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Summary (English)

The goal of this thesis was to develop a pharmacokinetics/pharmacodynamics
(PK/PD) model for glucagon. The proposed PD model included multiplication
of the stimulating glucagon e�ect and inhibiting insulin e�ect on the endogenous
glucose production (EGP). Moreover, the concentration-response relationship
of glucagon and EGP was characterized by a non-linear function, where the
response saturated for high concentrations of glucagon. The novel EGP model
extended Hovorka's glucoregulatory model to include the e�ect of glucagon.
The PK/PD model described both regular glucagon and a novel glucagon ana-
logue in healthy dogs. The extended glucoregulatory model translated to the
human species and described glucose-insulin-glucagon dynamics in healthy sub-
jects and patients with type 1 diabetes (T1D).
The extended glucoregulatory model was successfully validated by leave-one-out
cross-validation in seven T1D patients which justi�ed its use for simulations.
The �nal model parameters were estimated from three to four datasets from
each patient.
The validated extended glucoregulatory model was used for in silico studies.
The model replicated a clinical study of the e�ect of glucagon at varying insulin
levels. The simulations also suggested new glucagon doses to be tested in a
similar in vivo study to provide new insight to the relationship between insulin,
glucagon, and EGP. Finally, the model was used to conduct a large original
simulation study investigating an insulin dependent glucagon dosing regimen
for treatment of insulin-induced mild hypoglycemia.
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Summary (Danish)

Målet med denne afhandling var at udvikle en farmakokinetik/farmakodynamik
(PK/PD) model for glukagon. Den fremsatte PD model bestod af multiplikation
mellem glukagons stimulerende e�ekt og insulins hæmmende e�ekt på den endo-
gene glukose produktion (EGP). Derudover var dosis-respons forholdet mellem
glukagon og EGP kendetegnet ved en ikke-lineær funktion, hvor responset opnå-
ede mætning ved høje glukagon koncentrationer. Den nye EGP model udvidede
Hovorkas model for blodsukkerregulering til også at inkludere e�ekten af gluka-
gon.
PK/PD modellen beskrev både almindelig glukagon samt en ny glukagon analog
i raske hunde. Den udvidede model for blodsukkerregulering kunne overføres til
mennesker og beskrev glukose-insulin-glukagon dynamikken i raske frivillige og
patienter med type 1 diabetes (T1D).
Den udvidede model for blodsukkerregulering blev succesfuldt valideret ved brug
af leave-one-out krydsvalidering i syv T1D patienter, hvilket retfærdiggjorde
dens brug til simuleringer. De endelige modelparametre for hver patient blev
estimeret baseret på tre til �re datasæt.
Den validerede udvidede model for blodsukkerreguleringen blev anvendt til in
silico studier. Modellen efterviste et klinisk studie, som undersøgte e�ekten af
glukagon ved forskellige insulinniveauer. Simuleringsstudierne blev også brugt
til at foreslå nye glukagon doser, som kunne testes i lignende in vivo forsøg og
dermed bidrage med ny viden om forholdet mellem insulin, glukagon og EGP.
Endelig blev modellen brugt til at gennemføre et omfattende originalt simule-
ringsstudie, som undersøgte insulinafhængige doseringsvejledninger for glukagon
til behandling af insulininduceret mild hypoglykæmi.
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Chapter 1

Introduction

Diabetes mellitus (DM) or simply diabetes, is a chronic disorder where the body
does not have the ability to control the blood glucose concentration (BG). Over
time, untreated DM leads to irreversible damage to essential tissues of the body
like nerves and blood vessels. The World Health Organisation (WHO) estimated
that DM a�ected 422 million people world wide in 2014 [1]. The disease is either
due to destruction (often autoimmune) or removal of insulin producing cells in
the pancreas (type 1, 10%) or due to lifestyle related lowered insulin sensitivity
by insulin consuming cells of the body (type 2, 90%).
For almost 100 years, diabetes patients have been treated with insulin which
is a hormone that lowers the BG. Traditionally, type 1 diabetes (T1D) was
controlled by measuring BG via multiple daily �nger pricks and adjusting in-
sulin dosage accordingly to maintain normoglycemic range (70-125 mg/dL or
4-7 mmol/L). The recent introduction of continuous glucose monitors (CGM)
has signi�cantly improved BG control in adults with T1D [2]. However, BG
regulation using insulin only is a trade-o� between achieving closer glycemic
control, i.e. minimizing time in hyperglycemia (high BG), and increasing the
risk of hypoglycemia (low BG) [3].

The biggest fear to parents of children with diabetes is an unnoticed hypo-
glycemic event [4]. Hypoglycemic episodes occur when the ratio of glucose to
insulin is out of balance: e.g. excessive insulin dosage, lack of glucose intake
due to a missed meal or increased use of glucose because of aerobic exercise.
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Calculated dosing

CGM reading
Hormone infusion

Figure 1.1: Concept of a closed loop arti�cial pancreas: The CGM measures
the glucose concentration, sends it to a control algorithm that de-
termines the hormone dosing, which is then delivered via a pump.

Depending on the severity of hypoglycemia it can lead to seizures, coma or even
death. Often, the dangerous events are not associated with warning symptoms
and they typically occur during sleep [3, 5]. Large population studies estimate
that 6% of deaths among young diabetes patients (< 40 years) can be attributed
to dead-in-bed syndrome most likely due to fatal hypoglycemia [6].
In the healthy body, BG is not regulated by insulin alone but by several hor-
mones serving to control BG e.g. glucagon that increases release of glucose from
storage as glycogen in the liver. To mimic non-diabetes function and improve
BG control, recent studies re-investigated the counterregulatory e�ect of using
glucagon together with insulin [7].

For more than forty years, scientists have worked on developing an arti�cial
pancreas to simplify the life of T1D patients by minimizing the daily treatment
decisions and thereby improve quality of life [8]. The arti�cial or bionic pan-
creas is an interconnected system of devices including a CGM, a subcutaneous
(SC) insulin (and glucagon) infusion pump and a control algorithm determining
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the needed infusion(s) based on input from the CGM to maintain BG within
normoglycemic range as illustrated in Figure 1.1. Glucagon in a dual hormone
closed loop system may increase safety against hypoglycemia compared to a
single hormone system.
The �rst modern in vivo study of closed-loop control by an algorithm using a
dual hormone system was carried out in diabetic pigs in 2007 [9]. Since then,
numerous bi-hormonal closed loop studies have been conducted under various
conditions in direct comparison to single hormone closed-loop and/or conven-
tional insulin therapy [10].
Published results using dual hormone therapy are encouraging as the future
treatment of type 1 diabetes. The reason why glucagon is not yet part of pump
treatment is due to its physical and chemical properties: the hormone rapidly
forms amyloid �brils turning the compound into insoluble gel that occludes the
infusion tubes within hours [11]. Even though the antihypoglycemic e�ect of the
hormone seems to be intact after storage at room temperature for seven days
[9, 12], formation of �brils may increase the immunogenic response towards glu-
cagon leading to unfavorable side e�ects [13]. Therefore, to use glucagon in
pump therapy, a stable version of the hormone is needed that can stay solu-
ble without degrading at various temperatures and pH-values for an extended
period of time. Currently, no such commercially available glucagon compound
exists. However, Zealand Pharma A/S (Zealand) has developed a stable and
soluble glucagon analogue which is currently in phase II development [14].

A more elaborate introduction of the hormone glucagon is written in Chapter
2. The chapter discusses the pharmacokinetics (PK), the pharmacodynamics
(PD), and the di�erent applications of glucagon. It also provides an overview
of drugs being developed to replace the current unstable glucagon products.

1.1 Hypotheses and Aims

The main ambition in the project was to develop high quality PK/PD models of
a novel glucagon analogue and regular glucagon. The models should be usable
for simulations that could provide new insights into the glucoregulatory dynam-
ics, optimizing study designs and ultimately accelerating the drug development
of glucagon analogues. Furthermore, good models could be used for designing
and testing dual hormone arti�cial pancreas control algorithms, which was how-
ever beyond the scope of this project.
The project was based on regular glucagon and when possible a novel glucagon
analogue developed by Zealand. Previous research related to numerical mod-
eling, simulation, optimization and control for an arti�cial pancreas provided
a foundation for the project [15, 16, 17]. The project was structured in three
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stages with distinct foci. The three stages represented natural progression and
extension of previous research in the PhD project.

1. The �rst stage of the project focused on characterization of PK/PD prop-
erties of a novel soluble glucagon analogue and marketed glucagon in an-
imals. Moreover, this stage aimed to develop a model of the glucose PD
as a function of insulin and glucagon.

2. The second part of the project focused on applying the developed PK/PD
model to human data. Moreover, this stage aimed to cross-validate the
new PD model to be used for simulation studies.

3. The third stage of the project focused on using the human PK/PD model
for clinical relevant simulation studies to aid in better understanding of
the dynamics and design of experiments.

1.2 Contributions

This PhD project has contributed with �ve publications and �ve posters pre-
sented at conferences in Europe and the USA. A short resume of the publications
are provided here in order of publication date.

Wendt et al. published a technical report with the title "PK/PD modelling of
glucose-insulin-glucagon dynamics in healthy dogs after a subcutaneous bolus
administration of native glucagon or a novel glucagon analogue" through the
Technical University of Denmark in April 2016 [18]. The publication is included
in Appendix A.
The report focused on developing a simulation model of the glucose-insulin-
glucagon dynamics using data from healthy dogs. The Hovorka glucoregulatory
model was expanded to include a model description of the stimulatory e�ect of
glucagon on endogenous glucose production (EGP). The report explained the
applied methods including maximum a posteriori (MAP) parameter estimation
and pro�le likelihood analysis.
Moreover, the report compared PK/PD model parameters of regular reconsti-
tuted glucagon and a novel stable liquid glucagon analogue invented by Zealand.
The PD model described data satisfactorily for both glucagon and the analogue,
and the parameter estimates were not signi�cantly di�erent between the two
compounds.
Some of the applied methods are thoroughly explained in Chapter 3.

