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Abstract

With the recent (and ongoing) liberalisation of the energy market, increasing fuel prices,
and increasing political pressure toward the introductionof more sustainable energy into
the market, dynamic control of power plants is becoming highly important. More than
ever, power companies must be able to adapt their productionto uncontrollable fluctu-
ations in consumer demands as well as in the availability of production resources, e.g.
wind power, at a short notice.

Currently, thermal power plants in Denmark provide the necessary flexibility, which
is coordinated by a load balancing controller. As the stochastic production increases, the
flexibility of the power system should be increased as well. Aproposal for increasing
flexibility is virtual power plants (VPP). The concept of VPPis to pool smaller units
together to obtain a larger unit which offers the flexibilityknown from thermal power
plants. A virtual power plant could consist of heat pumps andelectrical vehicles which
has some flexibility that can be utilised. Creating such virtual power plants will increase
the number of units the load balancing controller coordinates, and this will strain the
design method of the current load balancing controller.

This thesis presents a new method for designing a load balancing controller which is
flexible and scalable in the number of units to meet the requirement of the future power
system. The developed method is based on model predictive control. In order to achieve
flexibility in the controller, the method presented in this thesis utilises a two-layer hier-
archical control structure using an object-oriented design. The object-oriented structure
is designed so units can be added, removed and modified without redesigning the whole
controller. Furthermore, the design allows freedom in the implementation of the unit in
question, in order to meet the diversity of the future units.

The optimisation problem arising from the construction of the model predictive con-
troller has been fitted into the hierarchical structure by decomposing it using Dantzig-
Wolfe decomposition. Besides the benefits of the flexibilityby solving the optimisation
problem within the hierarchical structure, this decomposition also ensures efficient solv-
ing of the problem, thus allowing the controller to coordinate more units.

The newly developed design method has been utilised for synthesis of a controller for
the current portfolio and compared to the performance of thecurrent portfolio controller
through simulations. Through simulations on a real scenario the new controller shows
improvements in ability to track reference production and economic performance.

IX





Synopsis

Den nylige (og igangværende) liberalisering af elmarkedet, stigende brændselspriser og
øget politisk pres for at indføre mere vedvarende energi i markedet har gjort dynamisk
regulering af kraftværker til et vigtigt emne. Elselskaberne skal i højere grad end tidligere
være i stand til med kort varsel at tilpasse produktionen tilde ukontrollerbare udsving i
forbrugernes efterspørgsel samt tilgængeligheden af produktionsressourcer, f.eks. vind-
kraft.

Det er i øjeblikket de termiske kraftværker, der leverer dennødvendige fleksibilitet,
koordineret af en balanceregulator. Når den stokastiske produktion øges, er der et behov
for at øge fleksibiliteten. Et forslag til hvordan øget fleksibilitet kan opn̊as, er virtuelle
kraftværker (VPP). Konceptet består i at samle mange sm̊a enheder med en smule fleksi-
bilitet til en større enhed, som kan give samme fleksibilitet, som kendes fra de termiske
kraftværker. Et par eksempler på s̊adanne enheder er varmepumper og elbiler. Selv om
konceptet i et virtuelt kraftværk er at aggregere mange små enheder, m̊a det stadig for-
ventes, at de medfører en kraftig stigning i antallet af enheder, som balanceregulatoreren
skal koordinere. Dette er mere, end den nuværende regulatorkan h̊andtere.

Denne afhandling præsenterer en ny metode til at designe balanceregulatorer, som
er fleksible og skalerer til mange enheder for at imødekomme de krav, som fremtidens
energisystem stiller. Den udviklede metodik er baseret på en model prædiktiv reguler-
ingsstrategi. For at opnå den ønskede fleksibilitet i regulatoren, udnytter den præsen-
terede metode sig af en objektorienteret to-lags hierarkisk regulatorstruktur. Den objek-
torienterede struktur er konstrueret, så enheder kan tilføjes, fjernes og ændres, uden at
den grundlæggende struktur i regulatoren ændres. Endvidere er designet udformet, så
det giver størst mulig frihed til at udforme den enkelte enhed for at imødekomme den
mangfoldighed af forskellige enheder, der kommer i fremtiden.

Det underliggende optimeringsproblem, som udspringer af den modelprædiktive reg-
ulator, er blevet indpasset i den hierarkiske struktur ved at benytte Dantzig-Wolfe dekom-
position. Dekomposition giver ud over at kunne indpasse løsningen af optimeringsprob-
lemet i den hierarkiske struktur, en mere effektiv løsning af problemet, hvilket medfører,
at regulatoren kan koordinere flere enheder.

Den udviklede design metode er anvendt til at syntetisere enregulator til den nu-
værende portefølje af kraftværker. Den nye regulator er sammenlignet med den nu-
værende regulator via simuleringer med rigtige produktionsdata. Simuleringerne viser
en forbedring af evnen til at følge referencer og en forbedret økonomi.
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1 Introduction

This thesis is concerned with developing a method for controller design for dynamic load
balancing of a portfolio consisting of multiple units connected to one common power
system. The goal is to use the current operational experience to develop a new method
in order to create a controller with a more modular structurewhich is ready to meet the
future challenges that the power system will bring with the current focus on developing a
sustainable energy production.

The chapter gives the motivation for developing a new method, a description of the
power system as well as state of the art within power system control and the underlying
theory the method utilises.

1.1 Motivation

This research project was proposed and funded by DONG Energy[DONG Energy, 2010].
DONG Energy is the largest Danish power producer with more than 4500 employees and
5500 MW installed capacity of thermal power and 654 MW of windpower in Denmark.
Besides, DONG Energy has activities in most countries in Northern Europe where the
focus is on development of renewable energy projects. Besides the activities in power
generation, DONG Energy is active within oil and gas exploration and production as well
as distribution of both gas and electricity.

Even though DONG Energy is considered a small company compared to the tycoons
in the area of power generation, there has been a tradition for designing, constructing and
operating the most fuel efficient thermal power plants in theworld as well as a massive
practical experience with wind power projects.

The massive investment in wind technology driven by the Danish Government has
resulted in 30% of the installed capacity in the Danish powersystem comes from wind
turbines in 2007, with visions to expand even further. More wind integrated in the system
increases the demand for the power production by exisiting thermal units to be flexible as
well as the coordination between thermal power and wind [Weber et al., 2006; Banakar
et al., 2008].

The Danish system began as a monopolised system with generation based on fossil
fuels. A system with a reasonable predictable production and consumption, and only slow
changes in the power exchange with other regions. The development has been towards
decentralisation and liberalisation along with a political incentive to introduce more re-
newable energy in the system which is often stochastic production such as wind turbines.
In Denmark the goal is to increase the share of electrical energy from renewable sources
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Introduction

from 24% in 2005 to 36% in 2025 as found in [Danish Ministry of Transport and Energy,
2005].

In 2003 Energinet.dk the Danish Transmission System Operator (TSO) started con-
structing a controller to maintain the balance between consumption and production in
Denmark. This led to the fact that DONG Energy had to design a controller which could
communicate with the TSO and distribute the set point received from the TSO to the
thermal power plants. This requirement was expanded withinDONG Energy to include
a better coordination of the power plants to minimise the deviations between the actual
and sold production within the portfolio. This event was thekickoff the load balancing
controller within DONG Energy.

The controller started out as an excellent idea implementedas a prototype and has
proved to work well in practice. However, many years of incremental design has led to
a structure which is no longer simple and easy to maintain. The purpose of this project
is to take a step back and rethink the design principles for the controller in order to get
an easier maintainable controller, and a controller which can cope with the challenges the
future of the power system is likely to bring.

Since the PhD project started, DONG Energy has formulated a strategy called 85/15,
meaning that 85% of the power production should come from carbon dioxide neutral
sources within the lifespan of of generation. This is a very challenging vision. There is
no grand solution where change of one technology will solve this challenge, it relies on
multiple different techonologies, all cooporating to achieve this goal. An important step
towards this vision is to create a flexible system such that the production and consumption
can be changed depending on the resources available, such aswind.

One of the candidates for creating flexibility is Virtual Power Plants (VPP). The con-
cept pools several, otherwise too small, production and consumption units, such as mul-
tiple smaller power plants, wind turbines and heat pumps, and make them behave as one
unit providing yet another means of load balancing. If the VPP concept proves success-
ful, an enormous amount of possibilities for load balancingbecomes available, and thus
increasing the importance of this project, rethinking the current load balancing controller
structure to obtain a more flexible a scalable controller.

Electric vehicles is another topic which catches much attention. The electrical vehi-
cles will introduce an additional demand for electricity, but the charging of the vehicles
can be controlled thus providing an additional VPP.

This project has the objective to develop a controller design method for the next gen-
eration of load balancing controllers. In order to investigate this objective, the following
hypothesis is formulated

Hypothesis: It is possible to develop a controller design method which can be utilised to
synthesise a controller which fulfils the criteria:

Scalability The controller must be scalable in the number of units participating in
the load balancing control.

Flexibility The controller must be flexible, such that addition of new units and
maintenance of existing ones is possible.

Performance The controller must perform at least as well as the current controller
measured on some performance criteria.

2



2 Power Systems Control and Electricity Market

1.2 Power Systems Control and Electricity Market

The largest of the European grids both in area but also in volume with a production capac-
ity of 3000 GW is ENTSO-E RG Continental Europe [ENTSO-E, 2010a]. The electrical
grid covers the continent of Europe, from Portugal in the west to Romania in the east.
Since electricity cannot be stored for later use, there is a constant need to outbalance
the consumption and the production to supply the consumers.In order to keep the bal-
ance within an area as big as ENTSO-E RG Continental Europe itis split into several
regions where each region of the grid is governed by a Transmission System Operator
(TSO). Western Denmark, meaning Jutland and Funen, is one region within the ENTSO-
E RG Continental Europe area and is synchronous interconnected to Germany and asyn-
chronously connected to Norway and Sweden. The area along with major production
units is shown in Figure 1.1. This region is governed by the Danish TSO Energinet.dk.

Studstrupværket

Herningværket

DONG Energy Power Plant

Horns Rev 1

400 KV AC power line

DC Tie Line

Wind farm

Nordjyllandsværket

Other producers Power plant

Norway

Sweden

Esbjergværket Skærbækværket

Enstedværket

Horns Rev 1

Fynsværket

Germany

Figure 1.1: The main components of the power system in the western Denmark.

In western Denmark there are 7 sites containing large power plants covering a total
of 9 units with an electrical production capacity ranging from 80 MW to 650 MW, where
the most common size is around 400 MW. There are two major producers in western
Denmark where DONG Energy is the largest and operates a totalof 6 units in the area.

Sealand on the other hand is not part of the ENTSO-E RG Continental Europe area,
instead it is synchronous interconnected with ENTSO-E RG Nordic which covers most
of Scandinavia.

The electricity grid balance between consumption and production have to be main-
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Introduction

tained at all times. All the rotating devices connected to the grid, such as generators, have
some energy and thus gives a bit of leeway to maintain the balance. If the consumption is
larger than the production, energy will be pulled out of the system, making the generators
slow down from the usual 50Hz, and thus a drop in the system frequency can be observed.

In order to keep balance between production and consumption, DONG Energy uses a
multi hierarchical scheme as shown in Figure 1.2.

Business Planning 

(years)

Production planning 

(days - weeks)

Measurements

and Servos 

(seconds)

Processes

(seconds - minutes)

Units

(minutes - hours)

MM

Balance control

(minutes)

System Level

Plant Level

Figure 1.2: System hierarchy within DONG Energy. The hierarchy consist of a system
level which coordinates the units, and a unit level that contains the control hierarchy of
the individual unit. The time units on the figure show the typical time scale on which the
level operates.

The upper three levels of the hierarchy are denotedsystem level, meaning that the
scope of these levels covers multiple power producing units. On the highest level is the
business planning where decisions on building new power plants is taken. It might not
seem obvious to include this level when discussing balance between consumption and
production, but the investment decision is based on the needfor the capacity. During
planning and construction, balance control is an essentialpart of the power plant design.

The next level is production planning also known asunit commitment. Production
planning is static optimisation of load distribution amongpower production units, [Padhy,
2004], [Salam, 2007]. Solving the unit commitment problem means determining the com-
bination of available generating units and scheduling their respective output to satisfy the
reference production, often with a minimisation of cost under the operating constraints en-
forced by the power producing portfolio for a specific time - typically from 24 hours up to
a week. The optimisation problem is of high dimension and combinatorial in nature, and
can thus be difficult to solve in practice. Results using heuristic methods [Johnson et al.,
1971], [Viana et al., 2001], Mixed Integer Programming [Dillon et al., 1978], [Jørgensen
et al., 2006], Dynamic Programming [Ayuob and Patton, 1971]and Lagrangian Relax-
ation [Aoki et al., 1987], [Shahidehpour and Tong, 1992], have been reported in literature.

Once a solution to the unit comment problem, i.e. a static schedule has been found, the
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2 Power Systems Control and Electricity Market

load plans are distributed to the generating units. Each unit is responsible for following its
load plan and must handle disturbances etc. locally, implying the necessity of local power
plant controllers, wind farm controllers etc., which is shown as the lower three levels of
the hierarchy.

The lowest system level is the balance control level. Due to deviations between the
predicted and actual consumption as well as fluctuations in production, this level is added
to give a dynamic correction on system level. Due to the aforementioned increased pro-
duction from wind power, the fluctuations in production willincrease in the future, mak-
ing this layer even more important. This hierarchy level canbe influenced both by the
power company operating the portfolio of power generating units for minimising the de-
viation between sold and actual production, which is only reported in [Jørgensen et al.,
2006], and by the TSO in the area, that uses a dynamic feedbackapproach to balance the
load in the area. The latter is often referred to as a Automatic Generation Control (AGC).

The problem of designing AGCs to cooperate among multiple regions has been the
subject of much research lately, both regarding optimisation and stability. However, it is
often assumed that the generators within the area function as one generator. For example
[Bakken and Grande, 1998] describe how to introduce an AGC inNorway, but the focus
is on the main controller rather than the distribution of theerror among the participating
generators. Centralised AGC design under constraints is treated in [Hassan et al., 2008]
both for single-area and multi-area production, but the area is treated as one generator.
In [Venkat et al., 2006; Moon et al., 2000; Tyagi and Srivastava, 2006] decentralised
model-based methods for multi-area AGC are developed, but without discussing how to
distribute the output from the controller known as the area control error (ACE) among
the multiple generators in the control area. Focusing on stability, [Azzam and Mohamed,
2002] developed a design method for generating a stabilising controller.

[Liu et al., 2003; Chen et al., 2007; Wood and Wollenberg, 1996] describe how to
distribute the ACE among the participating generators in the area. [Liu et al., 2003; Chen
et al., 2007] deal with control of multiple generators within an area using optimisation-
based schemes. However, both treat the problem as a static rather than a dynamic prob-
lem. [Wood and Wollenberg, 1996] present an AGC for distributing the ACE to multiple
generators based on a PI-controller structure with a set of distribution factors to share the
contribution among multiple units. The distribution factors are based on a static optimisa-
tion of the system, [Raj, 2006] describes an updated way to use real time prices to update
the distribution factors. A complete survey can be found in [Shayeghi et al., 2009].

1.2.1 Energy Market and Short Term Load Scheduler

The liberalisation of the power system has created a market which, according to [Jørgensen
et al., 2006], includes two types of costumers from the powerproducers’ point of view -
The power exchanges and the TSO, the commodities traded in the power market appear
in Figure 1.3. The market has influence on the production planning and balance con-
trol levels of the hierarchy, where the trades on the market is decisive for the production
planning and balance control.

The different commodities traded in the market are:

1. Energy Every day an hourly based price for the next 24 hours production is set
based on the producers’ and buyers’ forecasted demands. If the actual production
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TSO

Power 
Exchange

Power 
Producer

Commodities

1. Energy
2. Reserves

3. Reserve 
activation

Figure 1.3: Power market commodities.

deviates from the sold production, the TSO will fine the producer, since the TSO
must balance the production by activating reserves. Duringthe day, bilateral trades
among power producers are allowed through the power exchange as well, to cover
foreseen production deficiencies in case of failure.

2. ReservesThe TSO buys power reserves in the form of primary, secondaryand
tertiary reserves for a period in time to have capacity to balance out imbalances
between the production and consumption. The seller must be able to activate the
power reserve when required throughout the sold period. Thereserves and their
differences are described later in this section.

3. Secondary and tertiary reserve activationThe Danish TSO can activate the
bought reserves to balance production and consumption in western Denmark. The
seller of the reserves will get extra payment if the reserve is activated. The primary
reserve is governed by the frequency and must be automatically activated in case
of deviations in the system frequency.

Each day on the energy market, which in the Danish case is NordPool [Nord Pool,
2010], at noon an auction is run for the forthcoming day. The production companies will
submit amount and price for the energy production for each hour of the forthcoming day.
The distribution companies will submit the consumption andprice they are willing to pay.
For each hour an intersection between consumption and production is formed, and this
intersection determines the amount of energy and the price of energy .

After the auction has run, Nord Pool will announce the resultto the participants of
the auction which includes DONG Energy. The announced result is an amount of energy
which is to be produced each hour. As depicted in Figure 1.4, the sold production is used
by theshort-term load scheduler(STLS) together with weather forecasts, district heating
demand forecasts and constraints such as minimum amount of biomass fuel. The STLS
solves the unit commitment problem again and the output of the short term load scheduler
is a 5-minute based 24 hour ahead schedule for all productionunits that DONG Energy
operates.

Based on the 5-minute based production plan generated by DONG Energy, The TSO
generates two plans, an hourly and a quarter plan. These plans are used for settling
payments for deviations.
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2 Power Systems Control and Electricity Market

TSO

Short-term load 

scheduler 

(Production Planning)

+

Production plan

Total measured production

Load balancing 

controller

+

AGC signal

Filter

Expected 

Response

Manual Control

Automatic Control

Measured production of individual units

Sold production

Weather forecast

District heating forecast

+
Frequency control 

contribution

Reference

Figure 1.4: Diagram of the interconnection of the system. The bold lines show vectors of
signals. The portfolio can be divided into two groups. A manual control which the load
balancing controller cannot give corrections to, and an automatic control group which the
load balancing controller can affect.

The first plan generated is an hourly based energy plan, referred to as the hourly plan,
which defines the energy production at each hour of the forthcoming day. This plan can be
changed up to 45 minutes prior to the start of each hour. When itis locked, the settlement
price will be according to this plan.

The settlement price for each hour is based on the energy deviation between actual
production and planned production multiplied by a price perenergy unit. The price of
the introduced deviations are not known in advance, and thuscannot be used for control
purposes. Note that on an hourly basis, a positive deviation(production> reference) is
likely to generate an income rather than an expense.

The other plan generated is a quarter-based plan which must be changed according to
the actual conditions during the hour. This means in case of faults on a unit, it is possible
to change the quarter plan during the hour. This can result inthe sum of the four quarterly
plans of the hour being different from the hourly plan. This plan has been added to the
market to ensure that the power balance is maintained and notjust the energy balance.
There is a settlement price on deviations from the quarterlyplan as well. Any deviation
outside±2.5MWh is billed at a price per energy unit. This will always result in an ex-
pense for the producer no matter if the deviation is positiveor negative, although the price
for positive and negative deviation is normally asymmetric. The prices for deviations on
a quarterly basis are also not known in advance.

The full details of the billing and the market can be found in [Energinet.dk, 2010].
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Reserves

Even though the market gives a good estimate of the demand forthe following day, there
will be deviations during the day for obvious reasons. Therefore, three levels of control
have been established to balance production and consumption, see Figure 1.5.

System

Frequency


Primary

Control


Secondary

Control


Tertiary

Control


Activation


Take over


Take over


Free up


Free up


Limit

Restore


Figure 1.5: Interaction of of the tier of reserves.

In order to execute the control, it is required that a certainproduction capacity is
reserved hence reserves. On the shortest time scale is the primary reserve which is used
to avoid system collapse, and then followed up by slower reserves to bring the system
back to the nominal state. The time scale for activation is shown in Figure 1.6.

30s 15 min

Active

ActiveTertiary Control

Secondary Control

Primary Control

0s

Active

Replacing

Figure 1.6: Time scale for the reserve activation. The primary reserves must be fully acti-
vated within 30 seconds. The primary reserves are then replaced with secondary reserves
within 15 minutes. The secondary reserves must be maintained for as long as necessary
until the tertiary reserves can take over.

Primary Reserves

When the system frequency deviates from the 50Hz, this reserve is to be activated pro-
portionally to the system frequency deviation. The reservemust be activated within 30
seconds after a deviation occurs. Details about the reservecan be found in [ENTSO-E,
2010b]. In case of frequency deviations, the primary reserves are activated throughout
the entire European grid.

In the ENTSO-E RG Continental Europe grid a total of±3000MW of primary re-
serves are maintained, of those±32.1MW must be maintained by western Denmark.

Primary reserve activation must be implemented as a local controller on the unit,
typically on the process level. The controller measures thefrequency of the system, and if
it deviates from the nominal frequency of50Hz, the controller is activated. The primary
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reserve controller must be implemented as a proportional controller with a deadband,
resulting in the characteristics shown in Figure 1.7.

P [MW]


 
 f [mHz]


Max power


Control band


Dead band


Figure 1.7: Primary reserve activation as a function of the frequency deviation. The con-
troller activating the primary reserve must be implementedas a proportional controller.

Energinet.dk is responsible for providing the reserves, and buys them from the power
producers in Denmark. In case Energinet.dk is buys reservesfrom DONG Energy they
buy an amount from the portfolio. The distribution of the reserves among units within the
portfolio can be freely chosen. The distribution is performed by the Frequency Control
Scheduler which sends a set of parameters consisting of deadband, control band and max
power to the local controllers to coordinate the local control with the amount sold.

On a system level the response anticipated from the primary reserve controller is
added to the reference as seen in Figure 1.4 to avoid being canceled by secondary reserves.

Secondary Reserves

The secondary reserves are used to replace the primary reserves and help restore the
system frequency when they are activated. Each control areae.g. western Denmark has
secondary reserves. The control area which hosts an imbalance should seek to activate
secondary reserves in order to reject the disturbance. Thismeans that if an area creates
a frequency deviation, all areas seek to stabilise the system with the primary reserves,
but the area must bring the system back to nominal behaviour by activating secondary
reserves.

The secondary reserves can in many cases be activated beforea frequency deviation
occurs. In western Denmark, the TSO measures the exchange with Germany, and in case
of deviations from the planned exchange, secondary reserves are activated to normalise
the situation.

The secondary reserves are activated automatically by a controller owned by the TSO
without the interference of an operator. The TSO will send anactivation signal for the
secondary reserve activation which they then expect a filtered version of as a response.
The distribution of the secondary reserve activation is performed by the load balancing
controller shown in Figure 1.4

Tertiary Reserves

The last reserves in the battle to stabilise the system frequency are tertiary reserves. They
must be activated within 15 minutes from the time of the order. They are activated by
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the operator at the TSO by contacting to the operator at the central control room for the
energy generation companies. The additional order of energy will most often be put into
the STLS which will then generate and broadcast a new production plan to the units.

The size of the needed positive reserve is based on theN−1 principle, i.e. there must
be enough reserves to outbalance a breakdown of the largest unit within the region. The
reserves are asymmetric with+630MW and−160MW which must be fully delivered
within 15 minutes.

1.2.2 Load Balancing Controller

The topic of the load balancing controller has already been briefly described in section
1.2.1. It serves two purposes; one of them is to distribute the secondary reserve activation
signal among the units. The other purpose is to minimise the deviation between actual
and sold power production.

The mechanism for determining the individual units participating in the control must
contribute is proposed to be a steady state optimisation in [Wood and Wollenberg, 1996].
However, due to the conditions in western Denmark, where theboiler units are not used
for base load, but rather changing load very frequently, thestatic optimisation approach
has been deemed infeasible. Instead, the gains are determined by a logic-based mecha-
nism, where each unit is prioritised by the operator for bothnegative and positive correc-
tions. The logic then utilises the boiler unit with highest priority first, and after usage all
boilers must be returned to the production plan.

Besides the main control loop, there is much logic in the controller for handling bump-
less transfer between automatic and manual control and other features in an attempt to
make the controller as optimal as possible. The result is a huge control structure with
many cross couplings.

Figure 1.8 shows the correction signals from the load balancing controller during the
morning hours. The correction amount is quite significant.

The problem with the current controller is the complexity ofthe cross couplings,
which means that modifying one part of the controller often affects other parts of the
controller in a way that the designer cannot predict. Thus, while the performance of the
controller is quite adequate for the existing system, the current structure is not suited
for portfolios that change structure over time. Furthermore, the complexity of the logics
makes any form of rigorous stability or performance analysis virtually impossible.

To the author’s knowledge no other load balancing controller for balancing the load
within a portfolio has been reported in literature.

Figure 1.4 shows that the portfolio is split in two parts; an automatic control part and
a manual control part. DONG Energy has the responsibility todeliver a total production
from the portfolio corresponding to the reference. However, not all units have the ability
to communicate with the load balancing controller - they will always be in manual control.
But the units that are capable of participating are switchedin and out of automatic control
mode by the operator and the control systems on the unit. The result is a system that
needs dynamic reconfiguration.
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Figure 1.8: Example of control signals given by the current controller during the morning
hours. Each line shows the corrective control signal to one unit in automatic control. The
control signal for all six units are depicted, but only five participate in the control.

1.2.3 Power Plant Modelling and Control

The planning and dynamic coordination on system level becomes increasingly important
to power systems. In order to cope with the increasing demandfor flexibility, the existing
power plants must be changed from base load to being able to change load fast.

In existing literature there are many detailed models of parts of the energy system
to describe the dynamic behaviour of individual system components, such as [de Mello,
1991; Weber and Krueger, 2008].

There is focus both on improving processes in the power plants as well as the master
control level of the unit, i.e. the two upper plant levels in Figure 1.2. [Deprugney and
Liters, 2004] reports improvements on the control of the aircontroller. [Mølbak, 1999] re-
ports improvement in control of superheater steam temperature control using Generalised
Predictive control. [Dahl-Soerensen and Solberg, 2009] implement a simple controller to
improve coal mill performance, while [Niemczyk et al., 2009] work on improving non-
linear models for use in coal mill control. [Majanne, 2005] works on stabilising the steam
temperature in an industrial power plant where part of the steam is used for other pur-
poses than power production using model predictive methods, while [Gibbs et al., 1991]
use nonlinear model predictive methods to improve controller design to increase availabil-
ity and lower pollution of fossil fired plants. [Mortensen etal., 1998] are concerned with
improving the load following capabilities of the power plants on unit level using LQG
methods, while [Deprugney et al., 2006] useH∞-control. [Welfonder, 1997; Lausterer,
1998] both report significant improvements in the the disturbance rejection capabilities
and load following capabilities of single power plants by using smaller energy buffers
in the power plant which can later be repaid, such as the condensate system or turbine
throttling valves.

[Bjerge and Kristoffersen, 2007] share experience designing the controller for an off-
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shore wind farm to be integrated in the current power system.
Another issue is the start up of plants where [Franke and Vogelbacher, 2006; Albenesi

et al., 2006] report better automation and faster start up ofthermal power plants and
combined cycle power plants using nonlinear model predtictive methods and nonlinear
programming. A highly relevant problem when increased flexibility is needed.

Most of the developed controllers and models reported are complex and unsuited
for making a load balancing controller which covers a large scope and therefore needs
simple models to avoid too much complexity. The load balancing controller gives a set
point to the power production and measures the output from the plant. Therefore, models
should be limited to capturing the main dynamics along with the constraints governing
the behaviour, such as the upper and lower production boundsand constraints on the rate
of change on the set point.

1.3 State of the Art and Background of Chosen Methodology

This section provides an overview of the state of the art methodology utilised for devel-
oping the design method to fulfil the hypothesis.

There are many methods for controlling a MIMO system, such asthe power system
portfolio. Spanning from the current PI-controller structure based on SISO theory in
combination with cross couplings and feed forward ([Franklin et al., 2002;Åström and
Hägglund, 2006] to mention a few) to more advanced techniquesmodel-based multivari-
able controllers like LQR orH∞-control [Skogestad and Postlethwaite, 2005]. The power
system portfolio is a constrained MIMO system with knowledge of the future reference.
Therefore, Model Predictive Control (MPC) is an obvious controller scheme to choose.

In this thesis a linear MPC implementation is utilised whichrequires repeated online
solution of constrained linear optimisation problem. Therefore, the some basics of convex
optimisation with the focus on linear programming is covered first in this section.

1.3.1 Convex Optimisation - Linear Programming

In MPC applications the performance and reliability of the optimisation algorithm solv-
ing the constrained optimal control problem are important elements, as the optimisation
problem is solved repeatedly online. In linear MPC the performance function is usually
quadratic, linear, orℓ1-norm based as described previously. Using these performance
functions leads to a convex optimisation problem as treatedin [Boyd and Vandenberghe,
2004].

The performance function used in the controller design method in this project result in
a linear constrained optimisation problem, which is a special case of convex programming
and will be described here. A general linear program has the structure

min
z

φ = cT z (1.1a)

s.t. Gz ≥ h (1.1b)

with φ ∈ R being the functional to be minimised in order to find optimum,z ∈ R
n

are the free variables which can be manipulated in order to minimiseφ, c ∈ R
n contains

the weights of the free variables, weighing their importance relative to each other.G ∈
R

m×n is the constraint matrix, andh ∈ R
m is the affine part of the constraints.
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Checking if a solution is an optimal solution to (1.1) is equivalent to finding a solution
(z∗, π∗) to the corresponding Lagranian function

L(z, π) = cT z− πT (Gz ≥ h) (1.2)

with π ∈ R
m being the introduced Lagrange multipliers. If the solution(z∗, π∗) fulfils

theKarush-Kuhn-Tucker(KKT) conditions

∇zL = c−GTπ = 0 (1.3a)

∇πL = Gz− h− s = 0 (1.3b)

siπi = 0 i = 1, 2, . . . ,m (1.3c)

s, π ≥ 0 (1.3d)

with the slack variables defined as

s = Gz− h ≥ 0. (1.4)

then the solutionz∗ is an optimal solution to (1.1) [Nocedal and Wright, 2006].
The KKT conditions imply that the first derivative of the Lagranian with respect toz

as well as the first derivative with respect toπ must be zero. Furthermore, element wise
either the constraint or Lagrange multiplier must be zero.si > 0 means that the proposed
solution is not on the constraint, and thus the constraint does not affect whether or not the
optimum is reach. Ifsi = 0 the constraint is active and the lagrange multiplierπi can be
different from zero, and thus affecting (1.3a).

The special property of a linear program is that the solutionwill always be on a vertex
of the feasible area. This property can be exploited when finding the solution. In case of
a non unique solution, there will still be a valid solution ona vertex. Illustrated in Figure
1.9 is the optimsation problem

min
z

φ = −z1 − 2z2 (1.5a)

s.t. z1 ≤ 3 (1.5b)

z2 ≤ 3 (1.5c)

z1 + z2 ≤ 4 (1.5d)

z1 ≥ 0, z2 ≥ 0 (1.5e)

The optimum is shown in the figure and is in an extreme point of the feasible area.
There are two main methods to solve this problem, either through theSimplexalgorithm
[Dantzig and Thapa, 1997], or through aprimal-dual interior point algorithmsuch as
Mehrotra’s predictor-corrector algorithm [Mehrotra, 1992; Wright, 1997; Zhang, 1998;
Czyzyk et al., 1999; Nocedal and Wright, 2006].

The Simplex algorithm starts at a feasible extreme point of the problem, and travels
along the edges of the feasible region until it finds optimum.The search will always
happen in the direction with the steepest decline. For the example, starting at vertex1
there are two possibilities2 or 5. The direction towards2 has the steepest decline. From
here the algorithm would go to3 and conclude it to be optimal since following any vertex

13



Introduction

z1

z2 Optimum

1
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5

Figure 1.9: Two dimensional linear optimisation problem. The lines show the inequality
constraints. The dashed lines show the contours of the performance function

would lead to an increase in the objective function. For a detailed mathematical covering
of the algorithm see [Dantzig and Thapa, 1997]. The chosen path is shown in Figure 1.10.
The simplex algorithm belongs to the group of active set solvers [Nocedal and Wright,
2006], a group which is not restricted to linear programming.

z1

z2 Optimum

1 2
1

Figure 1.10: Paths to the solution for the interior point andsimplex methods. The black
line shows the interior point method, while the grey line shows the simplex method.

