Economic Model Predictive Control
for Spray Drying Plants

Lars Norbert Petersen

DTU

Kongens Lyngby 2016
PHD-2016-403



Technical University of Denmark

Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,

2800 Kongens Lyngby, Denmark

Phone +45 4525 3031

compute@compute.dtu.dk

www.compute.dtu.dk

PHD-2016-403, ISSN 0909-3192



Preface

This thesis is submitted at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in partial fulfillment of
the requirements for acquiring the PhD degree in engineering. The project has
been funded by GEA Process Engineering A/S and Innovation Fund Denmark
under the Industrial PhD program, project 12-128720.

The thesis deals with the development and application of new models and Model
Predictive Control (MPC) strategies to optimize the operation of four-stage
spray dryers. We develop first-principle dynamic models of a four-stage spray
dryer that facilitates development and comparison of control strategies. We de-
velop MPCs that are tailored for the process to optimize the cost of operation by
maximizing the production rate while minimizing the energy consumption and
producing powder at given quality specifications. The proposed linear track-
ing MPC with steady-state optimal targets (RTO) and the Economic Nonlinear
MPC (E-MPC) control strategies are compared by closed-loop simulations. In
these simulations, the conventional PI controller serves as a benchmark for the
performance comparison. Moreover, we industrially implement and demonstrate
the application of the proposed MPC with RTO for control of a full sized in-
dustrial milk powder spray dryer.

The thesis consists of a summary report and a collection of nine research papers
written during the project period October 2012 to January 2016. Seven pa-
pers have been published at international peer-reviewed scientific conferences.
Two journal papers are currently under review for publication in peer-reviewed
scientific journals.
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Summary (English)

The main challenge in cost optimal operation of a spray dryer, is to maximize
the production rate while minimizing the energy consumption, keeping the resid-
ual moisture content of the powder below a maximum limit and avoiding that
the powder sticks to the chamber walls. The conventional PI control strategy
is simple, but known to be insufficient at providing optimal operation in the
presence of variations in the feed and the ambient air humidity. This motivates
our investigation of Model Predictive Control (MPC) strategies.

In this thesis, we consider the development and application of new models and
MPC strategies to optimize the operation of four-stage spray dryers. The models
are first-principle dynamic models with parameters identified from dryer specific
experiments and powder properties identified from laboratory tests. A simula-
tion model is used for detailed closed-loop simulations and a complexity reduced
control model is used for state estimation and prediction in the controllers.
These models facilitate development and comparison of control strategies. We
develop two MPC strategies; a linear tracking MPC with a Real-Time Opti-
mization layer (MPC with RTO) and an Economic Nonlinear MPC (E-MPC).
We tailor these for the spray drying process to optimize the cost of operation
by adjustments to the inputs of the dryer according to the present disturbances
and process constraints. Simulations show that the MPC strategies improve the
profit of operation by up to 9.69%, the production of powder by up to 9.61%,
the residual moisture content by up to 3.37%, the energy efficiency by up to
6.06% and the specific energy consumption is decreased by up to 6.72% while
the produced powder is within the given quality specifications and sticky pow-
der on the walls of the chamber is avoided. Thus, we are able to improve the
cost of operation significantly compared to the conventional PI control strategy.



Vi

The proposed MPC strategies are based on a feedback control algorithm that
explicitly handles constrained control inputs and uses a model to predict and
optimize the future behavior of the dryer. The solution of the control problem
results in a sequence of inputs for a finite horizon, out of which only the first
input is applied to the dryer. This procedure is repeated at each sample instant
and is solved numerically in real-time. The MPC with RTO tracks a target that
optimizes the cost of operation at steady-state. The E-MPC optimizes the cost
of operation directly by having this objective directly in the controller. The
need for the RTO layer is then eliminated.

We demonstrate the industrial application of the proposed MPC with RTO to
control a GEA MSD™.-1250 spray dryer, which produces approximately 7500
kg/hr of enriched milk powder. Compared to the conventional PI controller, our
first results shows that the MPC improves the profit of operation by approx-
imately 228,000 €/year, the product rate by 4.44% (322 kg/hr), the residual
moisture content by 6.31% (0.166 p.p.) and decreases the specific energy con-
sumption by 3.10%. The demonstrated MPC with RTO is fully integrated in
the daily operation of the spray dryer today.

Our primary objectives in the thesis are: 1) Spray dryer modeling of a small-
scale four-stage spray dryer. The purpose of the models are to enable simulations
of the spray drying process at different operating points, such that the models
facilitate development and comparison of control strategies; 2) Development of
MPC strategies that automatically adjust the dryer to variations in the feed and
the ambient air humidity, such that the energy consumption is minimized, the
residual moisture content in the powder is controlled within the specifications
and sticky powder is avoided from building up on the dryer walls; 3) Demon-
strate the industrial application of an MPC strategy to a full-scale industrial
four-stage spray dryer.

The main scientific contributions can be summarized to:

e Modeling of a four-stage spray dryer. We develop new first-principles en-
gineering models for simulation of a four-stage spray dryer. These models
enables simulations of the spray dryer at different operating points with
high accuracy.

e Development and simulation of control strategies. We develop two control
strategies, the MPC with RT'O and the E-MPC strategy. The performance
of the controllers is studied and evaluated by simulation.

e Industrial application of MPC to a spray dryer. We demonstrate that our
proposed MPC with RTO is applicable to an industrial GEA MSDT™-1250
spray dryer, that produces enriched milk powder.



Summary (Danish)

Den stgrste udfordring i omkostningsoptimal drift af en spraytgrrer er at mak-
simere produktionen af pulver, samtidig med at energiforbruget minimeres, re-
stfugtindholdet i pulveret holdes under en maksimumgraense og at afssetninger
pa kammervaeggene undgas. Den konventionelle PI-reguleringsstrategi er enkel,
men kendt for at veere utilstrackkelige ved variationer i féden og den omgivende
luftfugtighed. Dette motiverer vores undersggelse af Model Praediktive Kontrol
(MPC)-strategier.

I denne afhandling, behandler vi udviklingen af nye modeller og brugen af
MPC til fire-trins-spraytgrrere. Modellerne er fysik-basseret dynamiske model-
ler med parametre identificeret fra spraytgrrerspecifikke eksperimenter og pulver
egenskaber identificeret fra laboratorieforsgg. En simuleringsmodel anvendes til
detaljerede simuleringer og en simplere reguleringsmodel bruges til tilstands-
estimering og forudsigelse i regulatorerne. Tilsammen letter modellerne udvik-
ling og sammenligning af reguleringsstrategier. Vi udvikler to MPC strategier;
en lineser MPC med et realtids optimeringslag (MPC med RTO) og en gkono-
misk ulinezer MPC (E-MPC). Vi skreeddersyer disse til sprayterringsprocessen
med det mal at optimere driftsomkostningerne ved at justere spraytorreren til
forstyrrelser og procesbegreensninger. Simuleringer viser, at MPC strategierne
kan forbedre driftoverskudet med op til 9,69%, produktionen af pulver med op til
9,61%, restfugtindholdet med op til 3,37%, energieffektiviteten med op til 6,06%
og reducere det specifikke energi forbrug med op til 6,72%, mens det producerede
pulver er inden for de givne kvalitetskrav og pulverafssetninger undgas. Saledes
er vi i stand til at forbedre driftsomkostningerne betydeligt sammenlignet med
den konventionelle PI-reguleringsstrategi.
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De foreslaede MPC strategier er baseret pa en algoritme til tilbagekoblingsregu-
lering, som handterer begraensningerne i styresignalerne og benytter modellerne
til at forudsige og optimere det fremtidige respons af sprayterren. Resultatet af
reguleringsproblemet er en sekvens af inputs over en endelig horisont, hvoraf kun
det forste input benyttes pa spraytgrreren. Denne procedure gentages og lgses
numerisk i realtid. MPC med RTO fglger en reference der optimerer driftsom-
kostningerne ved stationeer tilstand. E-MPC optimerer driftsomkostningerne ved
at have dette mal direkte i objektivfunktionen af regulatoren. Behovet for RTO
fjernes derved.

Vi demonstrerer anvendelsen af den foreslaede MPC med RTO pa en industriel
GEA MSD™ _1250 sprayterre, der producerer ca. 7500 kg/time maelkepulver.
Sammenlignet med den konventionelle PI-reguleringsstrategi, viser vores fgrste
resultater at MPC forbedrer driftsoverskuddet med ca. 1,7 mill. kr/ar, produk-
tion af pulver med 4,44% (322 kg/time), restfugtindholdet med 6,31% (0,166
p-p.), og det specifikke energi forbrug med 3,10%. Den demonstrerede MPC
med RTO er i dag fuldt integreret i den daglige drift af spraytgrreren.

Vores primeere mal i afhandlingen er: 1) Modellering af en mindre fire-trins-
spraytgrre. Formalet med modellerne er at lave simuleringer af sprayteorrings-
processen ved forskellige operationsomrader, saledes at modellerne fremmer ud-
vikling og sammenligning af reguleringsstrategier; 2) Udvikling af MPC strategi-
er, der automatisk justerer spraytgrreren til variationer i faden og den omgivende
luftfugtighed, saledes at produktionen af pulver maksimeres mens energiforbru-
get minimeres, restfugtindholdet i pulveret holdes inden for greenserne og pul-
verafseetninger pa kammervaeggene undgas; 3) Industriel demonstrering af en
foreslaet MPC strategi pa et fuldskala industrielt fire-trins spraytegrringsanleeg.

De vigtigste videnskabelige bidrag kan sammenfattes til:

e Modellering af en fire-trins-sprayterrer. Vi udvikler fysik-baserede model-
ler til simulering af en fire-trins-sprayterrer. Disse modeller muligggr simu-
leringer af spraytgrreren ved forskellige arbejdspunkter med stor ngjagtighed.

e Udvikling og simulering af reguleringsstrategier. Vi udvikler to regule-
ringsstrategier, en MPC med RTO og en E-MPC strategi. Effektiviteten
af regulatorerne undersgges og evalueres ved simulering.

e Industriel anvendelse af MPC til en sprayterrer. Vi viser, at vores fore-
sldede MPC med RTO kan benyttes pa et industrielt GEA MSDTM-1250
spraytgrringsanlaeg, der producerer beriget maelkepulver.
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CHAPTER 1

Introduction

In this chapter we motivate the need for Model Predictive Control (MPC) for
spray drying plants. First, we present the megatrends that drives the food
industry and explain how MPC can play an important role in leveraging the
future challenges. We briefly motivate and describe the objective of the research
project, highlight the state-of-the-art and give an outline of the thesis.

1.1 Megatrends in the Food Industry

The world is currently undergoing major interrelated global changes such as
population growth, urbanization, climate change etc. These pose challenges
that have implications for human life and every industry all over the world.
Thereby also for the food processing industry. Fig. shows three megatrends
that are expected in particularly to shape the future of the food industry. These
are the urbanization and population growth, food quality and safety concerns
and rising energy costs [GEA].

Urbanization and Population Growth
The growing population and urbanization require ever increasing amounts of
food to be collected, processed, shipped and stored before reaching the end
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Figure 1.1: Megatrends expected to shape the future of the food industry

[GEA).

consumer. Globally, human population growth amounts to around 75 million
annually, or 1.1% per year. This means that the total global population is ex-
pected to grow from 7 billion in 2012 to a total population of 8.4 billion by
mid-2030 and 9.6 billion by mid-2050 . Furthermore, it is expected that
urbanization will make almost two-thirds of the world’s population reside in
cities by 2030, compared to just under one-third in 2009. The increased number
of formerly self-sufficient rural families, that now lives in the cities, have signif-
icantly increased spending power and changed lifestyle. With this development
follows an increased consumption of processed foods and in increased amounts
per person . Based on the population growth and urbanization, it is
estimated that a 50% increase in food production will be necessary to feed the
world population [Child]. In the future, the food production must therefore
grow, particularly in the developing countries, to meet the food demand. At
the same time climate changes and water scarcity will demand that the food is
produced using less raw material and water.

Food Quality and Safety Concerns

Recent concerns also relate to the food quality and safety. The increased num-
ber of process-steps in the food industry increase the time from farmer to end
consumer. This allows for bacterial growth and eventual product spoiling. Food
quality e.g. the product water content that dictates the bacterial growth, must
therefore be strictly monitored and controlled in all parts of the industry. Food
safety is a constant concern. A Chinese food scandal from 2008 illustrates the
importance of food safety, as melamine-tainted milk powder led to the deaths
of six infants and hundreds more being hospitalized . The mistrust to-
wards Chinese-produced milk powder still remains, leading to high demand for
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Figure 1.2: Simple sketch of a milk processing powder plant. Milk is con-
centrated and dried to powder in the spray dryer [Flo].

centrifugal pump

imported milk powder products.

Rising Energy Costs

The climate challenge that the world currently faces calls for reductions in car-
bon emissions. Technological developments within energy efficiency is an effec-
tive way to reduce the emissions. The energy efficiency is also key to increase the
often tight profit margins in the food industry. Fossil fuel-based energy sources
will be with us for some time, particularly given recent technological advances,
but renewable fuels are booming at the same time [EY15]. Renewable energy,
carried in form of electricity in a so-called smart-grid [Hall4], may be a carbon
free alternative in the future.

1.2 Milk Processing Powder Plant

The production of milk powder perfectly illustrates the importance of food pro-
cessing in a global context. For example, raw milk spoils within a day or two
if left in a cupboard, while powdered milk provides a long shelf-life and ease of
transportation and form a base ingredient in many consumer products. Every
day several million liters of milk are processed into powders. The process en-
sures that areas with a surplus of milk can transport it to areas with a shortage.
Milk powder is often shipped to the developing countries that may not have
a strong dairy base, transportation system or processing capabilities to meet
the population’s need for liquid milk. In addition, many of the homes in these
countries have no refrigerators. Powdered milk is therefore a good alternative
to fresh milk.