To investigate if the glucose-insulin-glucagon model translated to the human
species, Wendt et al. published a conference paper with the title "Modelling of
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Glucose-Insulin-Glucagon Pharmacodynamics in Man" which was published at
the 38th annual international conference of the IEEE Engineering in Medicine
and Biology Society (EMBC'16) in Orlando, Florida during August 2016 [19].
The paper is included in Appendix B.
The paper focused on �tting the previously published glucose-insulin-glucagon
model to data from healthy humans. Model parameters were estimated by MAP
and parameter identi�ability investigated with pro�le likelihood analysis. The
model �tted data well and enabled simulations of the glucose-insulin-glucagon
dynamics within physiologic concentration ranges: glucagon (180-8000 pg/mL),
insulin (1.2-81.9 mU/L) and glucose (3.3-11.5 mmol/L).
The EGP model is compared to other glucose production models and discussed
in Chapter 4.

A simulation model is rarely useful or trusted without validation, therefore
Wendt et al. published a journal paper with the title "Cross-Validation of a
Glucose-Insulin-Glucagon Pharmacodynamics Model for Simulation using Data
from patients with Type 1 Diabetes" which was accepted for publishing in Jour-
nal of Diabetes Science and Technology in January 2017 and published online
in February [20]. The published paper is included in Appendix C.
The paper focused on validating the proposed glucose-insulin-glucagon model
in patients with T1D and providing the �nal model parameters of the virtual
patients to be used for simulation studies. Maximum likelihood (ML) and MAP
methods were used for parameter estimation. Validation was carried out as a
four-fold leave-one-out cross-validation with data from eight patients and as-
sessed using mean predictive error (MPE) and mean absolute predictive error
(MAPE). The model was successfully validated in seven of the patients.
The complete glucoregulatory model with equations and parameters are pre-
sented in Chapter 5.

Wendt et al. then published a technical report with the title "Simulating Clinical
Studies of the Glucoregulatory System: in Vivo Meets in Silico" through the
Technical University of Denmark in February 2017 [21]. The report is included
in Appendix D.
The report contains results of various simulation studies with the validated
glucose-insulin-glucagon model including replication of an in vivo study. It
also contains simulation studies to investigate the glucoregulatory dynamics of
discontinuing insulin and glucose infusions prior to glucagon administration,
the delayed e�ect of insulin, timing of data sampling, and carryover e�ects from
multiple SC doses of glucagon. Based on simulations, the report discussed two
hypotheses of how the interactions between insulin and glucagon impact the
glucose response. Finally, a study design that could potentially explore if the
hypotheses are true or false were proposed.
Chapter 5 presents highlights of the report.
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The simulation model showed its clinical relevance in a paper with the title
"Insulin Dependent Regimen of Mini-Dose Glucagon Treatment of Mild Hypo-
glycaemia in Patients with Type 1 Diabetes - A Simulation Study" which will
be submitted to Diabetes Technology & Therapeutics in Spring 2017 [22]. A
draft of the paper is included in Appendix E.
The paper presents an original simulation study with the seven validated virtual
patients. After insulin-induced mild hypoglycemia the success of various sized
glucagon boluses in restoring plasma glucose in the presence of varying insulin
levels was evaluated. Insulin levels were interpreted as serum concentration or
e�ect in the body either uncorrected or normalized to factors describing the
individual insulin sensitivities. The success of glucagon in treating mild hypo-
glycemia was based on clinically relevant criteria.
Chapter 5 presents one of the study results.

1.2.1 Summary

In summary, the main contribution of this thesis is a mathematical model de-
scribing the e�ect of insulin and glucagon on the EGP in patients with T1D. The
novel model is built into Hovorka's glucoregulatory model. The PD model is
cross-validated using clinical data in seven T1D patients and the PK/PD model
parameters are estimated using ML and MAP methods. The glucose-insulin-
glucagon model can be used for simulations that can provide new insights to
the glucose dynamics and be a supplement to clinical studies.



Chapter 2

Glucagon

This chapter focuses on the hormone glucagon from a drug perspective. E�ects
of the body on the drug, PK, and e�ects of the drug on the body, PD, are ex-
plained. The PK for di�erent possible administration routes of glucagon as well
as the importance of assay choice for the PK/PD relationship are highlighted.
Furthermore, this chapter provides a brief overview of the regulation of EGP.
Current and future applications of glucagon include but are not limited to single-
use rescue treatment from severe hypoglycemia, multi-use mini-dose for treat-
ment of mild hypoglycemia, and safety feature in a dual hormone arti�cial pan-
creas. The chapter concludes with an overview of companies o�cially working
on developing glucagon with increased physical and chemical stability and im-
proved user-friendliness.

2.1 About the Peptide

Glucagon is a 29-amino acid polypeptide hormone secreted by the α cells of
the islets of Langerhans in the pancreas. The portion of the pancreatic islets
secreting glucagon is 20%. In the liver, glucagon acts by binding to membrane-
bound receptors that activates G proteins and increases cyclic AMP (cAMP)
synthesis, which ultimately lead to increased glucose output from the pancreas.
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High glucagon concentrations cause breakdown of fats (lipolysis) in the adipose
tissues whereas the hormone has little e�ect on skeletal muscle and the nervous
system [23].
Natural glucagon is not physically nor chemically stable in an aqueous liquid
solution at natural pH. Once dissolved, the peptide starts to aggregate and
form �brils which in�uences its reactivity. Degraded glucagon can also cause
cytotoxic e�ects and should therefore be avoided [11].

2.2 Pharmacokinetics

Glucagon PK exert linear dose dependency after intravenous (IV) administra-
tion of 0.25-2.0 mg in healthy volunteers [24], and after SC administration of
0.11-0.44 mg in patients with T1D [25]. Although doses up to 1.0 mg was ad-
ministered SC in the study by Blauw et al. [25], the two highest doses did not
follow the same linear dose dependency as the smaller doses.
The less than expected concentrations of glucagon after high SC doses could
be explained by di�erences in bioavailability. In general, the bioavailability of
glucagon di�ers between administration routes as listed in Table 2.1. The low
bioavailability of glucagon after SC administration was also observed in dogs
[18]. Bioavailability following SC or intramuscular (IM) administration can only
be determined if studies with IV PK data in same species are available since the
PK after IV dosing is de�ned as reference. Following SC or IM administration,
bioavailability can be modelled as elimination directly from the injection site,
or by reducing the modelled administered dose with a fraction according to the
bioavailability.

Table 2.1: Glucagon bioavailability by administration route calculated from
Graf et al. using AUC0−inf [24]. Bioavailability after IV adminis-
tration is de�ned as 100%.

IV SC IM
100% 36% 26%

2.2.1 Intravascular PK

PK pro�les of glucagon after IV administration are useful but rarely published.
Mühlhauser et al. compared the PK pro�les after IV, SC and IM administra-
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Figure 2.1: Plasma glucagon concentrations in healthy volunteers after injec-
tion of 1 mg glucagon at time 0, re-sketched from [26].

tion of glucagon in healthy volunteers as re-sketched in Figure 2.1 [26]. When
viewed on a logarithmic scale, the PK pro�le after an IV glucagon bolus reveals
to be biphasic. Normally for such an IV PK pro�le, the �rst phase represents
distribution to peripheral tissues and the second phase represents elimination
[27]. The biphasic PK pro�le and corresponding compartmental model are il-
lustrated in Figure 2.2. The PK model for IV glucagon administration with a
peripheral distribution compartment is mathematically described by:

dQC(t)

dt
= uIV (t) + krQP (t)− kdQC(t)− keQC(t) (2.1)

dQP (t)

dt
= kdQC(t)− krQP (t) (2.2)

QC is the glucagon mass in the central measured compartment (plasma) and
QP is the glucagon mass in the peripheral tissues. uIV is the IV glucagon bolus.
kd is the transfer rate constant of distribution, kr is the transfer rate constant
of redistribution, and ke is the elimination rate constant.
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(a) Time-concentration pro�le, from
[27].

QP QC

kd

kr
ke

uIV

(b) Compartmental model.

Figure 2.2: PK model for IV administration with a peripheral distribution
compartment. The PK model is expressed mathematically by
(2.1)-(2.2).

2.2.2 Extravascular PK

Building on the PK model for IV administration in (2.1)-(2.2), the PK model
for SC or IM administration would add a compartment from which the dose is
absorbed into the central compartment, see Figure 2.3. Mathematically this can
be expressed as:

dQI(t)

dt
= uI(t)− kaQI(t) (2.3)

dQC(t)

dt
= kaQI(t) + krQP (t)− kdQC(t)− keQC(t) (2.4)

dQP (t)

dt
= kdQC(t)− krQP (t) (2.5)

QI is the glucagon mass at the extravascular site. uI is the glucagon bolus
delivered either SC or IM. ka is the absorption rate constant.
When the absorption phase is slower than the distribution phase it is not possible
to separate the two from one another. Separate phases for absorption and
distribution are not visible in glucagon PK data from humans and dogs after SC
or IM bolus injection [18, 26], thus the model for extravascular administration
of glucagon is for practical purposes reduced to:

dQI(t)

dt
= uI(t)− kaQI(t) (2.6)

dQC(t)

dt
= kaQI(t)− keQC(t) (2.7)

Figure 2.4 visualizes a theoretical example of time-concentration pro�le and
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QP QC

kd

kr
ke

ka

QI

uI

Figure 2.3: PK model for SC or IM administration with a peripheral distri-
bution compartment. The PK model is expressed mathematically
by (2.3)-(2.5).

compartmental model describing extravascular glucagon administration. The
model was used by Wendt et al. to �t glucagon PK data after SC administration
in dogs, healthy volunteers and T1D patients [18, 20]. A simpler version of the
model to describe SC glucagon PK was used by Haidar et al. with ka being
equal to ke [28].

Various other and more complex models describing exogenous glucagon admin-
istration have been proposed by Lv et al. [29]. The best model turned out to
be the simplest depicted in Figure 2.5 and described mathematically by

dQI(t)

dt
= uI(t)− kaQI(t)− ke,IQI(t) (2.8)

dQT (t)

dt
= kaQI(t)− ktQT (t) (2.9)

dQC(t)

dt
= ktQT (t)− keQC(t) + keQbasal (2.10)

ke,I is the elimination rate constant from the injection site, QT is a transit
compartment, kt is the transfer rate constant from the transit compartment
to the central compartment, and Qbasal is the constant endogenous produc-
tion. Comparing (2.8)-(2.10) to (2.6)-(2.7) the only di�erences are an extra
transit compartment, bioavailability modelled by elimination directly from the
injection site, and basal concentration modelled by a constant endogenous pro-
duction countered by the elimination in steady state. However, adding an extra
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(a) Time-concentration pro�le, from
[27].