The simplex algorithm is not used in practice, but rather an implementation known as
the revised simplex method [Dantzig and Thapa, 1997] which is more computationally ef-
ficient. [Klee and Minty, 1972] showed that the simplex algorithm in worst case needs to
visit all extreme points of the feasible area, and thus growsexponential with the problem
size [Nocedal and Wright, 2006]. In practice the algorithm works well and is widely used.
However, this theoretical drawback has lead to the development of alternative methods,
such as the interior point methods.

Interior point methods make a search through the interior ofthe feasible area to the
optimum based on the gradient of the performance function. Interior point methods usu-
ally uses fewer but more computationally expensive iterations to reach optimum. The
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rule of thumb says that simplex algorithm is faster on small and medium problems, while
the interior point methods are competitive on large-scale problems [Nocedal and Wright,
2006]. However, this is only a rule of thumb. One of the advantages of the interior point
method is that the computational complexity lies in calculation of a matrix and a Cholesky
factorisation. And thus it is possible to exploit the structure of the problem and tailor the
algorithm to be efficient on a certain problem. The interior point methods might find an
optimum on an edge instead of a vertex in case of a non unique solution. Figure 1.10
shows the path through the interior, it makes a few iterations very close to the goal to
converge completely, which is not shown in the figure.

In an MPC context [Rao et al., 1998] show how to structure a quadratic program
arising from linear MPC with a quadratic performance function to make efficient use of
interior point methods for solving the optimisation problem.

1.3.2 Model Predictive Control

Model Predictive Control (MPC) has successfully been applied in the process industries
for more than thirty years [Qin and Badgwell, 1997, 2003; Froisy, 2006]. Regarding the
use of MPC within power system, it has been applied both to single elements like boilers
[Rossiter et al., 2002; Gibbs et al., 1991] and wind farms [Senjyu et al., 2009]. It has also
been applied to coordination of power systems [Venkat et al., 2006; Larson and Karlsson,
2003; Negenborn et al., 2009].

MPC refers to a group of control algorithms that makes explicit use of a process
model to predict future responses from the system. In most implmentations the prediction
horizon is finite and constant, these algorithms are also known as receding horizon con-
trollers. At each controller update, measurements from thecontrolled plant are gathered
and predictions are based on these measurements. The predictions are used to evaluate
a performance function, and an optimisation is performed which seeks to find the input
sequence optimising the performance function over the chosen horizon. The first input in
the sequence is then applied to the plant, and the procedure is repeated at every controller
update.

In this thesis the models used for prediction are linear, though both linear [Muske and
Rawlings, 1993] and nonlinear models [Allgöwer et al., 1999; Tennyu et al., 2004] can
be used. An overview of linear MPC is found in [Rossiter, 2003; Maciejowski, 2002;
Rawlings and Mayne, 2009] among others.

MPC has a number of strengths, these are the ability to incorporate constraints, using
future knowledge and not least handle MIMO systems. The mostimportant ability with
MPC is the ability to incorporate constraints both on input,output and internal states of
the system with MPC. Even though it is denoted linear MPC and it has linear models and
affine constraints, the resulting controller is nonlinear.Compared to a linear controller it
is possible to move the system closer to the constraints without increasing the number of
constraint violations.

Process Control Hierarchy

The placement in the control hierarchy is given for the controller in this thesis. However,
this section briefly discusses where MPC is usually applied in the hierarchy. MPC is
usually found in the middle of the hierarchy, as shown in Figure 1.11a.
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Figure 1.11: Typical control hierarchy for MPC [Maciejowski, 2002].

The reason is mainly due to the computationally complexity,including the local con-
trol loops where P- and PI-controllers are dominant in the model predictive controller
will increase the size of the problem, thus making it impossible to solve it within the time
limit. [Maciejowski, 2002] suggests, as can be seen in Figure 1.11b, that the future trend
is to incorporate the local control loop as well as the set point optimisation in the MPC.
[Pannocchia et al., 2004, 2005] show that in some cases MPC should be considered over
PID controller even in SISO systems.

Computational Aspects of MPC

Model Predictive Control is often expressed using eitherℓ2-penalty functions without
economic terms [Muske and Rawlings, 1993],ℓ1-penalty functions without economic
terms [Chang and Seborg, 1983; Allwright and Papavasiliou,1992; Rao and Rawlings,
2000] or using economic terms only [Rawlings and Amrit, 2009].

When usingℓ2-penalty functions the result is a convex quadratic programming prob-
lem which is covered in [Boyd and Vandenberghe, 2004]. Usingℓ1-penalty or linear
terms result in a linear programming problem which is further discussed in Section 1.3.1.
MPC requires repeated online solution of these optimisation problems. Therefore, the
computational speed and robustness of the optimisation algorithms have limited the type
of applications that can be controlled by MPC. MPC was originally developed for the
process industries with relative slow dynamics and a low number of input and output (say
less than 50). As MPC is developed for mechatronic applications with very fast dynamics,
low state order models, and typically less than three input and output, new ways of im-
plementing and solving the constrained optimization problem constituting the MPC have
been developed. Using explicit controllers found by means of multi-parametric program-
ing [Bemporad et al., 2002; Sakizlis et al., 2007] reduces the online problem to a look up
table.

Another method to reduce the number of free variable is through input blocking [Qin
and Badgwell, 1997; Maciejowski, 2002]. Input blocking is atechnique to only allow
the controller to change the input at a limited number of times throughout the prediction
horizon, as opposed to every sample instance throughout theprediction horizon. Often
this will be the first moves of the prediction horizon and for the remaining part the input
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is kept constant.
Both process control and mechatronic applications use one centralised MPC to control

the system. This is possible because of the low number of input and output as well as the
relative low number of states in the model. The system in thisthesis consists of fast
dynamics with a large number of controlled inputs and outputs, therefore methods for
achieving lower computationally complexity of the controller by exploiting the structure
of the problem is treated later in this section.

Models

A common implementation of models in MPC is step or impulse response models. The
advantage of using these convolution models is that they canrepresent any kind of stable
dynamic process [Muske and Rawlings, 1993].

The problem with this formulation is that unstable models cannot be represented.
[Morari and Lee, 1991; Eaton and Rawlings, 1992] described ways to encompass this
deficit by representing the instability as an integrator. [Maciejowski, 2002] gives a way
to decompose the unstable model by using coprime factorisation [Zhou et al., 1996].

The systems modelled in this thesis are all stable models, and thus impulse response
models are used to represent the system dynamics.

Starting with a state space model used forN -step prediction

xk+1 = Axk + Buk + Edk (1.6a)

zk = Cxk (1.6b)

an impulse response model can be derived as

zk = CAkx0 +

k−1
∑

i=0

Hu,k−iui +

k−1
∑

i=0

Hd,k−idi (1.7)

with k = 1, 2, . . . , N and the impulse response coefficients defined as

Hu,i = CAi−1B i = 1, 2, . . . , N (1.8a)

Hd,i = CAi−1E i = 1, 2, . . . , N (1.8b)
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and the matrices
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
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with α ∈ {u, d}. Using (1.7) the stacked output,Z, may be expressed by the linear
relation

Z = Φx0 + ΓuU + ΓdD (1.9)

This model description has eliminated all internal states,except the current, and thus the
size of the matrix relating to controlled input,Γu, is only dependent on the number of
input, output and prediction horizon.

Output Feedback and Offset-free Tracking

MPC assumes that the state vector is measurable in order to make correct predictions.
This is often not the case, so in order to be able to achieve output feedback a state observer
is needed, for instance a Kalman Filter [Grewal and Andrews,2008].

If a step disturbance enters the system, the combination controller and observer will
result in a steady state offset from the reference. The same behaviour is exhibited when
the steady state gain of the model is different from the steady state gain of the system
[Maciejowski, 2002].

To remove this error, an augment the system model with a disturbance model in the
observer. [Pannocchia and Rawlings, 2003] suggests a Kalman filter designed for the
augmented system

[

xk+1

dk+1

]

=

[

A Bd

0 I

] [

xk

dk

]

+

[

B

0

]

uk + wk (1.10a)

yk =
[

C Cd

]

[

xk

dk

]

+ vk (1.10b)

with dk ∈ R
nd , Bd ∈ R

n×nd andCd ∈ R
q×nd . The noise vectorswk ∈ R

n+nd

andvk ∈ R
p are assumed to be zero-mean white noise disturbances for theaugmented

system.
For a stable estimator to exist the original system must be detectable and the following

condition must hold

rank

[

I−A −Bd

C Cd

]

= n+ nd (1.11)

A pair of matrices (Bd, Cd) always exists such that (1.11) holds.
It is possible to obtain offset-free tracking for the systemif

rank

[

I−A −Bd

C Cd

]

= n+ q (1.12)

with n being the number of states in the original system, andq is the number of output.
This only holds if the constraints are not active and the closed-loop system is stable.
Similar results to [Pannocchia and Rawlings, 2003] are obtained in parallel in [Muske
and Badgwell, 2002].

If Bd = 0 andCd = I then the disturbance model is modelled as a constant as
described in [Muske and Rawlings, 1993]. This model is oftendenoted an output error
model.
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Controller Tuning

A model predictive controller must be tuned like most other controller. The performance
is based on the values of the weight functions in the performance function and the pre-
diction horizon as well as the observer, for instance the covariance matrices in a Kalman
filter. Depending on the problem size, this gives quite a number of free design variables.

In practice, for all types of controllers tuning, the controller such that the systems
behaves “right” is often a matter of trial and error.

In some cases the weight matrices may be given, but in most cases this is a task for the
controller designer. There are methods to aid controller tuning such as loop transfer re-
covery [Doyle and Stein, 1981], and least-squares methods for estimating autocovariance
on noise [̊Akesson et al., 2007; Odelson et al., 2006; Rajamani and Rawlings, 2009].

1.3.3 Hierarchical Control and Reconfigurable Systems

Decomposing the control problem into smaller problems, whether the structure is decen-
tralised without communication between local controllers[Elliott and Rasmussen, 2008;
Acar, 1995; Magni and Scattolini, 2006; Raimondo et al., 2007], distributed where the
local controllers communicate [Mercangöz and Doyle III, 2007; Jia and Krogh, 2001;
Dunbar, 2007] or hierarchical, as used in this thesis, can serve many purposes.

Complexity of power plants, power systems and most other process and traffic net-
works have increased due to a wish to optimise them. The systems often consist of mul-
tiple units or subsystems interacting, and it can be difficult to control with a centralised
control structure. Reasons for not pursuing a centralised solution could be that the con-
trolled system is spread over a physical area where communication could be expensive
in resources such as communication bandwidth of power consumption as in multi robot
coordination [Keviczky et al., 2008], or communication delays as in multi area automatic
generation control [Venkat et al., 2008]. Other reasons fordecomposition of the control
is to achieve robustness, reliability or reconfigurabilityof the subsystems without having
to redesign the whole controller or to achieve a lower computationally complexity.

The overall structure of the power system portfolio controlis hierarchical, but on the
plant level, especially in the units, numerous examples of both decentralised and dis-
tributed controllers can be found. The main focus on the restof the section is on MPC
implementations of hierarchical control and reconfigurable control.

A good classification and review of the subject of the area canbe found in [Scattolini,
2009].

There are many variants of hierarchies, the main structure of the power system portfo-
lio is a multi layered hierarchy. However, this thesis treats two layer hierarchical control
for coordination. The idea of hierarchical control and the design of coordinators has
been studied for a long time [Mesarovic et al., 1970]. The basic idea is that the system
comprises a set of subsystems under local control with some interaction either through a
common goal or through dynamic interaction.

The basic idea is described in [Scattolini, 2009] and shown in Figure 1.12. For each
local system an MPC optimises the local performance function under local constraints.
If the local solution for each subsystem satisfies the constraints that couples the subsys-
tems together, the solution is accepted. If this is not the case, the coordinator will update
the local control objective based on the coupling constraint. [Scattolini, 2009] suggests
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that the local objective functions are updated using the Lagrange multipliers of the cou-
pling constraint. This scheme is then pursued in an iterative manner until the coupling
constraint is satisfied. How the coordinator updates the price of the common resource to
guarantee convergence of this method as well as if it converges to the same optimum as a
centralised solution, is not specified.

Subsystem 1

Subsystem 2

Controller 1

Controller 2

u1

u2

y1

y2

System

Coordinator

Local solution

Price

Price

Local solution

x2
x1

Figure 1.12: Hierarchical controller where the the local controllers are coordinated
through a supervisor [Scattolini, 2009].

This coordination method has been the topic of [Negenborn, 2007; Negenborn et al.,
2008a, 2009] who use it in power networks as well as traffic networks [Negenborn et al.,
2008b]. Using a price updating scheme is also the approach of[Rantzer, 2009] who uses
dual decomposition to decompose the system. [Marcos et al.,2009; Cheng et al., 2007]
use a newton search and sensitivity analysis to update the price scheme.

As described in Section 1.2, the controllable part of the system changes topology
frequently. It may only be once every few days, or several times per day depending on
the scenario. It is frequent enough that the controller mustbe able to handle it.

There are two major research topics within this field. One of them is fault tolerant
control [Blanke et al., 2006; Iserman, 2005] which relates to detection and isolation in
case of failure in part of the system. However, when a plant changes from manual to
automatic control or vice versa, that is not a fault, it is an occurrence that needs to be han-
dled. Plug and Play process control [Stoustrup, 2009] is an ongoing research topic dealing
with this kind of systems both with models [Michelsen and Trangbæk, 2009] and without
models [Bendtsen and Trangbæk, 2009] to support the reconfiguration of the system. A
related topic is found in [Chokshi and McFarlane, 2008] which treat reconfigurability of
manufacturing systems.

1.3.4 Decomposition of Linear Programs

When a linear program has a structured constraint matrix, it is possible to solve it effi-
ciently by decomposing it into smaller programs. Two methods for decomposing such
a system is theLagrange relaxation[Beasley, 1993] andDantzig-Wolfe decomposition
[Dantzig and Wolfe, 1960; Dantzig and Thapa, 2002; Lasdon, 2002]. Both methods can
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3 State of the Art and Background of Chosen Methodology

significantly decrease the computation time for optimisation of linear systems with spe-
cial structure in the constraint matrix, especially problems as given in (1.1) with a block-
angular structure ofG, such that the problem can be stated as

min
z

φ = cT
1 z1 + zT

2 z2 + ...+ cT
P zP (1.13a)
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(1.13b)

with z = [z1, z2, . . . , zP ]
Both methods significantly decrease the computation time for optimisation of linear

systems with a block-angular constraint structure. Both methods use an iterative scheme
to solve the optimisation problem. In each iteration, the lagrange multipliers attached
to the coupling constraints of the problem are assumed constant. Thus the optimisation
problem is reduced to a block diagonal structure and can be treated asP independent
problems. The difference in the two methods is how to find the Lagrange multipliers.
Lagrange relaxation computes the multipliers through heuristic methods, while Dantzig-
Wolfe decomposition finds the multipliers by solving an optimisation problem. [Gun-
nerud et al., 2009] showed that the computation time using Lagrange relaxation is very
sensitive to changes in the problem, and even minor changes might result in a doubling
of the computational time.

[Negenborn et al., 2008b; Rantzer, 2009] applied Lagrange relaxation for decom-
posing problems in a model predictive control context. [Gunnerud et al., 2009] used
Dantzig-Wolfe decomposition for control and planning purposes on a longer time scale,
while [Cheng et al., 2007, 2008] used Dantzig-Wolfe for target calculation in a distributed
model predictive controller. The contribution of this thesis is to use Dantzig-Wolfe de-
composition for computation of the dynamic calculations ofmodel predictive control.

The Dantzig-Wolfe decomposition breaks the linear program(1.13) intoP indepen-
dent subproblems and a Master Problem (MP). The Master Problem coordinates the sub-
problems. The Master Problem sends Lagrange multipliers,π, of the coupling constraint
to each of the subproblems. The Lagrange multiplier is ofteninterpreted as a price of a
common resource which gives rise to the coupling constraint. Using this price,π, each
of theP subproblems computes their optimal solution. This interchange of information
continues until convergence. This is the same description as given by [Scattolini, 2009]
for how to make hierarchical MPC.

For the dual problem Benders’ decomposition can be used efficiently [Benders, 1962].
Dantzig-Wolfe decomposition builds on the principles of the simplex algorithm, and the
subproblems must to be solved so that the proposed solution is a vertex of the feasible
area. Interior point methods for Dantzig-Wolfe decomposition has been developed in
[Martinson and Tind, 1998].
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1.4 Outline of Thesis

This thesis is made as a collection of publications and is divided into two parts. The first
part, which has already begun with a system description and state of the art in Chapter
1, consists of an introduction and state of the art. The next chapter, Chapter 2, describes
the design method developed through the contributions which fulfil the criteria of the
main hypothesis as presented in Section 1.1. A summary of thecontributions is given in
Chapter 3. Part 1 ends with a conclusion and suggestions for future work presented in
Chapter 4.

The second part is the presentation of the six publications made during the project and
presented in the following order:

Paper A [Edlund et al., 2009a] Shows that the controller structure of the current
controller is internally unstable, unless the gains distributing the control actions
were chosen carefully. This research was driven by an observed problem where the
power plant in control drifted away from the production plan. This paper serves as
a motivation for developing a new and more stringent design method.

Paper B [Edlund et al., 2008] Introduces model predictive control for controlling
a power plant portfolio. This paper gives a preliminary indication that MPC is a
viable option to base a design method upon.

Paper C [Edlund et al., 2009b] MPC relies on models, and as the scope broad-
ens, the required fidelity of the models are lowered. Therefore, it was necessary
to develop simple models for use in a model based portfolio controller. This paper
covers the modeling of different possibilities to change load within the portfolio.
These possibilities are termed effectuators. The paper includes models for four
different effectuators; boiler load, district heating, condensate throttling and wind
turbines. Only the boiler load unit is currently operational in the portfolio.

Paper D [Edlund et al., 2009c] In this paper a primal-dual interior point algo-
rithm based on Mehrotra’s predictor-corrector algorithm is tailored to the control
of a single boiler load effectuator. Even though the optimisation problem in the
controller is decomposed, an efficient solution strategy still relies on solving the
derived subproblems fast. This paper exploits the structure of the subproblem to
reduce the number of calculations.

Paper E [Edlund and Jørgensen, nd]Introduces Dantzig-Wolfe decomposition
for solving the dynamic part of the model predictive controller. A thorough descrip-
tion of the algorithm is presented. The main result of the paper is the experimental
results showing linear scalability of the algorithm as a function of the number of
effectuators.

Paper F [Edlund et al., nd] This paper gives an overview of the complete design
method, including the handling of switching effectuators in and out of automatic
control. A simulation based comparison with the currently implemented controller
is presented based on the actual scenario of a month of portfolio operation.
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2 Design Method

The load balance controller as seen in Figure 1.4 is the focusof this thesis. The objective
of the controller is to minimise deviations between sold andactual production as well as
activating secondary reserves when ordered by the TSO.

In order to accept the main hypothesis from Section 1.1, the design method for the
new load balancing controller must result in a a controller that meets the criteria:

Scalability Is scalable in the number of units it can coordinate.

Flexibility Must be flexible, so that addition of new units and maintenance of
existing units is possible. This means that the design must have a modular struc-
ture with good encapsulation of information and clear communication interfaces
between modules.

Performance Perform as least on par with the current controller measuredon
some performance criteria.

Balance between the production and consumption is currently maintained by chang-
ing the production, but in some cases consumption could be changed as well to achieve
the goal. For the sake of generalisation all power producingand power consuming units
that are capable of participating in load balancing controlare termedeffectuatorswhich
has the definition:

Definition 1. An effectuator is a process or part of a process in a power system that rep-
resents control actions with associated dynamics and actuation costs allowing the power
output to be manipulated.

2.1 Proposed Controller Structure

The structure of the proposed controller is a two layer hierarchical structure as shown in
Figure 2.1. All parts referring to the individual effectuators in the controller are placed
in the lower layer separated from one another, allowing themto be modified, removed or
adding new ones without affecting the other units. Above is acoordination layer coordi-
nating the units in question to achieve the portfolio goal ofminimising deviations.

Model Predictive Control (MPC) has been chosen as the controller scheme, since
the system is a constrained MIMO system where knowledge of the future references are
available.

The design framework relies on a set of assumptions:
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Coordinator

Unit P�

Load balancing controller

State estimator

rport

rPUnit 1 Unit 2

r1

AGC signal

xport

y1 y2 yP

u1 u2 uPx1 x2 xP

r2

yport

Figure 2.1: Sketch of the modular structure of the load balancing controller. Commu-
nication with the individual effectuator is handled by the independent subsystems, and
portfolio communication is handled on the upper layer of thehierarchy. ri is the refer-
ence to effectuatori ∈ {1, 2, . . . , P}, xi is the state estimate,yi is the measured output,
andui is the controller correction. For the portfolio there is a referencerport, state esti-
matexport and a total measured productionyport. The referencesri andrport come from
the STLS as seen in Figure 1.4.

• The effectuators can be modelled as independent of each other, so that a change in
one effectuator does not directly affect another effectuator.

• The effectuators can be modelled as a linear dynamic model with affine constraints.
The investigated models in [Edlund et al., 2009b] can all, with minor modifications,
be modelled with the structure shown in Figure 2.2. However,other kinds of linear

Linear 
process 

dynam icsu i y i

M in/m ax Rate lim it M in/m ax

Figure 2.2: General structure of the effectuators

input, output and state constraints fit into the modelling framework as well.

• The underlying optimisation problem in the MPC can be statedas a linear program,
which means the corresponding objective function must consist of linear andℓ1-
norm elements.
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1 Proposed Controller Structure

Each effectuator in the lower layer of the hierarchy contains a constrained linear
model and an objective function for the optimal operation ofthe effectuator which to-
gether form a constrained linear programming problem. Furthermore, it contains all com-
munication with the physical unit. The information that must be sent to the upper layer is
how the output of the effectuator will affect the portfolio output, meaning a prediction of
the power production/consumption of the unit.

The upper layer contains a constrained linear model of the portfolio excluding the in-
dividually modelled effectuators, as well as an objective function of the optimal operation
of the portfolio. The upper layer also handles communication with surrounding systems,
for instance obtaining the portfolio reference (the load schedule).

2.1.1 Solving the Optimisation Problem

The hierarchical structure encapsulates the information referring to each unit. However,
one challenge persists: MPC relies on solving an optimisation problem at each sample.
This is a challenge of the MPC framework, since solving the optimisation problem usu-
ally grows cubically with the size of the problem. Therefore, one of the design challenges
has been to create an optimisation problem which can be encapsulated in the same hier-
archical structure as well as being scalable.

To solve the optimisation problem, a Dantzig-Wolfe decomposition approach has been
applied [Dantzig and Wolfe, 1960; Dantzig and Thapa, 2002].The decomposition tech-
nique has been adapted to the MPC context in [Edlund and Jørgensen, nd] where details
of the algorithm are also described.

Dantzig-Wolfe decomposition can only be applied to linear problems. The perfor-
mance function for the whole problem is assumed to be chosen as a mixture of linear and
ℓ1-norm terms which can be rewritten into a linear program suitable for Dantzig-Wolfe
decomposition.

An important consequence of this forced choice of performance function and con-
straints is the solution, i.e. the point where the performance function attains its extremum,
must either be at an extreme point of the feasible set, or the solution of an unconstrained
problem.

When the optimisation problem is composed from the effectuator optimsation prob-
lems and the portfolio optimisation problem, it can be rewritten into a linear program with
the structure

min
z

φ = cT
1 z1 + cT
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. (2.1b)

with z = [z1, z2, . . . zP ] ∈ R
n, zi ∈ R

ni , φ ∈ R, Fi ∈ R
m×ni , Gi ∈ R

pi×ni , g ∈ R
m

andh ∈ R
pi . φ is the functional which needs to be minimised in order to find optimum,zi

are the free variables,ci are weight factors, weighing the importance of the corresponding
zi. The constraint matrix has a block-angular structure wherethe block diagonal elements
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come from the effectuator optimisation problem, and the coupling constraint comes from
the portfolio linking the problem together.Fi is unit i’s contribution to the coupling
constraint.Gi originates from the individual effectuators optimisationproblem. g and
hi are the affine parts of the constraints. Ignoring the coupling constraints the program
consist ofP independent problems

min
zi

φ = cT
i zi (2.2a)

s.t. Gizi ≥ hi (2.2b)

Dantzig-Wolfe decomposition builds on the theorem of convex combinations

Theorem 1. LetZ = {z ∈ R
n |Gz ≥ h} with G ∈ R

m×n andh ∈ R
m be nonempty,

closed and bounded, i.e. a polytope. The extreme points ofZ are denotedvj with j ∈
{1, 2, ...,M}.

Then any pointz in the polytopic setZ can be written as a convex combination of
extreme points

z =

M
∑

j=1

λjv
j (2.3a)

s.t. λj ≥ 0, j = 1, 2, ...,M (2.3b)
M
∑

j=1

λj = 1 (2.3c)

Proof. See [Dantzig and Thapa, 2002]

Using the theorem on (2.2) and substituting it into (2.1) yields

min
λ

φ =

P
∑

i=1

Mi
∑

j=1

fijλij (2.4a)

s.t.
P

∑

i=1

Mi
∑

j=1

pijλij ≥ g (2.4b)

Mi
∑

j=1

λij = 1, i = 1, 2, ..., P (2.4c)

λij ≥ 0, i = 1, 2, ..., P ; j = 1, 2, . . . ,Mi (2.4d)

With Mi being the number of extreme points of subproblemi. fij andpij are defined as

fij = cT
i v

j
i (2.5a)

pij = Fiv
j
i (2.5b)

Equation (2.4) is denoted the Master Problem. The idea is to only generate the extreme
points needed for the optimisation instead of generating all extreme points which can be
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even more computationally complex due to the size of the problem. Assuming that an
initial feasible solution is available for (2.4), a ReducedMaster Problem can be set up
and expanded through iteration with more extreme points. Atiteration l the Reduced
Master Problem is defined as

min
λ

φ =
P

∑

i=1

l
∑

j=1

fijλij (2.6a)

s.t.

P
∑

i=1

l
∑

j=1

pijλij ≥ g (2.6b)

l
∑

j=1

λij = 1, i = 1, 2, ..., P (2.6c)

λij ≥ 0, i = 1, 2, ..., P ; j = 1, 2, . . . , l (2.6d)

in which l ≤ Mi for all i ∈ {1, 2, . . . , P}. Obviously, the Reduced Master Problem
can be regarded as the Master Problem withλi,j = 0 for j = l + 1, . . . ,Mi and all
i ∈ {1, 2, . . . , P}.

Solving the Reduced Master Problem yields a Lagrange multiplier, π, for the coupling
constraint (2.6b). This can be interpreted as a ’price’ for the portfolio deviation. New
extreme points are generated by solving subproblems definedas

min
zi

φ =
[

ci − FT
i π

]T
zi (2.7a)

s.t. Gizi ≥ hi (2.7b)

for i ∈ {1, 2, . . . , P}. These originate from (2.2), but the objective function is updated
with −FT

i π whereπ is given by the Reduced Master Problem in order to generate differ-
ent extreme points based on the updated price.Fi is the effect the effectuator will have
on the portfolio output.

The algorithm will then iterate over these steps until convergence at the global opti-
mum is reached. One of the strengths of Dantzig-Wolfe decomposition is that there is a
well-defined stop criterion, and convergence is ensured. For a thorough description of the
algorithm, see [Edlund and Jørgensen, nd].

Algorithm 1 summarises the Dantzig-Wolfe Algorithm for solution of the block-
angular linear program (2.1). The subproblems (2.9) may be solved in parallel. This
is advantageous when the number of subproblems,P , is large.

One of the properties of the Dantzig-Wolfe decomposition isthat the computationally
complexity grows linearly with the number of effectuators in control, and thus good scal-
ability is ensured when compared to a centralised solution which would typically grows
cubically with the problem size. However, it is still a numeric algorithm, and the exact
execution time of the algorithm cannot be guaranteed as it isdependent on the system
states. However, the Dantzig-Wolfe Algorithm preserves feasibility of (2.1) at each iter-
ation, as well as having a monotonically decreasing performance function. In predictive
control applications, this implies that the algorithm can be stopped prematurely and the
output of the last iteration will be a suboptimal solution that can be applied to the system
without violating the constraint. Thereby it is ensured that a solution can be found within
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Algorithm 1 The Dantzig-Wolfe Algorithm for a Block-Angular LP (2.1).

1: Compute a feasible vertex of the Master Problem (2.4). If no such point exists the
original problem is infeasible, so stop.

2: l = 1, Converged = false.
3: while Not Convergeddo
4: Solve the l’th Reduced Master Problem, RMP(l):

min
λij

φ =

P
∑

i=1

l
∑

j=1

fijλij (2.8a)

s.t.

P
∑

i=1

l
∑

j=1

pijλij ≥ g (2.8b)

l
∑

j=1

λij = 1 i = 1, 2, . . . , P (2.8c)

λij ≥ 0 i = 1, 2, . . . , P ; j = 1, 2, . . . , l (2.8d)

and letπ be the computed Lagrange multiplier associated to the linking constraint
(2.8b). Letρi be the computed Lagrange multiplier associated with (2.8c).

5: Solve all the subproblems (i ∈ {1, 2, . . . , P})

min
zi

φi = [ci − Fiπ]
T

zi (2.9a)

s.t. Gizi ≥ hi (2.9b)

and let(ψi,v
l+1
i ) = (φ∗i , z

∗
i ) be the optimal value-minimiser pair.

6: if ψi − ρi ≥ 0 ∀i ∈ {1, 2, . . . , P} then
7: Converged = true. The optimal solution is

z∗i =

l
∑

j=1

λijv
j
i i = 1, 2, . . . , P (2.10)

8: else
9: Compute the coefficients for the new columns in the RMP

fi,l+1 = cT
i vl+1

i (2.11a)

pi,l+1 = Fiv
l+1
i (2.11b)

10: l← l + 1
11: end if
12: end while
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the sample time. Under mild condition this implies that stability can be guaranteed, even
if the algorithm is stopped prematurely [Scokaert et al., 1999].

2.1.2 Communication and Data Encapsulation

When applying a Dantzig-Wolfe decomposition, the Master Problem and the subproblems
are defined using the exact same structure as shown in Figure 2.1. The Reduced Master
Problem (2.6) is solved in the upper layer, and the subproblems (2.7) are solved in the
lower layer of the hierarchy.

The Dantzig-Wolfe algorithm grows almost linearly as a function of the number of
subproblems, rather than cubically when solving one centralised problem as shown in
[Edlund and Jørgensen, nd].

Currently, a standard Kalman filter is used for state estimation; it communicates the
states to each subproblem and the Master Problem. The current solution means that the
modelled units which are not in control need to send an outputprediction at the beginning
of each sample for use in the Master Problem. The communication between upper and
lower layer is shown in Figure 2.3.
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Figure 2.3: Communication timeline between coordinator and each unit during each sam-
ple.

The developed controller has an object-oriented structurewith a clear interface be-
tween the layers and a clear communication scheme. The controller structure can be
described as a UML diagram as shown in Figure 2.4. As long as the implementations of
the effectuators adhere to the defined interface, the implementations can be chosen freely
without having to change the framework. The interface is defined by the communication
needs of the Dantzig-Wolfe decomposition.

If the information of one unit needs to be updated, it is easy to shut down this par-
ticular part of the controller, update it and set it back intocontrol without having to shut
down the entire controller. If the coordination layer needsmaintenance, the controller will
clearly lose its ability to minimise the deviation, but the communication with the effectu-
ators can be maintained, and thus information of the states and input can be maintained.
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-Communicate with portfolio()

+Calculate Optimal combination of proposals()

-Portfolio model
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Figure 2.4: UML diagram of the controller structure. The defined interface allows for a
flexible implementation of the specific effectuators.