Milk powder is produced in a milk processing powder plant. Fig. shows a
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Energy Consumption Energy Consumption
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Figure 1.3: Example of combining the MVR and the spray drying tech-
nologies. The MVR technology is significantly more efficient
than the spray drying process.

schematic of a milk powder process, from standardized raw milk to final milk
powder. The production of milk powder requires large amounts of energy, partic-
ularly in the spray drying process, due to the high latent heat of vaporization and
the inherent inefficiency of using hot air as the drying medium [Muj12,VdJ03].
Drying processes are known to be the most energy consuming processes used in
the food industry. For example, the Dutch dairy industry required 1.4 PJ for
drying its whey and milk powder in 2007 [FASdJ10]. In order to save energy,
an intermediate falling film evaporator is added to remove a large portion of the
water from the milk before it is sent to the spray dryer [VdJ03].

A Mechanical Vapor Re-compression (MVR) evaporator consumes only 55 M.J/ton
evaporated water which gives an energy efficiency of above 40 (4000%). The
spray dryer consumes 4500 MJ/ton evaporated water leading to an energy ef-
ficiency of 0.5 (50%). Thus, considerably lower than what can be achieved in
the MVR [FASdJ10]. Fig. illustrates the inherent advantage of combining
an evaporator and a spray dryer. In the example, we assume that a milk pow-
der plant produces 7500 kg/h of skim milk powder with 3% residual moisture
content while receiving skim milk at 9% solids content. The product flows are
then given for the two processes assuming an intermediate milk concentration
of 50%. The energy consumption is computed according to the above efficien-
cies [FASdJ10]. As can be seen, the raw milk flow intake sums to 80,800 kg/h,
which is considerably more than the 7500 kg/h of final powder. Also, notice that
66,300 kg/h of water is evaporated in the evaporator while only consuming 1.04
MW of energy, compared to 7050 kg/h of water evaporated in the spray dryer
while consuming 8.84 MW of energy. Thus, we seek to maximize the evaporation
in the evaporator to save energy in the spray drying process. As a consequence,
the evaporator should produce as high an intermediate milk concentration as
possible [FASdJ10]. However, at a certain milk concentration fouling starts in
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Figure 1.4: Skim milk powder (SMP) prices are currently at a six-year
low. Prices provided by Clal [Cla

the evaporator. Therefore, there is an upper limit to the amount of water that
can be removed in the evaporator . The milk powder moisture content
should also be maximized to reduce the necessary amount of evaporation in the
spray dryer . The shelf-life of the powder limits the maximum moisture
content.

Milk powder processing plants must stay profitable to form a sustainable busi-
ness case. Profitability is given by the price of the produced powder minus the
cost of running the process i.e. raw material and energy costs. Fig. shows
that the milk powder price has recently fallen to a six-year low. The profit is
therefore squished to a minimum, motivating the producers to maximize profit
by decreasing running costs e.g. through a better utilization of the energy and
raw materials.

1.3 Spray Drying

Spray drying as a concept can be tracked back to a filed patent in the 1860s.
However, it took nearly 50 years for the first commercial successful dryer design
to be developed and operated . The latest development is the four-stage
spray dryer (marketed by GEA Process Engineering A /S as a Multi-Stage Dryer,
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MSD™) which is widely used for production of milk powder and other food
powders. It combines drying in four stages to increase the energy efficiency and
the product quality.

Fig. illustrates the four-stage spray dryer with an integrated (static) fluid
bed and an external (vibrating) fluid bed. The four-stage spray dryer consists
of the primary spray drying stage (SD), the static fluid bed stage (SFB), the hot
vibrating fluid bed stage (VFBh) and the cold vibrating fluid bed stage (VFBc).

The hot main air is let into the upper section of the SD around a set of high
pressure nozzles. The nozzles disperse the liquid feed into droplets. The heat
is transferred from the hot air to the droplets which makes the water evaporate
from the droplets. In that process, the air temperature and the residual moisture
content of the droplets decrease. During drying there is a transfer of evaporated
water from the feed to the air in the dryer. The dried product then enters
the SFB and is dried further while being fluidized by hot air. After drying in
the SFB, the powder is transported to the VFB for gentle drying and cooled
to the temperature desired for handling and storage. The exhaust air from the
chamber and VFB is passed through a cyclone, separating the powder contained
in the air. The fine powder is returned to the chamber to form agglomerated
powder particles. The exit air is passed through a bag filter, not shown in Fig.
to remove any particles left before the air can be discharged.

The spray drying operation accounts for the largest energy consumption in the
milk powder process. In the daily operation, minimizing the raw material use
and the energy consumption is the primary objective to stay competitive. Op-
timal use of a spray dryer is a challenging task. One must maximize energy
efficiency and production while minimizing down time [KMO07|]. These two goals
are often conflicting, as increased production and efficiency may lead to an in-
crease in the hours lost on process-related problems such as plugging, powder
build-up, cleaning in place (CIP) etc. The main challenge in operating a spray
dryer is to bring the residual moisture content below a maximum limit and to
avoid that the powder sticks to the chamber walls at high ambient air humidi-
ties. To achieve that, the operation of the spray dryer must continuously be
adjusted to variations in the feed concentration and the ambient air humidity.
The conventional PI control strategy is simple, but known to be insufficient at
making these adjustments. The operator must then manually perform the ad-
justments to the spray dryer. These adjustments are hardly ever performed, as
the operator have other important tasks to perform. Instead the spray dryer is
operated in a conservative non-optimal way. Thus, automatic control systems
to perform the adjustments are needed.
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Figure 1.5: Principle diagram of the four-stage spray dryer
with an integrated static fluid bed and an external
vibrating fluid bed.

1.4 Model Predictive Control

For a long time linear Model Predictive Control (MPC) has been considered the
preferred control methodology in the process industries and academia for com-
plex processes. MPC provides an integrated solution for controlling processes
with multivariate and cross-coupled dynamics, time delays and constraints on
both the inputs and the states [DHNO09,RAB12|. Forecasts of the disturbances
are also naturally utilized in MPC. In general, these features allows operation
closer to the process constraints which may lead to greater profits and/or better
performance. Fig. [1.6] illustrates how optimal control can reduce the variance
of the controlled outputs, making it possible to squeeze and shift the target to
a more profitable value. In spray drying, the profit significantly benefit from
reducing the variance of the residual moisture content. This makes it possible
to shift the moisture content to a slightly higher level which increase the yield,
by selling more water as product, while reducing the energy consumption due to
less evaporation. To illustrate the idea, we assume that MPC is able to increase
the average residual moisture content by only 0.2 p.p. at a milk powder plant
that produces 7500 kg/h of skim milk powder (from Fig. [1.3)). The annual profit
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Figure 1.6: MPC makes it possible to squeeze and shift the residual
moisture content to a more profitable value.

increase is then

= 0.2 p.p. - 7500 kg/hr - 7200 hr/year - 2.5 €/kg
= 224,100 €/year

The profit increase illustrates the importance of optimal control well.

MPC refers to a control algorithm that explicitly incorporates a process model,
to predict the future response of the controlled process and take appropriate
action through optimization. Traditionally, MPC is designed using objective
functions penalizing deviations from a given target and fast movements in the
inputs. Often MPC is combined with a Real-Time Optimization (RTO) layer
[FCB15,[Eng07,[DNJN11,|/AO10/EHO1], in a so-called two-layer structure. The
upper-level RTO system provides targets under different conditions such as feed
compositions, production rates, energy availability, feed and product prices to
the lower-level control system in order to maintain the process operation as close
as possible to the economic optimum |AG10]. The RTO layer and the MPC
layer have different time scales and the RTO layer assumes that the closed-
loop process will reach a steady-state. Transients, such as target transitions
and the inherent effect of disturbances, may thus lead to loss of economical
efficiency. Recent advances within process optimization focus on optimizing the
higher-level objectives, such as economics, directly in the objective function of
the MPC, known as Economic MPC (E-MPC) |[RA09,RAB12,|/AAR12,|Griil3,
Griil2]. Thus, the E-MPC eliminates the presented drawbacks. E-MPC is
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maturing and has now been successfully applied to an increasing number of
continuous processes.

MPC is the natural choice to automatically optimize the operation of spray
dryers, as it naturally handles the dryers multiple and cross-coupled inputs and
outputs, time delays, process constraints and feed-forward of disturbances such
as the feed concentration and the ambient air humidity. The MPC will then
allow operation closer to the process constraints which may increase profits with-
out violating the process constraints. The application of MPC to spray dryers
can therefore be an effective way to support the operators in the challenging
task of optimizing the spray dryer operation.

1.5 Thesis Objective

The aim of this project is to investigate the application of MPC to optimize the
operation of four-stage spray dryers. To facilitate this goal, new models and
MPC strategies for the process will be developed.

Spray Dryer Modeling

One of the key objectives is to develop first-principles dynamic models of a four-
stage spray dryer. The purpose of the simulation model is to enable detailed
closed-loop simulations of the spray dryer at different operating points, such
that the model can facilitate development and comparison of control strategies.
The purpose of the control model is to provide a simpler model that can be used
for state estimation and prediction in the controllers. We perform experiments
on a GEA MSDT™.20 spray dryer to identify the model parameters and validate
the model accuracy for this dryer. Powder characteristics are identified by
laboratory tests. The models provide the key performance indicators (KPIs)
such as the profit of operation, the energy consumption, the energy efficiency,
the product flow rate and the stickiness of the powder in the spray dryer. These
features are important for comparison of the different control strategies.

Model Predictive Control

A key objective is to automatically adjust the dryer to variations in the feed
and the ambient air humidity, such that the profit of operation is maximized
while the energy consumption is minimized, the residual moisture content in the
powder is controlled below the specification and sticky powder is prevented from
building up on the dryer walls. We do this by first developing a traditional linear
target tracking MPC algorithm with an RTO layer for calculation of cost optimal
targets. This is the conventional approach and may perform well in many cases.
Secondly, we develop an Economic Nonlinear MPC that brings economic costs
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directly into the objective function of the controller. The controller will then
constantly bring the process to the most cost efficient state of operation, while
considering constraints of the process such as stickiness and moisture limits of
the powder. The MPCs include a state estimator (soft-sensor) for estimation
of the current state of the dryer. A second goal is therefore to investigate the
design and tuning of this state estimator, such that missing observations are
handled well. The observations that can be missing for shorter periods are the
exhaust air humidity and the residual moisture content of the powder, which
must be handled accordingly.

Application of MPC to an Industrial Spray Dryer

A key objective is to demonstrate the MPC strategy on a full-scale industrial
four-stage spray dryer. In that effort, we will document the complete stan-
dalone MPC solution i.e. the spray dryer setup, the MPC algorithm, the model
identification and tuning etc. We also document the KPIs obtained during the
demonstration experiments. Our goal is that the MPC strategy will be widely
used as part of the commercial control solution.

1.6 State-of-the-Art

In this section, we provide an overview of the state-of-the-art and give some
references to important literature in the fields that are addressed in this thesis.
The collection of papers written during the project, included in Part [[I] also
contain literature studies and references relevant to the specific paper.

1.6.1 Spray Dryer Modeling and Control

Mathematical modeling and control of spray dryers have been subjects of re-
search for many decades. The models have traditionally been classified into
static and dynamic models. Mathematical models of spray dryers exist as de-
tailed computational fluid dynamics (CFD) models for static design oriented
simulation |[CPOO01,[PCLA09,|[WDM™08a, Kie97|, and as models for dynamic
simulation. The models for dynamic simulation are linear models for control
design that are also used for closed-loop simulation |Cla88,[TTA09,TIKT11]
and lumped first-principles engineering models [SHO8,|Sha06,[ZGS™88|,/ZPC91}
PCF95,|GJCT94]. The purpose of the dynamic simulation models is often to
facilitate analysis and synthesis of advanced control schemes.

Clarke [Cla88|] designs a Generalized Predictive Controller (GPC) for a spray



1.6 State-of-the-Art 13

dryer and base the controller on the CARIMA model, but does not provide
a simulation model. Tan et al [TTA09, TIKT11] provide continuous transfer
functions of first order with a delay that they use for PI controller design as well
as closed loop simulation. They report models for spray drying of full cream
milk [TTAQ9] as well as spray drying of whole milk and orange juice [TIKT11].

A lumped first-principles model of a single-stage spray dryer is developed in
[SHO8|,|Sha06]. Mass and energy balances describe the air temperature, the
mean particle size and the residual moisture content of the powder. Based on
the model PI controllers are developed to control the mean particle size and the
residual moisture content of the powder. A mathematical model based on mass,
energy and momentum equations are formulated and solved in [ZGS™88|. The
model describes the moisture content and particle size of a single spray dried
powder particle and fits the experimental data within 10-15% error. In |[ZPC91|
a dynamic model of a single-stage spray dryer is developed from first-principles
and is validated experimentally to assist in control simulation studies. The
model provides the moisture content and particle size of the powder as well as
the exhaust air temperature and humidity. The inferred moisture content is
controlled in a cascade PI configuration to mitigate the effect of disturbances.
Reference [PCF95| extends the model in [ZPC91| by further developing the
model for drying of milk powder, and controls the exhaust air humidity to
indirectly control the powder moisture content. A single-stage dynamic model
is developed by [GJCT94] for the simulation of the residual moisture control
and air temperatures in an industrial detergent spray drying process. A linear-
quadratic-Gaussian (LQG) controller for residual moisture control is reported.
The moisture content for drying of milk powders in a spouted bed dryer is
described by a physical-mathematical model in [VFF15]. The evaporation term
is estimated using a neural network and the inferred powder moisture content is
controlled by adjusting the inlet air temperature with a PI controller. A detailed
review of the status and future of modeling and control for spray drying of dairy
products is given in [OCO05|.