QI QC

ka keuI

(b) Compartmental model.

Figure 2.4: PK model for SC or IM administration. The PK model is ex-
pressed mathematically by (2.6)-(2.7).

QT QC

kt keka
QI

uI

ke,I

ke

Qbasal

Figure 2.5: PK model for SC administration described by Lv et al. [29]. The
PK model is expressed mathematically by (2.8)-(2.10).

transit compartment and modeling bioavailability as elimination from the injec-
tion site would require measurements of both compartments in order for all the
parameters to be identi�able. With no �gures showing actual data �tting of the
complex models, the increased complexity and uncertainty seem unnecessary
when simpler models are su�cient to describe glucagon PK after extravascular
administration as published by Haidar et al. and Wendt et al. [18, 20, 28].
Usually, both healthy and T1D patients have a basal level of glucagon. The
basal concentration can be modelled by adding a constant mass to (2.1) or (2.7)
so that it equals 0 in steady state as demonstrated in (2.10). Another option
is adding a constant concentration when calculating the glucagon concentration
in the central compartment from the mass QC [18, 20, 28].
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Figure 2.6: Time-concentration pro�le after extravascular administration with
�ip-�ip kinetics, from [27].

2.2.3 Flip-�op kinetics

The PK exerts �ip-�op kinetics when elimination rate is faster than absorp-
tion rate after extravascular administration [27, 30, 31]. Figure 2.6 illustrates
how the interpretation of the time-concentration pro�le after SC administration
changes compared to Figure 2.4a. Flip-�op kinetics can be identi�ed when the
half-life is longer following extravascular dose administration compared to in-
travascular [31]. Reading o� the plot by Mühlhauser et al. [26], the half-life
of glucagon is around 10 minutes after IV injection and close to 60 minutes
after SC administration. Graf et al. found glucagon half-lives of 13, 27 and 23
minutes after IV, SC and IM injections, respectively [24]. Both studies con�rm
that glucagon exerts absorption limited elimination after extravascular dose ad-
ministration which was also pointed out by Wendt et al. [18]. Knowledge of
�ip-�op behaviour is important in order to estimate the correct apparent clear-
ance (ClF ) and apparent volume of distribution (Vd,F ) which are related as
keVd,F = ClF . Due to the �ip-�op phenomenon, the values of ka and ke can
swap without changing the �t. To avoid this pitfall, ke can be parametrized so
it is always greater than or equal to ka by ka + ∆k with ∆k being positive or
zero et al. [20, 31].

2.2.4 Assays for Sample Analysis

The absolute measured glucagon concentration in clinical samples should be
compared between studies with caution since commercially available glucagon
assays di�er in their detection speci�city, precision and accuracy [32]. Because of
these di�erences, glucagon PK model parameters estimated from clinical data
analysed by di�erent methods, can not necessarily be compared. Changes in
assay performance could in�uence all PK model parameters (absorption rate,
elimination rate, clearance, baseline). Moreover, when glucagon PK is in�u-
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Figure 2.7: Illustration of the sigmoid Emax model for di�erent values of γ
with a logarithmic x-axis.

enced, parameters describing the response sensitivity to glucagon in the PD
model will be in�uenced, too. Therefore, interpreting parameters of a PD model
with glucagon as input can not be isolated from the method used for glucagon
sample analysis [33]. This subject will be discussed further in Chapter 4.

2.3 Pharmacodynamics

Glucagon acts through binding to a receptor as mentioned in Section 2.1. Gen-
erally, receptor mediated responses can be modelled by the full Hill equation
also called the sigmoid Emax model [34]

E = E0 +
(Emax − E0)Cγ

ECγ50 + Cγ
(2.11)

E is the e�ect, E0 is the baseline e�ect, Emax is the maximal e�ect, EC50 is
the concentration producing half maximal e�ect, C is drug concentration and
γ translates to number of drug molecules per receptor. When γ is equal to 1,
(2.11) reduces to the Hill equation. Figure 2.7 displays the graphical interpre-
tation of γ in (2.11).
There is a limited number of receptors available for stimulation, thus the re-
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Figure 2.8: Glucagon action model, modi�ed from [35]. Illustration of how
glucagon acts via receptor mechanisms to stimulate EGP by gly-
cogenolysis and gluconeogenesis, and the evanescence e�ect gov-
erning glycogenolysis only.

sponse to glucagon must saturate for high concentrations of the hormone. Satu-
ration of dose-response was observed in two previously mentioned studies where
healthy volunteers received 1 mg glucagon SC and IM which produced very
similar glucose responses, even though the bioavailability between the two ad-
ministration routes di�er as outlined in Table 2.1 [24, 26].

Glucagon primarily a�ects the liver where it stimulates breakdown of glycogen
to glucose through glycogenolysis [36]. The liver is highly sensitive to small
changes in the glucagon concentration (<10 pg/mL) and responds immediately
to the stimulus; thus the hormone acts as a "�ne tuner" of the glucose out-
put. Glucagon has no acute e�ect on formation of glucose from precursors such
as lactate, pyruvate, amino acids, and glycerol known as gluconeogenesis [37].
However, during prolonged hypoglycemia exceeding three hours, glucagon stim-
ulates gluconeogenesis rather than glycogenolysis [38]. The ambient glucose level
itself does not in�uence the immediate response to exogenously dosed glucagon
[25]. Figure 2.8 illustrates the glucagon action on the liver.
During continued exposure to glucagon, glycogenolysis wanes over time [36, 39,
40, 41]. This phenomenon has been named the evanescence e�ect. An expla-
nation for the transitory response to glucagon might be desensitization of the
cAMP receptor [42]. The reduced responsiveness to glucagon seem to be fully
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expressed after two hours of continuous stimulation both in vivo and in vitro
[36, 39, 40, 41, 42]. The refractory period needed to restore normal glucagon
responsiveness remains unknown in vivo and little is known in vitro [43].

Glucagon is not the only hormone in�uencing the glucose homoeostasis; as op-
posed to glucagon, insulin inhibits glucose production [36]. However, insulin
has little if any e�ect on gluconeogenesis in both healthy volunteers and T1D
patients, whereas it e�ciently inhibits glycogenolysis [36, 44, 45]. A study in
healthy volunteers found that the glucose production was completely suppressed
when insulin levels exceeded 60 mU/L [46]. Another study compared the glucose
production during high glucagon and basal insulin, high insulin and basal glu-
cagon, and high concentrations of both insulin and glucagon in dogs [47]. The
response to glucagon during high insulin infusion was blunted. This indicates
that insulin is more powerful at inhibiting glucose production than glucagon is
at stimulating it. In line with these �ndings, a study in T1D patients by El
Youssef et al. found that the response to micro-doses of glucagon depends on
the ambient insulin level [48]. This inability of glucagon to stimulate glucose
production su�ciently in the presence of high insulin levels was also observed
in a closed-loop study by Russell et al. [49], where the average insulin level
was highest among the group in which glucagon was ine�ective in preventing
hypoglycemia.

2.4 Modes of Use

As glucagon raises the blood glucose, the hormone could be used for treatment in
all indications having di�culties keeping the blood glucose above hypoglycemia.
The application is not limited to T1D, although that will be the prevailing
disease to treat. Within diabetes management glucagon can be used in several
di�erent modes with increasing complexity: as a one-time rescue treatment,
as multiple daily correcting bolus injections, and in a closed-loop dual hormone
arti�cial pancreas. Glucagon also has the potential to be used in a glucagon-only
pump for patients with no glucagon production or increased insulin production.

2.4.1 Rescue Treatment

Patients with T1D have a blunted endogenous glucagon response to hypo-
glycemia making it di�cult to recover from low blood sugars [50]. If the patient
experiences severe hypoglycemia and is unconscious there is two options to in-
crease glucose levels: glucose IV, or glucagon SC or IM. A person without a
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(a) GlucaGen HypoKit, Novo Nordisk
[52].

(b) Glucagon Emergency Rescue Kit, Eli
Lilly and Company [53].

Figure 2.9: Currently marketed glucagon for treatment of severe hypo-
glycemia.

medical background or training is not able to insert an IV catheter, but most
people can give a SC or IM injection. The currently marketed rescue kits in
Figure 2.9 with 1 mg glucagon involve several di�cult and crucial preparation
steps and the drug is therefore often not administered as intended by the manu-
facturer. In a study examining the usability of GlucaGen HypoKit, an average
of 20-30% of the intended dose was not administered and 69% of parents expe-
rienced handling di�culties [51].

2.4.2 Treatment of Mild Hypoglycemia

More often than severe hypoglycemia, patients with T1D experience mild hy-
poglycemia while still concious. To increase their blood glucose levels, patients
have to ingest carbohydrates like dextrose which are rapidly absorbed. This
snacking behaviour unintentionally but inevitably increases the total daily calo-
rie intake of the patient. Another means of increasing glucose levels slightly, is
through mini-doses of glucagon [54]. Administering glucagon rather than oral
carbohydrates when patients experience mild hypoglycemia will metabolize al-
ready ingested calories thereby increasing the energy expenditure of the patient
[55].
A study by Ranjan et al. in T1D patients showed that boluses of 100-300 µg
glucagon was su�cient to increase the blood glucose levels after insulin-induced
mild hypoglycemia [56]. Strategies for mini-doses of glucagon in combination
with a closed-loop single hormone arti�cial pancreas have only started to emerge
[57].
There are a few caveats to treating mild hypoglycemia with glucagon. As high-
lighted in Section 2.3, the ambient insulin level inhibits the glucose stimulating
e�ect of glucagon and must therefore be considered. Moreover, Ranjan et al.
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Figure 2.10: The concept of a dual hormone arti�cial pancreas: infusion sets
for insulin and glucagon, sensor for continuous glucose monitor-
ing, and dual chamber pump with insulin and glucagon wire-
lessly receiving glucose measurements and controlling hormone
infusions.

found that a low carbohydrate diet impairs the e�ect of glucagon in treating
mild insulin-induced hypoglycemia [58]. This impairment is speculated to be
due to decreased storage of glycogen for glycogenolysis. On the contrary, Castle
et al. found that eight mini-doses of glucagon within 18 hours did not deplete
the glycogen stores in the liver nor did they in�uence the response of subsequent
boluses [59].