2.2 Specific Controller Implementation

In the current system, only boiler load units are available for control purposes, and the
specific implementation in this thesis is limited to includethose; however, other effectua-
tors can be included in a straightforward manner.

As outlined above, the individual boilers can be modelled separately, as the actions in
one boiler do not affect the other boilers. They are only coupled through the objective to
follow the overall portfolio reference and activating secondary resources. A constrained
linear model for each boiler is derived in the following, along with a performance function
for each boiler.

2.2.1 Boiler load units

In the current controller there are between 0 and 6 power plant units in control. These
will all be modelled in a similar fashion.

The boiler load effectuator is activated by offsetting the production reference. The
boiler has an operating range, shown in the PQ diagram in Fig 2.5. The district heating
production (Q) is plotted along the x-axis and the power production (P) along the y-axis.
There are upper and lower limits on the power production which depends on the current
district heating production.

When using the boiler for control purposes, the district heating production is main-
tained, meaning that the changes in production happen vertically in the PQ-diagram as
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P[MW]

Q [MJ/S]

Operating point

Figure 2.5: Movement in the PQ-diagram when changing the boiler load.

shown in Figure 2.5.
A simple model of the boiler has been derived in [Edlund et al., 2009b], but in order

to fit it into the linear control scheme developed here, some assumptions must be made.
The modelling concept is shown in Figure 2.6. The model derived here is for the use in
the controller, and thus all constraints are formulated to fit into the controller which gives
corrective signals to the boiler units.

u i y i

Process 
dynamics

Min/max Rate lim it

+

d i

Figure 2.6: Concept of the boiler modelling.

The model has two input signals,di is the input signal coming from the production
plan, andui is the input signal coming from the load balancing controller. Thus, in the
nominal case,ui is zero, since no corrective signals are needed.

The process dynamics is modelled as the third order system

H(s) =
1

(Tis+ 1)3
(2.12)

whereTi is the time constant of effectuatori.
In order to gain offset-free tracking, the linear models areaugmented with a distur-

bance model under the assumption that the disturbance output is constant, so that the
constrained augmented discrete time state space model becomes

xi,+1k =









a1,1,i 0 0 0
a2,1,i a2,2,i 0 0
a3,1,i a3,2,i a3,3,i 0

0 0 0 1









xi,k +









b1,i

b2,i

b3,i

0









ui,k +









e1,i

e2,i

e3,i

0









di,k (2.13a)

yi,k =
[

0 0 1 1
]

xi,k (2.13b)

ui ≤ ui ≤ ui (2.13c)

max{∆ui −∆di, 0} ≤ ∆ui ≤ min{∆ui −∆di, 0} (2.13d)
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The elements inAi, Bi andEi are dependent onTi and the sample time. Symbols with
a bar beneath, e.g.u mean the lower bound, whileu denotes the upper bound. The upper
rate of change constraint is modelled, so that it is always non-negative and vice versa, to
avoid forcing the controller to take actions in case the production plan violates the rate
of change constraint. The upper and lower limits for the controller (2.13c) are set in the
control system by the operator.

The rate of change constraint is dependent on the boiler load. A typical form of the
rate of change constraint as a function of the boiler load is depicted in Figure 2.7.

Rate of Change
 [MW/Min]

u [%]

0% 100%
mediumlow high

Figure 2.7: Actual rate of change constraint as a function ofboiler load. This state depen-
dency is not captured in the constraint (2.13d), but a linearisation based on the prediction
is used in the model.

To linearise, the constraint the prediction ofu is used to generate rate of change con-
straints throughout the prediction horizon. If no prediction ofu exists, it is assumed to be
zero.

In case the operator changes the upper or lower bound, so thatthe current control
signal violates the limits, the limit is ramped down with themaximum allowed rate of
change. This measure is taken to avoid infeasible optimisation problems.

2.2.2 Optimisation Problem for a Boiler Load Effectuator

The optimisation problem for each boiler unit is formulatedas

min
Ui

φi =

N−1
∑

k=0

pi,k+1yi,k + ||yi,u,k+1||1,qi,k+1
+||∆ui,k||1,si,k

(2.14a)

s.t. xi,k+1 = Aixi,k + Biui,k + Eidi,k, k = 0, 1, . . . , N − 1 (2.14b)

yi,k = Cixi,k, k = 1, 2, . . . , N (2.14c)

ui,k ≤ ui,k ≤ ui,k, k = 0, 1, . . . , N − 1 (2.14d)

∆ui,k ≤ ∆ui,k ≤ ∆ui,k, k = 0, 1, . . . , N − 1 (2.14e)

whereUi = [ui,0, ui,1, ..., ui,N−1]
T , andAi,Bi,Ci,Ei given in (2.13a) and (2.13b).

The first term in the performance functionpi,k−1yi,k is a linear term representing the
cost of the boiler unit. The weightpi,k+1 is the marginal cost, i.e. the cost for producing
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2 Specific Controller Implementation

energy in the boiler unit. The price is calculated based on the fuel prices and boiler
efficiency. The efficiency is state-dependent. For the calculations ofpi,k+1, it is based on
the production plan alone.

It is assumed that the production plan from the STLS is optimal, and thus in the
nominal case the correction signal from the load balancing controller should be zero. In
order to avoid the power controller maximise the productionof the cheapest units, and
minimise the production of the most expensive units the term||yu,k−1||1,qy,k−1

is added.
This term penalises the part of the output coming from the controller.

The last term of the performance function is a penalty on rapid changes on the correc-
tion signal.

This optimisation problem is the controller for uniti, and this information is stored in
each of the effectuators on the lower layer of the hierarchy.

Primary Reserve Handling

Figure 2.8 shows an example of the maximum reserve availablein both up and down
direction as a function of the unit load. Reserves availablefor the positive and negative
corrections are shown in the right and left half planes respectively.

Load

Maximum Reserve [MW]

0%

100%

UpDown

Lower Bound

Upper Bound

Figure 2.8: Primary Reserves as a function of unit load. On the y-axis is the unit load. On
the x-axis the maximum possible primary reserve that can be delivered at the boiler load
in both positive and negative direction. Dotted lines show apositive reserve reservation
and the derived upper and lower input bounds for the controller. Similar reservation can
be made at the same time for negative reserves.

Currently the Frequency Control Scheduler makes reservations of the reserves pe-
riodically. It means it can reserve 5MW of positive correction and 10MW of negative
correction power from a specific unit at a given time.

It is chosen to give first priority to the Frequency Control Scheduler, and let it make
the reservations. Once the reservations are known, the upper and lower bound for the unit
can be determined, so that the reserved primary reserve can be delivered. These upper and
lower bounds are enforced on the power controller along withupper and lower bounds
set by the operator.
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Automatic / Manual Control and Fall-back Strategies

The boiler load effectuators can be in either automatic control or manual control mode.
As explained earlier, in automatic control mode the controller can give corrective control
signals to the unit. The units can also switch from manual to automatic control and vice
versa. This event is assumed external and non-predictable;however, it is observable.

If the effectuator switches from automatic to manual control while u 6= 0 the strategy
is to ramp the control signal toward zero with a predefined slope. This is done on both
unit and in the controller, so in case of communication errors, the behaviour of the unit
can be predicted. The same fall-back strategy is used in caseof faults in the effectuator.

These fall-back strategies along with the control status are all handled in the lower
layer of the hierarchy.

2.2.3 Portfolio Modelling

The portfolio is comprised of the boiler load units modelledpreviously and a mixture
of other production units. These other production units consist of various small ther-
mal power plants and some wind turbines. They have a production reference, and their
production is measurable, but little is known about their dynamical behaviour. They are
considered a disturbance in this context.

In order to include them in the controller, the model of theother unitsconsists only
of a disturbance model assuming that the output is constant,so that the other models are
modelled as

xother,k+1 = xother,k (2.15a)

yother,k = xother,k (2.15b)

The total portfolio output is then

yport,k = yother,k +

P
∑

i=1

yi,k (2.16)

The optimisation problem for the portfolio is based on reference tracking and is given
as

min
U

N
∑

k=1

‖yport,k − rport,k‖1,qport,k
(2.17a)

(2.17b)

whererport is the portfolio reference which is the sum of references to all units in the
system plus the demand from the TSO as shown in Figure 1.4.k is the sample number
andN is the prediction horizon.

This optimisation problem is placed in the upper layer of thehierarchy.
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2 Specific Controller Implementation

2.2.4 The Centralised Control Problem

The individual effectuators as well as the portfolio have been modelled, and the optimi-
sation problem for each of them has been defined. The designedcontroller is equivalent
to solving the centralised problem

min φ (2.18a)

s.t. xi,k+1 = Aixi,k + Biui,k + Eidi,k, i = 1, 2, ..., P (2.18b)

yi,k = Cixi,k, i = 1, 2, ..., P (2.18c)

ui,k ≤ ui,k ≤ ui,k, i = 1, 2, ..., P (2.18d)

∆ui,k ≤ ∆ui,k ≤ ∆ui,k, i = 1, 2, ..., P (2.18e)

xother,k+1 = xother,k (2.18f)

yother,k = xother,k (2.18g)

with

φ =
N

∑

k=1

∥

∥

∥

∥

∥

yother,k +
P

∑

i=1

yi,k − rport,k

∥

∥

∥

∥

∥

1,qport,k

+

P
∑

i=1

[

N−1
∑

k=0

pi,k+1yi,k + ||yi,u,k+1||1,qi,k+1
+ ||∆ui,k||1,si,k

]

(2.19)

This optimisation problem can be rewritten into a linear program with the structure of
(2.1).

2.2.5 Finding an Initial Feasible Solution

Step 1 of Algorithm 1 states that an initial feasible solution needs to be calculated. This
can in all cases be done by using a Phase I simplex algorithm asdescribed in [Edlund and
Jørgensen, nd]. It should be noted that computating a feasible vertex of (2.4), may be just
as expensive as computing the optimal solution. Therefore,if a feasible vertex is readily
available, it should be used directly instead of applying a phase I simplex procedure.

Rewriting (2.17) into a linear program will add an extra set of decision variables to
the Master Problem calledztot. These variables act similar to slack variables in the sense
that if they are large enough, the problem will become feasible. In this case, it means that
if a feasible solution can be found to all subproblems, a feasible solution to the Master
Problem exists.

The task of finding an initial feasible solution to the MasterProblem is thereby re-
duced to finding a feasible solution to all subproblems withπ = 0. Once a solution to all
subproblems are found,ztot must fulfil ztot,k ≥ |yother,k +

∑P
i=1 yi,k − rport,k|. Since

the right hand side is known, finding a solution for this inequality is trivial and result in
an initial feasible solution to the Master Problem.
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Figure 2.9: Simulation of the load balancing controller on the system level. The bold
lines show vectors of signals. The dashed lines show signalswith boundary conditions
for the simulation. The portfolio is a simulation model.

2.3 Simulations

In order to evaluate the new load balancing controller, it will be tested against the cur-
rently running controller through simulation in a scenariostretching throughout a month
of real operation. Figure 2.9 shows the simulated system. The simulated system consists
of the load balancing controller and models of the power plants containing boiler load ef-
fectuators. All dashed lines, i.e. the signals from the short-term load scheduler and TSO
are boundary conditions for the simulation.

The current controller is implemented in SimulinkTM([Mathworks, 2010]) and com-
piled so it is able to be executed in the central control room.In other words, it is the
actual controller and not some simplified implementation of the controller the compar-
ison is performed against. In order to test the new developments and maintenance on
the current controller, models have been developed in SimulinkTM to be able to test the
whole system. Since a test environment already exists, it isan obvious choice to make
the comparison in SimulinkTM .

The new controller is implemented in mixture of Java for all the data handling such as
reading measurement data and constructing constraints, and MatlabTM [Mathworks, 2010]
for solving the optimisation problem.

The dynamic part of the boiler unit models are implemented aslinear models or linear
parameter varying models. Besides the dynamics of the boiler unit, parts of the control
system operating the boiler unit have been implemented. It means that all upper/lower
bounds, rate of change constraints, correction for district heating and parasitic consump-
tion are implemented in the models along with a lot of the logic controlling the switch
from manual to automatic mode and vice versa.

The simulation environment runs at the same sample time as the current controller, i.e.
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3 Simulations

0.5s, and since the sample rate of the newly developed controller is 5s, a ZOH approach
will be taken. The data is saved with a 5s sample time for both controllers for analysis
purposes.

Simulations cover 25-hour sequences start from 23:00 to midnight the following day.
In the analysis section, the first hour is discarded, so the analysis covers 24-hour se-
quences from midnight to midnight. The first hour is used to avoid start-up and settling
issues influencing the analysis, allowing to string together several sequences for more
extensive analysis.

In this thesis only the main results from a noisy scenario aretreated for full details,
see [Edlund et al., nd]. For each boiler unit the input and output sample sequences of the
original measured scenario are known. One can thus estimatea noise sequence for the
scenario as

yn = ymeas − ysim (2.20)

This noise is applied to the output of the model of the boiler unit. Since the noise is
generated based on closed loop measurements, it is likely filtered by the controller in the
loop rather than white noise.

This noise generation is chosen, so that the simulation scenario resembles the actual
scenario as closely as possible including failures. The measurements from the units mod-
elled as the portfolio are applied directly to the simulation without filtering.

The analysed scenario contains three entities. There are the measurements from the
actual operation, a simulation of the current controller and a simulation of the new con-
troller.

For the simulations standard deviation and mean error are used as quantitative mea-
surements for the evaluation. Figure 2.10 shows the mean error

µ =
1

Ns

Ns
∑

k=1

yport,k − rport,k (2.21)

with Ns being the number of samples in the simulation. Figure 2.11 shows the standard
deviation

σ =

√

√

√

√

1

Ns

Ns
∑

k=1

((yport,k − rport,k)− µ)2 (2.22)

on a daily basis. Analysis shows that the constraints from primary reserves limit the
controller in periods.

The standard deviation on the new controller is higher than the current controller. A
significant change in the current and the new controller is that the new controller adheres
to fulfilling the primary reserve reservations at all times.This adds an extra constraint
to the controller which is active for longer periods and thisdegrades the performance of
the new controller. A comparison of of the new controller with and without the primary
reserve constraint on a noise-free scenario is found in [Edlund et al., nd]. Both are sig-
nificantly higher than the measurement data which are likelyto be caused by the noise
generation scheme as shown in Figure 2.11. The trends in standard deviation is the same
for both controllers and measurement data. As seen in the noise-free scenario, the current
has a slightly better performance than the proposed.
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Figure 2.10: 24-hour mean error for the controllers in a noisy scenario. The figure shows
the measurements (solid), the current controller (dashed)and the new controller with
(dotted). The results are for the individual days. Day 19 is omitted from the analysis due
to missing measurement data for the scenario.
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Figure 2.11: 24-hour standard deviation for the controllers in a noisy scenario. The figure
shows the measurements (solid), the current controller (dashed) and the new controller
(dotted). The results are for the individual days. Day 19 is omitted from the analysis due
to missing measurement data for the scenario.
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4 Fulfilling the Design Criteria

The mean error is larger in the noisy scenario compared to thenoise-free. Though
not consistently lower, the average shown in Table 2.1 showsthat the new controller is an
order of magnitude closer to zero mean error compared to the current controller.

σ µ
Measurements 17.74 -3.27
Current 23.11 -2.78
New 25.72 0.29

Table 2.1: Standard deviation and mean throughout the wholemonth of simulation. Mea-
surements are the measured values with the controller running at that time. Current is a
simulation with the current controller and new is the simulation with the new controller.

Figure 2.12 shows the price difference between the two controllers. Analysing the
price shows that on most days the new controller performs better. On day 20, the primary
reserves limit the controller, so that a large deviation occurs over a long period of time
which is detrimental for the earnings of the controller. On average the difference is 240
eper day, which means an earning of almost 90,000eper year.
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Figure 2.12: Price difference between the current controller and the new controller. Pos-
itive difference means that the new controller is cheaper (earns more money for DONG
Energy).

2.4 Fulfilling the Design Criteria

Three design criteria has been established which the new controller needs to meet in order
to fulfil the predicted demands from such a controller.

Scalability Through the application of Dantzig-Wolfe decomposition, it is shown
experimentally in [Edlund and Jørgensen, nd] that the computational complexity
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of the controller grows almost linearly with the the number of effectuators while
still converging to the same optimum as the centralised solution. This is a signifi-
cant improvement in lowering the computationally complexity over the centralised
solution. It is also shown that already at 2-3 effectuators,the Dantzig-Wolfe de-
composition is faster than the centralised solution. Furthermore, it is possible to
distribute the optimisation problem among multiple processors, giving an advan-
tage which exploits the trends toward computers with multiple processors.

Flexibility The design method fulfils the objective of flexibility through an object-
oriented design with data encapsulation and clear interfaces. It ensures that the
controller is easily maintainable in case of updates of the controller such as adding
and removing effectuators.

Performance The design method itself does not ensure that the performance cri-
terion is met, so that a controller design with the developedmethod performs as
well as the current controller. However, the developed method ensures that if anℓ1-
norm based MPC can be constructed to fulfil the performance criterion, the design
hierarchical design will also fulfil the criterion. In Section 2.3 as well as [Edlund
et al., 2008, nd], simulations show that anℓ1-norm based MPC can be constructed,
which improves the performance in terms of standard deviation and mean value, as
well as improve the economic performance by a better distribution of the control
actions.

The scalability and flexibility criteria have both been treated and fulfilled by the design
method, while the performance criterion is dependent on thespecific implementation.
The design method has been utilised for controller synthesis for the current power plant
portfolio and the resulting controller fulfills the performance criterion. Thus, all criteria
established in the hypothesis can be fulfilled by the design method.
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3 Summary of Contributions

The main contributions of this thesis consist of six papers regarding different aspects of
the portfolio control. This chapter summarises the contributions made in the project. The
papers are not included in a chronological order, but in an order that takes the reader from
the motivation to the solution in a logical way.

3.1 Stability of the Current Controller

In [Edlund et al., 2009a] the current load balancing controller structure was analysed.
[Wood and Wollenberg, 1996] give the structure of an automatic generation controller
which is used for balance control by the TSOs and is very similar in structure to the load
balancing controller treated in this thesis. The stucture in [Wood and Wollenberg, 1996]
is expanded to include rate of change constraints which are required for the controller to
meet the requirements for operating in the western Denmark.

A linear approximation of the implemented structure is shown in Figure 3.1.

-

+
+

G1

G2

GN

s x

x
1
Ti

kp1

kp1

s-1

s x

x

s-1

1
Ti

s x

x
1
Ti

s-1

kp2

kp2

kpN

kpN

+

+

+

y

..
...
.

..
...

.

r

Figure 3.1: Linear approximation of the load balancing controller structure.

Using the definition of internal stability [Zhou et al., 1996; Skogestad and Postleth-
waite, 2005], it is proven that the current controller structure is internally unstable. The in-
stability cannot be seen in the portfolio output, but resultin the effectuators drifting away
from the production plan in opposite directions. The instability can be shown through
numeric simulations as well as in real data as shown in Figure3.2. In the figure two
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effectuators are shown which at 3 hours drift away from the optimal production plan and
stay there for many hours.
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Figure 3.2: Correction signals from the controller. The correction signals drift apart and
stay on opposite sides of the optimal production plan for several hours.

[Edlund et al., 2009a] give two proposals for salvaging the controller. One of them is
a stronger parallel run which forces all effectuators towards the same correction. Parallel
run is commonly used within the power plant industry when twoor more similar subsys-
tems have to work in parallel to complete a task. When using PI-controllers in parallel, the
subsystems will in general not contribute equally when equilibrium is reached. In order
to obtain this behaviour, parallel run is introduced. The parallel run drives the integrators
towards the same value, thereby ensuring that the behaviourseen in the example above,
where two generators drift in opposite directions, is avoided. However, increasing the
strength of the parallel run will decrease the ability to make fast changes. The other pro-
posed solution is to make a smarter distribution of the amount of correction signal each
effectuator receives. The latter has been implemented in the current system as a result of
this paper.

3.2 Showing MPC is Viable for Portfolio Control

The first contribution towards developing a design method isin [Edlund et al., 2008]. A
Model Predictive controller with the structure
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2 Showing MPC is Viable for Portfolio Control

min
u

φ =

N−1
∑

k=0

‖yk+1 − rk+1‖1,qe,k+1
+ qT

u,k+1yk+1 + ‖∆uk‖1,q∆u,k
(3.1a)

s.t. xk+1 = Axk + Buk + Edk, k = 0, 1, . . . , N (3.1b)

yk = Cxk, k = 1, 2, . . . , N (3.1c)

uk ≤ uk ≤ uk, k = 0, 1, . . . , N (3.1d)

∆uk ≤ ∆uk ≤ ∆uk, k = 0, 1, . . . , N (3.1e)

is proposed to to improve the control compared with the currently implemented PI-
controller. (3.1b) and (3.1c) is a MIMO state space model of the whole portfolio including
the effectuators, so thaty = [y1, y2, . . . , yP , yport] with yi being output from effectuator
i = 1, 2, . . . , P andyport being the portfolio output. The first term of (3.1a) describes the
deviation between output and reference both for the whole portfolio and for the individual
effectuators. The second term is an economic term measuringthe cost of producing power
on each plant. The third term smooths the solution by penalising rapid movements in the
manipulated variables, thereby avoiding wear on the effectuators.

Simulations showed that this controller is capable of lowering the deviation as shown
in Figure 3.3 as well as increasing the income of the portfolio.
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Figure 3.3: Portfolio deviation comparison between a PI-controller based and an MPC
based load balancing controller.

Besides the contribution of formulating an MPC-based controller, the introduction
of economic terms in the portfolio controller is a novel approach. From distributing the
control actions to all effectuators based on possible rate of change to an economic distri-
bution is a significant change of behaviour. This can be seen in the input signals in Figure
3.4. This contribution has, parallel to this project, been successfully implemented in a
rule-based logic scheme in the current PI-controller.

[Rao and Rawlings, 2000] demonstrate the Model Predictive Controllers containing
ℓ1-norm penalty functions may give rise to either dead-beat oridle control. While theo-
retically (3.3) result in this behavior, simulations in [Edlund et al., 2008] demonstrate that
the controller performs well and provides the desired portfolio control.
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Figure 3.4: Comparison of input signals between the PI-controller and the MPC. The
MPC controller distribution is based on economic terms rather than a share based on the
rate of change capability.

3.2.1 Developing Models for Effectuators

The effectuator model used for MPC in [Edlund et al., 2008] was based on assumptions
that the current model in the simulation environment used for the currently implemented
controller is an adequate description of the system dynamics. And the results of simula-
tions with a controller based on these models showed good performance. In [Edlund et al.,
2009b] simple dynamic models with constraints of several effectuators were derived and
validated against available measurement data.

Three of the derived effectuator models are located in a power plant, and their dy-
namics affect the other models constraint or dynamics. However, the effect of the cross
couplings induced by the control actions is so small that it can be ignored by the controller,
but the model parameters likely needs to be tracked and updated outside the controller.

In [Edlund et al., 2008] all power plant units were considered to have no district
heating production. The derived model for the boiler load effectuator in [Edlund et al.,
2009b] had dynamics corresponding to the dynamics of the models used in [Edlund et al.,
2008], but the constraints were modelled as a function of thedistrict heating production.

The fourth derived effectuator model describes a wind turbine farm which can also be
used for load balancing.

3.3 Hierarchical Controller Structure

In order to obtain a modular and flexible controller, a hierarchical approach has been
taken in [Edlund et al., nd] as shown in Figure 2.1. The developed control structure is
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a two-layer hierarchical structure designed with an object-oriented design approach and
can be represented using UML diagrams as in Figure 2.4.

One important design decision is the usage of an interface between the upper and
lower layer of hierarchy. The interface allows multiple implementations of effectuators
without changing the design framework. The interface is designed as minimalistic as
possible to allow as much freedom to the implementation of effectuators as possible. The
structure has a high coherence inside each module and a low coupling. This, coupled with
the usage of the interface, ensures a modular and flexible controller.

The hierarchical controller design has the following requirements to the lower layer
controller implementation

• The effectuators must be modelled as independent, so that a change in one effectu-
ator does not directly affect another effectuator.

• The underlying optimisation problem can be stated as a linear program, which in
terms means the objective function consist of linear andℓ1-norm terms and linear
constraints.

• The interface requires that the controller can generate control proposals for the
effectuator based on an updated price from the upper layer.

All effectuators that can be fitted into these requirements can be used in the control
structure without changing the design framework, thereby giving the design flexibility to
incorporate future effectuators, such as a virtual power plant or electric vehicles.

The hierarchical controller structure relies on a decomposition of the underlying op-
timisation problem to ensure the same optimality conditions as the centralised version of
the controller.

3.4 Efficient Solution of Optimisation Problems

In [Edlund et al., 2008] an MPC was derived, and the results obtained with the controller
were good. However, it was clear that the time needed for finding a solution was criti-
cal, and the chosen centralised implementation has a computation time on a normal PC
close to the sample time. Even if faster hardware is utilised, the complexity grows cubi-
cally with the problem size, and thus the number of effectuators that can be added to the
controller is limited.

Two contributions for lowering the computationally complexity are considered. A
hierarchical decomposition using Dantzig-Wolfe is proposed in [Edlund and Jørgensen,
nd], and a customisation of an interior point solver for the problem [Edlund et al., 2009c].
Both contributions exploit the structure of the problem to reduced the required computa-
tions.

3.4.1 Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition has been used for decomposinglarge-scale linear problems
in optimisation for a long time. However, using it for the dynamical calculations of a
model predictive controller is a novel approach.
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The benefits of using Dantzig-Wolfe decomposition are that the hierarchical structure
is possible to implement with a clear interface with a small level of communication. Be-
sides the clear interface design, it also makes it possible to spread the optimisation over
multiple computers connected by a network, without much overhead.

Dantzig-Wolfe decomposition also ensures better scalability. Scalability in computa-
tionally complexity is shown in Figure 3.5.
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Figure 3.5: Computation time as a function of the effectuators in the optimisation.

Computation time grows almost linearly with the number of effectuators compared to
the cubic growth of a centralised solution. This coupled with the algorithm being faster
with a small number of effectuators makes MPC a viable controller scheme for the load
balancing controller.

Theoretically, the Dantzig-Wolfe decomposition converges very slowly, the test prob-
lem in [Edlund and Jørgensen, nd], and the simulation on a realistic scenario [Edlund
et al., nd] shows good convergence in practice.

3.4.2 Customising an Interior Point Method

The other contribution toward increasing the efficiency of the optimisation algorithm was
customising an interior point method which is reported in [Edlund et al., 2009c]. The
interior point method is tailored to solve the local optimisation related to one of the boiler
load effectuators. However, many of the techniques appliedcan be reused in MPC appli-
cations.

46



4 Efficient Solution of Optimisation Problems

The optimisation problem for a single boiler load effectuator

min
u

φ =

N−1
∑

k=0

‖yk+1 − rk+1‖1,qe,k+1
+ qT

u,k+1yk+1 + ‖∆uk‖1,q∆u,k
(3.2a)

s.t. xk+1 = Axk + Buk + Edk, k = 0, 1, . . . , N − 1 (3.2b)

yk = Cxk, k = 1, 2, . . . , N (3.2c)

uk ≤ uk ≤ uk, k = 0, 1, . . . , N − 1 (3.2d)

∆uk ≤ ∆uk ≤ ∆uk, k = 0, 1, . . . , N − 1 (3.2e)

can be rewritten into a linear program with the form

min
x

φ = cT z (3.3a)

s.t. Gz ≥ h (3.3b)

by rewriting the optimisation problem using different rules such as the model description
as given in (1.9).

The program has a constraint matrix,G, with the structure

G =
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(3.4)

The individual elements of this matrix are defined in [Edlundet al., 2009c]. The
important thing to note is that the constraint matrix is highly structured, i.e. many zero
entries, and this can be exploited.

One of the most costly operations in the interior point solver in [Edlund et al., 2009c]
is the calculation ofH = GT DG, whereD is a diagonal matrix. Performing this cal-
culation with normal matrix multiplication is very expensive. Implementing the interior
point algorithm in MatlabTM , 79% of the time was spent on this operation when imple-
mented with standard notation. Using Matlab’s sparse techniques, a significant speed-up
of the algorithm was obtained, but the most expensive operation was still the calulation
of H with 55% of the computation time. Exploiting the structure of the matrix along
with a few other customisations of the algorithm gave a speed-up of the algorithm of
approximatly 20 times compared to the standard nonsparse implementation.

Comparing the algorithm in Figure 3.6 with an active set solver implemented in FOR-
TRAN and Matlab’s Linprog shows a significant improvement compared to other algo-
rithms handling general problems.

The important contribution is not that it is possible to speed up a solver for this specific
problem, but most optimisation problems arising from MPC have a highly structured
constraint matrix and thus can be exploited in a similar way.
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Summary of Contributions

Figure 3.6: CPU times for the different LP algorithms.

Dantzig-Wolfe Decomposition relies on the subproblems to generate solutions in a
vertex of the feasible area. In the rare case that a solution to the subproblem exists on an
edge of the feasible area, the interior point method might not converge to a vertex. So
using the customised interior point method to efficiently solve the subproblems generated
by Dantzig-Wolfe decomposition could lead to a Dantzig-Wolfe algorithm which will not
converge to an optimum. In practice this has not proved to be aproblem.

3.5 Implementation and Benchmarking of the Controller

Throughout the project, implementations of the controllerhave been made. The first
implementation is reported in [Edlund et al., 2008] with thepurpose of showing that
MPC is a viable option for a control scheme as described in Section 3.2.

In [Edlund et al., nd] the design method was used to synthesisof a controller for use
in the current system. The performance of the controller designed with the developed
method was compared based on three factors; mean error, standard deviation and price.
The comparison was performed through a simulation in a scenario based on data from a
month of actual operation.

The new method incorporates a method to ensure that the load balancing controller
does not violate the primary reserve constraints, something that has not been handled
previously.

Table 3.1 shows a comparison of the new controller compared with the current im-
plementation. There are three tested entities; there are the measurements from the actual
operation, a simulation of the currently implemented controller and a simulation of the
proposed new controller. The new controller includes constraints to ensure that primary
reserves are maintained. For comparison purposes the new controller has been simulated
without this constraint as well.

In both the noise-free and the noisy scenario, the new controller performs close to but
slightly worse than the current controller. The hypothesiswas that it was caused by the
constraints enforced by the primary reserves. The comparison with the new controller
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5 Implementation and Benchmarking of the Controller

Noiseless Noise
σ µ σ µ

Measurements - - 17.74 -3.27
Current 11.98 -1.26 23.11 -2.78
New 12.21 -0.12 25.72 0.29
New no primary 11.41 -1.02 - -

Table 3.1: Standard deviationσ and mean errorµ throughout the whole month of sim-
ulation. The measurements are the actual production data, current is a simulation of the
current controller and new is a simulation of the new controller. For comparison purposes,
the new controller is also simulated with the constraint formaintaining the primary re-
serves are removed.

without this constraint in the noise-free scenario shows a slightly improved result com-
pared to the current controller.

Comparing the economy of the two implementations, the new controller performs
slightly better and is estimated to yield a gain of approximately 90,000 euro per year.

One remark to make is that the currently implemented controller has matured over
the cause of years. In comparison, the new controller has been implemented and tested
through simulation for a very short time. It is therefore likely that the implementation and
further development of the newly developed method will yield improved performance
compared to the results of this thesis.

49





4 Conclusion

When the project started, the scalability of the controller was a feature which might be re-
quired at some point in the future, but the main focus was the performance improvement
on the current portfolio. During the course of the project the drive towards more sustain-
able energy production has changed the energy system, so that scalability has become
absolutely crucial to the controller design. An example of this change is the rapid devel-
opment of virtual power plants and thereby a potential increase in number of effectuators
in control in the very near future.

The power system is very complex, and with the increasing number of effectuators
complexity will increase even more. One of the aims in this thesis has been to develop a
design method which is clear and relatively simple to ensurethat it can be implemented
in the production at some point. This includes a very high level of abstraction.