The above first-principles models simulate single-stage spray dryers or a spouted
bed dryer. In-line powder residual moisture sensors are often not available.
Therefore, the above models are based on irregularly sampled off-line laboratory
measurements of the residual moisture. We present models and control strate-
gies for a four-stage spray dryer that is validated against in-line residual moisture
measurements and control strategies that utilizes in-line measurements.



14 Introduction

No Nominal Optimization
—
Use of Measurements Robust Optimization
Yes

Adaptive Optimization
ak.a. Real-Time Optimization,
Measurement-based Optimization

— ;

Adaption of the Model | Adaption of the Optimization Problem Direct Input Adaptation
- Two-step Approach - Modifier Adaptation - NCO-tracking

- Bias Update - Tracking of Active Constramts

- Constraint Adaptation - Self-Optimizing Control

- ISOPE - Extremum-Seeking Control
Explicit Iterative Optimization Implicit Optimization Methods

Figure 1.7: Classification of RTO methods and their Philosophies [FCB15|.

1.6.2 Model Predictive Control

The use of tracking MPC in conjunction with an RTO layer (the so-called two-
layer structure) dates back to the late 1970s-1980s |[Eng07,/[DNJN11]. Since
then the MPC with an RTO layer has become the standard approach for imple-
menting steady-state economic optimization in processes that operate around
nominal steady-states. The RTO methods aim to reject the effect of model un-
certainty on the economic performance by the use of process measurements. As
indicated by Fig. the RTO methods divide into two classes, explicit and
implicit iterative optimization methods [FCB15[EHO01]. Explicit methods utilize
a model and measured disturbances for computing the optimal operating point.
The explicit methods further divide into two main classes; adaptation of the
model and adaptation of the optimization problem. In model adaptation, the
measurements can be used to refine the model by updating the model parame-
ters. Correction terms to the optimization problem are determined in optimiza-
tion problem adaptation. No model parameter identification is performed. The
two methods both rely on the repeated solving of a model-based optimization
problem. Thus, rather accurate models are needed, but the model informa-
tion can be used to achieve better economic performance. Implicit methods
seek to optimize the profit of operation, without the use of a rigorous model.
Well known examples of implicit methods are extremum-seeking [AKO03] and
self-optimizing controllers [Sko00]. Extremum-seeking methods impose small
changes to the steady-state of the process, and a cost function gradient is esti-
mated. On that basis, steps towards a lower cost are taken. The advantage is
that no model is required, but the method can be slow and requires the process
to reach steady-state before a new step can be taken.
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The two-layer structure has some inherent drawbacks. As the optimization is
only performed intermittently at a low sampling rate, the adaptation of the
operating conditions is slow [Eng07]. Furthermore, the RTO layer assumes that
the closed-loop process will reach a steady-state. Transients, such as target
transitions and the inherent effect of disturbances, may thus lead to loss of
economical efficiency.

In E-MPC, the traditional target tracking objective function in the MPC is ex-
changed with an economic objective function from the RTO layer. The idea of
using economic objectives in the dynamic regulation problem has been proposed
in many works |[Amrl1, RABI12,[RA09,AAR12,|Gril3,|Griil2]. Computational
studies and analysis of processes have been published [RAB12]. The earliest
work on optimal economic control problems dates back to 1920s, in which the
objective was to determine optimal savings rates to maximize capital accumula-
tion [Amrl1] and 1975 in connection to closed-loop control [CD75]. E-MPC can
present some difficulties [RA09], e.g. that it can yield a turnpike which forces
the use of a long prediction horizon. The turnpike property is well known in the
field of E-MPC and is an active research area |Griil3,[FKJB14]. Also, unlike
target tracking MPC, research shows that E-MPC may lead to closed-loop pe-
riodic/cyclic operation |[Amrl1|AARI2,|ZGD13]. Such periodic operation may
be economically favorable compared to the best steady-state economic solution
on a time average. Fig. illustrates such closed-loop periodic operation.
Highly time-varying inputs may pose safety issues to the process, and attempts
are reported to prevent rapid changes by imposing rate of change constraints
on the inputs |[QB03,[SMTRI12]. Stability proofs on E-MPC is an ongoing re-
search topic. |Griil2] presents a survey of recent results on stability, performance
and feasibility of nonlinear E-MPC with and without terminal constraints. An
analysis of performance in the absence of any terminal constraints is provided
in |Griil3].

E-MPC has been applied to a growing variety of continuous processes. Often
the application of E-MPC emerges from research in connection with the future
energy system, refereed to as the smart-grid [SPJS13|[Hal14,|SEJ15|. In partic-
ular large-scale power management and production planning in power systems
have been studied for application of E-MPC to provide flexible consumption or
load shedding [SESJ13[SPJS13SEJ15]. Some interesting applications are indus-
trial refrigeration [HLJB12|, building climate control, charging and discharging
of electric vehicles including electricity price forecasts [HPM™ 12, MCH10), resi-
dential heat pumps exploiting load shedding [PEHT13,Hall4] and many more.
E-MPC has also been studied in connection to batch processes, such as pro-
duction optimization of oil recovery from oil fields by controlling the water
flooding [Capl3|[BJ04] and chemical batch processes [ARB13|. Progress has
been reported on improving the control of spray dryers, but to our knowledge
E-MPC has not been studied for the process of spray drying before now.
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Figure 1.8: Closed-loop simulation of a system un-
der periodic E-MPC [Amrll].

1.6.3 Application of MPC to an Industrial Spray Dryer

Attempts have been made to improve the industrial control of spray dryers over
time. The solutions fall mainly into two groups; the extension of the conven-
tional PI control strategy and the MPC strategies with target optimization.
PI control strategies are reported in patents [Niel3||SB11]. These adjust the
exhaust air temperature or exhaust air humidity to maintain a stable powder
residual moisture content. |[GJCT94] develop an LQG controller for residual
moisture control in an industrial detergent spray drying process. Industrial
MPCs are reported and seem to rely on empirically based step-response models
and least-squares methods for estimation of the residual moisture content of the
powder [Vail[Roc|. [Vai] reports up to 20% increase in production capacity.

1.7 Thesis Contribution
The key contributions of this thesis are described in the following three sections.

1. Modeling of a four-stage spray dryer

We develop two first-principles engineering models of a four-stage spray
dryer. The simulation and control models combines physical knowledge of
the process with unknown parameters identified from an experiment.
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The novelty of the proposed models lies in three main features: 1) The
models enable simulations of the spray dryer at different operating points
with high accuracy and is validated against in-line measurements of the
powder residual moisture content. 2) The key performance indicators
(KPIs) such as the profit of operation, the product flow rate, the energy
consumption and the energy efficiency are provided. 3) In addition, the
models offer stickiness constraints of the powder in each stage of the spray
dryer.

To the author’s knowledge, there does not exist such a model that com-
bines all three features for a four-stage spray dryer. These features make
the simulation model well suited for closed-loop comparison of the pro-
cess economics associated to different control strategies. The complexity
reduced control model, based on the simulation model, is well suited for
state estimation and predictions in the MPCs.

2. Development and simulation of control strategies

We develop and demonstrate by simulation two proposed control strate-
gies and compare them against the conventional PI control strategy; the
two strategies are based on the MPC with an RTO layer strategy and
the E-MPC strategy. The performance of the controllers are studied and
evaluated according to the performance indicators above.

The novelty of the proposed MPC with RTO control strategy lies in three
main features: 1) It offers independent control of the exhaust air tem-
perature, the exhaust air humidity, the SFB powder temperature and the
residual moisture content of the powder. This enables control of the spray
dryer such that the stickiness of the powder and the residual moisture con-
tent can be operated closer to its limits. 2) It offers significantly improved
economical performance and reduced energy consumption while avoiding
violation of the process constraints. 3) In addition, the state estimator
offers a built-in method for handling missing observations as a so-called
soft-sensor.

The novelty of the proposed E-MPC control strategy consists of the two
main features: 1) It combines the MPC and RTO layers into one E-MPC
control layer, such that the economical performance is constantly maxi-
mized while avoiding violation of the process constraints. 2) It provides
an even further improved profit of operation compared to the MPC with
RTO control strategy. It also offers a state estimator that handles missing
observations.

To the author’s knowledge, there does not exist such a comprehensive
study and evaluation of the economic benefits of using MPC with RTO
as well as E-MPC for a four-stage spray dryer. Furthermore, we have
not seen any comparison of such control strategies to the conventional PI
control strategy.
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3. Application of MPC to an industrial spray dryer

We demonstrate that the proposed MPC with an RTO layer is applicable
to an industrial four-stage spray dryer. The industrial dryer is a GEA
MSDT™_1250 type producing enriched milk powder.

The novelty of the industrial implementation of the MPC with an RTO
layer lies in 1) The fully integrated and functioning solution, that is used in
the daily operation of the milk powder spray dryer. During the project, we
participated in the development and installation of the in-line instruments
for the measurement of the exhaust air humidity and the residual moisture
content of the powder. These provide high quality measurements and
are actively used in the MPC. 2) We document in detail the installation
and workings of the industrial MPC solution. 3) The performance of
the controller is evaluated and show that the profit of operation, product
flow rate and the energy efficiency are improved significantly compared to
conventional PI control. This confirms the results obtained by the closed-
loop simulations of the MPC with RTO control strategy.

Industrial MPC solutions exists, but to the author’s knowledge, there has
not been published any detailed data of the performance of these nor has
the MPC strategies been as well documented as in this work. It is our
experience that the industrial MPC solutions seldom incorporate in-line
measurements of the exhaust air humidity and powder residual moisture
content.

We address these contributions in Part [ the summary report, and in Part [[I]
the published papers.

1.8 Thesis Organization

The thesis is divided into two parts. Part [[] is comprised of a summary report
which gives an overview of the main results and contributions of the thesis. Part
Mis composed of the chapters[[|to[§] Chapter[I]provides an introduction and the
background for the thesis. It presents the four-stage spray drying process and the
MPC algorithm in general terms. Chapter [2| provides a short description of the
modeling of the spray dryer. Chapter [3]provides an overview of the three control
strategies considered in Chapter [d}[f] Chapter [4] presents the conventional PI
control strategy, Chapter [5| presents the MPC with RTO control strategy and
Chapter [6] presents the E-MPC control strategy. Application of MPC to an
industrial spray dryer is presented in Chapter Conclusions are provided in
Chapter [8] Part[[Iis comprised of the research papers published and submitted
during the project period.



CHAPTER 2

Four-Stage Spray Dryer
Models

In this chapter, we describe the four-stage spray dryer and present two ex-
periments conducted on the dryer and laboratory tests on the final powder.
We formulate a nonlinear index-1 differential algebraic equations (DAE) model
for simulation purposes and a simpler nonlinear ordinary differential equation
(ODE) model for design of model based controllers. A linear model is also
provided for design of linear model based controllers. The model parameters
are identified based on the experiments and we show that the models fit the
experimental data well.

The chapter is a summary of Paper [A] Paper [C] Paper [E] and Paper [G]

2.1 Equipment Setup

The four-stage spray dryer that is used in this project combines drying in four
stages to increase the energy efficiency and the product quality; spray drying
at the top of the dryer chamber (SD), drying in an integrated static bed at
the bottom of the dryer chamber (SFB) and drying in an external vibrating
fluidized bed (VFB). Fig. illustrates the working principle of the four-stage
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Figure 2.1: Principle diagram of the four-stage spray dryer with
indication of the inputs, disturbances and outputs.

spray dryer as well as the inputs, disturbances and outputs. The outputs are
the exhaust and stage temperatures, Tsp, Tsrp, Tvren and Tyrpe, the exhaust
air humidity, Y, and the SFB and VFBc stage residual moisture content of
the powder, S, and S¢q. The inputs are the feed flow rate, F}, the main inlet
air temperature, Tyain, the SFB inlet air temperature, Tys, and the VFBh inlet
air temperature, Tygn. The main disturbances are the ambient air humidity,
Yamb, the feed solids concentration, St, and the feed temperature, Tt. The other
disturbances are the main inlet air flow rate, Fiy.in, the SFB inlet air flow rate,
Fi, and the VFBh inlet air flow rate, Fygpn. The cooling of the powder is
performed with unheated ambient air in the VFBc stage at an inlet air flow
rate, Fyme, and temperature, Tyspc.

The experiments in this project are conducted on a small-scale industrial type
GEA MSD™.20 spray dryer. Fig. shows a picture of the dryer at the
test-station. The control room, the VFB, the feed tank and the feed pump are
located on the ground floor. The SFB is located at the first floor and the spray
dryer chamber is located on the first and above floors. The bag filter is the unit
to the right in the picture.
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Figure 2.2: The picture of the MSD™-20 spray dryer
seen from the ground floor.

Fig. [2.3] shows the inside of the dryer chamber, divided into an upper SD
part (left) and the lower SFB part (right). The pictures are taken after the
experiment was conducted and shows none to small signs of powder deposits on
the cone of the dryer chamber.

The dryer is fitted with an abundance of temperature sensors, pressure sensors
and air mass-flow meters. We note that all the inlet air mass-flow meters have an
offset in the readings. This offset is identified from an air humidity mass balance
of the spray dryer using measurements of the air flow rates, the feed flow rate and
the air humidity. We estimated the offset to be 5%, which we subtracted from
the readings before these are used in the model. A combined feed mass-flow and
density meter is fitted to the feedline. The feed solids concentration is estimated
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(a) The SD stage with nozzle and exhaust air ~ (b) The SFB at the bottom of the dryer
outlet. chamber.