2.4.3 The Dual Hormone Arti�cial Pancreas

Although substitution of oral carbohydrates with glucagon as a treatment option
for mild hypoglycemia is sought, it will inevitably introduce another decision
point for T1D patients. Instead, automating the decision making of both in-
sulin and glucagon administration will alleviate the burden of diabetes care and
is the ultimate treatment goal for T1D as illustrated in Figure 2.10. Less than a
decade after the �rst feasibility trials of dual hormone closed-loop glucose con-
trol in pigs [9, 60], several closed-loop solutions both single and dual hormone
are being developed worldwide [61]. The American Food & Drug Adminis-
tration (FDA) has encouraged the development of arti�cial pancreas systems
and approved the �rst single hormone closed-loop device in Autumn 2016, the
Medtronic Minimed 670G [62, 63]. However, a community of patients and care-
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givers called OpenAPS have long been desperately waiting for a commercial
solution and in the meantime they built their own arti�cial pancreas devices,
willing to put their glucose regulation in the "hands" of algorithms and devices
not rigorously tested nor approved by the authorities [64]. These individuals
are probably the ones having most experience with the use of closed-loop sys-
tems in real life without restrictions other than personal ones. They found that
using a self-built system rather than controlling their glucose levels themselves,
their HbA1c dropped, time in range increased and most subjects experienced
increased sleep quality.
Undoubtedly, in T1D patients dual hormone closed loop systems increase time
in target and reduce the risk of hypoglycemia compared to conventional therapy
[65, 66, 67, 68, 69, 70]. Researchers argue whether a single hormone closed-loop
system is su�cient for treatment of T1D or if a dual hormone arti�cial pan-
creas with glucagon adds bene�ts outweighing the increased complexity and
costs associated with a second hormone [8, 7, 10, 71, 72, 73, 74]. With the
ongoing debate, it is surprising that only few studies demonstrate head-to-head
comparisons of single and dual hormone arti�cial pancreas systems [10]. The
�rst study to make direct comparisons found that dual hormone closed-loop
reduced hypoglycemia and the need for oral carbohydrates compared to sin-
gle hormone closed-loop [75]. Subsequent studies from the group located in
Montréal, Quebec have showed varying bene�ts of dual hormone versus single
hormone, although the risk of hypoglycemia seems reduced in the dual hormone
setting [76, 77, 78, 79].
Advocates of including glucagon in a dual hormone arti�cial pancreas argue that
glucagon can prevent hypoglycemia induced from exercise. A study in T1D pa-
tients found that dual hormone closed-loop outperformed single hormone closed-
loop during announced continuous and interval exercise [80], whereas another
study did not �nd further bene�ts of glucagon compared to adjustment of in-
sulin infusion before exercise onset [81]. In the latter study it should be noted
that patients had glucose levels in the higher end of the normoglycemic range
borderline hyperglycemia before exercise onset. Patients would instinctively re-
frain from exercise due to the fear of hypoglycemia when the blood glucose is in
the lower normoglycemic range or borderline hypoglycemia [82]. In those situ-
ations, glucagon would add a major bene�t to a closed-loop system. Moreover,
a study in T1D patients found that including glucagon in an arti�cial pancreas
can alleviate the cumbersome burden of counting carbohydrates before meal in-
gestion [83].
The dual hormone arti�cial pancreas might not only bene�t T1D patients, but
potentially also type 2 diabetes patients [84]. Patients becoming diabetic from
one day to the other e.g. after removal of the pancreas due to cancer or chronic
pancreatitis, will bene�t from an automatic closed-loop device that safely and
e�ciently controls the blood glucose, too. Moreover, a dual hormone closed-loop
system could be applied to critically ill patients not necessarily having diabetes
but admitted to the intensive care unit. These patients are prone to experience
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stress-induced hyperglycemia, and hypoglycemia following septic shock and thus
a safe and automated device for blood glucose regulation would reduce costs and
increase survival rate [85].

2.4.4 Glucagon-only Pump

Glucagon is not only relevant for treatment of hypoglycemia in T1D patients.
An orphan disease named congenital hyperinsulinism belongs to the category
of hyperinsulinemic hypoglycemia [86]. Patients simply produce too much in-
sulin leading to frequent episodes of hypoglycemia. A glucagon-only closed-loop
device could be used to continuously monitor the blood glucose and provide
correcting boluses of glucagon throughout the day to prevent and treat hypo-
glycemia.

2.5 Drugs in Development

The development of new drugs takes several years, and the time from a drug is
discovered till it reaches the consumer is increasing. The increasing time and
cost associated with drug development is mainly due to regulatory authorities
demanding larger and longer clinical trials. Traditionally, drug development can
be divided in distinct phases:

� pre-clinical: Studies in animals

� clinical: Trials in humans

� phase I: Trials in healthy volunteers - focus on safety

� phase II: Trials in small number of patients - focus on e�cacy

� phase III: Trials in large number of patients - con�rmation of safety
and e�cacy

Pre-clinical and clinical trials are conducted to evaluate drug safety, e�cacy
and dosing. Computer simulations with reliable population models can aid
drug-development by allowing in silico trials exploring dosing size and regi-
men further, and investigate the e�ects of potential changes in clearance or
metabolism [87].
The extent of clinical trials required to obtain approval from the authorities for
a new drug depend on the novelty of the drug compared to previously approved
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and marketed drugs. Thus getting approval of an analogue to a hormone, rather
than an optimized pharmaceutical formulation of an already approved hormone,
requires substantially more work and increased costs [88].
As described in Section 2.1, glucagon is not stable in an aqueous liquid solution
and must be reconstituted immediately before use through numerous steps mak-
ing it prone to errors. Various pharmaceutical companies across the globe are
or were therefore focusing on creating a ready-to-use product. Some approaches
have failed including immobilizing glucagon in a micelle [89, 90] and develop-
ing a glucagon analogue [91, 92]. O�cially, there is currently four companies
competing in accessing the market with an improved solution to treating hypo-
glycemia with glucagon. Eli Lilly and Company is altering the delivery route
circumventing the need for stability in liquid solution [93]. The remaining three
companies focus on developing liquid stable glucagon: Xeris Pharmaceuticals by
optimizing the formulation [94], Adocia by adding excipients [95], and Zealand
Pharma by altering the sequence of the original peptide thereby creating an
analogue [14].

2.5.1 Nasal Glucagon by Eli Lilly and Company

In 2015 Eli Lilly and Company acquired a glucagon nasal powder from Locemia
Solutions for intranasal administration [93]. The product consists of ten percent
glucagon in dry powder and is intended for absorption through the nasal mucosa
[96].
The absorption of nasal glucagon appear to be delayed compared to IM ad-
ministration [97]. Moreover, the bioavailability after intranasal administration
is lower than after IM injection, since a three times higher dose is required
through the intranasal route to produce a similar response [96]. The intranasal
administration of glucagon was associated with more adverse events related to
head, nose, eyes, and throat than IM administration [97].
As of beginning 2017, the product is in phase III [93].

2.5.2 XeriSol� Glucagon by Xeris Pharmaceuticals

The American based company Xeris Pharmaceuticals is developing an improved
formulation for native human glucagon named XeriSol� Glucagon (XeriSol) [94].
The native peptide is stabilized in a non-aqueous solution containing dimethyl
sulfoxide (DMSO) [98]. The drug is stable for up to six days in a pump and
intended for SC administration. Figure 2.11 visualizes product examples.
The PK/PD in pigs were similar to results obtained with GlucaGen (Novo
Nordisk, Bagsværd, Denmark) [98, 99]. Similarity with GlucaGen was also
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Figure 2.11: Example of product looks for XeriSol [94].

observed in diabetes patients [100]. However, with increasing doses, patients
experienced more irritation at the injection site using XeriSol than Novo's prod-
uct which could be related to the DMSO in the XeriSol formulation. Similarly
to marketed glucagon, the response to mini-doses of XeriSol was dampened by
the presence of insulin [101].
As of end 2016, the product for rescue treatment is in preparation for phase
III [94]. The product for pen mini-dose treatment and a dual hormone arti�-
cial pancreas device is in phase II, whereas it is in preparation for phase I for
treatment of congenital hyperinsulinism and for use in a glucagon-only pump.

2.5.3 BioChaperone® Glucagon by Adocia

The French company Adocia is developing a stable aqueous solution of recom-
binant human glucagon named BioChaperone (BC) Glucagon [95]. The native
peptide is stabilized by forming a physical complex with an excipient. The drug
is stable at neutral pH and intended for injection.
Based on the few preclinical results published online [95], the BC Glucagon ap-
pears to have similar e�ects on the glucose response as GlucaGen. The results
are reported without standard errors and therefore it is not possible to conclude
if the response to BC Glucagon wanes faster than the response to GlucaGen.
The PK pro�le of BC glucagon is not published.
Currently, the product is in preclinical development. Adocia is planning to
initiate a phase I trial before the end of 2017 [95].

2.5.4 Dasiglucagon by Zealand Pharma

The Danish company Zealand Pharma is developing a liquid stable glucagon
analogue in aqueous solution named Dasiglucagon (proposed International Non-
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Figure 2.12: Example of the look of a ready-to-use rescue pen for treatment
of severe hypoglycemia with Dasiglucagon.

proprietary Name) or ZP4207 [14]. The drug is intended for SC administration.
Figure 2.12 illustrates a product example.
Data from the clinical trials have not been published. However, the results con-
�rm that Dasiglucagon is safe, well tolerated, and can raise the blood glucose
level after insulin-induced hypoglycemia in T1D patients [14]. Results from an-
other phase I trial con�rm that Dasiglucagon can be used for multiple daily
injections making it suitable for use in a pump or a dual hormone arti�cial pan-
creas device [102].
At the end of 2016, the product for rescue treatment and for use in a dual
hormone arti�cial pancreas device is in phase II.
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Chapter 3

Methods

This chapter focuses on describing the theory of the methods for model �tting
applied in this thesis. Likelihood principles and their applications in parameter
estimation are discussed along with parameter sensitivity analysis using pro�le
likelihood. The chapter presents practical and advanced usage of the software
package CTSM for R [103], but also illustrates workarounds to problems not yet
handled directly by the package.