To test whether it was possible to develop a design method, a hypothesis was for-
mulated stating that it is possible to develop a controller design method which leads to
synthesis of a controller which fulfils the criteria of scalability, flexibility and perfor-
mance.

A design method has been developed which results in synthesis of a controller with an
object-oriented structure with clear interfaces, thus ensuring theflexibility of the control
structure. The modular design ensures that the controller is easily maintainable in case of
updates of the controller such as adding and removing effectuators. The use of interfaces
in the design offers flexibility in the implementation of thecontrol formulation for the
individual effectuator.

By using Dantzig-Wolfe decomposition, a computational efficient solution can be ob-
tained which grows linearly with the number of effectuatorsin control. Furthermore,
decomposition allows distribution of the optimisation among several computers, thus im-
proving thescalability significantly compared to a centralised solution. A customised
interior point solver can be utilised to efficiently solve the smaller distributed problems in
the hierarchical structure.

Using the design method for synthesis of a controller for thecurrent portfolio, the
simulatedperformanceis comparable with the simulated performance of the currently
implemented PI-controller structure.

The developed design method fulfils all three criteria of thehypothesis, therefore the
hypothesis is accepted.

The contributions of the work consist of six papers describing different aspects of
portfolio control as well as the development of the method. In summary, the contributions
can be listed as:

51



Conclusion

• Analysis of the current controller structure, based on the structure used in literature.
The structure was proven unstable. There are, however, methods for stabilising the
controller. [Edlund et al., 2009a]

• Formulation of the load balancing problem as a model predictive controller, and
showing that the current state of the art within load balancing control can be im-
proved by introducing Model predictive control theory. [Edlund et al., 2008]

• Developing a method for synthesising a load balancing controller with a modular
design and clear interfaces using model predictive control. The design is a two-
layer hierarchical structure which has a performance equalto a centralised solu-
tion. The design method requires that the underlying optimisation problem can be
formulated as a linear program. [Edlund et al., nd]

• Customisation of a general interior point method to exploitthe structure of the
specific problem in order to speed up the optimisation, by exploiting the structure
of the problem. [Edlund et al., 2009c]

• Introduction of Dantzig-Wolfe decomposition for the dynamic calculations of MPC
for use in portfolio load balancing control. The result is anindependent problems
corresponding to the physical subsystems. [Edlund and Jørgensen, nd]

• Implementation of the method on the existing portfolio and compared the perfor-
mance with the current controller through simulations. Thecomparison showed
that the developed method has potential to improve performance in the existing
portfolio. [Edlund et al., nd]

• Developing a method for ensuring that primary reserves are maintained when the
load balancing controller performs internal balance control. It is a prerequisite that
the reserves are available from the beginning. [Edlund et al., nd]

4.1 Future Work

The design method for a load balancing controller presentedin this thesis fulfils the cri-
teria to be able to accept the hypothesis. There are two pathstwo be followed after this
project is finished. One path is the industrial implementation maturing and implementa-
tion of the controller in a suitable application. The other is further development of the
controller design to remove some of the limitations the current design method imply.

• A design method and a prototype of an implementation has beenprovided in this
thesis, but in order to implement and use the controller in operation it must be
matured and implemented to fit in the platform of the control system. Further-
more, only the controller core has been developed, in order to have a fully fledged
controller suitable for operation it has to be expanded to include elements such as
communication and operator interface.

• The design method enables inclusion of new effectuators in the portfolio in a rela-
tivity straight forward manner. Identification and construction of new effectuators
are not directly related successors of this thesis. But the framework for including
them in balancing control is now established and ready for this task.
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1 Future Work

• The proposed controller design relies on one Kalman filter for state estimation of
the whole system. The complexity of the matrix multiplications grows cubically
with the problem size. This could prove to be a limiting factor for the scalability in
the proposed control design. However, the computation timespent on the Kalman
filter in the implementation is insignificant compared to thecomputation time spent
by the controller. A logical extension of the design method would be to include a
distributed state estimator as well. Distributed state estimation has already been
treated in [Alriksson and Rantzer, 2006; Farina et al., 2009] among others, but
needs to be incorporated in the method. Incorporating distributed estimation into
the method would ensure that the estimator would fit into the framework, thereby
ensuring that each of the modules for the individual effectuators contain all infor-
mation needed to add the effectuator to the control.

• Currently, the design method requires that the controller can be stated as a linear
program to be able to perform the optimisation. Expansion ofthe controller de-
sign is a topic for further research. Inclusion of nonlinearities in both performance
function and constraint is the ultimate goal, but the next logical step is to include
quadratic terms in the performance function since it would enable the framework
to handle the most common MPC formulation.

• Simulations show that the discrete events generated by effectuators being added to
or removed from the controller do not induce large deviations or cause instabili-
ties. However, there is not established firm theoretical guarantees that these events
will not destabilise the system. A theoretical foundation ensuring these properties
would be a clear enhancement of the robustness of controller.

• Currently, the events of adding and removing effectuators are generated externally.
Expanding the controller to predict when it is safe and/or optimal to add and remove
effectators is another topic of future research closely related to the stability analysis
above. This topic can be generalised to the controller beingable to handle discrete
events, and thus removing the limitation that the effectuators must be continuous to
be included in the control. This would significantly expand the types of effectuators
that can be handled by the controller.
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1 Introduction

Abstract

This paper deals with the the stability analysis of a controller structure used for
automatic generation control (AGC). The AGC structure is derived fromthe litter-
ature and augmented to handle generation rate constraints. The derivedstructure is
then compared to the structure of the AGC used within DONG Energy, which re-
moves deviations between reference and production. The analysis is conducted on
a linear approximation of the closed loop system, with focus on the structureof the
controller. We show that with the chosen structure, the closed loop system will be
internally unstable independently of the controller parameters. The analysis shows
that the different units in the portfolio might drift in opposite directions, a behavior
also observed in the real system. The drifting ruins the economical optimisation. The
instability issue can, however, be alleviated by introducing so-called parallel run.

1 Introduction

Controllers in general, and in particular controllers usedfor automatic generation control
(AGC), are often implemented with the primary motivation toachieve economic benefit
from good operation of the plants, which can then be translated into a number of perfor-
mance criteria, of which the most fundamental is stabilisation of the system.

The problem of designing AGCs to cooperate among multiple regions has been the
subject of much research lately, both regarding optimalityand stability. However, it is
most often assumed that the generators within the area function as one generator. For ex-
ample [Bakken and Grande, 1998] describes how to introduce an AGC in Norway, but the
focus is on the main controller rather than the distributionof the error among the partici-
pating generators. Centralised AGC design under constraints is treated in [Hassan et al.,
2008] both for single-area and multi-area production, but the area is treated as one gener-
ator. In [Venkat et al., 2006; Moon et al., 2000; Tyagi and Srivastava, 2006] decentralised
model-based methods for multi-area AGC are developed, but without discussing how to
distribute the output from the controller known as the area control error (ACE) among
the multiple generators in the control area. Focusing on stability, [Azzam and Mohamed,
2002] developed a design method for generating a stabilising controller.

[Liu et al., 2003; Chen et al., 2007; Wood and Wollenberg, 1996] describe how to
distribute the ACE among the participating generators in the area. [Liu et al., 2003; Chen
et al., 2007] deal with control of multiple generators within an area using optimisation-
based schemes. However, both treat the problem as a static rather than a dynamic prob-
lem. [Wood and Wollenberg, 1996] presents an AGC for distributing the ACE to multiple
generators based on a PI-controller structure. This structure for distributing the ACE is
very common, and the principle is also used in the internal AGC within DONG Energy,
who operates in Denmark. The work in [Wood and Wollenberg, 1996] will be used as a
base for the structure in this paper and will be further discussed in section 3. However, as
will be shown, in case of load disturbances, it is required tomodify the scheme in order
to maintain stability.

The outline of the rest of the paper is as follows: Section 2 describes the set of as-
sumptions and requirements for the controller and the system. This is followed by a dis-
cussion of the augmentation of the structure needed to fulfill the requirements in section
3. Section 4 presents an analysis of the stability of the augmented structure. A numerical
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example of the problem is given in section 5, and a discussionof the possible remedies
for the problem in Section 6. At last in Section 7 data is shownfrom the real system,
illustrating that the problem highlighted in section 4 exists in reality.

1.1 The Danish power system

The Danish power system is split into two areas, Western Denmark and Eastern Den-
mark, which are not synchronously connected. The western part of Denmark is,however,
synchronous with the UCTE grid. This paper will focus only onthe Western Danish Area.

Studstrupværket

Herningværket

DONG Energy's Power Plant

DONG Energy Central Control Room

TSO Central Control room

Horns Rev 1

400 KV AC power line

DC Tie Line

Wind farm

Nordjyllandsværket

Other producers Power plant

Norway

Sweden

Esbjergværket Skærbækværket

Enstedværket

Horns Rev 1

Fynsværket

Germany

Figure 5.1: Generators participating in balance control inWestern Denmark

The Danish power market has been decentralised and liberalised in the recent years.
This includes the market of reserves and balance control. The transmission system oper-
ator (TSO) in the area is separated from the power producers in order to avoid conflicts
of interest. Therefore the Danish TSO has to buy production,reserve and load balancing
services from independent power producers. Figure 5.1 shows the generators in Western
Denmark that typically participate in the power balancing in the region.

In Denmark, much of the electricity production is based on wind power. In November
2007, the installed wind capacity amounted to more than 25% of the total installed capac-
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ity. The Western Danish area functions as one area with multiple generators, which means
that a primary concern when designing an AGC is how to distribute the ACE between the
generators. Therefore an AGC is applied to regulate the fastfluctuations caused by the
wind power [UCTE, 2007].

The commissioned AGC works in a deregulated market and is split up between the
TSO and multiple independent power generating companies. The Danish TSO, generates
an area control error (ACE) and distributes it among the companies participating in the
balance control of the Danish power system. The individual producer is then responsible
for distributing its share of the ACE among the generators operated by the company. Each
producer also has the responsibility for maintaining the balance between the actual and
ordered production within the portfolio of generators.

The fast fluctuations in the power system must be suppressed by thermal generators,
which are dominant in the power system. Therefore the thermal generators will often
reach their rate limit at typically 4% load/minute, and therefore the AGC must be able
to handle the fact that the generators reach the generation rate constraints a significant
percentage of the time. It is noted in [Wood and Wollenberg, 1996] that an AGC should
be able to handle this, but no specific method is given. In practice, it is often done with a
PI-controller structure augmented with a set of so-calledparticipation factorsto split the
load among the participating plants.

Due to the fast fluctuations in the Danish power system, the set of participation fac-
tors is changed very often. Existing literature does not seem to have investigated what
influence a rate limit constraint has on the stability of the distribution of the ACE within
the power system.

TSO

Economic Dispatch

(Production Planning)

+
Portfolio

MW

MW

MWDeviation

Production plan

Measured production

Load balancing 

controller

-

+

Reference 

feedforward

Disturbances

AGC signal

Filter

Expected 

Response

Figure 5.2: System level control within DONG Energy.

The system level control within DONG Energy is depicted in Figure 5.2 and further
described in [Jørgensen et al., 2006]. This paper concentrates on the load balancing con-
troller. It gets an input from the production sold on the Power Exchange and the share
of the ACE coming from the TSO. Adding these gives the total portfolio reference which
has to be followed.

This paper deals with analysis of the stability of an AGC whencompensation for
generation rate constraints are added to the controller. The analysis is conducted based
on a linearised model of the power system.
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2 Preliminaries

This section will define the stability condition as well as list the assumptions used when
analysing the structure and stability of the AGC.

During the analysis the definition of internal stability is used as defined in [Zhou et al.,
1996] and [Skogestad and Postlethwaite, 2005].

P(s)

C(s)

+

+

d

y1

r

y

Figure 5.3: Block diagram used to check internal stability

Definition 2. The interconnection of LTI systemsP (s) andC(s) depicted in Figure 5.3
is internally stable if and only if all four transfer functions comprisingH(s) in (5.1) are
stable

[

y
y1

]

= H(s)

[

d
r

]

(5.1)

H(s) =
[

(I − C(s)P (s))−1 C(s)(I − P (s)C(s))−1

P (s)(I − C(s)P (s))−1 (I − P (s)C(s))−1

]

The following assumptions are made:

• The AGC is based on PI-controllers.

• The AGC should be able to compensate for generation rate constraints and genera-
tion limits of the generators.

• Each generator has it own local loop controller to ensure reference tracking. With
the local loop controller, the generator response can be approximated by a third
order model

Gi(s) =
1

(Tis+ 1)3
(5.2)

whereTi is the time constant for generatori. The time constants of the generators
used in DONG Energy’s AGC ranges from15 to 90s. In this work, each of the
generators will be modelled by a stable transfer function.

Gi(s) =
αGi(s)

βGi(s)
. (5.3)

This means that the polynomialβGi(s) has all roots in the open left half plane, and
thats = 0 is not a root inαGi(s).

• The controller in the system is tuned in such a way that the system is stable from
reference to output.
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3 Structural Considerations

This section first discusses the structure of the AGC proposed in [Wood and Wollenberg,
1996] and what augmentations must be made in order to fullfillthe requirements given
in the previous section. Secondly it discusses the structure of the controller used within
DONG Energy.

3.1 AGC proposed in the literature

In essence, the structure of the AGC described in [Wood and Wollenberg, 1996] is shown
in Figure 5.4. It consists of one PI-controller and a set of participation factors (pfi, i =
1, ..., N ) whereN is the number of generators. The participation factors can then be
found in a number of different ways; [Wood and Wollenberg, 1996] suggests to use the
economic dispatch for finding the set of participation factors.

1
Tis

pf1

pf2

pfN

-

+
+

G1

G2

GN

+

u1

uc u2

u3

... ...

yr

Figure 5.4: Proposed AGC structure[Wood and Wollenberg, 1996]

When phenomena such as reaching a generation rate constraintoccurs, it is necessary
to change the set of participation factors so that additional disturbances are not introduced
in the system due to the rate limit.

Changing the participation factors arbitrarily in the structure shown in Figure 5.4
might cause abrupt changes in the control signals (u1, ..., uN ), unlessuc = 0. Changing
the control inputs to the generators abruptly will also introduce additional disturbances
due to the dynamic behavior of the generators themselves.

To ensure that the generation rate constraints are not violated, the control signals
should not change more rapidly than the generation rate constraints allow. This means
thatpfi should be changed to accommodate bumpless transfer. This, in turn, means that
memory of the value at the previous sample instant is needed in order to track the change
in ui. One easy way to achieve this is using an incremental formulation (described in
[Åström and Wittenmark, 1990]), as shown in Figure 5.5.

Furthermore memory is needed when bumpless transfer from manual to automatic is
wanted in the switch as described in [Åström and Wittenmark, 1990]. This is an additional
argument for having several parallel integrators.

3.2 AGC used in DONG Energy

The controller for distributing the ACE within DONG Energy has a slightly different
structure from the one presented in above. It is shown in Figure 5.6.
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Figure 5.5: Alternative structure of the AGC with incremental implementation.
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Figure 5.6: Structure of the AGC within DONG Energy

The reference is distributed to a set of PI-controllers withgain scheduling. The gains
are recomputed every0.5 seconds according to factors such as generation rate constraints.

In order to compensate for generation rate constraints, theAGC structure used within
DONG Energy has to be augmented in a similar fashion. The result is shown in Figure
5.7. The structure has a behaviour similar to the structure shown previously.
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Figure 5.7: Current structure of the AGC
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4 Stability of an AGC

In the previous section it was argued that, in order to compensate for the generation rate
constraints, it is necessary to have memory about each generator, which can for instance
be added in terms of integrators. In this section, the stability of a structure with parallel
integrators will be analysed. The participation factors are calculated at each sample, and
is based on the constraints and limits. Therefore the participation factors often change
rapidly, in particular whenever∆uc changes sign. This behaviour will be treated as a
disturbance entering the system close topfi.

4.1 AGC with compensation for changes inpfi

For the analysis the system is grouped into subsystems as shown in Figure 5.8.

1
Tis

x

-

+
+

G1
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GN

+

y1s s-1

pf1

xs s-1

pf2

xs s-1

pfN

r y

+

dc1 g1

g2c0

... ... ...

Figure 5.8: Subsystems used for analysis of AGC with compensation for changes inpfi

where the transfer function of each subsystem can be described as

g1(s) =
αG1

sβG1
, g2(s) =

αG2

βG2
, c1(s) = s, c0(s) = 1 +

1

Tis
(5.4)

g2(s) contains the generatorsGi wherei = 2, ..., N . αG1 is assumed not to have a
root ins = 0. We now have the following result.

Theorem 2. The structure shown in Figure 5.8 is internally unstable forany choice of
controller parameters under the assumptions listed in section 2.

Proof. By showing that at least one of the transfer functions in (5.1) cannot be stabilised
for any choice of controller parameter, it is proven that thesystem is internally unstable.

The transfer function matrix is shown in (5.5) on the next page.

All transfer functions except the bottom left has the same denominator. Sincey(s)
r(s) is

stable by assumption, all three transfer functions are stable. However,y1(s)
d(s) has a zero

in s = 0, sinces = 0 is not a root in the nominator polynomial it is not cancelled.This
closed right half plane pole in the transfer function cannotbe eliminated by any choice of
controller parameters, and the structure is therefore internally unstable.
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H(s) =

[

g1

1+(g1c1+g2)c0

(g1c1+g2)c0

1+(g1c1g2)c0
g1+g1c0g2

1+(g1c1+g2)c0

g1c1c0

1+(g1c1+g2)c0

]

=

[

αG1βG2Ti

βG1βG2Tis+(αG1βG2+αG2βG1)(1+Tis)
(αG1βG2+αG2βG1)(1+Tis)

βG1βG2Tis+(αG1βG2+αG2βG1)(1+Tis)
αG1βG2Tis+αG1TisαG2+αG1αG2

s(βG1βG2Tis+(αG1βG2+αG2βG1)(1+Tis))
αG1βG2(1+Tis)

βG1βG2Tis+(αG1βG2+αG2βG1)(1+Tis)

]

(5.5)

4.2 Current Structure

For the analysis the system is grouped into subsystems as shown in Figure 5.9.
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Figure 5.9: Subsystems used for analysis of the currently used structure

The transfer function for each subsystem can be described as

g1(s) =
αG1

sβG1
, g2(s) = (αc2 +

1

Tis
)
αG2

βG2
, c1(s) = (s+ αc1) (5.6)

Theorem 3. The structure shown in Figure 5.9 is internally unstable forany choice of
controller parameters under the assumptions listed in section 2.

Proof. For the sake of brevity, we only show the unstable transfer function from distur-
bance (d) to output of generator 1 (y1) which is

y1(s)

d(s)
=

g1 + g1g2
1 + g1c1 + g2

. (5.7)

By inserting the expressions from (5.6), it can be written as

y1(s)
d(s) =

αG1βG2+TisαG1βG2+Tisαc2αG1αG2

s(βG1βG2Tis+αG2sβG1s(αc2Tis+1)+αG1αc1βG2s2(1+Tis))
.

(5.8)
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This transfer function has a root ins = 0 in the denominator, and sinces = 0 is not a root
in the nominator polynomial it is not cancelled. The root ins = 0 cannot be cancelled by
any choice of controller parameters, and the structure is therefore internally unstable.

5 Numerical Example

In this section, a numerical example is shown for the structure shown in Theorem 2.
It corresponds to the structure proposed in [Wood and Wollenberg, 1996], except that
it is modified to accommodate generation rate constraints. The system consists of two
generators, where the dynamics can be modelled as two third order systems as shown in
Figure 5.10.
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Figure 5.10: Example AGC with compensation for changes inpfi

The participation factors are calculated using the simple functions

f1(x) =

{

0.4 x ≤ 0
0.6 x > 0

and f2(x) =

{

0.6 x ≤ 0
0.4 x > 0

The changing participa-

tion factors are used in order to exploit the full rate of change possible when there are
asymmetric rate limits.d is zero-mean white noise added to the output with variance
σ2 = 0.001.
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Figure 5.11: Simulation of AGC with compensation for changes inpfi
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Figure 5.12: Controller with parallel run

Figure 5.11 show the result of a simulation of the system shown in Figure 5.10 using
a sample time of 1 second. The results shows that the controller is capable of following
the reference, but the generators drift in opposite directions, as predicted by the internal
instability results shown in the previous section.

6 Stabilisation of the structure

In this section, we present two different ways to remedy the internal instability of the
system as well as a discussion of pros and cons of the two solutions. Both solutions have
been applied to the controller within DONG Energy.

6.1 Parallel run

Parallel run is commonly used within the power plant industry when two similar subsys-
tems have to work in parallel to complete a task. When using PI-controllers in parallel,
the subsystems will in general not contribute equally when the equilibrium is reached. In
order to obtain this behaviour, parallel run is introduced.In the AGC system, the genera-
tors are treated as parallel subsystems, which contribute to achieve an overall goal. Figure
5.12 shows how the parallel run is introduced.

The parallel run drives the integrators towards the same value, and thereby ensures that
the behaviour seen in the example above where to generators drift in opposite directions
is avoided. Choosing the parallel run, parameterKpr is a trade off between forcing the
integrators towards each other, and obtaining good reference tracking. If the gainKpr

is too large, the parallel run may in some situations dominate the controller behaviour,
ruining the reference tracking capability.

Gain scheduling of the parallel run as a function of the change in ACE might be
a solution to overcome balancing between not interfering onthe control power and no
effect from the parallel run.
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6.2 Participation factors

Within DONG Energy, the calculation of participation factors has been changed to a rule
based scheme, which takes the current state of controller and the change of the ACE into
account. The result of the algorithm is a prioritised list. The generator with the highest
priority gets as much of the ACE as possible within the generation rate constraints.

One of the rules in the algorithm is to force generators back towards zero when pos-
sible, so that if a generator gives a positive contribution and the ACE value decreases,
the generator gets higher priority. This has resulted in a significant improvement to the
AGC in DONG Energy and the phenomona of internal instabilityof the AGC has been
removed. However, the complexity of the system has been significantly increased.

7 Actual System

The linear analysis of the controller showed that the units are likely to drift even though
the total portfolio output remains stable. The analysis wasconducted on a simplified
linear model of the controller, since the real system cannotbe analysed in detail through
any of the methods described in the introduction. However, general trend data shows
good agreement with the analysis, as will be discussed in thefollowing.

Figure 5.13 shows the correction signals sent to the units ina period of 24 hours.
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Figure 5.13: Correction signals from the controller

After approximately three hours, the correction signal of generator 1 rapidly drops
to a negative value while generator 2 stays positive. The correction signals keep their
opposite signs as for the most of the time within the next seven hours. Using stan-
dard PI-controllers, the output is kept steady once the error is zero, meaning that the
PI-controllers output might settle with opposite signs as in Figure 5.13. The parallel run
in the PI-controllers is the only mechanism trying to pull the two units towards a com-
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mon correction, so that they contribute equally. However, the parallel run is too weak
compared to the noise and the change in reference to succeed in this case.

The explanation for the units drifting from the production plan is found in the distri-
bution of the controller gain and the rate limiter. The controller has two different gains,
one for positive error, and one for negative error. The result is that one unit ends up with
a large part of the contribution in one direction and the other unit ends up with a large
part of the contribution in the other direction. When the error is positive, both units re-
ceive commands to follow a step up, but one unit gets a larger step than the other. When
the error changes sign, both units correspondingly receiveorders to follow a step down,
but the other unit then gets a much larger step than the first. When the error is close
to zero, it often changes sign, which over time results in oneunit accumulating a large
positive correction and one unit accumulating a large negative correction. Overall, this
behaviour is quite similar to the behaviour observed by introducing disturbances in the
linaer approximation treated in section 4.

The units are saved from drifting too far apart for three mainreasons. The systems are
limited, so that one unit cannot deviate more than a certain amount from the production
plan without manual intervention from the operator. These limits ensure that the units are
not drifting too much. The parallel run is a gain multiplied with an error, so the larger
the span between two units, the stronger the parallel run is.And last but not least, there
are steady periods where the reference from the TSO is close to steady state, giving the
parallel run a chance of pulling the units together again.

8 Discussion

A set of assumptions and requirements commonly found in literature for an AGC has
been summarised and analysed. In order to fulfill this set of requirements, it is argued that
the system must be structured in a certain way. However, it was also found that such a
system is internally unstable. The instability shows in fact that generators participating the
balance control has a tendency to drift in opposite directions. Data from a real production
environment supports this conclusion. The drifting of the generators ruin the economical
optimisation of the system.

Two different ways to remedy the problem have been proposed -parallel run and
changes in the calculation of participation factors. It is found that in practice, the parallel
run is insufficient to force the drifting generators towardsthe same value.

Another solution is to change the calculation of the participation factors. A rule-based
system has been set up within DONG Energy, and rules have beenadded to ensure that
the generators are forced back to the production plan when possible. The system works
well, and the drifting is no longer seen. However, the systembehavior is now far more
difficult to analyse in case of problems.

The favoured remedy is the last proposed, but due to the complexity of this solution,
a better approach might be to reduce the requirement that theAGC should be based on
PI-controllers. This is an indication that it may prove advantageous to introduce model-
based MIMO control in the future.
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1 Introduction

Abstract

This paper introduces a model predictive control (MPC) approach to construction
of a controller for balancing power generation against consumption in a power sys-
tem. The objective of the controller is to coordinate a portfolio consisting of multiple
power plant units in an effort to perform reference tracking and disturbance rejection
in an economically optimal way. The performance function is chosen as amixture
of the ℓ1-norm and a linear weighting to model the economics of the system. Sim-
ulations show a significant improvement of the performance of the MPC compared
to the current implementation consisting of a distributed PI controller structure, both
in terms of minimising the overall cost but also in terms of the ability to minimise
deviation, which is the classical objective.

1 Introduction

This paper focuses on the power system in the western part of Denmark, where DONG
Energy [DONG Energy, 2007]is the largest power producer. Being a major power pro-
ducer also means that DONG Energy provides a major part of thebalancing reserves for
the transmission system operator (TSO), who has the overallload balancing responsibil-
ity. Load balancing means making the production equal to theconsumption. In 2007
approximately 30% of the installed capacity in West Denmarkwas wind turbines - a large
share compared to other areas of Europe. This makes balance control a difficult issue
due to the stochastic behaviour of the wind-based production. Today, balancing can be
done partly by exporting the electricity to other parts of Europe and partly by adjusting
the load of the other production units. However, with the increasing integration of wind
power the current balance control system must be improved inorder to be able to handle
the changing conditions in the future.

The deregulation and decentralisation of the European power system complicate co-
ordination of control actions. In [UCTE, 2007] it is predicted that a significant number
of wind turbines will be installed in Europe. This will introduce more stochastic pro-
duction, which calls for improved control of the power system to balance production and
consumption in order to avoid large blackouts in the future.

The fluctuation in Denmark introduced by the wind turbines has made it necessary to
commission an AGC (Automatic Generation Control) which is able to activate a reserve
of ±140MW to take care of small and quick deviations [UCTE, 2007]. This AGC is
controlled by the TSO, which sends an activation signal to the balancing participants,
who are then responsible for activating the required reserves. The reserves are activated
by changing the load distribution among a portfolio of powerplants.

The controller which distributes the reserve activation within the DONG Energy port-
folio is responsible for maintaining the load balance within the portfolio on a seconds-
to-minutes horizon, until the economic dispatch can take over and handle the short term
(minutes-to-hours) load balancing. The controller is therefore referred to as the load bal-
ancing controller, not to be mistaken for the AGC at the TSO.

The portfolio is a very complex system and the optimisation and control are therefore
ordered in a hierarchical fashion in order to break down the complexity as described in
[Jørgensen et al., 2006]. The economic dispatch as well as the load balancing are handled
mainly on the system level as described in [Jørgensen et al.,2006].
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The load balancing controller is currently based on a distributed PI controller struc-
ture and ad hoc methods to obtain the desired behaviour of thesystem. The requirements
and wishes for the balance controller keep increasing, rapidly pushing the method to the
limit of what is possible. In particular, requests for optimality according to a performance
function have arisen, which cannot be guaranteed with the current system setup. Also,
operation closer to the limits is required. The first versions of the load balancing con-
troller were focused only on minimising the deviation from the reference production, but
recently focus has shifted towards minimising the deviation as economically as possible.
This calls for methods which are better suited for handling large multiple-input-multple-
outpout (MIMO) systems with multiple performance measures.

Much work has been done to enhance the disturbance rejectioncapabilities of single
power plants, see [Welfonder, 1997] and [Lausterer, 1998].However, real-time coordina-
tion of several units in an effort to perform disturbance rejection has not been reported in
the literature before.

This paper presents the first step towards establishing a more stringent method for
handling balance control of a power system portfolio. A model-based MIMO control
solution based on Model Predictive Control (MPC) offering inherent constraint handling
and systematic utilisation of feed forward is presented. A short introduction to the sys-
tem is given in section 2 followed by the derivation of a simple state space model and
constraints, which are used in the construction of the controller (section 3). Based on
the stated optimisation goals, a performance function consisting of linear weighting and
ℓ1-norms is derived in section 4 and used to construct a controller for the system. In sec-
tion 5, the controller is tested in two different scenarios illustrating the reference tracking
ability and disturbance rejection capabilities of the solution. The results are compared to
the current implementation of the balance controller.

2 System Description

A quick introduction to the Danish power production system and the highest level of the
hierarchy of DONG Energy is given here. For more details, see[Jørgensen et al., 2006].

The Danish power production can be split into two categories; planned production
and reserves. The planned production is the production known ahead of time, which
means long-term contracts and power sold on the power exchange 8-36 hours ahead of
production time. Reserves are power production which can beactivated quickly and
which is used to compensate for imbalances. The reserves area service requested by the
Danish Transmission System Operator (TSO) who has the responsibility for maintaining
the balance within the Danish region. There are different kinds of reserves, see [Jørgensen
et al., 2006] for details. For the sake of simplicity, this paper only considers the automatic
reserves.

An overview of the interaction of the different subsystems is presented in Fig. 6.1.
A short-term load scheduler (STLS) performs optimisation for the distribution of power
generation resulting in a 5-minute based 24-hour production plan, which is sent to the
production units. To compensate for the dead time of the production units, the production
plan is issued as a reference feed-forward.

Based on the imbalances within the Danish region, the TSO generates a reference
signal, and the portfolio is then expected to respond to the reference with a given dynamic
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Figure 6.1: Overview of the portfolio at system level

response.
The load balancing controller shown in Fig. 6.1 serves two purposes. It manages the

coordination of the production units to obtain the expectedresponse to the TSO reference
signal. The second purpose is to minimise the deviation between the actual total produc-
tion and the reference production. This way, the power controller compensates for the
unavoidable discrepancies that will occur due to the feed-forward nature of the STLS.

The current active portfolio consists of six units placed atfive different power plants.
The maximum power output of the units in the portfolio rangesfrom 80MW to 650MW,
and the units also vary in terms of dynamic behaviour.

Note that the term ’unit’ covers the physical process from fuel input to generator as
well as the control system controlling the process.

3 Modelling

As the focus of this paper is to establish a model-based method for constructing a load
balancing controller, this section describes the model of the portfolio used by the con-
troller. Fig. 6.2 is a schematic view of the model of a single unit. The input to the model
is a reference given to the control system, and the output is the measured power output
from the unit.

Low pass

filter
u


c

y


Proces

dynamics


Min/max
 Rate limit


+


u

p


Unmeasured

Disturbance


Figure 6.2: Schematic of the unit model used in the controller

The input to the model can be divided into two; the productionplan (up), which is
uncontrollable by the controller and therefore regarded asa disturbance, and the balance
controller input (uc) to the system.
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The unit model consists of two parts; the control system and the system process. The
part of the control system influencing the model the most is the limits on the reference
signals, both in form of a max/min bound and a limit on the rateof change. The dynamics
of the process are approximated by a third order model with real stable poles, which in
this context describes the process dynamics reasonably well.