Figure 2.3: Picture of the SD and SFB stages. The picture is taken after the
experiments and shows none to small signs powder deposits.

from the feed density and feed temperature, as we know the density of the
individual components in the feed i.e. the solids and water. We fitted residual
moisture instruments to the SFB and VFB powder outlets and an exhaust air
humidity instrument to the exhaust air duct. We also fit vapor injectors to the
inlet air streams, to control the ambient air humidity supplied to the dryer.
The manipulated inputs are the reference temperature of the electric heaters on
the main, SFB and VFBh inlet air streams. The feed pump speed is controlled
directly. All these sensors, instruments as well as actuators are connected and
handled by a single SIEMENS S7 PLC system and a Wonderware™ Intouch
v10.5 SCADA system from Schneider Electric.

The experiments are based on drying of maltodextrin DE-18. Maltodextrin is
a starch based polysaccharide that is used as a food additive. Maltodextrin is
used because the feed can then be re-wetted and the composition is well defined.
We use maltodextrin DE-18 as a substitute to milk because milk is difficult to
handle over longer periods due to natural deterioration. Stickiness and drying
properties are sought to be comparable to milk by the selection of the DE-18
type. The DE number indicates the stickiness and drying properties of the
maltodextrin.

The residual moisture content is measured using two ProFoss™ in-line analyzers
placed at the SFB and VFBc powder outlets. Fig. [2:4] shows the position of
the residual moisture instruments. The SFB sensor is placed after the powder
discharge piston and the VFBc sensor is placed after the final powder outlet.
The powder from the VFBc powder outlet is collected in a container.
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(a) The SFB powder discharge. (b) The VFB final powder outlet.

Figure 2.4: Picture of the SFB and VFB powder outlets with installed in-line
ProFoss™ NIR analyzers marked with black boxes.

The air humidity is measured using an industrial air humidity sensor fitted with
pre-filtering. The pre-filtering of the exhaust air prevents it from blocking due
to the fine powder particles in the exhaust air.

2.2 Experimental Tests

Two experiments were made in consecutive order without stops. The data from
the first experiment is used for estimation, while the data from the second
experiment is used for validation.

A number of steps are performed during the two experiments to excite the
spray dryer outputs. The nominal inputs and the steps to the spray dryer are
provided in Table The nominal operating point and the step size of the
inputs are selected based on operator process knowledge and experience from
previous experiments using maltodextrin DE-18.

During the estimation experiment an exhaustive number of steps is performed.
In this experiment, we want to be sure that all possible inputs and disturbances
are identified and excited. The validation experiment is made from a repetition
of the estimation experiment, but omitting the steps in the inlet air flow rates
and the feed temperature. These are normally kept constant during operation.
The first experiment is therefore the longest of the two experiments and contains
the most information due to the increased number of excited inputs. The data
from both experiments are well excited and covers a large operation range. Each
step lasts about 1 hour and the feed flow steps lasts 1.5 hours. The estimation
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Table 2.1:

The table show the nominal inputs and the input steps that are
used during the estimation and validation experiments.

Nominal Estimation Step Validation Step
Input Down Up Down Up

F 85 kg/hr | 65 kg/hr 120 kg/hr | 70 kg/hr | 117 kg/hr

Tt 50°C 42°C 60°C - -

St 50% 40% - 40% -
Fonain | 1700 kg/h | 1500 kg/h | 1900 kg/h - -
Thnain 170°C 160°C 180°C 160°C 180°C
Yinain | 3 g/kg - 15— 25 g/kg - 15 g/kg

Fa, | 470kg/h | 330 kg/h | 570 kg/h - 600 kg/h
Tyt 90°C 80°C 100°C 80°C 100°C
Yat 3 g/kg - 15 —25 g/kg - 15 g/kg
Femn | 280 kg/h - 410 kg/h - -
Totoh 60°C - 80°C - 80°C
Yotbn 3 g/kg - - - -
Fupe | 280 kg/h . - . -
Tytbe 35°C - - - -
vabc 3 g/kg - - - -

experiment lasts in total 28 hours and the validation experiment lasts in total
17 hours.

Appendix [A] reports the recorded inputs, disturbances and outputs for the esti-
mation and validation experiments.

2.3 Laboratory Tests

The powder equilibrium moisture content, X4, is a product dependent function
that describes the moisture content at which water cannot be evaporated from
the powder any longer. The dynamic models, presented later, make extensive
use of this function. We identify this function based on already dried powder
in the laboratory by adsorption isotherms studies. We fit the Guggenheim-
Anderson-de Boer (GAB) equation [BSMO6|, which has a theoretical background
based on equilibrium assumptions. The GAB function has the form

C-K- Xu-RH
(1-K-RH)(1-K-RH+C-K -RH)

Xog = (2.1)

in which X, C' and K are temperature dependent Arrhenius expressions and
RH is the relative humidity of the air. Fig. [2.5(a)|illustrates 15 laboratory data
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Figure 2.5: Maltodextrin DE-18 laboratory data made from adsorption
isotherm experiments. The black lines indicate fitted equations.

points and the fitted GAB function. Temperatures were fixed at T' = 25°C, T =
50°C and T = 75°C with relativity humidities between RH = 4.5% and RH =
40.1%. The simulation model presented in Section uses the GAB function
fitted to the data in Fig. The control model presented in Section
was developed later in the project, which made it possible to conduct a second
experiment with data points at higher temperatures. Thus, the control model
uses a different GAB function fitted to the that data (not presented here). In the
literature, models already exist for maltodextrin [WDM™08b,[FOS01,[PCLA09].
However, these models do not fit our data well.

Stickiness of powder can be predicted using the glass transition temperature,
Ty, computed by the Gordon-Taylor equation (a mass-proportion-mixing rule)
as [BBHO4]

| Ty + kZ Ty

- 2.2
g 1+kZ (2:2)

Typ = 144.8°C (maltodextrin DE-18) and Ty, = —137°C (water) are the glass
transition temperatures, T, of the solid and water fractions, respectively. Z is
the dry base residual moisture content at the surface of the powder. We fit
by estimation of a single constant, k = 6.296, to data from an additional exper-
iment that indicates whether the powder in Fig. has turned sticky after
being exposed to the specific temperature and air humidity conditions [BBH04].
Fig. shows the experiment results and the predicted glass transition tem-
perature. Powder with a temperature above Tj is sticky. The predicted glass
transition temperatures in coincide well with the measurements.
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Figure 2.6: Sketch of a general single stage.
2.4 Simulation Model

In this section, we present the four-stage spray dryer model used for simulation
at a wide set of operating points with high accuracy. The model combines
physical knowledge of the process with unknown parameters identified from the
estimation experiment.

The dryer is divided into four stages; a SD, a SFB, a VFBh and a VFBc stage.
The model describes the evolution of the temperatures, air humidities as well
as the residual moistures of the dried product in each of these stages. All stages
are based on the same mass and energy balance principles, thus the stages can,
in short, be presented as one general stage. This will illustrate the modeling
concept well. The full detailed description of the model is given in Paper [A]

2.4.1 Conservation Equations

The evolution of the dry base powder moisture content, X, the air humidity,
Y, and the temperature, T, in the stage are determined by the conservation
equations

water in water out water evaporation rate
dmy, — = = ~=
W = XinFS - XFS - RW (23&)
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vapor in inlet air  vapor in outlet air = water evaporation rate

dms, — ~— = =~
= YoFa - YF. o+ Ry (2.3b)
enthalpy of air flows enthalpy of powder flows
aUu
E = (ha,in - ha,out)Fda + (hp,in - hp,out)Fs +
2.3
enthalpy of mass exchange heat exchange poat 1oss ( C)
in2out in2out
in2ou in2ou
AIJe - Qe Ql
where the state variables are the functions
My = M X (2.4a)
My = Mgy (2.4b)
U = mga(he — RT) + mshy + mmhoy, (2.4c)

The mass balance governs the amount of water in the powder, m.,, and
governs the amount of vapor, m., in the air. The energy balance, ,
governs the accumulated heat, U, in the stage. Note, that the model is an
index-1 DAE model, as U in depends on the state Y in h, and X in hp.
Mqa is the mass of dry air, mg is the mass of powder solids and m,, is the mass
of metal.

Fy is the flow of feed solids which is equal in all stages. Xj, and X are the dry
base concentration of the in- and outlet powder flows. R, is the product drying
rate that describes the flow of evaporated water to vapor. Yj, and Y are the
vapor concentration of the air in- and outlet air flows, respectively. Fy, is the
dry inlet air flow to the stage. The advantage of using dry base air flows and dry
base powder flows is evident as the hold up of dry air and powder solids are fixed
and the notation thereby simplifies the equations. The relation between humid
and dry air flows as well as total powder and powder solid flows are given in
Paper[A] In case more air flows are flowing to the same stage, the inflow of vapor
is a sum of multiple Yj, Fy, vapor flows and Fg, out of the stage is the sum of
all the dry inlet air flows. hgin = ha(Yin, Tin) and hg out = ha(Y,T) are specific
enthalpies of the inlet and outlet air flows. The specific enthalpy of the powder
inlet is hpin = hp(Xin, Tin) and the powder outlet is hpoue = hp(X,T). Tj
is the temperature of the inlet air flows. The specific enthalpy is calculated as
described in Paper[A] The enthalpies describe the heat exchange due to the flow
of mass, i.e. air flows and powder flows. In case more air flows are flowing to the
same stage, the inflow of energy is a sum of multiple (hqin — Ra,out)Faa terms.
AHn?°u g the enthalpy of mass exchange due to powder transport between
the SD and SFB stages. The stages are connected by steel ducts and plates
giving rise to a heat conduction between the stages. We model this transfer by
Q"2°ut " Finally, we model the heat loss to the surroundings by Q.
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2.4.2 Constitutive Equations

The constitutive equations define the relations in the conservation equations.
The product drying rate is governed by the thin layer equation. The thin layer
equation models evaporation as a diffusion process [Lew21|

Ry = k1D (X — Xoq)ms (2.5)

X is the stage powder moisture content and Xoq = Xeq(7T,Y) + Xaaa is the equi-
librium moisture content described in Section [2.3] T is the stage temperature
and Y is the stage air humidity. The free moisture content, X — X.q, describes
the moisture content that is free to evaporate. This expression renders a lower
bound for the possible moisture removal and drives the drying process.

The diffusion term, Dy, = Dy, (T, X), describes the friction of evaporation and
depends on the product being dried [HAPBO7,['YSWO01|. D, contains an Ar-
rhenius like relation to compensate for temperature dependencies and is also a
function of the residual moisture content. Consequently, we describe diffusion
by

Dy (T, X) = exp (—2 (; - TZ)) - fX (2.6)

where R is the ideal gas constant and Tj is the reference temperature given in
Paper @ c1 and co are constants that must be identified.

The SFB is supplied with air from below and a proportion of the powder in
the SFB stage is therefore blown off the fluid bed and back into the SD stage.
Thus, there is an exchange of heat and mass between the SD and SFB stages.
We simplify the description of this phenomenon and model the heat exchange
only, described by AH2°ut The heat transfer, due to conduction, Q"2°ut,
between these two stages is negligible. The SFB, VFBh and VFBc stages have
no continuous exchange of powder, thus we neglect AH2°%* and only model
the heat conduction between the stages, Q2°ut,

The conductive heat loss, @1, is modeled by
Ql = kUA (T - Tamb) (27)

in which Ty, denotes the ambient air temperature. kya is a heat transfer
coefficient that must be estimated.
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2.4.3 Key Performance Indicators

The key performance indicators (KPIs) in spray drying are the profit of opera-
tion, p, the energy consumption, Qot, the specific energy consumption, Qyot/Fp,
the energy efficiency, 1, the product residual moisture content, 1 — .S, and the
product flow rate, Fj,. The profit of operation is given by the value of the
product minus the raw material and energy costs

p(+) = ppFp — peFt — pEQtot (2.8a)

Pp is the unit value of the product, pr is the unit cost of feed material and py is
the unit energy cost. We assume that the bulk price of skimmed milk powder
(SMP) is p, = 2.5 €/kg, the feed price is py = 0.1p,, and the price of energy is
pe = 12.9 €/(MWhr). F, = F(1 + X?) is the flow rate of powder out of the
dryer and F; = F,(1+ X;) is the feed flow rate. X9 = (1 —5)/S is the moisture
content in the VFBc stage and Xt is the moisture content in the feed on the dry
base concentration.

Q1o is the total energy consumption of the dryer

Qtot = Fmain(ha,main - hamb) + stb(ha,sfb - hamb)+

(2.8b)

vabh(ha,vfbh - hamb) + vabc(ha,vfbc - hamb)
where hamp is the specific enthalpy of the air at outdoor temperature and hu-
midity. The specific enthalpy is calculated as described in Paper[A] The specific
energy consumption is computed as Qyot/Fp.

We adopt the definition of energy efficiency provided by [Kud12,[KP10]. The en-
ergy required for evaporation is relative to the total energy supplied for heating
the air

- )\(TO)Fngf — X9 (280

The energy required for evaporation of the water in the feed is A(Tp) Fs(X¢— X ).
The flow rate of powder out of the dryer is given by
F, = F,(1+ X% (2.8d)

Note that these measures can be computed without a model, as they only depend
on measured outputs.
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2.4.4 Constraints

The maximum capacity of the feed pump limits the feed flow. The inlet tem-
peratures must be higher than the ambient temperature, T, and the risk
of scorched particles creates upper limits on the allowable inlet temperatures.
Consequently, we use

0 kg/hr < Fy < 140 kg/hr (2.9a)
Tomb < Tiain < 220°C (2.9b)
Tomb < Ty <120°C (2.9¢)
Tomp < Typn < 70°C (2.9d)

In addition, the model includes stickiness constraints of the powder in each stage
of the spray dryer. Stickiness of the powder is computed by the glass transition
temperature given in Section The surface moisture content, Z, in (2.2)) is

0.53X* for the SD
xb° for the SFB
7= o the (2.10)
Xe© for the VFBh
x4 for the VFBc

in which the superscript a, b, ¢ and d refers to the SD, SFB, VFBh and VFBc
stages, respectively. The surface moisture content, Z, of the powder in the SD
stage is subject to a correction term of 0.53. The constant is manually selected
and compensates for the crisper surface of the particles that makes the powder
less sticky. We experienced none to small signs of powder deposits during the
experiments, thus 0.53 is selected to reflect this fact. The constant can only
be exactly determined as a result of dryer specific empirical inspection of the
chamber walls after deposits have actually formed [HFOS10].