3.1 Model Basics

This section de�nes the model structure for representation of a physical system.
It also provides the math associated with simulation and prediction of the future
states of a system. Finally, a useful variable transformation is explained.
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3.1.1 Ordinary Di�erential Equations

Deterministic ordinary di�erential equations (ODEs) can be used to model a
physical system with known structure. Generally, an ODE with discrete-time
observations corrupted by measurement noise is de�ned as

dxt = f(xt, ut, t, θ) · dt (3.1)

yk = h(xk, uk, tk, θ) + ek ek ∼ Nidd(0, Sk) (3.2)

xt is the state of the system, f(·) is the model, ut is the input, t is time, θ is the
parameter set, yk is the discrete observations, and ek is the measured errors,
i.e. observation noise, assumed to be independent and identically distributed
(i.i.d.) following a Gaussian distribution with mean zero and variance Sk [104].
Equation (3.1) is the continuous ODE and (3.2) is the discrete observation
equation.

3.1.2 Stochastic Di�erential Equations

One does not always know the true underlying system generating observations.
This is particularly true for physiological systems. In such cases, the discrep-
ancies between the deterministic model and data from the physical system is
composed of noise from two sources: measurement noise and systemic noise. The
system noise covers structural model de�ciencies either from e�ects described
incorrectly by the model or from e�ects not accounted for by the model. The
magnitude of the systemic noise can be identi�ed using stochastic di�erential
equations (SDEs) with discrete-time noise corrupted measurements as

dxt = f(xt, ut, t, θ) · dt+ σ(xt, ut, t, θ) · dwt dwt ∼ Nidd(0, I · dt) (3.3)

yk = h(xk, uk, tk, θ) + ek ek ∼ Nidd(0, Sk) (3.4)

The only di�erence between the ODE formulation in (3.1) and the SDE formu-
lation in (3.3) is the stochastic system noise σ(xt, ut, t, θ) ·dwt. Thus, solving an
SDE with a very small value of σ is approximating solving an ODE. The term
f(xt, ut, t, θ) · dt is called the drift and is the main process driving the system
when σ is smaller than one. The di�usion term is denoted by dwt. Together,
the drift and the di�usion describes the physical state of the system.

3.1.3 Simulation

In a simulation, the system does not change over time. Moreover, the initial
conditions are the only known measurements of the systems and therefore de-
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termines the entire time course of the simulation. This can mathematically be
expressed as

ŷn|0 given x(t0) = x0 (3.5)

An ODE as de�ned in (3.1) can be simulated through Euler's forward method

xn+1 = xn + ∆t · f(xn, un, θ) (3.6)

One realization of an SDE can be simulated in the same manor by drawing
one value of ∆wn from the distribution and keeping it constant throughout the
simulation using the Euler-Maruyama method:

xn+1 = xn + ∆t · f(xn, un, θ) + σ(xn, un, tn, θ) ·∆wn ∆wn ∼ Niid(0, I∆t)
(3.7)

The mean realization of an SDE, thus when ∆wn is zero, corresponds to the
ODE solution.

3.1.4 Prediction

In the case of ODEs, prediction and simulation of a system are identical because
the state is exact given the state at a previous time point. The mean prediction
of a system of SDEs corresponds to simulation of an ODE. But as opposed
to ODEs, prediction and simulation are not identical when considering SDEs
because of the stochastic system noise which changes the system from each
realization to the next.
The following illustrates prediction of the system de�ned in (3.3)-(3.4). The
one-step prediction is de�ned as

ŷn+1|n given x(tn) = xn (3.8)

More generally, the k-step prediction is de�ned as

ŷn+k|n given x(tn) = xn (3.9)

Due to dwt being a random process, the uncertainty of x̂n+k|n and thereby
ŷn+k|n increases with increasing number of k.
Predictions are initialized with an estimate of the current state based on the
previous state and the current covariance based on the previous covariance

x̂k|k−1 Pk|k−1 (3.10)
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The observation equation is then linearised

ŷk|k−1 = h(x̂k|k−1, uk, tk, θ) (3.11)

Ck|k−1 =
∂h(x̂k|k−1)

∂x
(3.12)

Ck|k−1 is the derivative of the observation equation h(·) with respect to x evalu-
ated at x̂k|k−1. The errors are then calculated using the extended Kalman �lter
as

εk = yk − ŷk|k−1 (3.13)

Rk|k−1 = Ck|k−1Pk|k−1C
T
k|k−1 + Sk (3.14)

Kk = Pk|k−1C
T
k|k−1(Rk|k−1)−1 (3.15)

εk is the observation error vector, Rk|k−1 is the observation covariance matrix,
Sk is the variance of the observation noise, and Kk is the Kalman gain. The
�ltered values of the state, x̂k|k, and covariance, Pk|k, are then calculated as

x̂k|k = x̂k|k−1 +Kkεk (3.16)

Pk|k = Pk|k−1 +KkRk|k−1K
T
k (3.17)

The new 1-step predictions are found by solving the following system of di�er-
ential equations

dx̂k(t)

dt
= f(x̂k(t)) x̂(tk) = x̂k|k (3.18)

dPk(t)

dt
=
∂f(x)

∂x
Pk(t) + Pk(t)

(
∂f(x)

∂x

)T
+ σσT Pk(tk) = Pk|k (3.19)

x̂k+1|k = x̂k(tk+1) (3.20)

Pk+1|k = Pk(tk+1) (3.21)

Table 3.1 shows a direct comparison of the steps involved in predictions of ODEs
and SDEs using the same notation.

3.1.5 Lamperti Transformation

Some implementations for solving SDEs do not allow the system noise to depend
directly on the state of the system as de�ned in (3.3) [104]. Thus, the system
equations must be written in a form satisfying

dzt = f(zt, ut, t, θ) · dt+ σ(ut, t, θ) · dwt (3.22)
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ŷ k
|k
−

1
=
h

(x̂
k
|k
−

1
,u
k
,t
k
,θ

)

C
k
|k
−

1
=

∂
h

(x̂
k
|k
−

1
)

∂
x

D
ε k

=
y k
−
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To maintain the property of state dependent di�usion without explicitly writing
it in the state equations, the SDE may be transformed using the Lamperti trans-
formation [104, 105, 106]. Generally, the Lamperti transformation is expressed
as

Ψ =

∫
1

σ(ξ)
dξ|ξ=xt (3.23)

In the special case were the system noise is directly proportional to the state, i.e
σ(xt) = xt, the Lamperti transformation uses the following change of variables
according to (3.23)

Ψ(xt) = log(xt) = zt ⇔ xt = ezt (3.24)

Ψ′(xt) =
1

xt
(3.25)

Ψ′′(xt) = − 1

x2
t

(3.26)

(3.24)-(3.26) are inserted into Itô's lemma [107]

dzt = Ψ′(xt) · dxt +
1

2
Ψ′′(xt) · σ2(xt) · dt (3.27)

=
1

xt
dxt −

1

2

1

x2
t

σ2(xt) · dt (3.28)

The transformation is best illustrated with an example. Consider a simple two
states model often used to describe PK of SC administered drugs distributing
in one plasma compartment with state dependent di�usion

dx1(t) = (u(t)− k1x1(t)) · dt+ σ1x1(t)dw1 (3.29)

dx2(t) = (k1x1(t)− k2x2(t)) · dt+ σ2x2(t)dw2 (3.30)
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Using (3.28) the system in (3.29)-(3.30) is transformed to

dz1(t) =
1

x1(t)
((u(t)− k1x1(t)) · dt+ σ1x1(t)dw1)− 1

2

1

x2
1(t)

σ2
1x

2
1(t)dt (3.31)

=

(
u(t)

x1(t)
− k1

)
· dt+ σ1dw1 −

1

2
σ2

1dt (3.32)

=

(
u(t) · e−z1(t) − k1 −

σ2
1

2

)
· dt+ σ1dw1 (3.33)

dz2(t) =
1

x2(t)
((k1x1(t)− k2x2(t)) · dt+ σ2x2(t)dw2)− 1

2

1

x2
2(t)

σ2
2x

2
2(t)dt

(3.34)

=

(
k1
x1(t)

x2(t)
− k2

)
· dt+ σ2dw2 −

1

2
σ2

2dt (3.35)

=

(
k1 · ez1(t)−z2(t) − k2 −

σ2
2

2

)
· dt+ σ2dw2 (3.36)

Equation (3.24) is used to transform the solution back to the units of the original
system.

3.2 Likelihood Principles

The likelihood measures how likely a set of parameters are given a model and
data. Di�erent parameters of the model will give di�erent values of the likelihood
function. Finding the parameter set that maximizes the likelihood function for
given data and model gives the ML.
The likelihood is equal to the probability density considered as a function of the
parameter set, θ, and a time series, YN , of N observations exempli�ed in Figure
3.1.