The max/min bound in Fig. 6.2 is to be interpreted as

umin,k ≤ uc,k + up,k ≤ umax,k (6.1)

meaning that the sum of the inputs are bounded at each samplek.
The same applies for the rate limiter namely

∆umin,k ≤ ∆uc,k + ∆up,k ≤ ∆umax,k (6.2)

where

∆uc,k = uc,k − uc,k−1

∆up,k = up,k − up,k−1

The low pass filter is implemented in the control system in order to avoid abrupt
changes from the currently implemented PI controllers. Theactual filter implemented in
the control systems varies slightly between the units, but it is typically a third order filter
with three time constants of 10s.

The dynamic parts of the model are formulated as a state spacemodel as shown in
(6.3). The rate limitation and the max/min bound are formulated as input constraints.
That is,

xj,k+1 = Ajxk +Bjuk + Ejdk

yk = Cjxk
(6.3)

s.t.

umin,k ≤ uc,k + up,k ≤ umax,k

∆umin,k ≤ ∆uc,k + ∆up,k ≤ ∆umax,k

for each unitj = 1, . . . , 6 andxj ∈ R
Nj , etc.

The production plan is treated as a disturbance since it cannot be controlled by the
load balancing controller. Thus each unit model has one input, one disturbance and one
output.

The individual unit models can be compiled into one portfolio model by constructing
large block diagonal matrices containing the individual unit models. The output matrix is
also constructed as a block diagonal matrix, but has to be expanded to contain an output
describing the total portfolio output, ie,

A =







A1 . . . 0
...

. ..
...

0 . . . A6






, B =







B1 . . . 0
...

. ..
...

0 . . . B6






, (6.4)
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E =







E1 . . . 0
...

. . .
...

0 . . . E6






, C =











C1 . . . 0
...

.. .
...

0 . . . C6

C1 . . . C6











(6.5)

This means that the input, state and output vectors of the portfolio model are

uk =











u1,k

u2,k

...
u6,k











, xk =











x1,k

x2,k

...
x6,k











, yk =















y1,k

y2,k

...
y6,k

ytotal,k















(6.6)

whereytotal,k =
∑6

j=1 yj,k.

4 The Load Balancing Optimisation Problem

The structure of the problem is as follows:

min
U

J (6.7)

s.t.

xk+1 = Axk +Buk +Edk

yk = Cxk

Umin ≤ U ≤ Umax

∆Umin ≤ ∆U ≤ ∆Umax

whereJ is a performance function which has to be minimised without violating the con-
straints,U is a vector containing all inputs over the prediction horizon k = 0, . . . , N such
thatU = [uT

0 , u
T
1 , . . . , u

T
N ]T .

4.1 Choosing a performance function

The load balancing problem has two main objectives from which the performance func-
tion should be constructed; the deviation from the reference production should be min-
imised, and this should be done as economically as possible.

Definition 3. In the following the weightedℓ1-norm is denoted as|| · ||1,q with the weight
q. For a vectorx = [x1, x2, . . . xN ]T the weightedℓ1-norm is defined as

||x||1,q = q1|x1|+ q2|x2|+ . . .+ qN |xN |.

The deviation can be posed as a financial objective as well, since imbalances are fined
by the TSO, who has the overall load balancing responsibility in Denmark. Posing the
deviation as a financial optimisation problem entails that the overall performance function
has to describe the expenses for obtaining the reference production. The cost of deviations
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can be described by the weightedℓ1-norm such that

Je =

N
∑

k=1

||yk − rk||1,qe,k
(6.8)

whereyk is the system output vector,rk is the system reference vector andqe,k is a
cost vector for the deviations. The cost is summed up over theprediction horizonk =
1, . . . , N .

The production plan for each plant is assumed to be economically optimal, therefore
the output reference for each of the units is the production plan reference (denotedrj,k
for unit j at samplek).

The reference to the total production is combined by two sources. One source is the
summed production plans for all the power plants, and the other source is the signal from
the TSO (rTSO,k). This results in a reference vector

rk =















r1,k

r2,k

...
r6,k

rtotal,k















(6.9)

wherertotal,k = rTSO,k +
∑6

j=1 rj,k. Sincertotal,k has an addition fromrTSO,k, it is
impossible to track all references without error in all cases wherertotal,k 6= 0.

The other part of the expenses is the production costs. Intuitively, these costs should
be placed on the input since they are dominated by the fuel cost. However, placing the
weight on the input will make it seem beneficial to lower the input since the output de-
viation will not occur until some time into the future, due tothe phase lag through the
system. When the cost is summed over the finite horizon, the cost of lowering the in-
put would thus yield a greater benefit than the penalty of the deviation - an unintended
behaviour. Therefore the weight is placed on the output to avoid this phase lag. The
production cost function is described as

Ju =
N

∑

k=1

qT
u,kyk (6.10)

wherequ,k is the marginal cost factor andyk is the system output.
A cost on input change is added to the performance function inorder to dampen

the input signals to the system. Even though changing the input should not have any
significant cost, leaving this part out yields a significantly degraded performance, due to
rapidly changing control signals that will expose the discrepancies between model and
the real system. This is formulated as a weightedℓ1-norm yielding

J∆u =
N−1
∑

k=0

||∆uk||1,q∆u,k
(6.11)

where∆uk is the change in input andq∆u,k is the penalty for changing the input.
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These functions can be combined into one objective function

J = Je + Ju + J∆U . (6.12)

This performance function can be transformed into a linear program by variable sub-
stitution as described in [Maciejowski, 2002]. The linear program can be efficiently min-
imised by a standard Linear Programming (LP) solver.

4.2 Notes on tuning the performance function

Since the price of deviating from the total production is notknown until a few hours after
the deviation, the price has to be estimated. The price of reserve activation at the power
exchange Nordpool ranged from 0.5 to 93e/MWh over the period from 6 to 13 July 2007.
Choosing it too low will make it beneficial to deviate from thetotal production creating
steady-state offsets which should be avoided. Therefore anestimate of 80e/MWh is
chosen for both positive and negative deviations.

A unit’s deviation from the production plan is not penalisedfinancially, only the devi-
ation of total portfolio output is. However, it is desired toadhere to the production plan,
which is why a weight is put on the individual unit’s deviation from the production plan.

The weight on the deviation must be chosen such that it is not in conflict with the
overall optimisation goal. However, as it is kept within an upper and lower bound, the
actual weight does not influence the result. The upper bound on the unit deviation penalty
is equal to the penalty for deviating from the portfolio reference. Otherwise, it would be
optimal to deviate from the total output in case of disturbances.

The lower bound on the unit deviation penalty is equal to the price difference between
the production costs of the cheapest and most expensive unit. Otherwise, it would always
be beneficial to bring the cheapest unit to the maximum and themost expensive units to
the minimum in steady state. And this would in turn compromise the assumption that the
production plans are optimal when in steady state

5 Implementation and Results

The controller environment and the simulation models are implemented in Matlab/Simulink.
The controller is formulated as a linear program, which means that it can be solved by an
LP solver. For this purpose GLPK from [Makhorin, 2007] with the GLPKMEX matlab
interface from [Giorgetti, 2007] is chosen.

5.1 Bounds and limits

Due to the formulation of constraints on the input it is possible for the production plan to
move outside the operator set bounds such that the upper bound on input becomes neg-
ative or the lower bound becomes positive. The controller should not try to compensate
for poorly chosen limits, so the bounds in the implementation are formulated such that

umin ≤ 0 ≤ umax (6.13)

The rate limits on the units are load dependent since the process is significantly easier
to control in some areas than in others; therefore, a higher rate of change is allowed in
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these areas. To linearise the constraint, it is assumed thatthe rate limit is constant over
the prediction horizonk = 0, . . . , N with the value obtained atk = 0.

5.2 Reference signals

The production plans are known ahead of time and are therefore used in a feed-forward
manner. Unlike the production plan the reference signalrTSO is generated in real time
and is therefore not known. The best guess is that it will be constant into the future.
However, it is known that the portfolio is supposed to respond with a filtered version of
the reference signal from the TSO, and therefore a filtered version of the signal from the
TSO is added to the controller reference.

5.3 Simulations

The controller is evaluated and compared to the current implementation, which consists
of a PI controller structure, via simulation against a nonlinear model of the portfolio. The
controller will be evaluated in two different scenarios, and each scenario will be evaluated
based on two different parameters. The first parameter is theability to perform reference
tracking and disturbance rejection, formulated as:

δ =

K
∑

k=0

||rtotal,k − ytotal,k||1 (6.14)

which is the portfolio deviation from the reference, summedover the whole period.
The second parameter is the production costs and deviation penalties

cx =

K
∑

k=0

qe,total(|rtotal,k − ytotal,k|) +

K
∑

k=0

qT
f yk (6.15)

whereyk is a vector of plant output,qf is a vector of fuel costs andqe,total is the cost of
deviation of the portfolio. Since the deviation cost (qe) fluctuates, the controllers are com-
pared with a deviation cost ofe0, e13 ande80 per MWh denoted with the subscripted
x.

The production prices used in the evaluated scenarios are fictive but based on the
different types of fuel present in the portfolio. The pricesused in the evaluation are shown
in Table 6.1. The prices are assumed to contain all load dependent costs of producing
power on a particular unit.

Unit 1 2 3 4 5 6
Cost 22.9 24.6 18.0 43.0 26.9 28.1

Table 6.1: Price ine/MWh

5.4 Scenario 1: Output disturbance

This scenario evaluates how well the controllers perform with regard to disturbance re-
jection. At t = 500s, zero-mean gaussian noise with variance33.2 is added to the output
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5 Implementation and Results

of the portfolio (ytotal). The noise emulates process disturbances, which should besup-
pressed by the controller. The production plans are constant throughout the scenario. Fig.
6.3 shows the scenario results with the PI controller as wellas the MPC.
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Figure 6.3: Scenario 1 - Portfolio output

The results of the objective functions (6.14) and (6.15) arefound in Table 6.2.

δ c0 c13 c80
PI 4.29 MWh e47782 e47837 e48125
MPC 2.84 MWh e47677 e47714 e47904
Improvement 34% 0.22% 0.26% 0.46%

Table 6.2: Scenario 1 - Comparison

The input signals from the controllers are shown in Fig. 6.4.The MPC control signals
change rapidly compared to the control signals from the PI controllers. In general, this
results in a better disturbance rejection for the MPC, whichreduces the deviation by34%
compared to the PI controllers as seen in Table 6.2. There is alarge difference in the
coordination of the input signals to the units. The PI controllers distribute correction
signals among all units, where the MPC exploits the knowledge on economics, using
the cheapest unit when extra power is needed, and using the most expensive unit when
too much power is produced. This result cannot be obtained byretuning the current
implementation of the PI controllers.

5.5 Scenario 2: Signal from the TSO

This scenario evaluates the controller’s capabilities of reference tracking of the signal
issued by the TSO. The production plan is the same as in the previous scenario, meaning
that the production plans for the individual units are constant throughout the scenario. At
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Figure 6.4: Scenario 1 - Input signals

t = 500 a signal applied from the TSO results in a total portfolio reference as seen in Fig.
6.5.

Table 6.3 shows the scenario results with the PI controller as well as the MPC.
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Figure 6.5: Scenario 2 - Portfolio output

The results of the performance functions (6.14) and (6.15) are found in Table 6.3.
The results show that the MPC significantly reduces the deviation. The peak deviation
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6 Conclusion

δ c0 c13 c80
PI 1.02 MWh e48081 e48095 e48163
MPC 0.16 MWh e47994 e47996 e48007
Improvement 84% 0.18% 0.20% 0.32%

Table 6.3: Scenario 2 - Comparison

is reduced from2.7MW to 1.1MW as shown in Fig. 6.6, and the summed deviation is
reduced by84%. This improvement originates from the MIMO approach of the MPC,
which has a superior coordination of the portfolio that takes dynamics and constraints
into account, unlike the ad hoc coordination used by the PI controllers. A result that
is very difficult if not impossible to obtain by retuning the current configuration of PI
controllers.
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Figure 6.6: Scenario 2 - Deviation

The input signals from the controllers are shown in Fig 6.7. Once again it is seen that
when extra power is needed the MPC uses the cheapest units first, and when there is an
overproduction the most expensive units are lowered in order to minimise expenses. In
both cases the controller returns to the production plan when possible.

6 Conclusion

This paper has introduced a model-based control approach tobalance control of a port-
folio of power generating units. The model-based controller uses MPC, which allows
constraint handling within its framework. The MPC seeks to optimise the system based
on financial considerations, thus performing reference tracking and disturbance rejection
in an economically optimal way.
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Figure 6.7: Scenario 2 - Input signals

One of the advantages of MPC is the MIMO approach, which improves the coordi-
nation of the units. The construction of the cost function asa mixture ofℓ1-norms and
linear weighting is well suited to describe the economics ofthe system. The choice yields
a cost function, which is asymmetric around the reference, allowing for different control
depending on whether the deviation is positive or negative.

Through simulations, the MPC is compared with the currentlyimplemented load bal-
ancing controller, which is a PI controller structure. The MPC shows significant im-
provements both for disturbance rejection and reference tracking, and it also results in
significant savings. Based on the simulations, savings ofe600,000 or more per year
seem likely. This improvement is the result of choosing a MIMO based approach and of
the modelling of the economic behaviour in the MPC.

The portfolio in the paper is the currently active portfolio, but the goal is to incor-
porate more entity types than just power plant units, eg windfarms and district heating
production. The model predictive controller is the first step towards developing a strin-
gent method for portfolio control with a system containing many units, which all need
to be controlled. To handle such a system, a stringent methodfor handling subsystems
entering and leaving the portfolio will be required as well.
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1 Introduction

Abstract

This paper presents a collection of models of so-called ’effectuators’,i.e., subsys-
tems in a power plant portfolio that represent control actions with associated dynam-
ics and actuation costs. These models are derived in order to facilitate higher-level
model-based control synthesis of a portfolio of generation units existing inan electri-
cal power supply network, for instance in model-based predictive control or declara-
tive control schemes. We focus on the effectuators found in the Danishpower system.
In particular, the paper presents models for boiler load, district heating,condensate
throttling and wind turbine effectuators. Each model is validated against actual mea-
surement data. Considering their simplicity, the models fit the observed data very
well and are thus suitable for control purposes.

1 Introduction

Currently a large part of the world is deeply concerned aboutglobal warming and the
consequences that might follow from emission of green housegases. This has among
other things led to the signing of the Kyoto Protocol [UnitedNations, 1998]. Throughout
Europe, this has given use to a very ambitious project to increase the share of energy
delivered by renewable sources such as wind [UCTE, 2007]. InDenmark the goal is to
increase the share of electrical energy coming from renewable sources from 24% in 2005
to 36% in 2025 as found in [Danish Ministry of Transport and Energy, 2005].

Due to the geography of Denmark much of this renewable energyhas to come from
wind turbines. Given the stochastic behaviour of the wind turbines, a flexible power
system and good load balancing control is needed, in order toavoid blackouts.

DONG Energy owns and operates a portfolio of power plants in Western Denmark
as shown in Fig. 7.1. With respect to the communication with the Transmission System
Operator (TSO), this portfolio is considered as one entity both regarding deviations and
activation of reserves. To accommodate this, DONG Energy has created a load balanc-
ing controller to minimise the deviation of the portfolio from the reference as well as
distribute the ordered reserve activation.

In [Edlund et al., 2008] we showed through simulations that it was possible to sig-
nificantly decrease the deviation between the portfolio output and the reference by intro-
ducing a model-based control scheme for the balance controller. The focus was to show
that it is possible to gain better economics and decrease thedeviation, and only little at-
tention was paid to the models used in the control scheme. In this paper we focus on the
models of the generation units. A control strategy for how tocoordinate the individual
effectuators is not discussed in this paper.

In the existing literature there are many detailed models ofparts of the energy sys-
tem, used to describe the dynamic behaviour of individual system components, such as
[de Mello, 1991; Weber and Krueger, 2008; Welfonder, 1997].However, the aim in this
paper is to construct simple models which are suitable for controller synthesis of a model-
based control scheme for load balancing control.

There are many ways to manipulate the output from the portfolio to follow the refer-
ences. Here we shall use the termeffectuatoras a unifying term for all of them.
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Figure 7.1: Generators participating in balance control inWestern Denmark

Definition 4. An effectuator is a process or part of a process in a power system that rep-
resents control actions with associated dynamics and actuation costs allowing the power
output to be manipulated.

Some parts of the power system, eg power plants, contain multiple ways of changing
the power output and will therefore be treated as providing more than one effectuator.
Regarding the effectuators as individual system is a novel approach when comparing to
eg [Lausterer, 1998].

The paper is structured such that the description and modelling of the effectuators
are in Section 2. This is followed by a validation of each effectuator in Section 3, and a
discussion in Section 4.

2 Modelling

A description and mathematical model of each of the four types of effectuator is presented
in this section. The first three effectuators are physicallyparts of the thermal power plants,
while the fourth - wind turbines - are located elsewhere eg off-shore.

2.1 Boiler Load Effectuator

The boiler load effectuator affects the whole steam cycle. It is activated by offsetting the
production reference. The boiler has an operating range, shown in the PQ-diagram in
Fig.7.2. The district heating production (Q) is plotted along the x-axis and the power pro-
duction (P) along the y-axis. There are upper and lower limits on the power production,
which dependent on the current district heating production.
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P[MW]

Q [MJ/S]

Operating point

Figure 7.2: Movement in the PQ-diagram when changing the boiler load

When using the boiler for control purposes the district heating production is main-
tained, meaning that the changes in production happens vertically in the PQ-diagram as
shown in Fig. 7.2.

This effectuator is slow in a load balancing context (minutes), but the potential energy
production is unlimited, meaning that the corrections can be maintained by this effectua-
tor for an unlimited time period. There is a large amount of power available in this type
of effectuator.

Besides the behaviour of the boiler, there is a communication delay between the load
balancing controller and the power plant. However, this delay is so small compared to the
dynamics that it can be neglected for this effectuator.

Effectuator Model

There are two communication methods for activating the boiler load effectuator in a power
plant, either through the production plan or through an input used by the balance con-
troller to give real time corrections to the boiler load effectuator. The production plan is
not controllable and is therefore modelled as a disturbance. The output of the model is
the produced power from the unit caused by the boiler load effectuator.

The model is formulated as a greybox model and the dynamics are assumed to be
adequately described as the following state space system

ẋb =





−T−1
b 0 0

T−1
b −T−1

b 0
0 T−1

b −T−1
b



xb +





T−1
b

0
0



u+





T−1
b

0
0



 d

y =
[

0 0 1
]

xb. (7.1)

whereTb is the time constant for the effectuator.u is the input given by the balance
controller,d is the production plan and additional manually ordered corrections.

Upper and Lower limits

The limits can be set by the operator, or can be given by the process. The limits are applied
to the input such thatP b ≤ u ≤ P b. It is assumed that the upper limit is non-negative
and the lower limit is non-positive.
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Only the limits derived from the process are described here.The upper limit can be
approximated by a linear constraint as a function of the district heating production.

Pb = −αmaxQ+ βmax − d (7.2)

whereαmax is an approximation of theCv value (see below) at maximum load,Q is the
current district heating production andβmax will be the maximum power production at
no district heating production.

The lower limit can be described as piecewise linear function

Pb = max

{

αminQ+ βmin − d
CmQ+ βb − d

(7.3)

whereαmin is an approximation of theCv value at minimum load andβmin will be
the minimum power production in condensation mode. The lower equation is a linear
approximation of the pure back pressure line as shown in Fig.7.3.

Rate Constraints

The rate limits are all piecewise linear functions of power and district heating production.
The rate limits are set in the control system, and can therefore be determined precisely.

The rate limit for the balance controller is the absolute rate limit minus the disturbance
(d). It is assumed that zero is always in the interval betweenthe lower and upper rate limit.

2.2 District Heating Effectuator

The centralised Danish power plants with district heating production have a possibility to
bypass part of the power generation process and instead use the energy to produce district
heating. Unlike power production, district heating is not ajust-in-time product since it can
easily be stored. Usually there are accumulator tanks closeto the thermal power plants
which can store multiple hours worth of production at maximum capacity.

The district heating production can be exchanged for power production while main-
taining boiler load. When doing so the production will move inthe PQ-diagram as illus-
trated in Fig. 7.3.
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Figure 7.3: Movement in the PQ-diagram when changing the District heating
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The loss of steam for power production is highly dependent onthe state of the unit.
Lowering the power output with1MW will typically increase the district heating produc-
tion with 2-7 MW. The exchange factor is called theCv-value and is a nonlinear function
of the boiler load, typically the function is in the range0.1− 0.4.

When used as an effectuator, there are several constraints which should not be vio-
lated, since it results in changes in the physical process. Fig. 7.3 shows an example of
such a constraint the district heating consumption line. Crossing the consumption line
means that the accumulator tank goes from charging to discharging, and that requires a
large discrete change in the physical process.

The district heating effectuator is characterised as a medium fast effectuator (approx.
30 sec). The potential energy is limited due to the accumulator tanks. The potential power
that can be drawn from this effectuator is big, but it is stillsmaller than the power in the
boiler load effectuator.

Besides the behaviour of the district heating system, thereis a communication delay
between the load balancing controller and the power plant.

Effectuator Model

The desired input to the model is a reference to the power output, and the desired output
is the actual power production from the effectuator. The model constructed here is a
nonlinear model.

The change in district heating is modeled as a first order linear system with a time
delay. The time constant in the system is typically around30s while the communication
delaytd is a result of interacting computer systems communicating over a network with
no real time guarantees. The delay is therefore treated as being stochastic, but it typically
ranges between5 and10 seconds. To convert the system so the output is power production
the input and output values are multiplied and divided byCv, thus yielding a nonlinear
state space model.

ẋdh(t) = −
1

30
xdh(t) +

1

30Cv

u(t− td) (7.4)

y(t) = −Cvxdh(t).

Upper and Lower Limits

This model will only include limits for the charging lines and the plants physical limita-
tions, such as a minimum production of no district heating.

The limits are implemented in the local control system so it is reasonable to apply the
limits to the input of the model. The input to the effectuatorshould be within the limits
Pdh ≤ u ≤ Pdh, and it is assumed that0 is always a valid solution for the inequality.

The upper limit is given as the minimum of two constraints

Pdh = min

{

CvQplan

Cv(Qplan −Qconsump)
(7.5)

whereQplan is the production plan for district heating, andQconsump is the district heat-
ing consumption. The lower constraint is only active if the unit is charging the accumu-
lator tank
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The minimum limit is given by the back pressure line. The equivalent condensation
mode production corresponding to the current load is found as

Pcon = CvQ+ P (7.6)

The distance between the district heating plan and a a linearapproximation of the back
pressure line as a function ofPcon is used to find the maximum district heating production
possible at that load. Thus the minimum power correction is found as

Pdh = min

{

−Cv(αbackPcon + βback −Qplan)
Cv(Qplan −Qconsump)

(7.7)

The lower constraint is only active if the unit is discharging the accumulator tank.

Rate Constraints

There are rate limits on how fast the district heating production can be changed, which
means that the changes from the district heating effectuator plus the district heating pro-
duction should not be changes faster than a given limit. Thislimit is assumed constant
throughout the whole state space. The rate limits can be expressed as

∆Pdh = α∆dhCv (7.8)

whereα∆dh is the district heating production rate of change constraint constant. The
limit is typically 30 − 50MJ/s/min, which with a typicalCv value of0.2 gives a rate
limit of 6− 10MW/min in the power production.

2.3 Condensate Throttling Effectuator

The condensate system is the system that preheats the condensate and transports it from
the condenser to the feedwater tank.

An example of a condensate system is depicted in Fig. 7.4. By changing the conden-
sate flow, the steam demand can be changed and thereby affect the power output quickly.
For more details on this effectuator see [Lausterer, 1998] as well as [Welfonder, 1997],
where the authors also propose to use this effectuator to control the power output from
the power plant unit.

Cooling 
water

From turbine outlets

Feed water 
tank

From 
district 
heating

Condensed steam

Figure 7.4: Example of a condensate System

The nominal flow in the condensate system varies with the boiler load, therefore en-
ergy and power limits varies as a function of this. At all times neither the condenser nor
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the feed water tank should be completely emptied or filled. This means that the effectuator
can deliver a limited amount of energy.

There is typically very little energy stored in the condensate throttling system, so it
can only be used for a few minutes to manipulate the power production. On the other
hand it reacts in a matter of seconds. The available power is in general much smaller than
the energy the available power in the boiler load effectuator.

Besides the behaviour of the condensate system, there is a communication delay be-
tween the load balancing controller and the power plant.

Effectuator Model

The dynamics of the system from reference to power output canbe approximated by a
lineaer low-pass filter and a time delay. The time constant is20 seconds for the whole op-
erating range. The time delay is equal to the one found in the district heating effectuator.

The ratio between flow and power is a nonlinear functionf(P,Q) dependent on the
power and district heating production.

The model of the system can be put in the form of a parameter varying state space
system.

ẋc =

[

−1/20 0
f(P,Q) 0

]

xc(t) +

[

1/20
0

]

u(t− td) (7.9)

y =

[

1 0
0 1

]

xc(t). (7.10)

The output from the statespace model is

y =

[

P (MW )
V (m3)

]

(7.11)

where the first term is the current power output from the system, and the second term is
the water volume displaced from the setpoint of the tank. Themodel is valid as long as
the states are kept within the described bounds.

Upper and Lower Limits

The limits are described in the control system as a piecewiselinear function dependent
on the current power and district heating production.

It is assumed that the condenser and tank where the district heating condensate enters
the condensate system are balanced, such that the flow between condenser and feedwater
tank is coordinated according to the flow entering from the district heating. The system
consists of three tanks, where the water is moved between, but it will be modelled as one
tank, where it is possible pour water into, or drain water. Aslong as the level is kept
within certain bounds. These level bounds in this one virtual tank, originates from the
most restricting of the three tanks for upper and lower bounds.

The limits of the volume used in the model are defined as

V c = min







V cond − V0,cond

V lph4 − V0,lph4

V0,fwt − V fwt

V c = min







V cond − V0,cond

V lph4 − V0,lph4

V0,fwt − V fwt

(7.12)
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with V0, xx being the initial volume in tank xx.

2.4 Wind turbines

The focus here is the wind turbine farms. Wind turbine farms are a collection of wind
turbines, which are controlled as one entity. The turbines are gathered in a small geo-
graphical area, which means that the wind condition is approximately the same for all
turbines.

time

P

0 MW

Upper limit

Lower limit

Figure 7.5: Limits on wind turbines power production

On Fig. 7.5 the possible production is shown for a wind farm. Different control
strategies are described in [Bjerge and Kristoffersen, 2007] with some of them based on
the possibility to incorporate the windfarm in the balance control. It is assumed that the
setpoint follows the upper limit with a constant offset, which might be0MW

A wind turbine can react very quickly to set point changes. But there will be a maxi-
mum rate of change, this rate of change can either originate from the mechanical limits of
the construction or an artificial limit enforced in order to preserve the mechanical parts in
the wind turbines. The experience from the offshore wind farms is an effectuator which
has a rate of change approximately as slow as the boiler load effectuator but much faster
dynamics (few seconds). If the wind speed is maintained the corrections can be main-
tained for an unlimited amount of time.

In addition to the dynamics of each wind turbine, there is a communication delay
between the load balancing controller and the wind turbines.

Effectuator

A simple first order linear low-pass filter with a time delay isused. The input to the model
is the desired offset from the setpoint, and the output is thecurrent offset from setpoint.

The model is described in state space as

ẋw(t) = −
1

Tw

xw(t) +
1

Tw

u(t− td) (7.13)

y(t) = xw(t).

WhereTw is the time constant for the wind park. A model of the wind turbine gives a
Tw ≈ 0.1s. The communication delaytd is the same as in the district heating effectuator.
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Limits

The upper limit is given by the distance from the setpoint to the upper limit, which is set
by the operator. The negative correction is bounded by zero.

Rate Limits

The described rate limit is applied to the input of the model.This yields the following
rate limits

−∆uw ≤ ∆u ≤ ∆uw (7.14)

whereu is the input to the model.

3 Verification

The models consist of both a dynamic part, and a constraint set. The constraints are either
found and verified using a static tool such as Turabs [Johansen, 2004], or derived from
the implementation in the control system. The parameters inthe model are estimated by
hand.

3.1 Boiler Load Effectuator

The models are likely going to be used in a predictive controlscheme. However since the
prediction horizon of the scheme is unknown it is chosen to evaulate the models open-loop
performance.
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Figure 7.6: Verification of the dynamics of the power plant, scenario 1. The solid line
shows the actual output, and the dashed line shows the open-loop simulation

Fig. 7.6 shows the first evaluation scenario. The model is a little offset from the actual
output. This is most likely caused by the measurements used for model validation being
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slightly different than the ones used for the actual control. The trends in the dynamics are
followed well for the prediction.
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Figure 7.7: Verification of the dynamics of the power plant, scenario 2. The solid line
shows the actual output, and the dashed line shows the open-loop simulation

Fig. 7.7 shows the first evaluation scenario and the model is alittle offset from the
actual output, but the trends in the dynamics are followed decently, both for the prediction
and the simulation. Between 0.8 hours and 1 hour, the model todiverges from the actual
output, which has been tracked to using different limits in different parts of the system.
This should be corrected in the control system.

3.2 District Heating Effectuator

For this verification the boiler load has been maintained at aconstant level. Att = 14s a
step has been applied to the system and the response shown in the figure was observed.

A first order linear model with time delay gives a good approximation to the measured
response. A time constant of10s and a delay of7s is found to give the best fit.

3.3 Condensate Effectuator

The best currently available data for estimation and validation are shown in Fig. 7.9.
This data shows a short series of step test applied to the system while the boiler load is
maintained in steady state.

When the effectuator is activated it responds to the input. However the measurements
are strongly affacted by process noise from the power plant causing the small series of
steps to be insufficient for parameter estimation. The standard variation of the noise is
estimated toσ = 2.70. When plotting the model output±3σ, 98% of the measurements
should lie within the the resulting band if the noise is normally distributed. In this se-
quence,7.8% of the samples lie outside the band. From this result the model is accepted
as describing the behaviour well enough.
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Figure 7.8: Validation for the District heating response. The solid line shows the actual
output, and the dashed line shows the open-loop simulation.

0 1 2 3 4
370

380

390

400

410

420

430

Time [hours]

P
ro

du
ct

io
n 

[M
W

]

 

 

Reference
Measured Output
Model Output
bound at ± 3σ

Figure 7.9: Validation for the condensate throttling system
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3.4 Wind Turbine Effectuator

The model dynamics are approximately as fast as the sample time of the available data,
so it has not been possible to make a numeric validation. However there are various
complex models available for a single wind turbine. An unpublished model developed
within DONG Energy has been used to identify the dynamic response.
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Figure 7.10: Validation for the wind turbine model

Fig. 7.10 shows a comparison of a complex windturbine model and the simple model
when the windturbine makes a change in the reference. As can be seen, the dynamics
are very fast, and therefore the rate limiter in the controller will be the dominating the
dynamical factor of a wind turbine system. It is assumed thata wind turbine park, will
behave approximately like a single turbine.

4 Conclusion

The paper characterise four different so-calledeffectuatorswhich can be used for load
balancing control.

The different effectuators are characterised as summarised in Table 7.1. Some of the
effectuator are limited in the energy available for load balancing purposes, while other
are capable of maintaining the correction for a long period.Simple models have been
derived of each effectuator with the aim of making them suitable for controller synthesis,
in particular in an model predictive control scheme.

The aim has been to create a set of simple models which describe the dynamics ade-
quately for use in synthesis of a load-balancing controller. The models for the effectuators
are described as nonlinear state space systems with up to three states and a time delay.
Such simple models are well suited for controller synthesisin a model based controller
scheme such as model predictive control.
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4 Conclusion

effectuator Energy Power Dynamics
Boiler load Unlimited Large > 1min
District heating Large Medium 20− 40s
Condensate throttling Small Medium 10− 15s
Wind turbines Unlimited Medium < 5s

Table 7.1: Comparison of the effectuators.
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1 Introduction

Abstract

Constrained optimal control problems for linear systems with linear constraints
and an objective function consisting of linear andl1-norm terms can be expressed
as linear programs. We develop an efficient primal-dual interior point algorithm for
solution of such linear programs. The algorithm is implemented in Matlab and its
performance is compared to an active set based LP solver and linprogin Matlab’s
optimization toolbox. Simulations demonstrate that the new algorithm is more than
one magnitude faster than the other LP algorithms applied to this problem.