2.4.5 Summary

The presented model, also provided in Paper [A] describes the four-stage spray
dryer as a deterministic index-1 differential algebraic equations (DAE) model.
For simulation purposes, we construct a stochastic DAE model, with two piece-
wise stochastic inputs, which may be represented in discrete form

(2.11a)
(2.11D)

Tpt1 = F(zg, up + wy k. dp + wa g, 0)
Yk = hy(z) + vk
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in which F'(-) is the solution of the system of differential equations

z(ty) = xg (2.12a)
d
%g(z(t)) = f(a:(t),uk + Wy k, di + W4, k, 9) tr <t <tp41 (2.12b)
Tk+1 = l‘(tk+1) (212(3)

Equation is solved efficiently by explicit singly diagonally implicit Runge-
Kutta (ESDIRK) methods. We use the ESDIRK4(3) method with variable
step-size [KJTJ04,[VJTS10]. The state function g(x(t)) represents hold-up of
mass and energy and f(xz(¢),u(t),d(t),0) is the flux of mass and energy. The
two piecewise stochastic inputs, ux + wy,k and dy + wq , are constant for ¢ <
t < tg1. The output equation, hy(zy), is corrupted by measurement noise,
vg. The noises are given by the stochastic variables wy  ~ Niig(0, Ry), wax ~
Niia (0, Rq), and vg, ~ Njia(0, Ry). The covariances, (R, , R4, Ry), are estimated
from the covariances of u, d, and y, respectively. 6 is the unknown parameter
vector that has to be estimated from data. € is identified by minimization of
the sum of squared simulation errors.

The measurement vector, y, the input vector, u, the disturbance vector, d, and
the state vector, x, are

y(t)= [Ta Tb ye T¢ Td Sb Sd]T
. (2.13a)
= [Tsp Tsre Yar Tvren TvrBe Sab  Sed

u(t):[Ff Tt Sf Frain  Tmain Ymain

Fso Tomn Yot Fumh  Tumh  Yumh - (2.13b)
vabc vabc vabc}T
d(t) = [Tim, Tow)” (2.13¢)

a(t)=[T* Yo X® Tb Yyb X

TC¢ ye Xxe¢ Td yd Xd]T (213d)

The superscript a, b, ¢ and d refers to the SD, SFB, VFBh and VFBc stages,
respectively.

2.5 Complexity Reduced Control Model

In this section, we present the four-stage spray dryer model that is used for
design of the controllers i.e. in the state estimator and for prediction in the
controller. The model provide simulations of the outputs with an emphasis
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on the residual moisture content of the final powder and describes the data
well, while being simple due to the lumped modeling approach. Compared to
the simulation model this model contains fewer states and parameters, thus
simplifying the computational demand and identification complexity. The dryer
is divided into two parts; a SD and a SFB part and a VFBh and a VFBc part.
The model is described in full in Paper [G]

2.5.1 Spray Dryer and Static Fluid Bed Model

The evolution of the SFB powder moisture content, X}, the SD air humidity,
Yab, and the temperatures, Tsp and Tspp, in the stages are determined by the
lumped conservation equations

water in and out flows  water evaporation rate

dXap —_— ~=
my df, = FS(Xf — Xab) — Raw (214&)
vapor in and out flows vapor correction flows  water evaporation rate
dYap ~=
My dt = (Fmain + stb)(yamb - Yab) + Fadd (Yadd - Yab) + Raw
(2.14b)
heat of evaporation enthalpy of inlet air flows
dTSD ——
Oa dt = - >\Raw + Fmainhai,, + stbhbom + Faddhaadd
enthalpy of outlet air flow enthalpy of powder flow
- (2.14c)
- (Fmain + Fyp, + Fadd)htlouc + Fs(hf - h:Z)
heat exchange heat loss
=~ =~
- Qab - Qa
enthalpy of air flows  enthalpy of powder flow
d1srp
— p
Co—— = Fa(hg,, — hi, )+ F(hg — hy)

dt meo (2.14d)

heat exchange heat loss
— ~~
+ Qab — Qbe — Qb
where the constitutive equations are

hgm = (Cda + CvYamb)Trnain; hgo = (Cda + CVYab)TSD

ut

hl?m Cda + Cv amb)Tsfb7 hgout = (cda + CVYamb)TSFB

hy (Cda + ¢y add)Taddv h? = (Cs + Cwa)Tf

Aadd (2.14e
+ cwXab)Tsp,  hY = (¢s + cwXap)TsrB )

hE = (cs
Qab = k1(Tsp — TspB) + ko X¢ + ksTr — ka
Qa = ks(Tsp — Tamn), Qb = k6(TsrB — Tamb)
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m, is the mass of dry air and my, is the mass of dry powder. C, and C}
are the heat capacities of the hold-up of air and powder. The mass balance
governs the amount of water in the powder. Fy = F;S; is the flow of
feed solids. Xt = (1 — S¢)/St is the dry base feed concentration and Tt is the
feed temperature. R, is the product drying rate. The mass balance
governs the amount of vapor in the air. F,i, and Fgp, are the dry base inlet
air flows. Y,up is the vapor concentration of the inlet air. The parameters Yaqq,
Foqq and T,qq are used to compensate for air leakages and un-modeled inlet
air flows such as nozzle cooling air. The energy balance, and ,
governs the accumulated heat in the stages. The specific enthalpies from the
air flows are, hf,f.}, and the specific enthalpies of the powder flows are, h’{’,}. Qab
describes the heat exchange between the SD and the SFB stages. Q. is the heat
exchange between the SFB and the VFBh stages. @, and @y, are heat losses to
the surroundings. The heat capacities are given at the reference temperature,
Ty, and computed as described in Paper [A]

We assume that the evaporation takes place in the SD stage only with the drying
rate determined from the powder conditions in the SFB stage. The product
drying rate is governed by the thin layer equation, describing evaporation due
to diffusion [Lew?21]

k
ks T\ ™
Row =k = Xap — Xe

ks + B (T0> (Kabp = XeaJme

The equilibrium moisture content, Xcq = Xeq(TsrB, Yab), describes the moisture
content at which the water cannot be evaporated any longer and is described in

Section [2.3] and in Paper [G]

2.5.2 Vibrating Fluid Bed Model

The evolution of the VFB powder moisture content, X.q, the VFB air humidity,
Y.q, and the temperatures, Tyrpn and Tyrpe, in the stages are determined by
the lumped conservation equations

water in and out flows  water evaporation rate

dX. —_——f ~~
ma= 4= F(Xap — Xea) — Rew (2.15a)
vapor in and out flows water evaporation rate
dYeq ~=~
me dt = (vabh + vabc)(yamb - chd) + Rcw (215b)
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heat of evaporation enthalpy of air flows
dTyrpn =
Cea dt = - ARcw + Fyfbh (hg hgout)
(2.15¢)
enthalpy of powder flow  heat exchange heat loss
/—Pﬁ =~
+ FS(hb - hc) + ch - Qc
enthalpy of air flows enthalpy of powder flow  heat loss
d1yFBe . N ~=
— p
Ceq FTRE Vfbc(hgin — hgm) + Fs(h? — RY) - @Qa (2.15d)
where
he, = (cda + ¢ Yamb)Tumn,  he,,, = (cda + cvYea) TvEBR
= (€da + ¢vYamb) Tye, hgout = (Cda + cvYed)TVFBe

hg = (CS + Cchd)TVFBh, hs = (Cs + Cchd)TVFBc (2.158)
Qc = k11(Tvren — Tamb),  Qd = k12(TvFBe — Tamb)
Qve = k10(Tsre — TvFBh)

me is the mass of dry air and mgq is the mass of dry powder. C.q is the heat
capacity of the hold-up of air and powder in both the VFBh and VFBc stage.
The mass balance governs the amount of water in the powder. Fj is the
flow of feed solids. X, is the dry base feed concentration of the inlet powder.
Ry is the product drying rate, that renders the flow of evaporated water to
vapor. Water is assumed only to evaporate from the VFBh stage. The mass
balance governs the amount of vapor in the air. Fyg, and Fype are the
dry base inlet air flows. Y, is the vapor concentration of the inlet air. The
energy balance, (2.15d) and (2.15d)), governs the accumulated heat in the stages.
The specific enthalpies from the air flows are, h$ T and the specific enthalpies of

the powder flows are, h? (r Qpc describes the heat exchange between the SFB
and the VFBh stages. Q. and Q4 are heat losses to the surroundings.

The product drying rate is governed by the thin layer equation and a constant
term

Rcw = le(Xcd - Xeq)md - k14md

The equilibrium moisture content is Xeq = Xeq(TvrBh; Yed)

2.5.3 Key Performance Indicators

The profit of operation is given by the value of the product minus the raw
material and energy costs

p(*) = ppFy — peFt — pEQrot (2.16a)
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in which F, = Fy(1 4+ Xcq) is the flow rate of powder out of the dryer and
F; = Fy(1+ X¢) is the feed flow rate. py, pr and pg are the prices presented in
Section Q1ot is the total energy consumption of the dryer

Qtot = Fmain(hgin - hgmb) + stb(hgm - hgmb)
+ vabh(h(clin - Zmb) + vabC(hg - Zmb)

in

(2.16D)

in which A%, = (cda + ¢vYamb)Tamb is the specific enthalpy of the outdoor air.

a

hg..» hy..» he,, and hg —are the specific enthalpy of the inlet air.

2.5.4 Constraints

As with the simulation model, the inputs are constrained by (2.9).

This model also includes stickiness constraints of the powder in each stage of
the spray dryer. Stickiness of the powder is computed by the glass transition
temperature in (2.2)) with the surface moisture content, Z, given by

(Ap + Bp TSD) exp (Cp RHSD) for SD
Xab for SFB
Xed for VFBh
Xea for VFBc

(2.17)

in which A, = 0.193, B, = —0.000435 and C), = 4.51. RHsp = RH(Tsp, Yap) is
the relative air humidity. The moisture content of the powder in the SD stage is
estimated by an experimentally determined expression related to the equilibrium
moisture, X¢q, as the residual moisture in the SD stage is un-modeled.

Additionally, the SFB stage temperature is constrained by 65°C < Tgpp <
75.5°C as the operators have experienced that operation between these temper-
atures provide a low risk of powder lumps forming in the SFB.

2.5.5 Summary

The presented model, also provided in Paper [G] describes the four-stage spray
dryer as a deterministic system of ordinary differential equations (ODEs). The
ODE model may be represented in discrete form

Tht1 = F(.rk,uk,dk,e) (2.18&)
Yk = hy(xk) (2.18b)



36 Four-Stage Spray Dryer Models

in which F'(-) is the solution of the system of differential equations

T(ty) = T (2.19a)
%x(t) = f(z(t), up, di,0) tp <t <tpin (2.19b)
Tht1 = T(tk+1) (2.19¢)

Equation is solved using the ESDIRK4(3) method with variable step-
size [VJTS10]. The state x(t) represents hold-up of mass and energy and
f(z(t), ug, di, 0) is the flux of mass and energy. hy(zx) is the measurement
equation. 6 is the unknown parameter vector that has to be estimated from
data. 0 is identified by minimization of the sum of squared simulation errors.

The measurement and output vector, y, the input vector, u, the disturbance
vector, d, and the state vector, x, are

r 2.20a

2.20b
2.20c
2.20d

o Tsr Yab TvrBn TvrBe Sab  Scd]
T
Ff Tmam sfb vabh}

T
Sf Tf amb Fmain stb vabh vabc Tamb vabc]
] T

—

= [Ts
=1
=
[

z=|Tsp TsrB Yab Xab TvFBn TvFBe Yed Xecd

—~
— — =

2.6 Discrete Time State-Space Model

Linear models take many forms and may be identified directly from data or by
linearization of first-principles models. Examples of linear input-output models
are the finite impulse response (FIR) models, autoregressive exogenous (ARX)
models, autoregressive moving average exogenous (ARMAX) models, step re-
sponse models, impulse response models, transfer-function models etc.

In general, all these models can be represented as linear discrete time state-space
models. The state-space models have the form

Tpy1 = Axy + Bug + Edy + oy (2.21a)
yr = Cyxp + oy (2.21b)

in which z, is the state vector, uy is the input vector, dj, is the disturbance vector
and yy is the measurement vector. (A,B,E,Cy) are the state-space matrices.
ox and oy contain the constants related to the linearisation of the model, i.e.
Ox = Tss — ATgs — Bugs — Edys and oy = yss — CyTs.
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In Paper [B] Paper [E]and Paper [H] we identify state-space models by linearization
of the control model in Section [2.5] In Paper [[] we get the state-space model
from a transfer-function model identified solely from data to ease the required
modeling work, as we do not know the accuracy of the nonlinear control model
on milk products and industrial sized dryers. Discretization of the model is
performed using the matrix exponential, assuming a zero-order-hold sampling
system.

2.7 Model Validation

In this section, we asses the quality of the deterministic simulation and control
models by comparing its outputs with the estimation and validation experiment.
The simulation model is described in Section 2.4] and the control models are
described in Section 2.5 and 2.6

Fig. 2.7 shows the outputs of the estimation experiment which is used to identify
the parameters. Fig. shows the validation experiment. The deterministic
model simulations are shown for each model in the same figure. The inputs and
disturbances of the two experiments are shown in Appendix [A]

All three simulations show good agreement with the estimation experiment.
The transients and the steady-states are well described by the models. The
simulation model renders all the outputs well compared to the data. The stage
temperatures, T', and the air humidity in the SD stage, Y, fit the data well.
The powder moisture contents, .S, also fit the data well, but deviates slightly at
low residual moisture levels. The nonlinear and linear control models simulate
the stage temperatures, 7', and the air humidity in the SD stage, Y, well. The
powder residual moisture content, .S, in the SFB stage do not render the same
high accuracy as seen for the simulation model. The VFBc outlet moisture
content fit the data well. The simulation accuracy of the SFB moisture content
is not as important as the VFBc moisture content, as it is seldom measured
and used for control anyway. The nonlinear and linear control models show
almost equal simulation abilities, except for very large steps in the ambient
air humidity. This is due to the non-linearity in the model of the equilibrium
moisture content.