L(θ, YN ) = p(YN |θ) =

(
N∏

k=1

p(yk|Yk−1, θ)

)
p(y0|θ) (3.37)

where

Yk = [yk, yk−1, ..., y1, y0] (3.38)

Thus the likelihood is a product of the initial probability density, p(y0|θ), and all
subsequent conditional probability densities. Practically, this approach is com-
putationally infeasible as it would involve solving the Fokker-Planck equation
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p(Y
N

| )

ML
Mean
Median

Figure 3.1: Qualitative example of a non-symmetrical one-dimensional likeli-
hood function. The likelihood function could have multiple local
maxima. The likelihood function has the same dimensionality as
the number of parameters in θ. The ML estimate, mean estimate
and median estimate are illustrated for comparison.

and instead Kalman �ltering can be used. When the model structure is linear
the Kalman �lter is exact. However, when the model structure is nonlinear
the extended Kalman �lter must be used which only provides approximations
of the observation error and covariance. By using (3.13)-(3.14) equation (3.37)
becomes

p(YN |θ) =




N∏

k=1

exp
(
− 1

2ε
T
kR
−1
k|k−1εk

)

√
det(Rk|k−1)

(√
2π
)l


 p(y0|θ) (3.39)

In practice, one rarely maximizes the likelihood function, instead the negative
log-likelihood is used for minimization. Conditioning the posterior probability
on y0 and taking the negative logarithm on both sides we obtain the negative
log-likelihood function

− log(p(YN |θ, y0)) =
1

2

N∑

k=1

(
log(det(Rk|k−1)) + εTkR

−1
k|k−1εk

)
(3.40)

+
1

2
log(2π)

N∑

k=1

l
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Consequently, the ML-parameters are determined by computing

θ̂ML = arg min
θ∈Θ

{
N∑

k=1

(
log(det(Rk|k−1)) + εTkR

−1
k|k−1εk

)}
(3.41)

εk is the one-step prediction error de�ned in (3.13) and Rk|k−1 is the covariance
de�ned in (3.14) computed using the extended Kalman �lter.
Kalman �lter approximations can similarly be used during k-step predictions as
during 1-step predictions. For the Kalman �lter to be a good approximation
it requires a su�ciently fast sampling frequency and accuracy of observations.
Further details on Kalman �ltering can be found in [108].

3.2.1 Pro�le Likelihood

Visualization of the likelihood function becomes di�cult when a parameter set
includes more than three parameters. Cross sections of the likelihood function
are called likelihood pro�les. The simplest likelihood pro�le of parameter θi
is found by keeping all other parameters of θ constant and then plotting the
likelihood as a function of θi. With this approach, the value of θi that maximizes
the likelihood function depends on the choice of �xed parameters in θ. However,
this approach largely underestimates the uncertainties of the pro�led parameter.
A better approach to likelihood pro�ling is for �xed values of the parameter θi to
optimize the likelihood for all other parameters of θ, and then plot the optimal
likelihood as a function of θi [109, 110]. Mathematically this is de�ned as

Lp(θi, YN ) = max
θ\θi

L(θ, YN ) (3.42)

The value of θi that maximizes Lp(θi, YN ) is the global maximizer of the likeli-
hood function.
The pro�le likelihood of a parameter can be used to evaluate whether the pa-
rameter in the model is identi�able. Identi�ability of parameters are determined
by model structure (structural identi�ability) and the input dynamics (practical
identi�ability) [109].
Structural identi�ability is related to having a unique representation of the
model for each parameter set. Pro�le likelihood analysis provides a method
for investigating the parameter identi�ability even in large complex systems,
where it can be di�cult to evaluate the model uniqueness directly.
Practical identi�ability is related to the dynamics of the input. Thus, a model
can only identify parameters describing dynamics present in data used for model
�tting. Also in this case, pro�le likelihood analysis is a powerful tool.

A parameter is identi�able only if the maximum of the pro�le likelihood is well
de�ned [109]. Whether the maximum of the pro�le likelihood of θi is well de�ned
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Figure 3.2: Theoretical examples of three types of pro�le likelihood plots; from
left to right: highly peaked (identi�able), �at (structural non-
identi�able), and asymmetric (practical non-identi�able). The
95% con�dence limit (CL) is blue. The x-axis shows the 95%
lower limit (LL) and upper limit (UL) of the parameter value.
Graph from [18].

is evaluated using a 100(1-α)% con�dence interval bound by when the natural
logarithm of a likelihood ratio test exceeds a chi-squared distribution [110].

log

(
Lp(θi, YN )

L(θ̂, YN )

)
= log(Lp(θi, YN ))− log(L(θ̂, YN )) > −1

2
χ2

1−α (3.43)

In words, the pro�le likelihood is log-transformed yielding the pro�le log-
likelihood. The maximum value of the pro�le log-likelihood is subtracted from
the pro�le log-likelihood so that the maximum function value is zero. The
limit of the con�dence interval is determined by the 100(1-α) percentile of the
chi-squared distribution with one degree of freedom. As an example, a 95%
con�dence interval of a model parameter is bound by the log-likelihood ratio
exceeding approximately −1.92. A pro�le likelihood con�dence interval could
be asymmetric, whereas e.g. the Wald statistic applies a quadratic and thus
symmetric approximation of the con�dence interval [110]. Figure 3.2 provides
examples of symmetric and asymmetric pro�le likelihoods that are either iden-
ti�able or non-identi�able.
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3.2.2 Bayesian Inference

Bayesian estimates refer to parameters of a model being treated as random
variables belonging to some distribution. To �t a parameter in a Bayesian
framework, a prior distribution of the parameter is needed. The prior distribu-
tion of a parameter describes the population, whereas a single realization of the
parameter from the distribution describes an individual.
The parameters of the prior distribution are called hyper-parameters i.e. if a
prior follows a normal distribution, two hyper-parameters de�ne it: mean (µ)
and standard deviation (σ). A normally distributed prior for parameter θi is
thus de�ned as

θi ∼ N(µθi , σ
2
θi) (3.44)

The estimated parameter will then be a summary of the posterior probability
density function conditioned on the data and the prior. The posterior distribu-
tion of a parameter, θ, given the data, YN , is identi�ed using Bayes' theorem.

p(θ|YN ) =
p(YN |θ)p(θ)
p(YN )

(3.45)

p(θ) is the prior distribution of θ, p(YN ) is the marginal distribution, and p(YN |θ)
is the likelihood of YN given θ as de�ned in (3.37).
Finding the set of parameters given data, a model and prior distributions of
parameters yielding the maximum of the posterior distribution is called MAP.

3.2.3 Maximum a Posteriori Estimation

MAP estimation is an optimization approach seeking the parameter estimate
that maximizes the posterior distribution [111]. Maximizing (3.45) then reduces
to optimizing:

p(θ|YN ) ∝ p(YN |θ)p(θ) (3.46)

MAP estimation reduces to maximizing the likelihood function when the prior
is a uniform distribution, i.e. p(θ) is constant, see (3.37) and (3.46). This
indicates that ML is a special case of MAP. Also, the weaker a prior is, i.e.
having a large standard deviation, the less di�erence there is between MAP
estimation and ML. In general, one distinguishes between informative (highly
peaked) and non-informative (not peaked) priors. Thus, the likelihood pro�le of
a parameter estimated by MAP is composed of the likelihood of the parameter
itself conditioned on the data and the prior parameter distribution.
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Introducing the following notation where σθ is a matrix with the prior standard
deviations in the diagonal and Rθ is the prior correlation matrix:

µθ = E{θ} (3.47)

Σθ = σθRθσθ = V {θ} (3.48)

εθ = θ − µθ (3.49)

Assuming that the prior parameters follow Gaussian distributions as de�ned
in (3.44) and using equation (3.39), the posterior distribution in (3.46) can be
rewritten as

p(θ|YN ) ∝




N∏

k=1

exp
(
− 1

2ε
T
kR
−1
k|k−1εk

)

√
det(Rk|k−1)

(√
2π
)l


 p(y0|θ)

exp
(
− 1

2ε
T
θ Σ−1

θ εθ
)

√
det(Σθ)

(√
2π
)p (3.50)

Conditioning the posterior probability on y0 and taking the negative logarithm
gives:

− log(p(θ|YN , y0)) ∝1

2

N∑

k=1

(
log(det(Rk|k−1)) + εTkR

−1
k|k−1εk

)
+ (3.51)

1

2

((
N∑

k=1

l

)
+ p

)
log(2π) +

1

2
log(det(Σθ)) +

1

2
εTθ Σ−1

θ εθ

The MAP solution is found by solving the nonlinear optimization problem:

(3.52)

θ̂MAP = arg min
θ∈Θ
{− log(p(θ|YN , y0))}

= arg min
θ∈Θ

{
N∑

k=1

(
log(det(Rk|k−1)) +

εTkR
−1
k|k−1εk

)
+ log(det(Σθ)) + εTθ Σ−1

θ εθ

}

This nonlinear optimization can be non-trivial to solve analytically through
gradient-methods, but can be approximated with a �nite di�erence method
[112]. Another method for �nding the MAP solution is by using Markov Chain
Monte Carlo (MCMC) simulations. MCMC is a brute force method that sam-
ples from the posterior distribution to create a rough shape of the posterior
distribution and thereby estimates the MAP solution as implemented in Win-
BUGS [113, 114]. It is computationally time consuming because it can require
thousands of samples before reaching convergence. On the contrary, gradient
methods converge faster, but su�er great di�culties if the objective function is
noisy with local gradients not leading to a smaller value of the objective function.
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3.3 Parameter Estimation in CTSM-R

Continuous time stochastic modeling (CTSM) is also known as grey-box mod-
eling with one or more system equations being stochastic [111]. One tool to
handle CTSM is the CTSM-R package for R [103]. The software package uses
likelihood principles as described in Section 3.2 and a �nite-di�erence approxi-
mation method to gradient-based optimization method to �nd the most likely
set of model parameters for a series of observations.
The commands of the following sections will refer to R functions and the R en-
vironment thereby providing some practical information for use of the CTSM-R
package, which might not be straightforward.

Algorithm 1 De�ning CTSM-R model and estimating model parameters.