1 Introduction

In MPC applications, the performance and reliability of theoptimization algorithm solv-
ing the constrained optimal control problem is important asthe optimization problem
is solved repeatedly online. In this paper we develop a primal-dual interior-point algo-
rithm for model predictive control (MPC) with input and input-rate constraints and an
objective function consisting of linear stage costs as wellasl1-norms penalizing devia-
tion from target and movements Maciejowski [2002]; Boyd andVandenberghe [2004];
Edlund et al. [2008]. The primal-dual interior point algorithm is based on Mehrotra’s
predictor-corrector algorithm Mehrotra [1992]; Wright [1997]; Zhang [1998]; Czyzyk
et al. [1999]; Nocedal and Wright [2006]. Linear programs forMPC have previously
been considered by Morshedi et al. [1985]; Allwright and Papavasiliou [1992]; Rao and
Rawlings [2000]. Interior-point algorithms based on Riccati iterations for solution of an
l2 constrained regulation problem Rao et al. [1998] and a robust l1 constrained regula-
tion problem Vandenberghe et al. [2002] have been reported.In this paper, we use state
elimination to construct a structured linear program with upper and lower limits on the
decision variables, and highly structured general constraints. The special structure of the
constraints in this linear program is utilized by the primal-dual interior-point algorithm.

1.1 Power Portfolio Control

DONG Energy is the main power generating company in Denmark.It operates a portfolio
of power plants and wind turbine farms for electricity and district heating production. The
wind turbines constitute a large share: 30% of the installedgeneration capacity in Western
Denmark. The share is expected to increase even further as a new wind turbine park is
added to the portfolio at the end of 2009. In addition a large pool of electric cars are
added to the power network.

In a liberalized electricity market, such an interconnected power and heating system
with significant stochastic generators and consumers needsan agile and robust control
system to coordinate the most economic power generation respecting constraints, long-
term contracts, and short-term demand-fluctuations.

By simulation Model Predictive Control has been demonstrated as a very promising
technology for dynamic regulation and coordination of power generation in the DONG
Energy portfolio Edlund et al. [2008]. This controller is called the DONG Energy port-
folio balance controller. The controller reduces the deviation between sold and actual
production in the most economical way. This is an example of Model Predictive Control
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with an economical rather than a traditional target deviation objective function Rawlings
and Amrit [2009].

The models used in this paper has been derived in Edlund et al.[2009]. To test dif-
ferent optimization algorithms, and the possibility to exploit the structure of the problem,
we consider a single subsystem of the entire power generation portfolio. The subsystem
is a single boiler load effectuator with the simplification that rate-of-movement limits can
be specified as parameters Edlund et al. [2009].

1.2 Paper Organization

In Section 2 we state the constrained optimal control problem with a linear cost andl1-
norm penalties. We derive the LP problem used to compute the solution of the constrained
optimal control problem. Section 3 describes the interior-point algorithm for an inequality
constrained linear program. Section 4 specializes the operations in this algorithm to the
LP problem for the constrained optimal control problem withlinear cost andl1-penalties.
Section 5 compares the developed interior-point algorithmfor the MPC-LP to off-the-
shelf LP solvers. Section 6 concludes on the results.

2 Problem Definition

We state the control problem that is to be used in the power balance controller in con-
trolling one power generating unit (a power plant). The problem and the models are
described in detail in Edlund et al. [2008, 2009]. The power balance controller is a Model
Predictive Controller in which a constrained optimal control problem is solved at each
sampling instant. Only the input associated to the first timeperiod is implemented and
the computations are repeated at the next sampling instant.We consider long horizons to
have economic performance as well as stability. This implies that the constrained optimal
control problem solved at each sampling instant is relatively large. It is important that this
large constrained optimal control problem is solved robustly and fast as it is embedded in
a real-time system.

The objective function used to measure the quality of a powertrajectory is

φ =

N−1
∑

k=0

c′k+1zk+1 + ‖zk+1 − rk+1‖1,qk+1
+ ‖∆uk‖1,sk

(8.1)

zk is the output (power production),rk is the reference (planned power production), and
uk is the input (modified power production to meet short term fluctuations in demand).
k is a time index and we consider these cost for a finite period,N = {0, 1, . . . , N − 1},
characterized by the control and prediction horizon,N .

The first term represent the production costs, i.e. the cost of fuel, emission taxes etc.
The second term describes the costs for deviating from the production plan computed
by the production planner. The last term is a cost related to plant wear that penalizes
excessive movement of the input.

The models describing the dynamics of the system are linear.The inputs have bound
and rate-of-movement constraints Edlund et al. [2009]. Therefore, the constrained opti-
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2 Problem Definition

mal control problem solved at each sampling period is

min
{uk}

N−1

k=0

φ = φ({uk}
N−1
k=0 ;x0, u−1, {dk,rk+1}

N−1
k=0 ) (8.2a)

s.t. xk+1 = Axk +Buk + Edk k ∈ N (8.2b)

zk+1 = Cxk+1 k ∈ N (8.2c)

umin,k ≤ uk ≤ umax,k k ∈ N (8.2d)

∆umin,k ≤ ∆uk ≤ ∆umax,k k ∈ N (8.2e)

N = {0, 1, . . . , N − 1}. Note that the input bounds and the rate-of-movement constraints
are time varying.

Combination of (8.2b) and (8.2c) yields

zk = CAkx0 +
k−1
∑

i=0

Hu,k−iui +
k−1
∑

i=0

Hd,k−idi (8.3)

with k = 1, 2, ..., N and the impulse response coefficients defined in the usual way

Hu,i = CAi−1B i = 1, 2, . . . , N (8.4a)

Hd,i = CAi−1E i = 1, 2, . . . , N (8.4b)

Define the vectors

U =











u0

u1

...
uN−1











D =











d0

d1

...
dN−1











∆U =











∆u0

∆u1

...
∆uN−1











Z =











z1
z2
...
zN











R =











r1
r2
...
rN











V =











v1
v2
...
vN











W =











w1

w2

...
wN











and the matrices

Φ =











CA
CA2

...
CAN−1











Γα =











Hα,1 0 . . . 0
Hα,2 Hα,1 . . . 0

...
...

Hα,N Hα,N−1 . . . Hα,1











with α ∈ {u, d}. Using (8.3) the stacked outputs,Z, may be expressed by the linear
relation

Z = Φx0 + ΓuU + ΓdD (8.5)

Introduce the matrices (shown for the caseN = 5)

I0 =













I
0
0
0
0













Ψ =













I 0 0 0 0
−I I 0 0 0
0 −I I 0 0
0 0 −I I 0
0 0 0 −I I












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to have the following expression

∆U = ΨU − I0u−1 (8.6)

Consequently, the constrained optimal control problem (8.2) may be expressed as

min
U

φ = c′Z + ‖Z −R‖1,q + ‖∆U‖1,s (8.7a)

s.t. Z = Φx0 + ΓuU + ΓdD (8.7b)

∆U = ΨU − I0u−1 (8.7c)

Umin ≤ U ≤ Umax (8.7d)

∆Umin ≤ ∆U ≤ ∆Umax (8.7e)

Theorem 4(Linear Program forl1-approximation). Thel1-approximation problem

min
x∈Rn

φ = ‖Ax− b‖1 (8.8)

withA ∈ R
m×n andb ∈ R

m can be represented as the linear program

min
x,y

φ = e′y (8.9a)

s.t. − y ≤ Ax− b ≤ y (8.9b)

with x ∈ R
n, y ∈ R

m, ande =
[

1 . . . 1
]′

.

Proof. Thel1-approximation problem (8.8) is equivalent tominx,y {φ = e′y : y ≥ |Ax− b|}.
The constrainty ≥ |Ax − b| may be written as the linear constraints−y ≤ Ax − b ≤
y.

Corollary 1 (l1-approximation as LPs in standard form). Thel1-approximation problem
(8.8) may be expressed as the linear program in the form

min
x,y

φ =

[

0
e

]′ [
x
y

]

(8.10a)

s.t.

[

A I
−A I

] [

x
y

]

≥

[

b
−b

]

(8.10b)

(8.8) may also be expressed as the linear program in the form

min
x,y

φ =

[

0
e

]′ [
x
y

]

(8.11a)

s.t.

[

b
−∞

]

≤

[

A I
A −I

] [

x
y

]

≤

[

∞
b

]

(8.11b)

Proof. Follows by rearrangement of (8.9).
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2 Problem Definition

Using Theorem 4 we may express (8.7) as

min
U,V,W

φ = c′Z + s′V + q′W (8.12a)

s.t. Z = Φx0 + ΓuU + ΓdD (8.12b)

∆U = ΨU − I0u−1 (8.12c)

Umin ≤ U ≤ Umax (8.12d)

∆Umin ≤ ∆U ≤ ∆Umax (8.12e)

− V ≤ ∆U ≤ V (8.12f)

−W ≤ Z −R ≤W (8.12g)

which by elimination ofZ and ∆U is equivalent to the inequality constrained linear
program

min
U,V,W

φ = c′(Φx0 + ΓuU + ΓdD) + s′V + q′W (8.13a)

s.t. Umin ≤ U ≤ Umax (8.13b)

∆Umin ≤ ΨU − I0u−1 ≤ ∆Umax (8.13c)

− V ≤ ΨU − I0u−1 ≤ V (8.13d)

−W ≤ Φx0 + ΓuU + ΓdD −R ≤W (8.13e)

This linear program along with Corollary 1 may be used to arrive at the following linear
program

min
x

ψ = g′x (8.14a)

s.t. xl ≤ x ≤ xu (8.14b)

bl ≤ Ax ≤ bu (8.14c)

with the variables and data defined as

x =





U
V
W



xl =





Umin

0
0



xu =





Umax

∞
∞



 g =





gu

s
q



 (8.15a)

A =













Ψ 0 0
Ψ I 0
Ψ −I 0
Γu 0 I
Γu 0 −I













(8.15b)

bl =













∆Umin + I0u−1

I0u−1

−∞
b
−∞













bu =













∆Umax + I0u−1

∞
I0u−1

∞
b













(8.15c)

gu = Γ′
uc (8.15d)

b = R− (Φx0 + ΓdD) (8.15e)
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The original objective function isφ = ψ − c′b wherec′b is a constant.
Consequently, we may solve the constrained optimal controlproblem (8.2) by solu-

tion of the linear program (8.14). The coefficient matrix (8.15b) is highly structured. It
is composed of the matricesΨ andΓu which themselves are structured matrices. We de-
velop a primal-dual interior-point algorithm that exploits this structure to efficiently solve
the constrained optimal control problem (8.2) in the MPC.

3 Interior-Point Methods

Before proceeding to a description of the interior-point algorithm applied to (8.14), we
describe the interior-point algorithm for the structural simpler linear program

min
x∈Rn

φ = g′x (8.16a)

s.t. Ax ≥ b (8.16b)

The algorithm and its principles are discussed in Nocedal and Wright [2006].

3.1 Optimality Conditions

The Lagrangian of (8.16) is

L(x, λ) = g′x− λ′(Ax− b) (8.17)

and a stationary point of the Lagrangian satisfies

∇xL(x, λ) = g −A′λ = 0 (8.18)

Consequently, the first order necessary and sufficient optimality conditions may be stated
as

g −A′λ = 0 (8.19a)

Ax− b ≥ 0 ⊥ λ ≥ 0 (8.19b)

in which⊥ is used to denote complementarity. Introduce slack variables defined as

s = Ax− b ≥ 0 (8.20)

and let

S =











s1
s2

.. .
sm











Λ =











λ1

λ2

. . .
λm











(8.21)

such that the complementarity conditionssiλi for i = 1, 2, . . . ,m may be stated com-
pactly asSΛe = 0 with e =

[

1 . . . 1
]′

. Consequently, the optimality conditions
(8.19) may be stated as the systems of equations and inequalities

rL = g −A′λ = 0 (8.22a)

rs = s−Ax+ b = 0 (8.22b)

rsλ = SΛe = 0 (8.22c)

(s, λ) ≥ 0 (8.22d)
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3 Interior-Point Methods

3.2 Newton Step

Given an iterate(x, λ, s) satisfying(s, λ) > 0, (8.22) may be solved by a sequence of
Newton steps with modified search directions and step lengths.

The Newton direction is computed as the solution of




0 −A′ 0
−A 0 I
0 S Λ









∆x
∆λ
∆s



 = −





rL
rs
rsλ



 (8.23)

The structure of this linear system of equations may be utilized to solve it efficiently. Note
that the second block row of (8.23) yields

∆s = −rs +A∆x (8.24)

Using thatS > 0 and easily invertible as it is a diagonal matrix with positive entries, the
third block row of (8.23) along with (8.24) yield

∆λ = −S−1 (rsλ + Λ∆s)

= S−1 (−rsλ + Λrs)− S
−1ΛA∆x

(8.25)

Finally, the first block row of (8.23) along with (8.25) yield

−rL = −A′∆λ

=
(

A′S−1ΛA
)

∆x−A′S−1 (−rsλ + Λrs)

= H̄∆x+ r̄

(8.26)

in which

H̄ = A′(S−1Λ)A (8.27a)

r̄ = A′
[

S−1(rsλ − Λrs)
]

(8.27b)

Consequently, (8.23) may be solved by solution of

H̄∆x = −ḡ = −(rL + r̄) (8.28)

for ∆x and subsequent computation of∆s by (8.24) and∆λ by (8.25). The next iterate
in the Newton iteration is computed as





x
λ
s



←





x
λ
s



 + α





∆x
∆λ
∆s



 (8.29)

with the step lengthα ∈ (0, αmax) ∩ (0, 1] selected such that(λ, s) > 0, i.e. with the
maximum step length computed as

s+ αmax∆s ≥ (1− τ)s (8.30a)

λ+ αmax∆λ ≥ (1− τ)λ (8.30b)

with τ → 1 as the iterate approaches the solution.
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3.3 Predictor-Corrector Interior-Point Algorithm

To avoid being restricted to small step lengths as is often the case when (8.22) is solved
directly, the complementarity conditions are modified suchthat the pairssiλi decrease at
the same rate for alli. Instead of solving (8.22c), we solve

rsλ = SΛe− σµe = 0 µ =
s′λ

m
=

∑m
i=1 siλi

m
(8.31)

for some value ofσ ∈ (0, 1]. In Mehrotra’s predictor-corrector algorithm,σ is selected
adaptively based on the duality gap reduction for an affine step (σ = 0). This affine step
may also be used to predictrsλ and introduce a correction such that the step direction is
computed by solution of (8.23) with

rsλ = SΛe+ ∆S∆Λe− σµe (8.32)

∆S and∆Λ are the step directions computed in the affine step (σ = 0).

3.4 Primal-Dual Interior-Point Algorithm

Algorithm 2 specifies the steps in this procedure for solution of (8.16).
The main computational efforts in Algorithm 2 are 1) formation of the matrixH̄ =

A′DA with D = S−1Λ being a diagonal matrix with positive entries on the diagonal and
2) Cholesky factorization of̄H.

4 Interior-Point Algorithm for MPC-LP

The constrained optimal control problem (8.2) (which is equivalent with (8.14)) gives the
following A-matrix and b-vector in the standard LP formulation (8.16)

A =

































I 0 0
−I 0 0
0 I 0
0 0 I
Ψ 0 0
−Ψ 0 0
Ψ I 0
−Ψ I 0
Γu 0 I
−Γu 0 I

































b =

































Umin

−Umax

0
0

∆Umin + I0u−1

−(∆Umax + I0u−1)
I0u−1

−I0u−1

b
−b

































(8.33)

This A-matrix is highly structured. Therefore, we may specialize the steps in Algorithm
2 that involves operations with theA-matrix. The following theorems state the com-
putational simplifications used in Algorithm 2 whenA has the structure in (8.33). For
notational convenience we use Matlab like notation in some of the theorems.

Lemma 1 (Hessian matrix,H̄, in MPC-LP). Let A have the structure in (8.33). Let
D = diag([d1; d2; . . . ; d10]) = Λ−1S be a diagonal matrix with positive entries and let
Di = diag(di) for i = 1, 2, . . . , 10 be sub-matrices ofD corresponding to the division of
A in (8.33).
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4 Interior-Point Algorithm for MPC-LP

Algorithm 2 Interior-point algorithm for (8.16).

Require: (g ∈ R
n, A ∈ R

m×n, b ∈ R
m)

Residuals and Duality Gap:
rL = g −A′λ, rs = s−Ax+ b, rsλ = SΛe
Duality gap:µ = s′λ

m

while Not Converged do
ComputeH̄ = A′(S−1Λ)A
Cholesky factorization:̄H = L̄L̄′

Affine Predictor Step:
Computēr = A′(S−1(rsλ − Λrs)),−ḡ = −(rL + r̄)
Solve:L̄L̄′∆x = −ḡ
∆s = −rs +A∆x
∆λ = −S−1(rsλ + Λ∆s)
Determine the maximum affine step length

λ+ αmax∆λ ≥ 0 s+ αmax∆s ≥ 0

Select affine step length:α ∈ (0, αmax]

Compute affine duality gap:µa = (λ+α∆λ)′(s+α∆s)
m

Centering parameter:σ =
(

µa

µ

)3

Center Corrector Step:
Modified complementarity:

rsλ ← rsλ + ∆S∆Λe− σµe

Computēr = A′(S−1(rsλ − Λrs)),−ḡ = −(rL + r̄)
Solve:L̄L̄′∆x = −ḡ
∆s = −rs +A∆x
∆λ = −S−1(rsλ + Λ∆s)
Determine the maximum affine step length

λ+ αmax∆λ ≥ 0 s+ αmax∆s ≥ 0

Select affine step length:α ∈ (0, αmax]
Step:x← x+ α∆x, λ← λ+ α∆λ, s← s+ α∆s
Residuals and Duality Gap:
rL = g −A′λ, rs = s−Ax+ b, rsλ = SΛe
Duality gap:µ = s′λ

m

end while
Return:(x, λ)
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Then

H̄ = A′DA =

[

H̄11 H̄12

H̄21 D̄

]

(8.34)

with the sub-matrices

H̄11 = D̄1 + Ψ′D̄2Ψ + Γ′
uD̄3Γu (8.35a)

H̄12 = H̄ ′
21 =

[

Ψ′D̄4 Γ′
uD̄5

]

(8.35b)

D̄ =

[

D̄6

D̄7

]

(8.35c)

and

D̄1 = D1 +D2 D̄2 = D5 +D6 +D7 +D8

D̄3 = D9 +D10 D̄4 = D7 −D8

D̄5 = D9 −D10 D̄6 = D3 +D7 +D8

D̄7 = D4 +D9 +D10

Proof. Follows by straightforward matrix multiplications usingA in (8.35).

Theorem 5 (Cholesky Factorization in MPC-LP). Solution ofH̄x = b corresponds to
solution of the system

[

H̄11 H̄12

H̄21 D̄

] [

x1

x2

]

=

[

b1
b2

]

(8.36)

This system may be factorized by

1. ComputeD̂2 = D̄2 − D̄4D̄
−1
6 D̄4

2. ComputeD̂3 = D̄3 − D̄5D̄
−1
7 D̄5

3. ComputeĤ11 = D̄1 + Ψ′D̂2Ψ + Γ′
uD̂3Γu

4. Cholesky factorizêH11: Ĥ11 = L̂L̂′

and solved by

1. SolveL̂L̂′x1 = b1 − D̄
−1b2 for x1 by back substitutions

2. Computex2 = D̄−1

(

b̄2 −

[

D̄4(Ψx1)
D̄5(Γux1)

])

Proof. The results are obtained by application of the Schur complement to (8.36) and the
matrix definitions (8.35).

Theorem 6(Matrix-vector operations in MPC-LP).

1. LetA have the structure in (8.33). Letx = [U ; V ; W ]. Then
Ax = [U ; −U ; V ; W ; z1; −z1; z3; z4; z5; z6] with z1 = ΨU , z2 = ΓuU , z3 =
z1 + V , z4 = −z1 + V , z5 = z2 +W , andz6 = −z2 +W .
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4 Interior-Point Algorithm for MPC-LP

2. LetA have the structure in (8.33).
Letv = [v1; v2; . . . ; v10]. Then

A′v =





v̄1 + Ψ′v̄2 + Γ′
uv̄3

v3 + v7 + v8
v4 + v9 + v10



 (8.37)

with v̄1 = v1 − v2, v̄2 = v5 − v6 + v7 − v8, v̄3 = v9 − v10

Proof. Follows by straightforward matrix-vector manipulations.

Theorem 7 (Operations withΨ). For illustration considerΨ for N = 4 and letD =
diag([d1; d2; d3; d4]) be a diagonal matrix withDi = diag(di) for i ∈ {1, 2, 3, 4} also
being diagonal matrices. Then

Ψ′DΨ =









D1 +D2 −D2 0 0
−D2 D2 +D3 −D3 0

0 −D3 D3 +D4 −D4

0 0 −D4 D4









(8.38)

Letx = [x1; x2; x3; x4] then

Ψx =
[

x1; x2 − x1; x3 − x2; x4 − x3

]

(8.39a)

Ψ′x =
[

x1 − x2; x2 − x3; x3 − x4; x4

]

(8.39b)

Proof. Straightforward matrix-matrix and matrix-vector operations withΨ.

The operationsΓ′
uDΓu, ΓuU , andΓ′

uZ for some diagonal matrixD, some vectorU ,
and some vectorZ are implemented using straightforward matrix operations even though
Γu is structured. In the current Matlab implementationΓ′

uDΓu is the computational
bottleneck.Γ′

uDΓu is implemented using thatD is a diagonal matrix but without using
the structure ofΓu.

Remark 1 (Operations withΓu): Γu is a matrix of the impulse response parameters,
{Hu,k = CAk−1B}Nk=1. Z = ΓuU transfers a set of inputs{uk}

N−1
k=0 to a set of outputs

{zk}
N
k=1 for the system (k = 0, 1, . . . , N − 1)

xk+1 = Axk +Buk x0 = 0 (8.40a)

zk+1 = Cxk+1 (8.40b)

Similarly.U = Γ′
uZ corresponds to

x̄k−1 = A′x̄k + C ′zk x̄N = 0 (8.41a)

uk−1 = B′x̄k−1 (8.41b)

going backwards withk = N,N − 1, . . . , 1.
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Figure 8.1: Input and output for the benchmark case.

5 Results

Using the boiler load effectuator of a power plant Edlund et al. [2009], we test the devel-
oped interior-point MPC-LP algorithm (Algorithm 2) utilizing the structure ofA in (8.33)
for solution of the constrained optimal control problem (8.2). We compare our MPC-LP
algorithm to the solution of (8.2) usinglinprog in Matlab’s optimization toolbox and an
active set LP solver applied to (8.14).

The boiler effectuator is a SISO system and we use a control horizon ofN = 50.
The number of decision variables(U, V,W ) in the LP to be solved is3N = 150. The
sampling time isTs = 5s and we run the test problem in closed-loop for 2000 samples.
Figure 8.1 illustrates the benchmark case for which we have compared the tree different
LP solvers. All three LP solvers give the same result indicating that our solver is im-
plemented correct. The case study and controller tuning is chosen such that some of the
constraints are usually active as indicated to the right in Figure 8.1.

As can be read from Figure 8.2, the runtime of our MPC-LP (IPmpc) solver is about
one order of magnitude faster than both the active set LP solver and linprog. Furthermore,
the variance of the CPU-time is much smaller for MPC-LP than for both linprog and the
active set LP solver. In real-time applications it is desirable to have a predictable com-
puting time. MPC-LP and linprog are implemented in Matlab. The active set LP solver
is a highly efficient LP solver for general LPs in the form (8.14) that is implemented in
Fortran and equipped with a mex-interface.

Figure 8.3 illustrates the CPU-time for the three differentLP solvers for (8.2) as func-
tion of the number of decision variables in the LP (8.14) and (8.16), respectively. The
interior-point MPC-LP algorithm (IPmpc) is significantly faster than the other algorithms,
typically more than one order of magnitude faster.

6 Conclusion

We have developed computationally efficient primal-dual interior point algorithms for
constrained optimal control problems that have linear dynamics, input constraints, rate-
of-movement constraints, and objective functions containing linear stage costs andl1-
norm deviation penalties on the set-point and the input movement. MPC for dynamic
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6 Conclusion

Figure 8.2: CPU times for the different LP algorithms solving (8.2).

Figure 8.3: CPU-time as function of the number of decision variables in the LP corre-
sponding to (8.2).

regulation, coordination and optimization of power generation solves such problems in
real-time repeatedly. Fast and robust optimization algorithms are important in these ap-
plications. The new primal-dual interior point algorithm is implemented in Matlab and
its performance is compared to an active set based LP solver and linprog in Matlab’s
optimization toolbox. Simulations demonstrate that the new algorithm is more than one
magnitude faster than the other LP algorithms.
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1 Introduction

Abstract

In this paper we treat the dynamic coordination of a set of constrained, dynam-
ically independent systems seeking to achieve one common goal. This is motivated
by a portfolio of multiple power generators which has to follow one production refer-
ence for the whole portfolio. A Model Predictive Controller with linear andℓ1-norm
terms is proposed to coordinate the units. The underlying optimization problem of the
proposed controller can be stated as a linear program with a block-angular constraint
matrix. Dantzig-Wolfe decomposition can be successfully applied to decompose this
kind of problems into several subproblems.

Simulations show that the computation time only rises linearly with the number
of units in the problem rather than cubically as is the case when the problem is solved
in a centralized manner with an active-set solver.

1 Introduction

Model Predictive Control (MPC) has successfully been applied in the process industries
for more than thirty years [Qin and Badgwell, 2003; Lu, 2003;Froisy, 2006]. Since
the description of the first MPCs based on convolution models[Richalet et al., 1978;
Cutler and Ramaker, 1980], several generations of industrial and academic MPCs have
lead to the formulation of state space based MPCs [Muske and Rawlings, 1993; Ma-
ciejowski, 2002; Rawlings and Mayne, 2009] and in a sense unified the theory of Model
Predictive Control (MPC), Generalized Predictive Control(GPC), and Linear Quadratic
Gaussian (LQG) regulation [Clarke et al., 1987; Bitmead et al., 1990;Åström and Wit-
tenmark, 1990; Mayne et al., 2000; Jørgensen, 2005]. LinearMPC requires repeated
online solution of constrained linear or quadratic optimization problems. Therefore, the
computational speed and robustness of the optimization algorithms has limited the type
of applications that can be controlled by MPC. MPC was originally developed for the
process industries with relative slow dynamics and a low number of inputs and outputs
(say less than 50). As MPC is developed for mechatronic applications with very fast dy-
namics, low state order models, and typically less than 3 inputs and outputs, new ways
of implementing and solving the constrained optimization problem constituting the MPC
have been developed [Bemporad et al., 2002; Diehl et al., 2005; Mattingley and Boyd,
2009]. Both process control and mechatronic applications use one centralized MPC to
control the system. This is possible because of the low number of inputs and outputs as
well as the relative low number of states in the model.

In this paper we consider a set of dynamically independent systems that must coop-
erate to meet a common objective. This is motivated by a portfolio of multiple power
generators which has to follow one production reference forthe whole portfolio. The
multiple power generator problem is large scale with a very large number of independent
systems. In addition, the system has fast dynamics and must be controlled with a sample
rate of approximately 5 seconds. Consequently, such systems cannot be controlled by a
centralized approach with one Model Predictive Controllerusing existing optimization
algorithms due to the large size and fast dynamics. In this paper, we develop a compu-
tationally efficient algorithm forℓ1-norm Model Predictive Control of independent linear
dynamic systems that must cooperate to meet a common objective. We utilize the special
structure of the linear program representing the MPC and useDantzig-Wolfe decomposi-
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tion to obtain an efficient optimization algorithm that can solve this class of systems very
fast.

In practice the computational complexity of the optimization problem scales cubically
with the problem size [Ferris et al., 2007]. Therefore methods to avoid solving the cen-
tralized optimization problem must be pursued to successfully apply MPC on large-scale
systems. Lower computationally complexity can be achievedthrough decomposition of
the control problem, i.e. splitting the problem into multiple smaller problems which are
easier to solve. Much research is going into decomposition of control, an extensive review
of the area is found in Scattolini [2009].

The strategy followed in this paper is to exploit the structure of the underlying opti-
mization problem for decomposition. The decomposition yields a two level hierarchical
control structure. The structure consists of a higher levelsupervisor that coordinates
the lower level of independent local controllers. The requirement for the method pre-
sented in this paper is that the underlying optimization problem is a linear problem with
a block-angular constraint structure, i.e. a block diagonal matrix with a set of coupling
constraints involving all variables. The requirement can be achieved by formulating the
objective function withℓ1-norm and linear terms.

A system meeting these requirements can be efficiently decomposed with two meth-
ods; Lagrange relaxation [Beasley, 1993] and Dantzig-Wolfe decomposition [Dantzig and
Wolfe, 1960]. Both methods significantly decrease the computation time for optimization
of linear systems with a block-angular constraint structure. Both methods use an itera-
tive scheme to solve the optimization problem. In each iteration the lagrange multipliers
attached to the coupling constraints of the problem, are assumed constant. Thereby the
optimization problem is reduced to a block diagonal structure and can be treated asP in-
dependent problems. The difference in the two methods is howto find the Lagrange mul-
tipliers. Lagrange relaxation computes the multipliers through heuristic methods, while
Dantzig-Wolfe decomposition finds the multipliers by solving an optimization problem.
Gunnerud et al. [2009] showed that the computation time using Lagrange relaxation is
very sensitive to changes in the problem, and even minor changes might result in a dou-
bling of the computation time.

The contribution of this paper is to use Dantzig-Wolfe decomposition for computa-
tion of the dynamic calculations of model predictive control and thereby reduce the com-
putational complexity compared to the centralized solution without relying on heuristic
methods.

Negenborn et al. [2008] and Rantzer [2009] applied Lagrangerelaxation for decom-
posing problems in a model predictive control context. Gunnerud et al. [2009] used
Dantzig-Wolfe decomposition for control and planning purposes on a longer time scale,
while Cheng et al. [2008] used Dantzig-Wolfe for target calculation in a distributed model
predictive controller.

There are multiple other approaches to achieve decomposition of controllers. Two of
them are a decentralized control scheme, meaning that thereis no communication among
local controllers [Acar, 1995; Magni and Scattolini, 2006;Raimondo et al., 2007], and
distributed control where local controllers have communication among each other [Jia
and Krogh, 2001; Dunbar, 2007; Zhang and Li, 2007; Venkat et al., 2008]. All of these
papers treat systems which are dynamically coupled rather than independent. [Keviczky
et al., 2008; Dunbar and Murray, 2006] treats dynamically independent systems that needs
coordination to achieve a common goal. The approach in both Keviczky et al. [2008] and
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Dunbar and Murray [2006] have been to communicate with the neighbours and thus limit
the knowledge and size of each local controller. This approach works for systems where
each subsystem has a small amount of neighbours.

This paper is organized as follows. In Section 2 we define the control problem trans-
form it into a block-angular structured linear program. Section 3 describes Dantzig-Wolfe
decomposition algorithm used for solving linear programs.Section 4 describes the power
plant application motivating the development in this paper, followed by the results and
comparison of the algorithm compared to the centralized solution in Section 5. Conclu-
sions are provided in Section 6.

2 The problem

In this paper, we consider a set of dynamically independent systems that needs coordina-
tion in order to achieve one common goal.

Each independent system is described by the linear time invariant discrete state space
formulation

xi,k+1 = Aixi,k + Biui,k + Eidi,k (9.1a)

yi,k = Cixi,k (9.1b)

In our application this system represents a number of power plants including the basic
control systems.di,k represents the production plan,ui,k is the correction to the pro-
duction plan, andyi,k is the produced power. We considerP power plants such that
i ∈ {1, 2, . . . , P}. k is the discrete time index.