The moisture content is in general difficult to estimate at low moisture contents,
due to an increasing dependency on the equilibrium moisture content, X.q, in
(2.1). The equilibrium moisture content is estimated based on laboratory tests,
which do not render the conditions in a spray dryer well. Thus, we expect some
deviation as the equilibrium moisture content becomes significant.
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The VFBc stage is not sealed from the surrounding air, since the powder nat-
urally has to be emptied from the VFBc stage. The residual moisture content
may therefore be subject to an unknown disturbance. Note, that the communi-
cation to the VFBc residual moisture sensor dropped out in the period t=16.5
hours and t=18.2 hours due to a malfunction.
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puts of each model. T" and Y are the temperatures and abs. hu-
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Figure 2.9: Simulated responses to several steps in the inputs.

The three simulations also show good agreement with the validation experiment.
The transients and the steady-states are well described by the models. The tem-
peratures and air humidity, 7" and Y, fit the data well during both disturbance
and input steps. The powder moisture content, .S, from the simulation model
is estimated well, but some in-accuracies are present at low residual moisture
contents. As for the estimation experiment, the control models do not render
the SFB powder moisture content well. The VFBc moisture content fits the
data well.

2.8 Step responses

Fig. [2.9) shows the step responses of the simulated outputs to the inputs. The
responses are simulated using the simulation model of the four-stage spray dryer
in Section [2.4] The control models provide similar responses. The initial offset
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Figure 2.10: Simulated responses to several steps in the selected disturbances.

in the outputs is removed and every 90 minutes the step-size of the inputs is
increased. This makes it possible to identify the effect of the non-linearities in
the model. In the first row of Fig. a 50 kg/hr increase in the feed flow
rate, F}, is shown to have a significant effect on all outputs. When the feed flow
rate increases, the temperatures decrease, the air humidity increase, and the
residual moisture content in the powder increase. The temperatures decrease
because more water and feed need to be evaporated and heated with the same
amount of energy from the inlet air. The air humidity increase as a consequence
of the increased evaporation of water from the powder. The residual moisture
content in the powder increase because the stage temperatures decrease and
the air humidity increase. The plots in the second, third and last row of Fig.
2.9 indicate the step responses to a 20°C reduction in the main hot inlet air
temperature, Ty .1y, the inlet air to the SFB stage, Ty, and the inlet air to the
VFEBh stage. Tiain and Ty, both significantly affects the temperatures in the
SD stage and the SFB stage. The similar effect is due to the mixing of the air in
these two stages of the four-stage spray dryer. Tiain and Ty, hardly affects the
temperature in the VFBh stage and in the VFBc stage. T, s, mainly affects the
temperature in the VFBh stage of the four-stage spray dryer. Tiaim and Ty
decrease the residual moisture of the powder at the SFB stage and the VFBc
stage. Tymn only decreases the residual moisture content at the VFBc stage.
This is as expected given the design and flows of the four-stage spray dryer.
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Fig. [2.10] shows the step responses of the simulated outputs to the main distur-
bances of the four-stage spray dryer. These disturbances vary during production
and a controller must adjust the inputs to compensate for these disturbances.
The ambient air humidity, Yamp, varies due to changing weather conditions and
the feed, St and T}, varies due to variations in the upstream processes. The first
row of plots in Fig. [2.10 shows the responses to a 20 g/kg step increase in the
ambient air humidity, Yaup, in the SD, SFB and VFBh inlet air streams. The
VFBc inlet air is assumed dehumidified as is often the case. The ambient air hu-
midity has a direct effect on the outlet air humidity in the SD stage. The stage
temperatures are only marginally affected. The ambient air humidity leads to
a significant increase in the residual moisture of the powder in both the SFB
stage and the VFBc stage. The second row of plots in Fig. [2.10] illustrates the
response to step decreases in the feed solid concentration, Sy. This decreases the
air temperatures in particularly the SD stage and the SFB stage, increases the
SD air humidity and increases the residual moisture content of the powder. The
third row of plots in Fig. 2.10] demonstrates that the feed temperature, T¢, has
an effect on the residual moisture of the powder. It also affects the temperature
at the SFB stage, but hardly at the other stages and has only a limited effect
on the SD air humidity.

Fig. 2.9 and Fig. [2.10] do not indicate the presence of severe non-linearities.
Non-linearities would show as a change in the relative step-change of the result-
ing simulated outputs or a change in the time to steady-state. The figures on
the other hand clearly indicate a highly cross-coupled system model, in which
one input has an affect on several simulated outputs. We conclude, based on
the simulations and step responses, that the use of linear models can be used to
accurately simulate the outputs of the four-stage spray dryer.

2.9 Summary

In this chapter, we developed a simulation and a control model for an MSDTM-20
four-stage spray dryer.

e We introduced the experimental dryer setup and presented an estimation
and a validation experiment conducted on the spray dryer. The experi-
ments provide the basis for identification and validation of the models with
well excited inputs and disturbances. Laboratory tests were conducted to
identify the equilibrium moisture content and stickiness of the powder.

o We presented a first-principles index-1 DAE model, based on mass and
energy balance principles, for simulation purposes. The model describes



44

Four-Stage Spray Dryer Models

the evolution of the air temperatures, the air humidity and the powder
moisture contents in each state. The model provides simulations that fits
the validation data well.

We developed a lumped ODE model, based on mass and energy balance
principles, for design of the controllers. The model describes the evolu-
tion of the control relevant outputs only and fits the validation data well.
Compared to the simulation model this model contains fewer states and
parameters, thus simplifying the computational demand and identification
complexity.

We showed that linear models of the spray dryer simulates the outputs well
and that the models have strong input-output cross-couplings. A linear
control model is also provided based on the lumped ODE model.

Deposits caused by stickiness of the powder is predicted in both models
by the glass-transition temperature.

The KPIs are computed as part of both models.



CHAPTER 3

Control Strategies

In the following, we briefly provide an overview of the three control strategies
that are investigated in this thesis i.e. the conventional PI control strategy,
the MPC with RTO strategy and the E-MPC strategy. In all three control
strategies the inputs, u, are kept at their setpoints by low level PI controllers.
These are not considered further in this thesis. Fig. illustrates the working
principles of the high-level controllers. Fig. [3:2]illustrates the conceptual control
performance of the controlled outputs.

Fig. [3.1(a)|illustrates the single input and single output PI control strategy. The
PI controller measures and controls the spray dryer temperature, y = Tsp, to the
target, r, by manipulating the feed flow rate, u = F;. The inlet temperatures,
(Twmain, Tstb, Tyibn ), are not manipulated in the PI control strategy. Fig. [3.2(a)|
illustrates that the controlled outputs in the PI control strategy have fixed
constraints for relatively long times of operation as the setpoint, r, is only
changed manually. Furthermore, the PI control strategy has a relative large
output variance such that the required back-off from the constraint is larger
than for the advanced process control strategies (MPC with RTO and E-MPC).
As a consequence the uncontrolled outputs, i.e. the residual moisture content
and stickiness of the powder, have a large variance and the profit of operation
is as a consequence significantly decreased most of time.

Fig. [3.1(b)| illustrates that the MPC with RTO is a two layer optimization
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Figure 3.1: Illustration of the working principle of the three control strategies.

based controller. Using the measured disturbances, d, the estimated states, Z,
the operating profit function, the constraints, and a steady-state linear model,
the RT'O layer computes the optimal setpoints, r, for the ouputs, z, by solving
a steady-state optimization problem. The MPC layer in the MPC with RTO
solves a weighted and regularized least-squares problem with constraints using
a dynamic linear model. The MPC is based on feedback from the measurement,
y, and feed-forward from the measured disturbances, d. The MPC brings the
controlled outputs, z, to the target, r, by manipulating, u. As illustrated in
Fig. the RTO adjusts the setpoints including the corresponding back-off
to the variations in the disturbances. The back-off of the MPC with RTO is
smaller than the back-off of the PI control strategy due to better regulation by
the MPC. We apply an explicit iterative optimization method with bias update
adaptation in the RTO layer to determine the setpoints [FCB15]. The economic
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value of the MPC with RTO stems from the adjustment of setpoints to the
actual disturbances and less back-off as a consequence of better regulation with
less output variance.

Fig. [3.1(c)| illustrates that the E-MPC is a one layer optimization based con-
troller. Based on the measurements, y, the measured disturbances, d, the profit
function, the constraints, and a nonlinear model, the E-MPC computes the in-
puts, u, at each sample time to maximize the predicted profit of operation. Fig.
shows that E-MPC does not compute targets directly, but maximizes op-
erating profits subject to constraints. This implies that the optimal controlled
outputs corresponding to the optimal inputs, u, are adjusted and predicted at
each sample time. The back-off in E-MPC may be implemented directly or by
solving stochastic versions of E-MPC using soft constraints with penalty func-
tions representing the economic cost of violating a constraint. In this thesis,
we used a certainty-equivalence E-MPC and did not explicitly consider back-off
from the constraints.
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Figure 3.2: The sketches illustrates the control of the outputs, the correspond-

ing setpoints (if relevant), r, and the corresponding constraints for
the three controllers.



CHAPTER 4

Proportional and integral (Pl)
Control

In the following, we briefly present the conventional PI control strategy for
control of the four-stage spray dryer. This control method is the reference to
which we compare the performance of the MPC strategies. The PI control
strategy is the standard control method used in the spray drying industry.

4.1 Control principles of PI Control

Proportional and integral (PI) control offer a simple solution to steer a controlled
value to a target and reject disturbances. It counteracts the measured error by
a proportional gain and ensures offset-free tracking by integral action.

In the conventional PI control strategy, a number of low level PI controllers keep
the inlet temperatures constant during operation. These low level PI controllers
maintain the main inlet air temperature, the SFB inlet air temperature, and
the VFB inlet air temperature at a fixed setpoint by adjusting the power of
the heaters for the respective inlet air streams. The main controller in the PI
control strategy is a high level PI controller that controls the chamber exhaust
air temperature, Tsp, to a fixed target, Ty, by manipulating the feed flow rate,
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Figure 4.1: Illustration of the PI control strategy.

F;. The inlet air temperatures are controlled constant at Tiain, Tsmp and Tygph.
The main disturbances are the absolute ambient air humidity, Y., the feed
solids concentration, St, and the feed temperature, Tt. No feed-forward of the
disturbances are needed as the exhaust air temperature is tracking the setpoint
well.

The measurement and output vector, y, and the input vector, u, are

Yy = 1?3[) u = 17} (4.1)

Fig. illustrates the PI control strategy for control of the exhaust air tem-
perature and Fig. provides an overview of the spray dryer, the symbols and
the naming convention.

The PI control strategy is simple, but does not control the residual moisture and
does not control the stickiness of the powder in the chamber. This implies that
the residual moisture cannot be guaranteed to satisfy the quality constraints
and that deposits may form on the chamber walls due to sticky powder inside
the dryer. The additional inputs and outputs of the dryer that are related to
control of these properties are highly cross-coupled and long process delays may
be present. These features make it difficult to optimally operate the spray dryer
using additional PI controllers. The cross-coupled dynamics also makes the
process difficult to operate under the current PI control strategy for the operator.
The operators therefore tend to fix the exhaust air temperature target at a
high level, resulting in extensively dried powder, to meet the residual moisture
constraint and avoid stickiness of the powder at all time. Thus, the energy
consumption is increased, the energy efficiency is decreased and the powder
residual moisture content is often very low.
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Algorithm 1 PI Algorithm
Require: yi, i, Ij
e =Tk — Yk
ur = Keep + I,
U = Min(Umax, MaX(Umin, Uk))
Ik+1 = Ik + (TSKC/TC) €k
return wug, I

4.2 Regulator

The main challenge in using PI control is tuning of the gain and integral time.
We used the SIMC tuning method with good results [Sko03|. Using input-
output data of the simulation model in Section [2.4] we approximate the transfer
function from F; to Tgp with the first order model

K,

Y(s) = s j’r 1 U(s) (4.2)

K, = —0.35 °C/(kg/h) and 7, = 122 s. In continuous-time the PI control law
is

TS+ 1
U(s) =K. P (R(s) —Y(s)) (4.3)
Aiming for at closed-loop time constant of 7, = 50 s we get the following

PI control parameters using the SIMC tuning rule: K. = (1/K,)7,/7a =
—6.97 (kg/h)/°C and 7, = min{r,, 47} = 122 s.

Algorithm [1] transforms the continuous-time PI controller (#.3) to a discrete
time PI controller using the explicit Euler method [AHOG, Aﬁﬂ. The imple-
mentation outlined in Algorithm [l| provides bumpless parameter changes and
handles control signal saturation. Bumpless transfer between manual and auto-
matic mode is obtained by setting Iy = ug — K.(r¢o — yo) when the PI controller
is switched on to automatic mode. In the implementation we do not consider
anti-windup nor setpoint weighting. For the PI control strategy we use a sample
time of Ty = 30 8, Umin = 0 kg/hr and umax = 140 kg/hr.

4.3 Closed-loop Simulation

The performance of the PI control strategy has been investigated by a closed-
loop simulation. The simulation model presented in Section [2.4]is used with the
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Figure 4.2: Industrially recorded disturbance scenario.

above PI controller fitted to control the exhaust air temperature, Tsp, to the
target, Typ, using the feed flow rate, Fr.

