplanes" in sparse Kaczmarz, or
 - 2. enlarge matrix A for linearized Bregman.
- Observe residual:



- Assume that linear measurements $b_k = a_k^T x$ of some x can be acquired, but time consuming/costly/harmful...
- Idea: Start reconstructing x as soon as first measurements arrived and for every new measurement:
 - 1. add "hyperplanes" in sparse Kaczmarz, or
 - 2. enlarge matrix A for linearized Bregman.
- Observe residual:



 Reconstruction error drops down precisely when residuum starts to stay small! Stop measuring when that happens

TV-Kaczmarcz

How to treat

Technische

Braunschweig

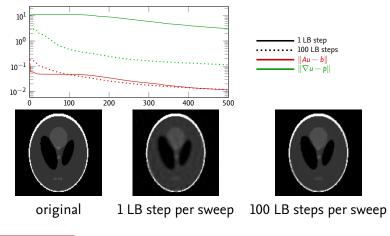
min
$$\||\nabla u|\|_1$$
 subject to $Au = b$?

■ Introduce constraint *p* = ∇*u*, add regularization:

$$\min_{u,p} \lambda |||p|||_1 + \frac{1}{2} (||u||^2 + ||p||^2) \quad \text{s.t} \quad Au = b,$$
$$\nabla u = p.$$

- Treat Au = b by Kaczmarz $(u^{k+1} = u^k \frac{a_{r(k)}^T u^k b_{r(k)}}{\|a_{r(k)}\|^2} a_{r(k)})$
- Treat ∇u − p = 0 by linearized Bregman steps (with dynamic stepsize, uses two-dimensional shrinkage)

- Parallel beam geometry
- 16384 pixels, 3128 measurements
- 500 Kaczmarz sweeps



- Motivation
- Split feasibility problems
- Sparse Kaczmarz and TV-Kaczmarz
- Application to radio interferometry

Radio interferometry

 Very Large Array telescope: a number of radio telescopes record radio emission from the sky. Each pair of telescopes gives one sample of the Fourier-transform of the image

Radio interferometry

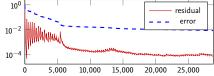
 Very Large Array telescope: a number of radio telescopes record radio emission from the sky. Each pair of telescopes gives one sample of the Fourier-transform of the image

• After a small rotation of the earth, the sampling pattern also rotates. Half-day observation:

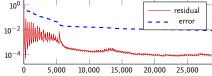
Make radio interferometry measurement, start reconstructing

- Make radio interferometry measurement, start reconstructing
- Every 7.5 minutes make new measurement (and do 300 iterations)

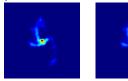
- Make radio interferometry measurement, start reconstructing
- Every 7.5 minutes make new measurement (and do 300 iterations)
- Monitor the residual after new measurements have arrived



- Make radio interferometry measurement, start reconstructing
- Every 7.5 minutes make new measurement (and do 300 iterations)
- Monitor the residual after new measurements have arrived



 Drop of the residual after 5,400 iterations (2.5 hours), no further increase of quality expected



Sagittarius A West

Reconstruction

March, 2014 | Dirk Lorenz | Linearized Bregman | Page 22 of 25

• New approach to sparse recovery via split feasibility problems

- New approach to sparse recovery via split feasibility problems
- Recover linearized Bregman with a different proof of convergence

- New approach to sparse recovery via split feasibility problems
- Recover linearized Bregman with a different proof of convergence
- Exact stepsizes greatly improve convergence

- New approach to sparse recovery via split feasibility problems
- Recover linearized Bregman with a different proof of convergence
- Exact stepsizes greatly improve convergence
- Obtained new sparse Kaczmarz solver

- New approach to sparse recovery via split feasibility problems
- Recover linearized Bregman with a different proof of convergence
- Exact stepsizes greatly improve convergence
- Obtained new sparse Kaczmarz solver
- Numerous generalizations possible, no new theory required

Technische Universität Braunschweig

Sparse and TV Kaczmarz solvers and the linearized Bregman method

Dirk Lorenz, Frank Schöpfer, Stephan Wenger, Marcus Magnor, March, 2014 Sparse Tomo Days, DTU

- Motivation
- Split feasibility problems
- Sparse Kaczmarz and TV-Kaczmarz
- Application to radio interferometry