The control problem that we want to investigate is

min φ (9.2a)

s.t. xi,k+1 = Aixi,k + Biui,k + Eidi,k, i = 1, 2, ..., P (9.2b)

yi,k = Cixi,k, i = 1, 2, ..., P (9.2c)

ui,k ≤ ui,k ≤ ui,k, i = 1, 2, ..., P (9.2d)

∆ui,k ≤ ∆ui,k ≤ ∆ui,k, i = 1, 2, ..., P (9.2e)

with

φ =
N

∑

k=1

∥

∥

∥

∥

∥

P
∑

i=1

yi,k − rk

∥

∥

∥

∥

∥

1,Q

+

P
∑

i=1

[

N
∑

k=1

q′
u,i,kyi,k +

N
∑

k=1

‖yi,k − ri,k‖1,qe,i,k
+

N−1
∑

k=0

‖∆ui,k‖1,Si

]

(9.3)

φ is the performance function we want to minimize to find optimum. Symbols with a
bar beneath, e.g.,u means the lower bound, whileu denotes the upper bound.∆ui,k =
ui,k−ui,k−1. Edlund et al. [2008] motivate and describe the details of this objective func-
tion. The first term penalizes deviations of the total power production,yk =

∑P
i=1 yi,k,

from the sold power,rk. The second term is an economic term measuring the cost of
producing power on each plant. On each plant, the third term penalizes deviation from
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the scheduled power production,ri,k. The fourth term smooth the solution by penalizing
rapid movements in the manipulated variables.

Model Predictive Control is often expressed using eitherℓ2-penalty functions with-
out economic terms [Muske and Rawlings, 1993],ℓ1-penalty functions without economic
terms [Maciejowski, 2002], or using economic terms only [Rawlings and Amrit, 2009].
The objective function (9.3) contains bothℓ1-norm penalty functions and a linear term
related to cost. Therefore, the mathematical program defining the controller is a linear
program. Rao and Rawlings [2000] demonstrate the Model Predictive Controllers con-
tainingℓ1-norm penalty functions may give rise to either dead-beat oridle control. While
theoretically (9.2) result in this behavior, numerous simulations demonstrate that the con-
troller performs well and provides the desired portfolio control [Edlund et al., 2008].

Control problems withℓ1-norm penalties such as in (9.2) can be expressed as a linear
program [Edlund et al., 2009b]. This implies that (9.2) can be expressed as the block-
angular structured linear program

min
z

φ = c′1z1 + c′2z2 + ...+ c′P zP (9.4a)

s.t.















F1 F2 . . . FP

G1

G2

. ..
GP

























z1

z2

...
zP











≥















g

h1

h2

...
hP















. (9.4b)

With z = [z1, z2, . . . zP ]. φ is the functional which needs to be minimized in order to
find optimum,z are the free variables,ci are weight factors, weighing the importance of
the correspondingzi. The constraint matrix has a block-angular structure wherethe block
diagonal elements come from the optimization problem related to the individual power
plants and the coupling constraint comes from the rewritingthe first term of (9.3) into a
linear problem.Fi is unit i’s contribution to the coupling constraint.Gi originates from
the individual subproblems constraints (9.2b)-(9.2e) andthe last part of the performance
function.g andhi are the affine part of the constraints.

This paper is based on a specific performance function given in (9.3). However, the
method is applicable for all control problems where the underlying control problem can
be stated as (9.4).

3 Dantzig-Wolfe decomposition

The Dantzig-Wolfe decomposition is an algorithm that is very efficient for solution of
linear programs with block-angular structure [Dantzig andWolfe, 1960; Lasdon, 2002;
Dantzig and Thapa, 2002]. Dantzig-Wolfe decomposition breaks the linear program (9.4)
intoP independent subproblems and a Master Problem (MP). The Master Problem coor-
dinates the subproblems as illustrated in Figure 9.1. The Master Problem sends the price,
π, of the shared resource to each of the subproblems. Using this price,π, each of theP
subproblems computes their optimal solution. This interchange of information continues
until convergence.

Throughout the description of the decomposition it is assumed that the feasible region
of each subproblem is closed and bounded. This is no limitation as the decomposition can
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3 Dantzig-Wolfe decomposition

Master 
problem

Subproblem 1 Subproblem 2 Subproblem P…

π

x 1

x
2π π

x
P

Figure 9.1: Concept of the Dantzig-Wolfe decomposition. The big problem is split into
several smaller problems communicates with a coordinator to reach the optimum.

be applied to unbounded subproblems as well [Dantzig and Wolfe, 1960].
Dantzig-Wolfe decomposition builds on the theorem of convex combinations

Theorem 8. LetZ = {z | Gz ≥ h} be nonempty, closed and bounded, i.e. a polytope.
The extreme points ofZ are denotedvj with j ∈ {1, 2, ...,M}.

Then any pointz in the polytopic setZ can be written as a convex combination of
extreme points

z =

M
∑

j=1

λjv
j (9.5a)

s.t. λj ≥ 0, j = 1, 2, ...,M (9.5b)
M
∑

j=1

λj = 1 (9.5c)

Proof. See Dantzig and Thapa [2002]

x2

x1

Figure 9.2: Illustration of the theorem of convex combinations. Any point in the feasible
area (shaded region) can be expressed as a convex combination of the extreme points
(black dots).

The theorem of convex combination says: Any point in a polytope can be expressed as
a convex combination of the extreme points. This is illustrated in Figure 9.2. Any point in
the shaded region can be expressed as a convex combination ofthe extreme points marked
by a black dot.
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The linear program (9.4) can be expressed as

min
z

φ =
P

∑

i=1

c′izi (9.6a)

s.t.

P
∑

i=1

Fizi ≥ g (9.6b)

Gizi ≥ hi, i = 1, 2, ..., P (9.6c)

Using Theorem 8, the polytope defined by (9.6c);Zi = {zi| Gizi ≥ hi} can be
expressed as

zi =

Mi
∑

j=1

λijv
j
i (9.7a)

Mi
∑

j=1

λij = 1 (9.7b)

λij ≥ 0 j = 1, 2, . . . ,Mi (9.7c)

Mi is the number of extreme points ofZi. Substituting (9.7) into (9.6) yields

min
λ

φ =

P
∑

i=1

Mi
∑

j=1

fijλij (9.8a)

s.t.
P

∑

i=1

Mi
∑

j=1

pijλij ≥ g (9.8b)

Mi
∑

j=1

λij = 1, i = 1, 2, ..., P (9.8c)

λij ≥ 0, i = 1, 2, ..., P ; j = 1, 2, . . . ,Mi (9.8d)

fij andpij are defined as

fij = c′iv
j
i (9.9a)

pij = Fiv
j
i (9.9b)

The Master Problem (9.8) is equivalent to the block-angularlinear program (9.4). The
Master Problem has fewer constraints than the original problem, but the number of vari-
ables in the Master Problem is larger due to the large number of extreme points.
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3 Dantzig-Wolfe decomposition

The Lagrangian associated to the Master Problem (9.8) is

L(λij , π, ρi, κij) =

P
∑

i=1

Mi
∑

j=1

fijλij

− π′





P
∑

i=1

Mi
∑

j=1

pijλij − g





−
P

∑

i=1

ρi(

Mi
∑

j=1

λij − 1)

−
P

∑

i=1

Mi
∑

j=1

κijλij

(9.10)

With π being the Lagrange multiplier of the coupling constraint (9.8b),ρ is the Lagrange
multiplier for (9.8c) andκ being Lagrange multiplier for the positivity constraint (9.8d).

Consequently, the necessary and sufficient optimality conditions for the Master Prob-
lem (9.8) are

∇λij
L = fij − p′

ijπ − ρi − κij = 0 i = 1, 2, . . . , P ; j = 1, 2, . . . ,Mi (9.11a)
P

∑

i=1

Mi
∑

j=1

pijλij − g ≥ 0 ⊥ π ≥ 0 (9.11b)

Mi
∑

j=1

λij − 1 = 0 i = 1, 2, . . . , P (9.11c)

λij ≥ 0 ⊥ κij ≥ 0 i = 1, 2, . . . , P ; j = 1, 2, . . . ,Mi (9.11d)

We notice that the conditions (9.11a) and (9.11d) imply

κij = fij − p′
ijπ − ρi = [ci − F′

iπ]
′
v

j
i − ρi ≥ 0 i = 1, 2, . . . , P ; j = 1, 2, . . . ,Mi

(9.12)

such that the Karush-Kuhn-Tucker conditions (KKT-conditions) for (9.8) may be stated
as

P
∑

i=1

Mi
∑

j=1

pijλij − g ≥ 0 ⊥ π ≥ 0 (9.13a)

Mi
∑

j=1

λij − 1 = 0 i = 1, 2, . . . , P (9.13b)

λij ≥ 0 ⊥ κij = [ci − F′
iπ]

′
v

j
i − ρi ≥ 0 i = 1, 2, . . . , P ; j = 1, 2, . . . ,Mi

(9.13c)

3.1 The Dantzig-Wolfe algorithm

Large problems are characterized by a very large number of extreme points. Therefore,
generation of all the extreme points in the Master Problem (9.8) can in itself be a very
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challenging computational problem. The Dantzig-Wolfe algorithm overcomes this chal-
lenge using delayed column generation, i.e. it generates the extreme points for the Sim-
plex basis algorithm when needed.

The master problem with a reduced number of extreme points iscalled the Reduced
Master Problem (RMP) and can be expressed as

min
λ

φ =

P
∑

i=1

l
∑

j=1

fijλij (9.14a)

s.t.

P
∑

i=1

l
∑

j=1

pijλij ≥ g (9.14b)

l
∑

j=1

λij = 1, i = 1, 2, ..., P (9.14c)

λij ≥ 0, i = 1, 2, ..., P ; j = 1, 2, . . . , l (9.14d)

in which l ≤ Mi for all i ∈ {1, 2, . . . , P}. Obviously, the Reduced Master Problem can
be regarded as the Master Problem withλi,j = 0 for j = l + 1, l + 2, . . . ,Mi and all
i ∈ {1, 2, . . . , P}.

Initially, a feasible extreme point to the Master Problem (9.8) is needed. We may
generate such a point using techniques similar to Phase I in the simplex algorithm for
a standard linear program. In the Dantzig-Wolfe algorithm one may use the procedure
described in this section to a Phase I LP. In the following, weassume that a feasible
extreme point has been computed. We can use this feasible extreme point to form a
Reduced Master Problem withl = 1. We denote the solution to the Reduced Master
Problem (9.14) asλRMP

ij such that a feasible solution to Master Problem (9.8) is

λij = λRMP
ij i = 1, 2, . . . , P ; j = 1, 2, . . . , l (9.15a)

λij = 0 i = 1, 2, . . . , P ; j = l + 1, l + 2, . . . ,Mi (9.15b)

This solution satisfies (9.13a) and (9.13b). To be optimal italso needs to satisfy (9.13c).
These conditions are already satisfied fori = 1, 2, . . . , P andj = 1, 2, . . . , l. We need to
verify whether they are satisfied for alli = 1, 2, . . . , P andj = l+1, l+2, . . . ,Mi. This
is complicated by the fact that we only know the extreme points,vj

i for i = 1, 2, . . . , P
andj = 1, 2, . . . , l.

(9.13c) is satisfied for alli = 1, 2, . . . , P andj = 1, 2, . . . ,Mi if mini ψi − ρi ≥ 0
where

ψi = min
v

j
i

[ci − F′
iπ]

′
v

j
i i = 1, 2, . . . , P (9.16)

v
j
i is an extreme point of the polytopeZi = {zi : Gizi ≥ hi}. Therefore, using the

Simplex Algorithm we may compute the solution of (9.16) as the solution of the linear
program

ψi = min
zi

φ = [ci − F′
iπ]

′
zi (9.17a)

s.t. Gizi ≥ hi (9.17b)
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3 Dantzig-Wolfe decomposition

for i = 1, 2, . . . , P . These programs are called subproblems.
If ψi − ρi ≥ 0 for all i = 1, 2, . . . , P , the solution generated by the Reduced Master

Problem is optimal. We can compute the solution to original problem (9.4) by

z∗i =
l

∑

j=1

v
j
iλij i = 1, 2, . . . , P (9.18)

If ψi − ρi < 0 for somei ∈ {1, 2, . . . , P} then the KKT conditions are not satisfied and
the solution generated by the Reduced Master Problem is not asolution to the Master
Problem. In this case, we augment the Reduced Master Problemwith the new extreme
points,vl+1

i , obtained by solution of the subproblems (9.17).
The next iteration of the algorithm starts with the solutionof the new Reduced Master

Problem. The algorithm terminates in a finite number of iterations as there is a finite
number of extreme points in a polytope.

Algorithm 3 summarises the Dantzig-Wolfe Algorithm for solution of the block-
angular linear program (9.4). The subproblems (9.20) may besolved in parallel. This is
advantageous when the number of subproblems,P , is large. In all iterations, the Dantzig-
Wolfe Algorithm preserves feasibility of (9.4). In predictive control applications, this
implies that stability can be guaranteed under mild condition even if the algorithm is
stopped prematurely [Scokaert et al., 1999].

3.2 Computation of an initial feasible vertex

The initial feasible vertex of the Master Problem (9.8) may be computed using a Phase I
simplex algorithm. The linear program

min
α,{zi,βi}P

i=1

φI = e′αα+

P
∑

i=1

e′βi
βi (9.23a)

s.t.
P

∑

i=1

Fizi + Rα ≥ g (9.23b)

Hizi + Siβi ≥ hi i = 1, 2, . . . , P (9.23c)

0 ≤ α ≤ |g| (9.23d)

0 ≤ βi ≤ |hi| i = 1, 2, . . . , P (9.23e)

with

Rij =











1 i = j ∧ gi ≥ 0

−1 i = j ∧ gi < 0

0 i 6= j

(Si)p,q =











1 p = q ∧ (hi)p ≥ 0

−1 p = q ∧ (hi)p < 0

0 p 6= q

may be used to compute a feasible vertex of the block angular linear program (9.4). A
feasible vertex of the block angular linear program (9.4) isidentical to a feasible vertex
of the Master Problem (9.8) as these two linear programs are different representations of
the same problem. A feasible vertex to (9.4) and (9.8) existsif the optimal value function
of (9.23) is zero, i.e.φI = 0 as this implies that a feasible vertex withα = 0 and
{βi = 0}Pi=1 exists. Otherwise, (9.4) is infeasible.
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Algorithm 3 The Dantzig-Wolfe Algorithm for a Block-Angular LP (9.4).

1: Compute a feasible vertex of the Master Problem (9.8). If no such point exists then
stop.

2: l = 1, Converged = false.
3: while Not Convergeddo
4: Solve the l’th Reduced Master Problem, RMP(l):

min
λ

φ =

P
∑

i=1

l
∑

j=1

fijλij (9.19a)

s.t.
P

∑

i=1

l
∑

j=1

pijλij ≥ g (9.19b)

l
∑

j=1

λij = 1 i = 1, 2, . . . , P (9.19c)

λij ≥ 0 i = 1, 2, . . . , P ; j = 1, 2, . . . , l (9.19d)

and letπ be the computed Lagrange multiplier associated to the linking constraint
(9.19b). Letρi be the computed Lagrange multiplier associated with (9.19c).

5: Solve all the subproblems (i ∈ {1, 2, . . . , P})

min
zi

φi = [ci − F′
iπ]

′
zi (9.20a)

s.t. Gizi ≥ hi (9.20b)

and let(ψi,v
l+1
i ) = (φ∗i , z

∗
i ) be the optimal value-minimizer pair.

6: if ψi − ρi ≥ 0 ∀i ∈ {1, 2, . . . , P} then
7: Converged = true. The optimal solution is

z∗i =

l
∑

j=1

λijv
j
i i = 1, 2, . . . , P (9.21)

8: else
9: Compute the coefficients for the new columns in the RMP

fi,l+1 = c′iv
l+1
i (9.22a)

pi,l+1 = Fiv
l+1
i (9.22b)

10: l← l + 1
11: end if
12: end while
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It is trivial to find an initial feasible vertex to (9.23), i.e. {α = |g|, {zi = 0, βi =
|hi|}

P
i=1} is a feasible vertex of (9.23). Therefore, the phase I block angular program may

be parameterized similar to the Master Problem (9.8) and solved using a Dantzig-Wolfe
algorithm similar to Algorithm 3. The subproblems in the phase I part of the Dantzig-
Wolfe algorithm are

min
α

φI,0 = [ev −R′π]
′
α (9.24a)

s.t. 0 ≤ α ≤ |g| (9.24b)

and

min
zi,βi

φI,i = (−F′
iπ)′zi + e′βi

βi (9.25a)

s.t. Gizi + Siβi ≥ hi (9.25b)

0 ≤ βi ≤ |hi| (9.25c)

for i ∈ {1, 2, . . . , P}. This implies that a feasible vertex may be computed by solution of
a number of relatively small subproblems, (9.24) and (9.25), and solution of a Reduced
Master Problem using delayed column generation.

It should be noted that the computation of a feasible vertex of (9.8), i.e. solution
of (9.23) by the Dantzig-Wolfe algorithm, is of approximately the same computational
complexity as the computation of the optimal solution when afeasible vertex is available.
This means that we can utilise the block-angular structure efficiently in the computation of
a feasible vertex. It also means that just finding a feasible vertex may be just as expensive
as computing the optimal solution. Therefore, if a feasiblevertex is readily available, it
should be used directly instead of applying a phase I simplexprocedure.

Just as several alternatives exists for determining a feasible vertex in linear pro-
gramming by the simplex algorithm, several alternatives tothe phase I procedure in the
Dantzig-Wolfe algorithm exists. The alternatives are mainly based on determining a fea-
sible vertex by replacing (9.23) with aℓ1-norm or∞-norm regression problem in the
phase I procedure.

4 Application

Section 2 defines the general control problem forP plants with independent dynamics
collaborating to achieve a common objective, i.e. (9.2)-(9.3). In this section, we apply
this optimization model for control of a power generating portfolio.

Edlund et al. [2009a] defines the word “effectuator” to describe an entity whichis
a process or part of a process in a power system that represents control actions with
associated dynamics and actuation costs allowing the poweroutput to be manipulated.
Edlund et al. [2009a] also derives dynamic models for several types of effectuators.

Figure 9.3 illustrates a power portfolio. A power portfolioconsists of multiple differ-
ent effectuators. An effectuator can be a traditional thermal power plant or a wind farm.
In Denmark, thermal power plants are combined heat and powerplants (CHP). In the
future, even electric vehicles may be used as effectuators.

Each effectuator has its own regulatory control system. Therefore, the manipulated
variable,ui, of an effectuator is its power production reference. The output, yi, from
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Short-term load 
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MW
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Portfolio reference

+
Portfolio output

Figure 9.3: Sketch of the system we want to control. Bold lines represent vectors

an effectuator is the produced power by that effectuator. The power portfolio controller
consists of a short term load scheduler (STLS) and a load balancing controller. The short
term load scheduler makes a static economic optimization ofthe system and uses the
solution to generate references for each effectuator. Due to fault-tolerant considerations,
these references are sent directly to the effectuators rather than to the load balancing
controller. If the dynamic part of the portfolio control crashes due to hardware error, this
architecture implies that the effectuators still have a reference. Jørgensen et al. [2006]
describe the details of this power portfolio controller.

The short term load scheduler provides a 5-minute 24 hour ahead based production
plan for each effectuator. However, a power production system is complex: Disturbances
and deviations from the production plan does occur. Therefore, a dynamic load balancing
controller is added to the system. The load balancing controller seeks to minimize the
deviation between sold and actual power production.

4.1 Modelling of an effectuator

In the following, we only consider boiler load effectuators. This choice is made to sim-
plify the presentation. A third order transfer function describes the boiler load effectuator
dynamics sufficiently well

yi(s) =
1

(τis+ 1)3
(ui(s) + di(s)) (9.26)

yi is the produced power,di is the setpoint from the STLS, andui is the correction com-
puted by the load balancing controller. Therefore,ui +di is the desired power production
setpoint sent to the regulatory system of the effectuator.τi is the time constant for the
boiler. Different boilers may have different time constants. Besides the dynamic part, the
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model includes an upper and lower bound on the output as well as a constraint on how fast
power production can be changed. The effectuator has a control system which enforces
these constraints. Therefore they are treated as input constraints in the model.

Using the performance function defined by Edlund et al. [2008], the optimization
problem for each effectuatori ∈ {1, 2, . . . P} can be stated as

min φi =

N
∑

k=1

||yi,k − ri,k||1,qe,i,k
+

N
∑

k=1

q′u,i,kyi,k +

N−1
∑

k=0

||∆uk||1,q∆u,i,k
(9.27a)

s.t. xi,k+1 = Aixi,k + Biui,k + Eidi,k k = 0, 1, . . . , N − 1 (9.27b)

yi,k = Cixi,k k = 1, 2, . . . , N (9.27c)

ui,k ≤ ui,k ≤ ui,k k = 1, 2, ..., N (9.27d)

∆ui,k ≤ ∆ui,k ≤ ∆ui,k k = 1, 2, ..., N (9.27e)

The first term of the objective function,
∑N

k=1 ||yi,k − ri,k||1,qe,i,k
, is added to penalize

deviations from the static optimization determined by the STLS. In the nominal situation
the effectuators should adhere to the production plan, since it is made in an optimal fash-
ion utilizing information which is not available for the load balancing controller.qu,i,k

is the marginal cost of the effectuator, which is the cost of producing an extra megawatt
hour, the marginal cost includes fuel cost and wear on the plant, but does not include
static cost such salary to operators which is independent ofthe power production. The
second term,

∑N
k=1 q

′
u,i,kyk, is therefore an economic term measuring the cost of produc-

ing power on each plant. The third term,
∑N−1

k=0 ||∆uk||1,q∆u,i,k
smooth the solution by

penalizing rapid movements in the manipulated variables.
The constraints for the optimization problem comes from thelinear model and the

constraints of the model.

4.2 Portfolio modelling

So farP independent problems have been described, in order for the portfolio to work as
a whole some problem or optimization problem for the whole portfolio has to be derived.

The goal of the portfolio is to minimize the overall deviation between the total refer-
ence and the total production

min φt =
N

∑

k=1

‖ytot,k − rk‖ . (9.28)

there are no constraints in the portfolio goal, however there are also no means of actually
affecting the output of this optimization goal sinceytot,k =

∑P
i=1 yi,k is the sum of out-

puts from the effectuators. Since the portfolio uses the information from the effectuators
they cannot be solved separately but needs to be combined. (9.2) represents the opti-
mal control problem that combines the portfolio control problem (9.28) with the control
problem for each effectuator (9.27). It should be noted thatthe portfolio reference,rk in
(9.28), is not necessarily equal to the sum of the effectuator references,ri,k in (9.27).
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4.3 Finding an initial feasible solution for the master problem

Rewriting (9.28) into a linear program will add an extra set of decision variables to the
master problem, calledztot. These variables acts similar to slack variables in the sense
that if they are large enough the problem will become feasible. In this case it means that
if a feasible solution can be found to all sub problems, a feasible solution to the Master
Problem exists.

The task of finding an initial feasible solution to the MasterProblem is thereby re-
duced to finding a feasible solution to all subproblems withπ = 0. Once a solution to
all subproblems are foundztot has to fulfill ztot,k ≥ |

∑P
i=1 yi,k − rk|. Since the right

hand side is known, finding a solution for this inequality is trivial and result in an initial
feasible solution to the Master Problem.

5 Results

Edlund et al. [2008] implement (9.2) as a centralized MPC using a sample time of 5 sec-
onds. We also use a sample time of 5 seconds and compare the power portfolio balancing
MPC (9.2) implemented using the Dantzig-Wolfe Algorithm described in this paper to
a centralized implementation using standard linear programming [Edlund et al., 2008].
We investigate the effect of the prediction horizon,N , as well as the effect of the num-
ber of effectuators,P , on the computing time for the Dantzig-Wolfe based MPC and the
centralized MPC.

In this section problems of different size will be treated. Each of the Effectuators
have3N optimization variables and8N constraint equations. The portfolio adds2N
constraints to the optimization problem. WhereN is the prediction horizon. So withp
effectuators we have a centralized optimization problem with 3Np optimization variables
and8Np + 2N constraints. And when using Dantzig-Wolfe decomposition we havep
optimization problems with3N optimization variables and8N constraints, in addition to
the RMP with2N constraints and a variable number of optimization variables, depending
on the number of iterations needed.

For finding the solution an active-set LP-solver is used which scales cubically with
the number of optimization variables. The solver is used forsolving both the centralized
problem and the Dantzig-Wolfe decomposition, so the solution times are comparable.

The largest deviation in the elements of the optimal point between the centralized
solution and the decomposed is of in the magnitude of10−6. That is within the expected
precision of the algorithm and it is therefore concluded that the two algorithms does
converge to the same optimal point.

Figure 9.4 shows the average execution time per sample as a function of the number
of effectuators.

The centralized solution scales approximately cubically with the number of effectua-
tors. The extra overhead is created from a mixture of the optimizer using more iterations
to converge and MatlabTMcreating more overhead when the problem size grows. The
Dantzig-Wolfe decomposition scales almost linearly with the number of effectuators. Part
of the overhead in this algorithm comes from the fact that theRMP grows faster when
a large number of subsystems are used since a multi column generation scheme is used.
The subproblems in the Dantzig-Wolfe decomposition algorithm can be run in parallel.
The figure shows a lower bound time estimation for a parallel version of Dantzig-Wolfe
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Figure 9.4: Average execution time as a function of the number of effectuators

where the the time for optimization of the subsystems is calculated as the time of the
slowest system. In reality there will be some overhead from the communication. The
solution time of a parallel real implementation will be somewhere in between the seriel
and fully parallel version.

The average execution time as a function of the prediction horizon is shown in Figure
9.5. As expected the execution time still scales cubically with the prediction horizon,
since an increased prediction horizon means an increased subproblem size.
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6 Conclusion

We have treated a power portfolio system consisting of multiple dynamically indepen-
dent power plants which cooperates to achieve a total production. A Model Predictive
Controller with linear andℓ1-norm terms has been proposed to coordinate the units. The
underlying optimization problem of the proposed controller can be stated as a linear pro-
gram with a block-angular constraint matrix (9.4). Dantzig-Wolfe decomposition can be
successfully applied to decompose this kind of problems, yielding a two layer hierarchi-
cal optimization structure. The decomposition has a logical physical interpretation as the
lower layer consist of independent local controllers for each of the power plants. The
upper level is the supervisor which coordinate the individual units.

The Dantzig-Wolfe decomposition updates and solves the subproblems in an iterative
manner, and will converge to the same optimum as the centralized solution within a finite
number of iterations. Theoretically the number of iterations may be high, but the sim-
ulation results show fast convergence in practical computations. The computation time
scales linearly with the number of units in the problem, rather than cubically cubically as
would be the case if the problem is solved in a centralized manner with an interior point
solver. Dantzig-Wolfe decomposition yields faster solution times than the centralized
solution even for small number of effectuators.

The proposed Dantzig-Wolfe algorithm scales cubically with the size of the subprob-
lems in the as the interior point algorithm, i.e. when the number of constraints or the
prediction horizon increases. When the the prediction horizon grows there is algorithms
which has linear scaling [Rao et al., 1998], this can be exploited when the subproblem
size grows. However,it is not investigated in this paper.
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1 Introduction

Abstract

This paper describes a design method for developing a flexible hierarchical model-
based predictive controller (MPC) for power system portfolio control. The design
objectives are flexibility and computational scalability – since the portfolio will grow
significantly in the future.

The method yields a model predictive controller with a two layer hierarchy and
clearly defined interfaces. The same hierarchical structure is achieved on the un-
derlying optimization problem utilising Dantzig-Wolfe decomposition. Decompo-
sition yields improved computational efficiency and better scalability compared to
centralised methods.

Through simulations on a real scenario the new controller shows improvements
in ability to track reference production and economic performance.

1 Introduction

With the recent (and ongoing) liberalisation of the energy market [Ringel, 2003], in-
creasing fuel prices, and increasing political pressure toward the introduction of more
sustainable energy into the market [UCTE, 2007; Danish Ministry of Transport and En-
ergy, 2005; United Nations, 1998], dynamic control of powerplants is becoming highly
important. More than ever, power companies must be able to adapt their production to un-
controllable fluctuations in consumer demands as well as in the availability of production
resources, e.g., wind power, at short notice [UCTE, 2007].

Historically, static optimisation of load distribution among power production units,
so-calledunit commitment, has been the norm [Padhy, 2004; Salam, 2007]. Unit commit-
ment refers to determining the combination of available generating units and scheduling
their respective outputs to satisfy the forecast demand with the minimum total production
cost under the operating constraints enforced by the systemunder a power company’s
jurisdiction (itsportfolio) for a specified period of time – typically from 24 hours up to a
week. The optimisation problem is of high dimension and combinatorial in nature, and
can thus be difficult to solve in practice. Results using Heuristic methods [Johnson et al.,
1971; Viana et al., 2001], Mixed Integer Programming [Dillon et al., 1978], Dynamic
Programming [Ayuob and Patton, 1971] and Lagrangian Relaxation [Aoki et al., 1987;
Shahidehpour and Tong, 1992], have been reported in literature.

Once a solution to the unit comment problem, i.e., a static schedule, has been found,
the load plans are distributed to the generating units. Eachunit is then responsible for
following its load plan, and must handle disturbances etc. locally, implying the necessity
of local power plant controllers, wind farm controllers etc.

However, with the aforementioned increasing impact of short-term fluctuations in the
supply and demand, dynamic effects at the system level will become increasingly incon-
venient to deal with for individual generating units. Yet, system-widedynamic portfolio
control is a fairly new concept in the field of power production. So far, to the best of the
authors’ knowledge, no results have been reported except Jørgensen et al. [2006]; Edlund
et al. [2009a, 2008].

Furthermore, an additional difficulty that will have to be faced in tomorrow’s ‘smart
grids’ is the addition of many more power plants of various types, with different dynamics
– e.g., decentralised bio-mass fired thermal units, solar farms and so forth – which means
that scalability of the control system is set to become an important issue.
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This paper presents a novel, object-oriented design for such a dynamic portfolio con-
troller, which is able to handle dynamic disturbances at thesystem level as well as the
non-static configuration of generating units, i.e., the fact that not all units are active at
all times. It is based on model-based predictive control (see e.g. Rossiter [2003] and/or
Rawlings and Mayne [2009] for a comprehensive review) and utilises a decomposed solu-
tion scheme tailored specifically to the problem at hand to solve the optimisation problem
(see Edlund and Jørgensen [nd] for further details). Tests based on actual operation data
from the Danish power grid indicate that the proposed controller is able to improve the
load following capabilities of the system compared to existing solutions.

The objective of the new controller is to minimise deviations between sold and actual
production. When designing the controller two objectives have been in focus.

Scalability The future of the power system will require the controller tobe able to
coordinate more units, therefore the method must be scalable in terms of computa-
tional complexity.

Flexibility To create a controller which is flexible, such that addition of new units
and maintenance of existing ones is possible. This means designing a modular
structure with good encapsulation of information and clearcommunication inter-
faces between modules.

The outline of the rest of the paper is as follows. In Section 2an overview of the Dan-
ish power system is given, including a brief account of the system services the producers
must provide. For comparison purposes, Section 2.3 briefly explains the existing portfo-
lio controller. Next, Section 3 presents the proposed control design method and Section
4 uses the design method for designing a controller for the current portfolio. Section 5
present the comparison of the control performances of the simulations, while Section 6
sums up the contributions of this work.

2 System description

To start with the broad perspective, the system is a part of the ENTSO-E, which is the
electrical grid covering the mainland of Europe, from Portugal in the west to Romania
in the east; within this grid, balance between consumption and production must be main-
tained at all times. Roughly speaking, if the consumption islarger than the production,
energy will be pulled out of the system, making the generators slow down from the usual
50Hz and thus a drop in the system frequency can be observed.

In order to maintain the overall balance between productionand consumption ENTSO-
E is split into several regions governed by a Transmission System Operator (TSO) who
is responsible for matching production with consumption and import/export from the re-
gion.