We use an industrially recorded disturbance scenario in order to produce realistic
simulations and concluding performance measures. The three control strategies
in this thesis are compared using the same disturbance scenario shown in Fig.
[£:2] The feed solids concentration, St, the feed temperature, T¢, and the ambient
air humidity, Yamp, are recorded disturbances from a larger dairy spray dryer.
The feed solids concentration, St, have a relatively large variance where as the
feed temperature, 7%, is well controlled compared to other dryers. The ambient
air humidity, Yamn, resembles the variations from a normal humid summer day.
The disturbances, Finain, Fstbs Fvtbh, Fytbe, Lvibe and Tymp are constant.

Fig. shows the measured outputs, the target and the inputs of the closed-
loop simulation. The simulation shows that the PI controller is able to maintain
a stable exhaust air temperature, Tsp, and avoids violation of the stickiness con-
straint, i.e. the glass transition temperature. Notice the mismatch between the
stickiness constraint predicted by the simulation model, TgSD, and the control
model, T5P. By design, 757, which we use for control purposes is conserva-
tively made compared to Tf D at all time. The exhaust air humidity, Y,p, and
the residual moisture content, S.q, are not controlled and fluctuates according
to the disturbances. With the conventional PI control methodology no correct-
ing action is made, because the ambient air humidity, affects the air humidity,
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Table 4.1: Average KPIs for the PI controller.

KPIs Unit PI
Product flow rate F, 60.95 kg/hr
Energy consumption Qtot 87.2 kW
Specific energy consum. Qo | 516 MJ /kg

Fp
Residual moisture 1-S 3.37 %
Energy efficiency n 40.2 %
Profit of operation P 123.25 €/hr

Y. and the residual moisture content, S.q, not the exhaust air temperature.
Changes in the feed concentration, St, is better handled as the amount of water
entering the chamber directly affects the exhaust air temperature, Tsp. The
exhaust air temperature is largely dictated by the evaporation rate, and the
controller basically maintains a fixed rate of evaporation. The variations in Scq
and Y, require on average the dryer to dry the powder more than necessary
to keep the powder moisture content below the maximum limit and avoid vi-
olation of the stickiness constraint at all time. The powder is therefore dried
more extensively, to meet the residual moisture limit, which increases the energy
consumption, decreases the energy efficiency and the yield of the production. In
typical industrial operation, the operators have no in-line measurement of the
exhaust air humidity, Yap,, and the residual moisture content, S.q. Thus, they
are running almost in blind and must back-off even further from the process
constraints. This again increases the cost of operation.

The target of the high level PI-controller, Ti, = 80°C, and the low level con-
trollers are selected by hand to render the best possible profit of operation. The
closed-loop simulation in Fig. [£:3] therefore shows the most optimistic perfor-
mance that may be achieved by the conventional PI control strategy.

Table shows the key performance indicators (KPIs) of the closed-loop sim-
ulation presented in Fig. [£:3] The PI controller provides on average a product
flow rate at 60.95 kg/hr, an energy consumption of 87.2 kW, a specific energy
consumption of 5.16 MJ/kg, a residual moisture content in the powder of 3.37%
and an energy efficiency of 40.2%. This is the benchmark for comparison of the
following MPC strategies.
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4.4 Summary

In this chapter, we described the PI control strategy and performed a closed-loop
simulation for benchmark using the simulation model.

e We showed that the chamber exhaust air temperature, Tsp, is controlled
constant by manipulating the feed flow rate, F.

e The PI control approach is simple, but insufficient for controlling the resid-
ual moisture content and the powder can turn sticky inside the dryer.

e We showed that the variations in S.q and Yy}, requires on average the dryer
to dry the powder more than necessary to satisfy the residual moisture
specifications and stickiness constraint at all time.

e The average KPIs provide the best possible performance that can be
achieved by the PI control strategy. Industrial practice may be worse.
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CHAPTER 5

Tracking Model Predictive
Control with an RTO layer

In this chapter, we present the Model Predictive Control (MPC) algorithm that
combines a target tracking MPC and a Real-Time Optimization layer (MPC
with RTO), for control of the four-stage spray dryer. The MPC with RTO
is based on the linearized control model in Section 2.6l The MPC with RTO
manipulate four inputs and control four outputs to a target. The target is
adjusted by an RTO layer to provide the best steady-state economic performance
within the given process constraints.

The chapter provides a summary of Paper [B] Paper [E] and Paper [}

5.1 Control principles of MPC with RTO

The basic concept of MPC is to solve an optimization problem, incorporating
a dynamic model to forecast the model outputs, to produce the best control
move at the current time. To do that, an initial state of the model must be
estimated based on past recorded measurements [RM09|. The setpoint of the
MPC can be manually selected or computed automatically in the RTO layer.
Fig. illustrates the components of the MPC with RTO algorithm and shows
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the signal paths between the hardware, software and the individual software
elements.

In the MPC with RT'O control strategy we control four outputs by manipulation
of four inputs. The outputs are the exhaust and SFB stage air temperatures, Tsp
and Tspp, the exhaust air humidity, Y, and the VFBc stage residual moisture
content of the powder, S.q. The inputs are the feed flow rate, Ff, the main inlet
air temperature, Tiain, the SFB inlet air temperature, Tys,, and the VFBh inlet
air temperature, Tys,. The main disturbances are the ambient air humidity
Yamb, the feed solids concentration, Sf, and the feed temperature, 7;. The
selection of these outputs makes it possible to avoid deposits of sticky particles
on the spray dryer surfaces, avoid lumps of powder to form in the SFB and
control the residual moisture content below and close to the maximum limit.
The dryer inlet air temperatures are controlled, as opposed to controlling the
inlet air flows, in order to adjust the drying of the powder without compromising
the flow patterns of air inside the dryer and fluid beds.

The measurement vector, y, the output vector, z, the input vector, u, and the
main disturbance vector, d, are

y=[Tsp Tsre Yan Tveen TvFBe Scd}T (5.1a)
z=[Tsp TsrB Yap Scd}T (5.1b)
u=[Fr Tmain Tim vabh]T (5.1c)
d=1[S Tt Yam]® (5.1d)

Fig. provides an overview of the spray dryer, the symbols and the naming
convention of the outputs, inputs and disturbances.

Algorithm [2] lists the on-line computations in the MPC with RTO algorithm,
consisting of a state estimator with a filter and a one-step-ahead predictor step,
a regulator and an RTO layer. The sample time is Ts = 30 s. The target in
the RTO layer is computed every 25 min. At each sample, the state estimator
provides the initial state of the dynamic model, which in combination with the
model is used in the regulator to compute the future input trajectory. The opti-
mization in the regulator results in a sequence of inputs for a finite horizon (the
control and prediction horizon), out of which only the first input is applied to
the dryer. This procedure is repeated at each sample instant. The optimization
problem has to be implemented efficiently and robustly, as it is repeatedly solved
numerically in real-time. The target of the target tracking MPC is computed
by the RTO layer and the MPC then steers the dryer to that target. The RTO
seeks to optimize the process economics while satisfying the process constraints.
In this way, the MPC reduces the variance of the controlled outputs, making it
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Figure 5.1: Illustration of the MPC with an RTO layer.

possible to squeeze and shift the target, computed in the RTO layer, to a more
profitable value.

We use the so-called separation and certainty equivalence principle [Wit71}
Theb7,Mal69] in the formulation of the MPC with RTO. This means that the
state estimation and the regulation problem can be decoupled (separated) and
that the random variables in the regulation problem can be replaced by the
conditional expectations of the costs, predictions of the states, disturbances etc.
Thus, the control model simplifies to a deterministic model. The key advantage
is that the computational load is significantly reduced compared to for instance a
mean-variance approach based on Monte Carlo simulations. The repeated opti-
mization procedure in the MPC provides feedback and form a closed-loop input
trajectory. This enables the MPC to counteract model uncertainties, model
mismatch and unknown disturbances.

5.2 Linear Model

The linear model, which is used in the state estimator, the regulator and the
RTO, is a linearization of the nonlinear control model with reduced complexity
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Algorithm 2 MPC with RTO Algorithm

Require: yi, di, Tyjp—1, Prjp—1, Ur—1
Filter:
Compute the one-step ahead measurement prediction
Uklk—1 = Cy xTp|k—1 + Oy i,
Compute the filtered state
Re i = Cy o Prji— 1C’ k+Rvk
Ke o = Pk|k 1CF
Tk = Tgjp—1 + fo k(yk - yk\k 1)
Py = Prjp—1 — Keep Re 1 K
RTO:
Tr = p(i'k‘“ca dkv k)
Regulator:
up = (T, Trjk, Uk—1, di)
One-step predictor:
Compute the one-step ahead state, xk_,_”k, using
Tqrje = AZje + Bug + Edy + 6
Pk+1\k = APk‘kAT + GR,GT
return ug, Tp1k, Pk

compared to the model used for simulation of the spray dryer. Section de-
scribes the nonlinear model from which the linear model presented in Section
in the MPC with RTO is derived. Compared to the simulation model in
Section the nonlinear model that is used to derive the linear model of the
MPC with RTO contains fewer states and parameters. This simplifies the pa-
rameter estimation and identification of the model. The model parameters in
the complexity reduced model are identified from data produced by the simula-
tion model as outlined in Section subject to step-inputs. The complexity
reduced model is linearized at steady-state and close to the operating point of
the controller. The model could as well be identified directly from process or
simulation data and with alternative black-box models.

To achieve offset-free output estimation (and control) at steady-state, in the
presence of plant/model mismatch and/or un-modeled disturbances, the model
is augmented by integrating disturbance states [PRO3,[PGA15|. In Paper
Paper [E] and Paper [H] we select pure input disturbances, i.e. Cq = 0 and By to
subject the energy- and the vapor mass balances to the disturbance integration.
In Paper [[| we select pure output disturbances, i.e. Cq = I and By = 0.

The augmented linear control model is

Tpy1 = ATy, + Buy, + Edy + Gy, + 6y (5.2a)
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Oyfk + oy + vg (5.2b)
Z‘fk + oy, (52(3)

Yk

w
ol
I

where Ty, = [z; 24]r € R" is the augmented state vector, uj, € R™ is the inputs,
di, € R™ is the measured disturbances, and y; € R™v is the measurement vector.
The measurement vector may vary in size, because the exhaust air humidity and
residual moisture measurements may be lacking for several samples. z; € R™= is
the controlled outputs. The augmented process noise is Wi ~ Niiq ((), Rw) and

the measurement noise is vy, ~ Niq(0, Ry). G = I is the noise to state matrix.
The augmented state-space matrices are

A- {g‘ fjd] B- {g] E- m G, =[C, CilC=[C, Ca (53

0x, 0y and o, contain the constants related to the linearisation of the model,
ie. Gy = Tgs — AZgs — Bugs — Edss, Oy = Yss — C'yi"ss and o, = zss — C,Tss. The
augmented state vector is Zss = [2ss; 0]. The state-space matrices (A,B,E,Cy)
are provided in . C, and o, are formed by row selection of C, and o.

5.3 State Estimation

A Linear Time Variant (LTV) Kalman filter is used to estimate the state of the
model based on the measurements, y, and the inputs, ug. The measurement,
Yk, may vary in size due to missing observations e.g. the residual moisture
content in the powder. We use the time variance of the Kalman filter to enable
the estimator to handle these missing measurements.

Algorithm 2] provides the state estimator equations. The filtering part corrects
T, using the latest measurement, y;. The filter part enables handling of missing
observations by constructing the measurement related properties (C'y,k, Oy k>
Ry ) from (Cy, oy, Ry) according to the measurement vector, yj, at sample

k. (Cy, oy, Ry) is the matrices for all possible measurements in , while
(Cy ks 0y .k, Ry ) are the matrices corresponding to the actual measurements
available at sample k. The filtered state is subsequently used in the regulator
as the initial state and in the RTO layer. The predictor part uses the model to

predict g1
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5.3.1 Maximum Likelihood (ML) Tuning

The noise variance matrices, Ry, and R,, are estimated using the Maximum
Likelihood (ML) method [KMJ04,JJ07b,JJ07a]. Let 6 = [fy;6,] be the di-
agonal elements so R, = diag(fy) and R, = diag(6,). R,, and R,, needed
for the Kalman filter computations, minimize the negative log likelihood func-
tion [JJOTbLJJO7a)

_ o In(2m) & 1< _
VL (0) = (2 ) > gkt 3 > (ln[det(Re}k)] + efRe,,iek) (5.4)
k=1 k=1

with the innovation, ex = €(0) = yx — Urp—1(0), and its covariance, R =
Re x(0), computed by Kalman filter iterations i.e. Algorithm [2| without the
regulator and RTO computations, using recorded or simulated data. The ML
estimate of the variances is determined by solving the nonlinear (nonconvex)
optimization problem

mgin Var (0) (5.5a)

st 0, <0<, (5.5b)

with the lower and upper bounds, 0; and 0,. Having the optimal § = [0;0,]

provides the noise covariances, Ry, = diag(fy), and R, = diag(6y).

The model and the estimated covariances, Ry, and Ry, enables the compu-
tation of the stationary state covariance, P, of the augmented system by solution
of a discrete algebraic Riccati equation. The LTV Kalman filter is initialized
using 130‘_1 = P and 5_00\—1 = Iy = [Tss;0], where zg is the steady-state also
used for linearization of the model.

Knowledge of the model , the covariances, R,, and R,, and the measure-
ment, yi, enables the filter to estimate the current states, i.e. computation of
fk“c. The filtered state, fk“c, is used by the RTO, the regulator part of the
MPC, and the one-step prediction.