Require: ctsmr
De�ne CTSM-R model object: model = ctsm$new()
De�ne system equations:
model$addSystem(dx1∼(Dose-x1/tmax)*dt+sigma1*dw1)
model$addSystem(dx2∼(x1/tmax-x2/tmax)*dt+sigma2*dw2)
De�ne observation equation:
model$addObs(conclog∼log(1/tmax*x2/(BW*ClF)*1e6+Ib))
De�ne observation variance: model$setVariance(conclog∼exp(ls))
De�ne input: model$addInput(Dose)
Set options e.g.: model$options$InitialVarianceScaledIdentity = TRUE and
model$options$inputinterpolation = FALSE
Build CTSM-R model: ctsmr:::Compile(model)
Set initial values for states and parameters (only a subset shown):
model$setParameter(x10=0, Ib=c(µIb ,minIb ,maxIb)),
tmax=c(µtmax,mintmax,maxtmax,psd=σtmax)
Fit ← model$estimate(data)

3.3.1 Fitting One Data Set

To �t a single data set using CTSM-R, one must �rst de�ne the model, set the
initial guesses for model states and parameters and then estimate the model
parameters as in Algorithm 1. Various options can be set depending on the
problem at hand. Model parameters and initial values of states can be estimated
in the CTSM-R environment as indicated in Algorithm 1, where x10 is the initial
value of state x1 which is �xed, Ib is a parameter estimated by ML, and tmax
is a parameter estimated by MAP. Further practical information can be found
in [103].
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3.3.2 Fitting Multiple Data Sets

CTSM-R also allows parameter estimation in multiple independent data sets.
However, the package requires that initial values are equal in all data sets. As
this is rarely the case in biological data sets, the objective function must be de-
�ned manually and an appropriate optimizer chosen [103]. To implement MAP
estimation for multiple data sets, �rst the negative log-likelihood as a function
of a data set and a parameter set was de�ned as in Algorithm 2. The joint
likelihood function for multiple data sets was calculated as in Algorithm 3. The
optimal parameter set across multiple datasets was then found by optimizing
Algorithm 3 using constrained optimization with nlminb().
It should be noted, that Algorithm 3 has a minor error leading to the priors
having unchanged in�uence despite multiple datasets. The MAP solution for J
datasets should have been implemented as

(3.53)θ̂MAP,J = arg min
θ∈Θ





J∑

j=1

(
N∑

k=1

(
log(det(Rk|k−1)) +

εTkR
−1
k|k−1εk

))
+ log(det(Σθ)) + εTθ Σ−1

θ εθ





Thus, the more datasets available, the proportionally less impact of the priors
on the MAP solution.

Algorithm 2 Manual implementation of the negative log-likelihood.

function −Log-Likelihood(parameters, data)
(datapredict,SDpredict) ← predict(parameters, data))
y ← data
ŷ ← datapredict

ySD ← SDpredict

log-likelihood ← − 1
2

N∑
n=1

(y−ŷ)2

y2SD
−

N∑
n=1

log ySD − (N − 1) 1
2 log 2π

return −log-likelihood
end function

3.3.3 Calculating the Parameter Uncertainties

When CTSM-R is not used for optimization of the model parameters, the asso-
ciated uncertainties are not estimated directly. The parameter uncertainties can
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Algorithm 3 Manual implementation of MAP estimate of multiple data sets.

Require: Set prior distribution of parameteri ∼ N(µi,σi)
function −MultiData MAP(parameteri=1..I , dataj=1..J)

VMAP ← 0
for j=1..J do

Set initial values for dataj
VMAP ← VMAP +−Log-Likelihood(parameteri=1..I , dataj) ...

−
I∑
i=1

dnorm(parameteri,mean=µi,sd=σi,log=TRUE)

end for
return −VMAP

end function

then be calculated using an approximation of the inverse Hessian, which provides
the curvature of the log-likelihood function [110]. Calculations of parameter un-
certainties using R are explained in Algorithm 4. We used the function hessian

from the R package numDeriv to approximate the Hessian. The parameter "r"
controls the precision of the numerically derived Hessian with a default value
of 4. In some cases it was necessary to increase the precision at the cost of
more evaluations in order to get non-negative diagonal elements of the inverse
Hessian.

Algorithm 4 Estimation of model parameter uncertainties using the Hessian.

Require: numDeriv
Calculate the Hessian as hessian(object function, optimized parameters,
method="Richardson", method.args=list(r=6), extra parameters to object
function)
Calculate Hessian−1 by solve(Hessian)

Calculate the SD of parameters by
√

diag(Hessian−1)

3.3.4 Optimization with Genetic Algorithms

Object functions de�ned outside the CTSM-R environment, but using optimiza-
tions from the package for parts of the calculations can sometimes be noisy. This
noise can stem from numerical approximations. As an example, if one wishes
to optimize the distribution of population parameters, i.e. the priors for MAP
estimation, based on multiple individual datasets, the object function for the
problem can be noisy. When the object function is non-smooth, gradient based
optimizers have di�culties converging to the global maximum and are likely to
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t

x t

Figure 3.3: Example of the true object function (blue) and the noisy realiza-
tion of the object function (red). Many local maxima are present
in the noisy realization of the object function.

stop in a local maximum instead [115]. Although they are computationally fast,
if one uses a gradient based optimizer on the noisy object function exempli�ed
in Figure 3.3, the solution will highly depend on the starting guess. To avoid
this, a non-gradient based optimizer like genetic algorithms (GA) could be used
for optimizations of non-smooth object functions [116].
GA can be slow and computationally heavy. However, with some tuning of the
optimizer settings, GA often reach fast convergence. Moreover, the optimization
can be speeded up by allowing parallel computations. The tuning is a compro-
mise between getting to the solution fast and not stopping the iterations sooner
than the parameter space has been explored su�ciently. Although GA have
global convergence one can not be completely certain that the optimizer �nds
the global maximum - there might still exist a solution with an even better �t
that has yet to be discovered.
The principles of GA are inspired by biological evolution. A population of pos-
sible parameter sets are created at the beginning of each iteration. During an
iteration the value of the object function is determined for each parameter set.
To �nd the population of the next iteration the best parameter sets of the current
iteration are used to build new parameter sets by combining di�erent parts of the
best parameter sets with each other (cross-over) and occasionally introduce ran-
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dom parameter values (mutations). The optimization is stopped when the best
solution does not improve after a certain number of consecutive populations.
Tuning of GA involves setting the population size, cross-over rate, mutation
rate, number of best solutions to keep for next iteration (elitism), maximum
number of iterations, and maximum number of runs without improvement.
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Chapter 4

Models of Endogenous
Glucose Production

This chapter focuses on presenting and discussing models of a small part of the
glucoregulatory system - the glucose production of the liver. Large glucoregu-
latory models including many di�erent e�ects like meals and exercise are not
described, but can be found in the literature [117, 118, 119]. The here presented
models describe how the EGP is stimulated by glucagon and some models de-
scribe the inhibitory e�ects of insulin, too. Models of EGP without glucagon
action are not considered [117, 120].
Simulations provide a direct comparison of the responses of the di�erent models
to a glucagon bolus and a glucagon infusion. Furthermore, models including
the e�ect of insulin on EGP are compared using simulation of a glucagon bolus
preceded by an insulin bolus. The models in sections 4.6-4.8 each contain one
unique element: the evanescence e�ect of glycogenolysis, the glucagon rate of
change, and saturation of glycogenolysis. All proposed models are discussed at
the end of the chapter and related to the physiology described in Chapter 2.



44 Models of Endogenous Glucose Production

4.1 Simulation Scenario

The EGP models in this chapter were implemented in MATLAB along with
glucagon and insulin PK models. The glucagon PK model was described by
(4.1)-(4.3). Similarly, the insulin PK model was described by (4.4)-(4.6).

dZ1(t)

dt
= uC(t)− k1Z1(t) (4.1)

dZ2(t)

dt
= k1Z1(t)− k2Z2(t) (4.2)

C(t) =
k2Z2(t)

W · ClF,C
+ Cb (4.3)

dX1(t)

dt
= uI(t)−

X1(t)

tmax
(4.4)

dX2(t)

dt
=
X1(t)

tmax
− X2(t)

tmax
(4.5)

I(t) =
1

tmax

X2(t)

W · ClF,I
106 + Ib (4.6)

The glucagon and insulin PK models are explained in details in Section 5.1. For
the current purpose of comparable EGP simulations, the PK model parameters
were based on a single virtual patient with parameters listed in Table 4.1. The
EGP models were implemented in MATLAB according to the original scienti�c
publications to the best of the author's knowledge.

Table 4.1: Speci�c model parameter values used for simulation of the glucagon
and insulin PK models. Occasionally, some of these parameters are
also included in the EGP models.

Parameter Value Unit
W 69 kg
k1 0.058 min−1

k2 0.058 min−1

ClF,C 159 mL/kg/min
Cb 10.9 pg/mL
tmax 67.9 min
ClF,I 17.4 mL/kg/min
Ib 8.7 mU/L
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Figure 4.1: Simulated plasma glucagon and serum insulin concentrations after
a SC glucagon bolus of 0.3 mg (left), SC continuous glucagon
infusion of 1 µg/minute (middle), and SC insulin bolus of 4 U at
t=0 and SC glucagon bolus of 0.3 mg at t=150 (right).

The PK models were used to perform three simulation scenarios:

� Euglycemic clamp (5 mmol/L), constant basal insulin (Ib), SC glucagon
bolus of 0.3 mg at t=0

� Euglycemic clamp (5 mmol/L), constant basal insulin (Ib), SC glucagon
infusion of 1 µg/minute starting at t=0

� Euglycemic clamp (5 mmol/L), SC insulin bolus of 4 U at t=0, SC gluca-
gon bolus of 0.3 mg at t=150 minutes

The simulated glucagon and insulin concentrations of each of these scenarios are
displayed graphically in Figure 4.1 and were used as inputs to the EGP mod-
els to compare their strengths and weaknesses, and to investigate how certain
parameters in�uence the model responses to glucagon.
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4.2 Extension of the Minimal Model

One of the oldest glucoregulatory models including the e�ects of insulin on glu-
cose was published by Bergman in 1979 and is known as the minimal model [121].
In 2013, Herrero et al. suggested an extension to the model including the ef-
fects of glucagon on the net EGP [122]. Mathematically the glucagon-extended
minimal model is:

EGP (t) = [CE(t)− IE(t)]G(t)Vd,G + SG[Gb −G(t)] (4.7)

dCE(t)

dt
= kCSC [C(t)− Cb]− kCCE(t) (4.8)

dIE(t)

dt
= kISI [I(t)− Ib]− kIIE(t) (4.9)

G, C and I are the plasma glucose, glucagon, and insulin concentrations and
Gb, Cb, and Ib denotes the basal values thereof. IE and CE are the actions
of the e�ect compartments of insulin and glucagon on the net EGP. SG is the
glucose sensitivity on promoting or inhibiting the EGP. SC is the glucagon
sensitivity and kC is the transfer rate constant of glucagon from plasma to the
e�ect compartment. SI is the insulin sensitivity and kI is the transfer rate
constant of insulin from plasma to the e�ect compartment. Vd,G is the glucose
volume of distribution per mass.
Compared to the publication, (4.7) is rewritten to emphasize that the e�ects of
insulin and glucagon are additive and that the absolute di�erence in glucagon
and insulin actions interact with the plasma glucose concentration to yield the
EGP. Moreover, with this formulation the contribution to the EGP from the
deviation in glucose concentration from basal becomes obvious.