The area treated in this paper is the west Danish area, which is connected synchronously
to Germany and asynchronously to Norway and Sweden. The major production units are
shown in Figure 10.1.

In order to keep balance between production and consumption, a hierarchical scheme
based on time horizons is used. Balance between the production and consumption is cur-
rently maintained by changing the production, but in some cases consumption might be
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Studstrupværket

Herningværket

DONG Energy Power Plant

Horns Rev 1

400 KV AC power line

DC Tie Line

Wind farm

Nordjyllandsværket

Other producers Power plant

Norway

Sweden

Esbjergværket Skærbækværket

Enstedværket

Horns Rev 1

Fynsværket

Germany

Figure 10.1: Within the west Danish area there are 7 sites containing large power plants
comprising 9 boiler units in total with an electrical production capacity ranging from
80 MW to 650 MW; the most common size is around 400 MW. There aretwo major
producers in the area; DONG Energy is the largest and operates a total of 6 units in the
area.

changed as well to achieve the goal. To this end, we introducethe termeffectuator, which
encompasses all power producing and power consuming units capable of participating in
load balancing control, as follows:

Definition 5. An effectuator is a process or part of a process in a power system that rep-
resents control actions with associated dynamics and actuation costs allowing the power
output to be manipulated.

2.1 Energy Market and Production Planning

The first effort to balance production and consumption happens when the energy is sold
on the energy market, which in the Danish case is Nord Pool [Nord Pool, 2010]. An auc-
tion determines the energy price throughout the area for each hour of the following day.
The results of the auction yields an amount of energy to be produced each hour. As de-
picted in Figure 10.2, the sold production is used by the short term load scheduler (STLS)
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together with weather forecasts, district heating demand forecasts and constraints such as
minimum amount of biomass fuel, to solve a unit commitment problem and compute a
5-minute based schedule for all production units in the portfolio that DONG Energy oper-
ates, 24 hours ahead. A more detailed description of the STLScan be found in Jørgensen
et al. [2006].

TSO

Short-term load 

scheduler 

(Production Planning)

+

Production plan

Total measured production

Load balancing 

controller

+

AGC signal

Filter

Expected 

Response

Manual Control

Automatic Control

Measured production of individual units

Sold production

Weather forecast

District heating forecast

+
Frequency control 

contribution

Reference

Figure 10.2: Diagram of the interconnection of the system. The bold lines show vectors
of signals. The portfolio can be divided into two groups. A manual control which the load
balancing controller cannot give corrections to, and an automatic control group which the
load balancing controller can affect.

2.2 Reserves

Even though the market gives a good estimate of the demand forthe following day, there
will be deviations during the day due to disturbances, inaccurate predictions, weather, etc.
Therefore, three levels of control have been established tobalance production and con-
sumption. In order to execute the control it is required thata certain production capacity
is kept in reserve for that purpose. On the shortest time scale is the primary reserve, which
is used to avoid system collapse. This is then followed up by slower reserves to bring the
system back to the nominal state. The time scale for activation is shown in Figure 10.3.

When the system frequency deviates from 50 Hz, this reserve isto be activated pro-
portional to the system frequency deviation. The reserve has to be activated within 30
seconds after a deviation occurs. Details about the reservecan be found in ENTSO-
E [2010]. In case of large frequency deviations the primary reserves will be activated
throughout the whole European grid.

Secondary reserves are used to replace the primary reservesand help restore the sys-
tem frequency when they are activated. Each control area, including West Denmark, has
secondary reserves. The control area which hosts an imbalance should seek to activate

158



2 System description

30s 15 min

Active

ActiveTertiary Control

Secondary Control

Primary Control

0s

Active

Replacing

Figure 10.3: Timescale for reserve activation

secondary reserves in order to reject the disturbance. Thatmeans that if an area creates a
frequency deviation, all areas seek to stabilise the systemwith the primary reserves, but
the area responsible for the imbalance has to bring the system back to nominal behaviour
by activating secondary reserves. The secondary reserves can in many cases be activated
before a frequency deviation occurs, however. The secondary reserves are activated by
the TSO providing an activation signal (AGC Signal on Figure10.2) to the power pro-
ducing company. The power company is then expected to deliver a filtered response to
the activation signal.

The last reserves that may be activated to stabilise the system frequency are the tertiary
reserves. These reserves must be activated within 15 minutes from being ordered. They
are activated by an operator at the TSO by taking contact to the operator at the central
control room for the energy generation companies. The additional ordering of energy,
will most often be added into the STLS, which will then generate and broadcast a new
production plan to the units.

2.3 Current controller

The current load balancing controller structure is described in Edlund et al. [2009a] and
is an adaptation of an automatic generation control system from Wood and Wollenberg
[1996]. It consists of a set of parallel PI-controllers, where the gains of each PI-controller
can be changed to accommodate the changing load scenario andconstraints.

The mechanism for determining the individual gains is in Wood and Wollenberg
[1996] proposed to be a steady state optimisation. However,due to the conditions in
the West Danish area where the boiler units are not used for base load, but rather chang-
ing load very frequently, the optimisation approach has been deemed infeasible. Instead
the gains are determined by a logic based mechanism, where each unit is prioritised by
the operator for both negative and positive corrections. The logic then utilise the boiler
unit with highest priority first, and after usage return all boilers to the production plan.

Besides the main control loop, there is a lot of logic in the controller for handling
bumpless transfer between automatic and manual control, and other features in an attempt
to make the controller as close to optimal as possible. The result is a huge control structure
with many cross couplings.

The problem with the current controller is the complexity ofthe cross couplings,
which means that modifying one part of the controller often affects other parts of the
controller in a way that the designer cannot predict. Thus, while the performance of the
controller is quite adequate for the existing system, the current structure is not suited
for portfolios that change structure over time. Furthermore, the complexity of the logics
makes any form of rigorous stability or performance analysis virtually impossible. As a
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Coordinator

Unit P�

Load balancing controller

State estimator

rport

rPUnit 1 Unit 2

r1

AGC signal

xport

y1 y2 yP

u1 u2 uPx1 x2 xP

r2

yport

Figure 10.4: Sketch of the modular structure of the load balancing controller. Com-
munication with the individual effectuator is handled by the independent subsystems, and
portfolio communication is handled on the upper layer of thehierarchy.ri is the reference
to effectuatori ∈ {1, 2, . . . , P}, xi is the state estimate,yi is the measured output, and
ui is the controller correction. For the portfolio there is a referencerport, state estimate
xport and a total measured productionyport. The references come from the production
planning.

consequence, a novel, modular control scheme has been developed.

3 Proposed controller structure

The structure of the proposed controller is a two layer hierarchical structure as shown in
Figure 10.4. All parts pertaining to the individual effectuators in the controller are placed
in the lower layer separated from one another, allowing themto be modified, removed or
adding new ones without affecting the other units. Above is acoordination layer coordi-
nating the individual units to achieve the portfolio goal ofminimising deviations.

Model Predictive Control (MPC) has been chosen as the controller scheme, since
the system is a constrained MIMO system where knowledge of the future references are
available.

The design framework relies on a set of assumptions:

• The effectuators can be modelled as independent of each other, such that a change
in one effectuator does not directly affect another effectuator.

• The effectuators can be modelled as a linear dynamic model with affine constraints.
The investigated models in Edlund et al. [2009b] can all withminor modifications
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be modelled with the structure shown in Figure 10.5. However, other kinds of linear

Linear 
process 

dynam icsu i y i

M in/m ax Rate lim it M in/m ax

Figure 10.5: General structure of the effectuators

input, output and state constraints fits into the modelling framework as well.

• The underlying optimisation problem in the MPC can be statedas a linear program,
which means the corresponding objective function must consist of linear andℓ1-
norm terms.

Each object in the lower layer of the hierarchy contains a constrained linear model
and an objective function for the optimal operation of the effectuator which together form
a constrained linear programming problem. Furthermore it contains all communication
with the physical unit. The information that has to be sent tothe upper layer is how
the output of the effectuator will affect the portfolio output, meaning a prediction of the
power production/consumption of the unit.

The upper layer contains a constrained linear model of the portfolio excluding the in-
dividually modelled effectuators, as well as an objective function of the optimal operation
of the portfolio. The upper layer also handles communication with surrounding systems,
for instance obtaining the portfolio reference (the load schedule).

3.1 Solving the optimisation problem

The hierarchical structure encapsulates the information pertaining to each unit. However,
one challenge persists: MPC relies on solving an optimisation problem at each sample.
This is a challenge of the MPC framework, since solving the optimisation problem usually
grows cubically with the problem size. Therefore one of the design challenges has been
to create an optimisation problem which can be encapsulatedin the same hierarchical
structure as well as being scalable.

For solving the optimisation problem a Dantzig-Wolfe decomposition approach has
been taken [Dantzig and Wolfe, 1960; Dantzig and Thapa, 2002]. The decomposition
technique has been adapted to the MPC context in Edlund and Jørgensen [nd], where
details of the algorithm are also described.

Dantzig-Wolfe decomposition can only be applied to linear problems. The perfor-
mance function for the whole problem is assumed to be chosen as a mixture of linear and
ℓ1-norm terms, which can be rewritten into a linear program suitable for Dantzig-Wolfe
decomposition.

An important consequence of this forced choice of performance function and con-
straints is the solution, i.e., the point where the performance function attains its extremum,
must either be at an extreme point of the feasible set, or the solution of an unconstrained
problem.

When the optimisation problem is composed from the effectuator optimsation prob-
lems and the portfolio optimisation problem it can be rewritten into a linear program with
the structure
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with z = [z1, z2, . . . zP ] ∈ R
n, zi ∈ R

ni , φ ∈ R, Fi ∈ R
m×ni , Gi ∈ R

pi×ni , g ∈ R
m

andh ∈ R
pi . φ is the functional which needs to be minimised in order to find optimum,zi

are the free variables,ci are weight factors, weighing the importance of the corresponding
zi. The constraint matrix has a block-angular structure wherethe block diagonal elements
come from the effectuator optimisation problem and the coupling constraint comes from
the portfolio linking the problem together.Fi is unit i’s contribution to the coupling
constraint.Gi originates from the individual effectuators optimisationproblem. g and
hi are the affine part of the constraints. Ignoring the couplingconstraints the program
consist ofP independent problems

min
zi

φ = cT
i zi (10.2a)

s.t. Gizi ≥ hi (10.2b)

Dantzig-Wolfe decomposition builds on the theorem of convex combinations

Theorem 9. LetZ = {z ∈ R
n |Gz ≥ h} with G ∈ R

m×n andh ∈ R
m be nonempty,

closed and bounded, i.e. a polytope. The extreme points ofZ are denotedvj with j ∈
{1, 2, ...,M}.

Then any pointz in the polytopic setZ can be written as a convex combination of
extreme points

z =

M
∑

j=1

λjv
j (10.3a)

s.t. λj ≥ 0, j = 1, 2, ...,M (10.3b)
M
∑

j=1

λj = 1 (10.3c)

Proof. See [Dantzig and Thapa, 2002]
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Using the theorem on (10.2) and substituting it into (10.1) yields

min
λ

φ =

P
∑

i=1

Mi
∑

j=1

fijλij (10.4a)

s.t.
P

∑

i=1

Mi
∑

j=1

pijλij ≥ g (10.4b)

Mi
∑

j=1

λij = 1, i = 1, 2, ..., P (10.4c)

λij ≥ 0, i = 1, 2, ..., P ; j = 1, 2, . . . ,Mi (10.4d)

With Mi being the number of extreme points of subproblemi. fij andpij are defined as

fij = cT
i v

j
i (10.5a)

pij = Fiv
j
i (10.5b)

Equation (10.4) is denoted the Master Problem. The idea is toonly generate the extreme
points needed for the optimisation instead of generating all extreme points which can be
even more computationally complex due to the size of the problem. Assuming an initial
feasible solution is available for (10.4), a Reduced MasterProblem can be set up and
expanded through iteration with more extreme points. At iteration l the Reduced Master
Problem is defined as

min
λ

φ =

P
∑

i=1

l
∑

j=1

fijλij (10.6a)

s.t.
P

∑

i=1

l
∑

j=1

pijλij ≥ g (10.6b)

l
∑

j=1

λij = 1, i = 1, 2, ..., P (10.6c)

λij ≥ 0, i = 1, 2, ..., P ; j = 1, 2, . . . , l (10.6d)

in which l ≤ Mi for all i ∈ {1, 2, . . . , P}. Obviously, the Reduced Master Problem
can be regarded as the Master Problem withλi,j = 0 for j = l + 1, . . . ,Mi and all
i ∈ {1, 2, . . . , P}.

Solving the Reduced Master Problem yields a Lagrange multiplier, π, for the coupling
constraint (10.6b). This can be interpreted as a ’price’ fora shared resource, in this case
the portfolio deviation. New extreme points are generated by solving subproblems defined
as

min
zi

φ =
[

ci − FT
i π

]T
zi (10.7a)

s.t. Gizi ≥ hi (10.7b)
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for i ∈ {1, 2, . . . , P}. These originate from (10.2), but the objective function isupdated
with −FT

i π whereπ is given by the Reduced Master Problem in order to generate differ-
ent extreme points based on the updated price.Fi is the effect the effectuator will have
on the portfolio output.

The algorithm will then iterate over these steps until convergence is reached.
When using a Dantzig-Wolfe decomposition, the Master Problem and the subprob-

lems are defined using the exact same structure as shown in Figure 10.4. The Reduced
Master Problem (10.6) is solved in the upper layer, and the subproblems (10.7) are solved
in the lower layer of the hierarchy.

The Dantzig-Wolfe algorithm scales almost linearly as a function of the number of
subproblems, rather than cubically when solving one centralised problem.

Currently a standard Kalman filter is used for state estimation; it communicates the
states to each subproblem and the Master Problem. The current solution means that the
modelled units which are not in control need to send an outputprediction at the beginning
of each sample for use in the Master Problem. The communication between upper and
lower layer is shown in Figure 10.6.
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Figure 10.6: Communication timeline between coordinator and each unit during each
sample

The developed controller has an object oriented structure with a clear interface be-
tween the layers and a clear communication scheme. The controller structure can be
described as a UML diagram as in Figure 10.7. As long as the implementations of the
effectuators adhere to the defined interface, the implementations can be chosen freely
without having to change the framework . The interface is defined by the communication
needs of the Dantzig-Wolfe decomposition.

If the information of one unit needs to be updated, it is easy to shut down that part
of the controller, update it and set it back into control without having to shut down the
entire controller. If the coordination layer needs maintenance the controller will clearly
loose its ability to minimise deviation, but the communication with the actual units can
be maintained and thus the current input can be maintained instead of ramping down to
zero input.
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-Communicate with portfolio()
+Calculate Optimal combination of proposals()

-Portfolio model
-Objective function

Coordinator

+Is Participating()
+Give output prediction()
+Set price on coupling constraint()
+Calculate Proposal()
+Set combination of proposals()

«interface»
Effectuator

-Communicate with boiler()

-Model
-Constraints for power
-Objective function

Boiler Load

-Communicate with Wind turbine()

-Wind Turbine model
-Constraints for power
-Objective function

Wind Turbine

...

0..*

0..1

Figure 10.7: UML diagram of the controller structure. The defined interface allows for a
flexible implementation of the specific effectuators.

4 Specific controller implementation

In the current system, only boiler load units are available for control purposes, and the
specific implementation in this paper is limited to include those; however other effectua-
tors can be included in a straightforward manner.

As outlined above, the individual boilers can be modeled separately, as the actions
in one boiler does not affect the others. They are only coupled through the objective to
follow the overall portfolio reference and activating secondary resources. A constrained
linear model for each boiler is derived in the following, along with a performance function
for each.

4.1 Boiler load units

In the current controller there are between 0 and 6 power plant units in control. These
will all be modeled in a similar fashion. A simple model of theboiler has been derived in
Edlund et al. [2009b], but in order to fit it into the linear control scheme developed here,
some assumptions must be made. The modeling concept is shownin Figure 10.8. The
model derived here is for use in the controller and thus all constraints are formulated to
fit into the controller which gives corrective signals to theboiler units.

The model has two input signals,di is the input signal coming from the production
plan andui is the input signal coming from the load balancing controller. Thus in the
nominal caseui is zero since no corrective signals are needed.
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Figure 10.8: Concept of the boiler modelling

The process dynamics is modelled as the third order system

H(s) =
1

(Tis+ 1)3
(10.8)

whereTi is the time constant of effectuatori.
In order to gain offset-free tracking, the linear models areaugmented with an output

error model such that the constrained augmented discrete time state space model becomes
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


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di,k (10.9a)

yi,k =
[

0 0 1 1
]

xi,k (10.9b)

ui ≤ ui ≤ ui (10.9c)

max{∆ui −∆di, 0} ≤ ∆ui ≤ min{∆ui −∆di, 0} (10.9d)

The elements inAi, Bi andEi are dependent onTi and the sample time. Symbols with
an bar beneath, e.g.,u means the lower bound, whileu denotes the upper bound. The
upper rate of change constraint is modelled such that it is always non-negative and vice
versa, to avoid forcing the controller to take actions in case the production plan violates
the rate of change constraint. The upper and lower limits forthe controller (10.9c) are set
in the control system by the operator.

The rate of change constraint is dependent on the boiler load. A typical form of the
rate of change constraint as a function of the boiler load is depicted in Figure 10.9.

To linearise the constraint the prediction ofu is used to generate rate of change con-
straints throughout the prediction horizon. If no prediction ofu exists, it is assumed to be
zero.

In case the operator changes the upper or lower bound such that the current control
signal violates the limits, the limit is ramped down with themaximum allowed rate of
change. This measure is taken to avoid infeasible optimisation problems.

The optimisation problem for each boiler unit is formulatedas

min
U

φi =

N−1
∑

k=0

pi,k+1yi,k + ||yi,u,k+1||1,qi,k+1
+||∆ui,k||1,si,k

(10.10a)

s.t. xi,k+1 = Aixi,k + Biui,k + Eidi,k, k = 0, 1, . . . , N − 1 (10.10b)

yi,k = Cixi,k, k = 1, 2, . . . , N (10.10c)

ui,k ≤ ui,k ≤ ui,k, k = 0, 1, . . . , N − 1 (10.10d)

∆ui,k ≤ ∆ui,k ≤ ∆ui,k, k = 0, 1, . . . , N − 1 (10.10e)
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Figure 10.9: Actual rate of change constraint as a function of boiler load. This state
dependency is not captured in the constraint (10.9d), but a linearisation based on the
prediction is used in the model.

whereUi = [ui,0, ui,1, ..., ui,N−1]
T , andAi,Bi,Ci,Ei given in (10.9a) and (10.9b).

The first term in the performance functionpi,k−1yi,k is a linear term representing the
cost of the boiler unit. The weightpi,k+1 is the marginal cost, i.e., the cost for producing
energy on the boiler unit. The price is calculated based on the fuel prices and boiler
efficiency. The efficiency is state-dependent. For the calculations ofpi,k+1, it is based on
the production plan alone.

It is assumed that the production plan from the STLS is optimal, and thus in the
nominal case the correction signal from the load balancing controller should be zero. In
order to avoid that the load balancing controller maximisesthe production of the cheapest
units, and minimise the production of the most expensive units the term||yu,k−1||1,qy,k−1

is added. This term penalises the part of the output coming from the controller corrections.
The last term of the performance function is a penalty on rapid changes on the correc-

tion signal.
This optimisation problem is the controller for uniti, and this information is stored in

each of the effectuators on the lower layer of the hierarchy.

Primary reserve handling

Figure 10.10 shows an example of the maximum reserve available in both up and down
direction as a function of the unit load. Reserves availablefor the positive and negative
corrections are shown in the right and left half planes respectively.

Currently the Frequency Control Scheduler makes reservations of the reserves peri-
odically. That means it might reserve 5MW of positive correction and 10MW of negative
correction power from a specific unit at a given time.

It is chosen to give first priority to the Frequency Control Scheduler, and let it make
the reservations. Once the reservations are known, the upper and lower bound for the
unit can be determined, such that the reserved primary reserve can be delivered. These
upper and lower bounds are enforced on the load balancing controller along with upper
and lower bounds set by the operator.
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Figure 10.10: Primary Reserves as a function of unit load. Onthe y-axis is the unit
load. On the x-axis the maximum possible primary reserve that can be delivered at that
boiler load in both positive and negative direction. Dottedlines show a positive reserve
reservation and the derived upper and lower input bounds forthe controller. Similar
reservation can be made at the same time for negative reserves.

Automatic / manual control and fall-back strategies

The boiler load effectuators can be in either automatic control or manual control mode.
As explained earlier, in automatic control mode the controller can give corrective control
signals to the unit. The units can also switch from Manual to automatic control, and vice
versa. This event is assumed external and non-predictable;however, it is observable.

If the effectuator switches from automatic to manual control while u 6= 0 the strategy
is to ramp the control signal toward zero with a predefined slope. This is done on both
unit and in the controller, so in case of communication errors the behaviour of the unit
can be predicted. The same fall-back strategy is used in caseof faults in the effectuator.

These fall back strategies along with the control status areall handled in the lower
layer of the hierarchy.

4.2 Portfolio modelling

The portfolio is comprised of the boiler load units modeled previously and a mixture of
other production units. These other production units are various smaller thermal power
plants and some wind turbines. They have a production reference and their production is
measurable, but little is known about their dynamical behaviour. They are considered a
disturbance in this context.

In order to include them in the controller the portfolio model consists only of an output
error model and the output of the portfolio is the sum of all the production units, such that
the model becomes

xport,k+1 = xport,k (10.11a)

yport,k = xport,k (10.11b)

The optimisation problem for the portfolio is based on reference tracking and is given
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as

min
U

N
∑

k=1

∥

∥

∥

∥

∥

yport,k +

P
∑

i=1

yi,k − rport,k

∥

∥

∥

∥

∥

1,qport,k

(10.12a)

(10.12b)

whereyport is the output from the units lumped together and denoted portfolio. rport

is the portfolio reference which is the sum of references to all units in the system plus
the demand from the TSO as shown in Figure 10.2.k is the sample number andN is the
prediction horizon.

This optimisation problem is placed in the upper layer of thehierarchy.

5 Results

In order to evaluate the new controller it will be tested against the currently running con-
troller through simulation in a scenario stretching throughout a month of real operation.

The current controller is implemented in SimulinkTM [Mathworks, 2010], and com-
piled so it is able to be executed in the central control room.In other words, it is the
actualcontroller and not some simplified implementation of the controller the compari-
son is performed against. In order to test the new developments and maintenance of the
current controller, models have been developed in SimulinkTM to be able to test the whole
system. Since there already exists a test environment it hastherefore been an obvious
choice to make the comparison in SimulinkTM .

The new controller is implemented in mixture of Java for all the data handling such as
reading measurement data and constructing constraints, and MatlabTM [Mathworks, 2010]
for solving the optimisation problem.

The dynamic part of the boiler unit models are implemented aslinear models or lin-
ear parameter varying models. Besides the dynamic of the boiler unit, parts of the control
system operating the boiler unit has been implemented, it means that all upper/lower
bounds, rate of change constraints, correction for district heating and parasitic consump-
tion are implemented in the models along with a lot of the logic controlling the switch
from manual to automatic mode and vice versa.

The simulation environment runs at the same sample time as the current controller,
i.e., 0.5s, and since the sample rate of the newly developed controller is 5s a ZOH ap-
proach will be taken. The data is saved with a 5s sample time for both controllers for
analysis purposes.

Simulations cover 25-hour sequences starting from 23:00 tomidnight the following
day. In the analysis section the first hour is discarded, so the analysis covers 24-hour
sequences from midnight to midnight. The first hour is then used to avoid startup and
settling issues influencing the analysis, allowing to string together several sequences for
more extensive analysis.

The controller is evaluated in both a noise-free and a noisy scenario.

5.1 Noise-free scenario

For the noise-free case standard deviation and mean error are used as quantitative mea-
sures for the evaluation.
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Figure 10.11: Mean error for the controllers in a scenario without noise. The figure shows
the current controller (solid), the new controller (dashed) and the new controller with the
primary reserve constraints removed (dash dotted). The results are for the individual days.
Day 19 is omitted from the analysis due to missing measurement data for the scenario.

Figure 10.11 shows the mean error

µ =
1

Ns

Ns
∑

k=1

yport,k − rport,k (10.13)

with Ns being the number of samples in the simulation. Figure 10.12 shows the standard
deviation

σ =

√

√

√

√

1

Ns

Ns
∑

k=1

((yport,k − rport,k)− µ)2 (10.14)

on a daily basis. Analysis shows that the constraints from primary reserves are limiting
the controller in periods.

For analysis purposes the new controller the new controlleris simulated without the
primary constraints to compare the standard deviation and mean in a similar scenario to
the current controller. The standard deviation is generally lower for the new controller,
although there is a period from day 20 to 28 where the standarddeviation is lower for the
current controller.

The standard deviation and mean for the scenario are given inTable 10.1. The stan-
dard deviations are within 10% of each other, so even though there are differences they
are close to each other.

Looking at the actual production (Figure 10.13), it is evident that both controllers
tend to follow the reference well. However in some cases, adhering to the primary re-
serve constraint causes the proposed controller temporarily to perform poorer then the
current controller, as can be seen from Figure 10.14. The interpretation is that there are
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Figure 10.12: Standard deviation for the controllers in a scenario without noise. The
figure shows the current controller (solid), the new controller (dashed) and the new con-
troller with the primary reserve constraints removed (dashdotted). The results are for the
individual days. Day 19 is omitted from the analysis due to missing measurement data
for the scenario.

Noise-free Noisy
σ [MW] µ [MW] σ [MW] µ [MW]

Measurements - - 17.74 -3.27
Current 11.98 -1.26 23.11 -2.78
New 12.21 -0.12 25.72 0.29
New no primary 11.41 -1.02 - -

Table 10.1: Standard deviation and mean throughout the whole month of simulation

missing reserves to fulfill both the primary reserve reservations and follow the reference.
Removing the constraint imposed by the primary reserves improved the performance sig-
nificantly as can also be seen from Figure 10.14. Furthermore, switching from manual to
automatic mode is handled efficiently by both controller, asseen from Figure 10.15.

5.2 Noisy scenario

For each boiler unit the input and output sample sequences ofthe original scenario are
known. One can thus estimate a noise sequence for the scenario as

yn = ymeas − ysim (10.15)

This noise is applied to the output of the model of the boiler unit. Since the noise is
generated based on closed loop measurements, it is filtered by the controller in the loop
rather than white noise.
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Figure 10.13: The production of day 3 in the scenario. Both controllers tend to follow the
reference well. Both the new controller (dotted line) and the current controller (dashed
line), follow the reference (solid line) well.
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Figure 10.14: Section of the production on day 3, showing a period where the primary
constraint is active and thus limits the new controller (dotted line) from reaching the
reference (solid line). Removing this constraint make the new controller (dash dotted
line) perform similar to the current controller (dashed line).
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Unit switched to automatic control

Figure 10.15: Section of day, where a power plant is switchedfrom manual to automatic
control. Both the new controller (dotted line) and the current controller (dashed line)
handle this event in a bumpless fashion and follow the reference (solid line) well.

This noise generation is chosen in order for the simulation scenario to resemble the
actual scenario as closely as possible including failures.The measurements from the units
modelled as the portfolio are applied directly to the simulation without filtering.

The mean and standard deviation are once again used as quantitative measures for
controller performance. The price difference between the controllers can be calculated
given fuel costs and deviation prices.

The standard deviation on the new controller is higher than the current controller as
was the case in the noise-free scenario. Both are significantly higher than the measure-
ment data which is likely caused by the noise generation scheme as shown in Figure 10.17.
The trend in standard deviation is the same for both controllers and measurement data.
As seen in the noise-free scenario, the current controller has a slightly better performance
than the proposed.

The mean error is larger in the noisy scenario compared to thenoise-free. Though not
consistently lower, the average shown in Table 10.1 shows that the new controller is an
order of magnitude closer to zero mean error compared to the current controller.

Figure 10.18 shows the price difference between the two controllers. Analysing the
price shows that on most days the new controller performs better in terms of income. On
Day 20 the primary reserves limits the controller such that alarge deviation occurs over
a long period of time, which is detrimental for the earnings of the controller. On average
the difference is 240e/day, which means an earning of almost 90.000e/year.

5.3 Execution time

The benefits of using Dantzig-Wolfe decomposition, besidesthe very logical decomposi-
tion, is that the execution time scales almost linearly withthe number of units in control
and that the problem can be easily distributed amongst multiple processors and thus low-
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Figure 10.16: Mean error for the controllers in a noisy scenario. The figure shows the
current controller (solid), the new controller (dashed) and the new controller with the
primary reserve constraints removed (dash dotted). The results are for the individual days.
Day 19 is omitted from the analysis due to missing measurement data for the scenario.

ering the execution time further.
As a benchmark of execution time, day 24 is chosen, where 4 units are controlled.

Prediction horizon [samples] Execution time [s]
5 691
15 1245
25 3602
35 12960

Table 10.2: Execution time as a function prediction horizon

Table 10.2 shows the execution time as a function of the prediction horizon. These
simulations are performed on a Dual Core Intel Xeon machine running at 2.53GHz with
4GB RAM and using Windows Vista as operating system. A 25 hours simulation can be
performed in just about an hour. This timing is including thesimulation.

Increasing the prediction horizon significantly increase the execution time of the con-
troller. This has two explanations, one is the obvious that the problem size grows, and
it was shown in Edlund and Jørgensen [nd] that the execution time grows cubically with
the prediction horizon. Secondly the algorithm may benefit from better handling of fast
vs. slow unit dynamics (compared to the prediction horizon). This is subject of future
research.
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Figure 10.17: Standard deviation for the controllers in a noisy scenario. The figure shows
the current controller (solid), the new controller (dashed) and the new controller with the
primary reserve constraints removed (dash dotted). The results are for the individual days.
Day 19 is omitted from the analysis due to missing measurement data for the scenario.

6 Conclusion

The aim for this paper was to develop a controller design method for developing a con-
troller for power system portfolio control. In the future the portfolio is likely to grow
significantly in the number of units under control. Therefore two design objectives were
in focus: flexibility and computationally scalability.

The controller design involves a model predictive controller with a two layer hierar-
chy and some clearly defined interfaces. The underlying optimisation problem from the
MPC controller was split into the same hierarchical structure by use the Dantzig-Wolfe
decomposition algorithm. The decomposition of the optimisation problem also gave a
computationally scalable controller. The Dantzig-Wolfe decomposition scales linearly in
computational complexity with the number of units in control, and the optimisation prob-
lem is distributable over several computers. Solving the same optimisation problem in a
centralised fashion would yield a cubic scalability.

The proposed controller design relies on one Kalman filter for state estimation of
the whole system. The complexity of the matrix multiplications grow cubically with the
problem size. This could prove to be a limiting factor for thescalability in the proposed
control design. However, the computation time spent on the Kalman filter in the imple-
mentation is insignificant compared to the computation timespent by the controller. A
logical future expansion of the design will be to incorporate distributed estimation with
the same hierarchical structure as the controller.

The controller was tested in simulations both with and without noise. The newly
developed controller has an extra constraint added compared to the current controller, in
order to ensure primary reserves. In the noiseless case the newly developed controller was
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Figure 10.18: Price difference between the current controller and the new controller. Pos-
itive difference means that the new controller is cheaper (earns more money for DONG
Energy).

tested both with and without the extra constraint. Without the extra constraint the standard
deviation and mean was lowered compared to the currently implemented controller, when
the extra constraint was added the standard deviation rose to a level above the current
implementation.

In the noisy case the standard deviation was again higher than the currently imple-
mented controller, which is likely caused by the constraintagain. In the noisy case it was
possible to calculate the cost of the production in the portfolio. The newly developed
controller gave an economical gain compared to the current controller due to a better
distribution of control action among the participating units.

One remark to make, is that the currently implemented controller has matured over
the cause of years. In comparison the new controller has beenimplemented and tested
through simulation for a very short time. It is therefore likely that the implementation and
further development of the newly developed method will yield an improved performance
compared to the results of this paper.
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