The ML method is computational expensive and the solution of may not
always converge [ORRO06,[RR09|, but the method has shown to provide good
results and naturally handles missing observations. The method is explored in
Paper [Bl Paper [H and Paper [ and showed to estimate Ry, and R, well.
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5.3.2 Autocovariance Least Squares (ALS) Tuning

An alternative method is the correlation technique, Autocovariance Least Squares
(ALS) tuning method [ORR06,RR09,AJPJ08|. The method has attractive fea-

tures, as it provides unbiased and positive semi-definite covariance estimates.

The computational burden of the method is also minimal even for large dimen-

sion systems and shows good convergence properties as well as noise estimation

properties [ORROGLRR09]. The method is explored in Paper |G|and also showed

to estimate Ry, and R, well. The drawback is that the method cannot handle

missing observations in a natural way |[ORRO6,RR09]. Therefore, we mainly

focus on the ML tuning method in this thesis.

5.4 Regulator

The regulator tracks the target, ry, provided by the RTO and rejects measured
disturbances, di, as well as unmeasured disturbances by solving the regular-
ized output tracking problem with input constraints. This problem may be
formulated as the convex quadratic program (QP)

N N-1
. 1 1
mn =~ ¢=3 > llzkss — mell30. + 5 > 1 Auk3 s, (5.6a)
{uk+j}j=0 j=1 j=0
s.t. T = %k\ka (5.6b

Thiji1 = AZpyj + Bugy; + Edy + 65,  jEN, (5.6¢c
Zij = CoTigj + 04, jEN, (5.6d
Umin S ukJrj S Umax s ] € Nu (566

in which Augyj = upyj — k-1, Mo ={1,2...,N} and N,, = {0,1...,N —
1} [Jer05]. The control and prediction horizons are, N = 30 min/T; = 60.
N is selected sufficiently long such that any end effects have no influence on
the solution in the beginning of the horizon. and are the model
constraints where (A,B,E,C,) and the offset constants, x and o,, are given in
(5.2). These constraints provide the model predictions of the augmented model.
The estimated current state, :%k‘k, is assigned to the initial state by .
The constraint in expresses the input limits. The objective function,
, is a convex quadratic function and the optimization problem is a convex
optimization problem. No forecasts are available for the target, ry, and the
measured disturbances, di. Therefore we use the same-as-now predictions in
(5.6). The tuning parameters, @, and S,, are selected by trial and error to
obtain an acceptable compromise between robustness and agility. The highest
weight is associated to the residual moisture content.
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The objective function in penalizes deviations from a target and includes
a regularization term on the control input. One may provide targets for both
the output variables and the input variables, but such formulations require a
separate target calculator to achieve offset-free control [Raw00|. Regularization
is important to make the closed-loop trajectory of the controlled process well-
behaved [PJ09,HLJB12]. The regularization term may be a linear or quadratic
penalty, where quadratic regularization favors smooth solutions [BV04]. In this
thesis we only use quadratic regularization.

5.4.1 Optimal Control Problem

The optimal control problem (OCP) in is solved by formulating the corre-
sponding boxed constrained QP with dense matrices. We use state elimination
and achieve a problem structure similar to the formulations in [Mac02,[PJ09|
JRH11,(HPJJ10,[HPJJ12]. State elimination is favorable when the number of
states, nz, is large compared to the number of inputs, n,, and for relatively
short prediction horizons, N [FJ13]. The number of states may be large in
our problem due to the potential incorporation of large delays and the Hankel
matrix realization of the state-space matrices.

The state, Ty, in (5.6)) is eliminated by repeated substitution of the state pre-
dictor in (5.6¢) such that

Jj—1 Jj—1 Jj—1
Frrs = Az + 3 A Buy + S A B+ Y A e, (5.7)
=0 =0 =0

which by (5.6d) results in the output predictions

|
—

J Jj—1

Zptj = Cvzlejfk + Czﬁjiliiéulﬁ_i + Z C’ZAjiliiEdk

=0
j — —_ .

+Y A e to,

%
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|
—
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The integrating disturbance states are fixed during the prediction horizon. Re-
call, that the augmented state vector is T = [zk; xq4x] and the augmented
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system in (5.3)), then the state predictor can be rewritten as

Jj—1 Jj—1
Zhyj = Co A mp + Y C,LAT V" Buy + Y C, AT B,
i=0 i=0
i (5.9)
+ Z CZAJ_l_z (O'X + ded,k) + (UZ + Cdxd’k)
i=0
j—1 j—1
= C, A2+ Hyuryi+ Y Haidit
i=0 i=0
i (5.10)
Z H, ;i (0x + Bazq ) + (0, + Cazar)
i=0

where H,; = C,A7"17'B, Hy; = C,A’"'7'E and H,,; = C,AI"1=% (5.10) is
an affine function which only depend on the initial state, T, = %k| k, the input,
Uk+i, and the disturbance, dy.

Define the vectors Z, R, U and D as

Zk41 Tk Uk dy,

Zgt2 T Uk+1 dy,
Zy = . Ry =|. Uy = . Dy =

24N Tk Uk N—1 dy,

Then the predictions, (5.10)), in vector-matrix notation are
Z =00, + T, Uy + TyDp + QX + 2,

Using the predictions in vector-matrix notation we can write the objective func-
tion as

1 N 1 N—-1
b= |z —mllo, + 2 ) [ Aurgyll3,
2 2
=1 =0
1 1
= §||Zk — Ry ll5. + 5\\Uk —Uk-1ll3,

1 1
= ST = (R + D)3, + 5 IAV: — Tow 3,

1
= iUkTHUk + 97U+ p
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where
H=T7Q.T, +ATS,A
g=-TTQ. (Rp —b) — ATS,Touy_1
1 1
p= §H —b—Ri5, + §||Iouk,1||2su
b= —(I)z(Ek — Fde — QEI — Zz

and the matrices; Q, = diag(Q.,...,Q.), Sy = diag(Sy, ..., Su)

CZA Hu,l
CZA2 Hu72 Hu,l
CZAN Hu,N to Hu,2 Hu,l_
Hd71 Ha,l 1
Hd,Z Hd,l HO',Q Ho’,l
Fd = . . Q - .
Hyn -+ Hgo Hga H,n - Hy2 Hy1]
I I Ox + Baxak 0, + Caa i
-1 I 0 0x + Baxg i o, + Odl'd,k
A= . . Ip=|. Yy = . Y, = .
-1 1 0 0x + Bazqi o, + Cdl'd,k

H,; and Hg; are the impulse response matrices. The terms originating from
1 = 0 are neglected, as there are no direct terms in the predictors [Mac02].

The constraints are assumed constant over the prediction horizon and uy;n <
Upt; < Umae May be written as

Umin < Uk < Umax
T 7T T T
where Upin = [(Umin)” ... (tmin)’]" and Unax = [(Umax)” -+ (Umax)’] -

We solve the tracking problem by solution to the following QP.

1
min iUkTHUk +g"UL+p (5.11a)
K
s.t. Umin S Uk S Umax (511b)
Given the solution, Uy = [(up)” (uj, )T ... (uz+N_1)T]T, the regulator

only apply the first uj, to the process. The open-loop optimization is repeated
at the next sample where it utilizes the new state estimate, s?:k| k-
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5.4.2 Optimization Methods

Many methods exists for solving the QP related to the control problem in .
The best choice of solver highly depends on the structure of the problem and
the accuracy requirements. The QP may be solved using algorithms such as
active-set methods [BB06, FKP™14,JRJ04], interior-point methods [RWR9S,
NWO06, BV04, [ESJ09, [Wri97,[WB10, FSD13| and first-order gradient methods
[Nes09,/CSZT12, RIM09]. Active-set methods updates the working set of the
active constraints until convergence is reached. These methods can be fast when
the working set does not change much. Interior-point methods reaches the so-
lution by traversing the interior of the feasible region. Interior-point methods
produce high-accuracy solutions using a few, but relatively computationally ex-
peunsive iterations. The solution is less depended on the starting point (which is
also allowed to be infeasible) and the number of active constraints. First-order
gradient methods have proven fast for large-scale distributed MPC problems
with dynamically coupled systems. These methods have slow convergence rates
compared to high order methods, but are favorable for less accurate solutions
and scales very well for large problems.

Warm starting of the solvers, i.e. re-using previous solutions, and early termi-
nation, i.e. stopping the optimization algorithm at less accurate solutions, can
be used to speed up the solution time significantly [SSF™13}[Sta15].

We use a primal-dual interior-point QP-solver for solution of based on
Mehrotra’s predictor-corrector algorithm [NW06,BV04] tailored to the QP struc-
ture |[ESJ09,lJRJ04]. Warm starting is used. The QP-solver reduces the com-
putation time considerably compared to general purpose QP-solvers.

The solution of (5.11)) is defined by the function

g, = pu(rh, Tk, Up—1, di) (5.12)

in which uy, is the first uj of U;'. The function defines the on-line computations
of the regulator, provided in Algorithm [3| and used in Algorithm

5.5 Steady-state Real-Time Optimization

The steady-state Real-Time Optimization (RTO) layer determines the target
that optimizes the cost of operation subject to the process constraints and con-
ditions such as feed compositions, production rates, energy availability, feed and
product prices [FCB15,[Eng07,DNJN11,[AO10,/AG10]. The RTO is based on the
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Algorithm 3 Regulator Algorithm, u(-)

Require: 7, fk|k7 Ug_1, di
Calculate g:

Rp={n}, . D= {d}i5
[Tr; Ta k] = Tk
Y, = [0 + Baxq; ... ;05 + Baxa]

Y. =0+ Cazap; - ;0. + Caza]
b= —‘wak - Fde — QZQJ — Zz

g = —F;{QZ (Rk — b) — ATsulouk_l
Solve QP:

ur= QPSolver(H,g,Umin,Umax)
return uy

assumption that the process and the disturbance transients can be neglected as
the process under control will reach and maintain steady-state operation.

Various RTO methods exist for on-line optimization of the process economics.
Implicit RTO methods e.g. the extremum-seeking control method, may be ap-
plied. But the slow process transients and long process delays in spray drying
may lead to a slow propagation towards the optimal residual moisture content.
We apply an explicit iterative optimization method with bias update adapta-
tion [FCB15| in the RTO layer, see Fig. This method is effective as the
same linear and fixed state-space model in the MPC can be used in the RTO.
The adaptation of correction terms are performed by the state estimator. Fig.
illustrates how model uncertainties are mitigated by the adaption of correc-
tion terms. The process profit function and the constraints are measurable from
the outputs, inputs and disturbances of the process providing a good estimate
of the optimum. Optimum mismatch will still be present due to measurement
errors and unknown disturbances, i.e. the optimum is only an estimate. The
driving force of the RTO is then to minimize the difference between the pre-
dicted and the measured profit function. The explicit method can be fast as it
can estimate the steady-state of the process from the model. The MPC with
RTO two-layer structure has some inherent drawbacks. The adaptation of the
operating conditions is slow as the optimization is only performed intermittently
at a low sampling rate [Eng07]. Furthermore, the RTO layer assumes that the
closed-loop process will reach a steady-state. Transients, such as target transi-
tions and the inherent effect of disturbances, may thus lead to loss of economical
efficiency.

The RTO solves the steady-state economic optimization problem

min ¢SS = _p(ZSS7 Uss, dk) + QZ)S(S) (513&)

Uss;Zss)S
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Figure 5.2: The left figure shows a situation with model mismatch. The right
figure shows the optimum is reached and the offset between the
real process and the model is corrected [Lar06|.

s.t. [0 1)Zss = [0 ) (5.13b)
Tgs = AZgs + Bugs + Edy, + o (5.13¢c)
zss = Cyis + 0y (5.13d)
Umin + 0y < Uss < Umax — Oy (5.13e)
(25) =02 +52>0 (5.13f)
520 (5.13g)

The target is set to the optimal controlled output value, iy = zs5, when
is solved. At the samples between the 25 minutes execution, is not solved
and the target is set to the previous target, rp, = rx_1. We denote this function
for the RTO by ry = p(ik‘k, di, k).

The objective function, ¢, is the sum of the profit function, p(zss, uss, di), and
a penalty function, ¢s(s), that penalizes violations of the output constraints.
The profit function, p(zss,uss,dx), is provided in Section m The penalty
function, ¢(s), is an o — ¢1-penalty function defined as

.
64(5) = 2151 gy + sl (5,14

This penalty function is used to treat the output constraints (5.13f) as soft
constraints [MRRS00]. The soft ¢ penalty is s,, and the soft ¢5 penalty is Sy =
diag(sw). sw is selected sufficiently large to avoid violation of the constraints in
general.

The integrating disturbance states, xq, = [0 I ]:fck|k, are fixed to their current
values by (5.13bf). These are not necessarily steady-state values. The linear
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model (5.2)) is used in the constraints (5.13c)-(5.13d]) to determine the steady-

state relation between the inputs, uss, and the controlled outputs, zss. The linear
model is used in the RTO for the spray dryer as the nonlinear effects are
mostly related to the output constraints. Note, that the model cannot and do
not contain pure integrators, as the steady-state computation implies the inver-
sion (I — A)~!. The nonlinear process constraints, c(zs), given in Section
contains the stickiness constraints of the powder and the operator defined limits
on the outputs. umin, and umax define the process input constraints. Together
these constraints provide a region in which safe operation is guaranteed. &,
contains a 2.5°C back-off in the input temperatures to avoid saturation and loss
of controllability. §, contains a 0.05 °C back-off in the stickiness constraint and
0.02 % back-off in the residual moisture. §, is selected to provide constraint
violations that are similar to the E-MPC strategy.

We use a Sequential Quadratic Programming (SQP) method for solution of
(5.13). The SQP method is a quasi-Newton implementation with linesearch for
step-size selection and BFGS update of the Hessian. In Paper [B] and [H] the
gradients are computed by a centered finite difference method and in Paper [[]
the gradients are computed analytically. We use the Matlab® function fmincon
[Mat15] to solve the SQP. This method performs well in terms of ef