Table 4.2: Speci�c model parameter values used for simulation of the Herrero
et al. EGP model [122].

Parameter Value Unit
SG NA µmol/kg/min per mmol/L
kC 0.210 min−1

SC 1.25·10−4 min−1 per pg/mL
kI 0.002 min−1

SI 1.16·10−3 min−1 per mU/L
Vd,G 160 mL/kg

Data used for the model building originated from a clinical study of eleven
subjects with T1D undergoing a dual-hormone closed-loop study for 27 hours
[67]. Thus neither glucose, glucagon or insulin were constant during the entire
time of the study.
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Figure 4.2: EGP simulations of the model proposed by Herrero et al. [122]
after a SC glucagon bolus (left), SC glucagon infusion (middle),
and SC insulin bolus followed 150 minutes after by a SC glucagon
bolus (right), see Figure 4.1 for the corresponding PK pro�les. The
solid curves (left and middle) show the responses using a published
parameter value of SC [122], and the dashed curves show responses
when SC is three times as large. The solid curve (right) show the
impact of insulin above basal. The dotted curve is equal to the
solid curve of the left graph with 150 minutes delay.

Table 4.2 lists the model parameter values of (4.7)-(4.9) used for the simulations
displayed in Figure 4.2. As the glucose level is clamped at basal, 5 mmol/L, the
last part of (4.7) equals zero and thus the value of SG is non-relevant for the
present simulations and omitted from the table. The value of Cb was more than
four times greater reported by Herrero et al. than the value of the glucagon PK
simulation model, which could be attributed to assay di�erences [32]. The dif-
ference in basal glucagon levels could lead to a mismatch in glucagon sensitivity.
Figure 4.2 displays the EGP responses using the published glucagon sensitivity
compared to a sensitivity increased by a factor of three following a SC bolus
injection and initiation of a SC glucagon infusion. As the glucagon sensitivity is
increased, the EGP responses to both glucagon disturbances are also increased.
Overall, the EGP responses to glucagon follow the dynamics of the plasma glu-
cagon concentrations with a slight delay representing the transfer of glucagon
to the e�ect compartment.
Figure 4.2 also compares the EGP response in the presence or absence of a
preceding insulin bolus. The dotted line of the right graph equals the solid
line of the left graph although with a 150 minutes delay. Increasing insulin
above basal but maintaining basal glucagon, the EGP becomes negative. The
response to the glucagon bolus measured by peak EGP is somewhat dampened
in the presence of the insulin bolus, even when correcting for the negative EGP.
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4.3 UVA/PADOVA Type 1 Diabetes Simulator

The only FDA approved simulator of the glucoregulatory system was built in
a collaboration between University of Virginia and University of Padova [118].
The model was extended by Dalla Man et al. to include the e�ects of glucagon
on EGP [123]. The EGP is described by the following equations:

EGP (t) = GGNG − SGG(t)− SIIE(t) + SCCE(t) (4.10)

dCE(t)

dt
= kC ·max(C(t)− Cb, 0)− kCCE(t) (4.11)

dIE(t)

dt
= −kI [IE(t)− Irem(t)] (4.12)

dIrem(t)

dt
= −kI [Irem(t)− I(t)] (4.13)

G, C, and I are the plasma glucose, glucagon, and insulin concentrations. Cb is
the basal glucagon concentration. GGNG is a constant EGP contribution that
could correspond to gluconeogenesis. SG, SC , and SI are glucose, glucagon and
insulin sensitivities on EGP. IE and CE are insulin and glucagon concentrations
in the e�ect compartments. Irem is a remote insulin compartment. kC and kI
are transfer rate constants of glucagon and insulin.
Breaking (4.10) into its elements it consists of two stimulating EGP terms and
two inhibiting EGP terms. One stimulating term depends on the delayed glu-
cagon action while the other is completely independent of glucose, insulin or
glucagon. The stimulating e�ect of glucagon is only present when the glucagon
concentration is above basal. The EGP inhibiting terms depend on the plasma
glucose and the delayed insulin action. The glucose level will always inhibit
EGP, even at low blood glucose concentrations.

Table 4.3: Speci�c model parameter values used for simulation of the Dalla
Man et al. EGP model [123].

Parameter Value Unit
GGNG 6 µmol/kg/min
SG 0.678 µmol/kg/min per mmol/L
SI 0.3 µmol/kg/min per mU/L
SC 0.25 µmol/kg/min per pg/mL
kC 0.2 min−1

kI 0.033 min−1

Table 4.3 lists the model parameter values of (4.10)-(4.13) used for the simula-
tions displayed in Figure 4.3. The parameter values were guessed by the author
since the model has undisclosed parameter values.
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Figure 4.3: EGP simulations of the model proposed by Dalla Man et al. [123]
after a SC glucagon bolus (left), SC glucagon infusion (middle),
and SC insulin bolus followed 150 minutes after by a SC glucagon
bolus (right), see Figure 4.1 for the corresponding PK pro�les. The
solid curves (left and middle) show the responses using a parameter
value of 0.2 for kC , and the dashed curves show responses when
kC is reduced by a factor of four. The solid curve (right) show the
impact of insulin above basal. The dotted curve is equal to the
solid curve of the left graph with 150 minutes delay.

Generally, the EGP responses to glucagon follow the dynamics of the plasma
glucagon concentrations with a delay representing the transfer of glucagon to
the e�ect compartment. The parameter kC controls the delay of glucagon action
on EGP as exempli�ed in the left and middle graphs of Figure 4.3. The more
delayed glucagon action on EGP is, the later will EGP reach maximum concen-
tration after a bolus and steady state after SC infusion start. Moreover, when
the time to maximum EGP response increases, the peak response decreases.
In this model, insulin is delayed twice as described by (4.12)-(4.13). The delayed
e�ect of insulin on EGP is visible in the right graph of Figure 4.3, where the
solid line represents the impact of insulin on EGP compared to the dotted line
with insulin remaining constant at the basal level. With insulin above basal
and glucagon at basal, the EGP becomes negative after the insulin action delay.
The insulin level has very little in�uence on the EGP response to glucagon as
the peaks of the two curves are almost identical.
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4.4 Multiplicative Model

A semi-mechanistic integrated glucose-insulin-glucagon model was proposed by
Schneck et al. [124]. The model includes multiplicative e�ects of glucose, insulin
and glucagon and is formulated as:

EGP (t) = EGPb ·
(
GE(t)

Gb

IE(t)

Ib

Cb
CE(t)

)−EGIC

(4.14)

dCE(t)

dt
= kC [C(t)− CE(t)] (4.15)

dIE(t)

dt
= kI [I(t)− IE(t)] (4.16)

Gb, Ib, and Cb are the basal concentrations of glucose, insulin and glucagon, re-
spectively. Similarly, GE , IE , and CE are the e�ect compartment concentrations
of glucose, insulin, and glucagon. EGPb is the basal EGP. EGIC determines the
stimulatory e�ect of glucagon and inhibitory e�ects of glucose and insulin on
EGP. C is the plasma glucagon concentration and kC is the transfer rate con-
stant of glucagon from plasma to the e�ect compartment. Likewise, I is the
plasma insulin concentration and kI is the transfer rate constant from plasma
to the e�ect compartment.
Equation (4.14) describes how EGP above basal depends on a multiplicative
form of glucose, insulin and glucagon. When glucose and insulin exceed their
basal levels, EGP is inhibited, whereas EGP is stimulated when glucose and in-
sulin are below basal levels. On the contrary, EGP is stimulated when glucagon
exceeds the basal level, and inhibited when glucagon is lower than basal.

Table 4.4: Speci�c model parameter values used for simulation of the Schneck
et al. EGP model [124].

Parameter Value Unit
EGPb 10.2 µmol/kg/min
EGIC 0.79 -
kC 0.118 min−1

kI 0.005685 min−1

Table 4.4 lists the model parameter values of (4.14)-(4.16) used for the simu-
lations displayed in Figure 4.4. The parameter of EGPb is calculated based on
the weight of the virtual subject whereas the other parameters are from [124].
As the glucose level is clamped at basal, 5 mmol/L, the fraction of the glucose
contribution to EGP equals 1.
Generally, the EGP responses to glucagon during a euglycemic clamp with con-
stant basal insulin follow the dynamics of the plasma glucagon concentrations
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Figure 4.4: EGP simulations of the model proposed by Schneck et al. [124]
after a SC glucagon bolus (left), SC glucagon infusion (middle),
and SC insulin bolus followed 150 minutes after by a SC glucagon
bolus (right), see Figure 4.1 for the corresponding PK pro�les.
The solid curves (left and middle) show the responses using a
published parameter value of EGIC [124], and the dashed curves
show responses when EGIC is half as large. The solid curve (right)
show the impact of insulin above basal. The dotted curve is equal
to the solid curve of the left graph with 150 minutes delay.

with a delay representing the transfer of glucagon to the e�ect compartment.
The parameter EGIC determines the size of the EGP response to the combined
stimulatory and inhibitory e�ects of glucose, insulin and glucagon as exempli�ed
in the left and middle graphs of Figure 4.4. When the parameter is reduced,
the response is reduced as well.
The delayed e�ect of insulin on EGP is visible in the right graph of Figure
4.4, where the solid line represents the in�uence of insulin on EGP compared
to the dotted line with insulin remaining constant at the basal level. With in-
sulin above basal and glucagon at basal, the EGP decreases from its basal level
of EGPb. The insulin level has quite some in�uence on the EGP response to
glucagon as the peak is noticeably lower in the presence of insulin.
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4.5 Glucose-Glucagon Model

Inspired by the same model as in Section 4.4, Peng et al. proposed a di�erent
model [125]. The model includes additive e�ects of glucose and glucagon on
EGP described by the following equation:

EGP (t) = EGPb · 0.5 ·
[(

GE(t)

Gb

)−EG

+

(
C(t)

Cb

)EC
]

(4.17)

EGPb is the basal EGP. GE is the glucose concentration in the e�ect compart-
ment, Gb is the basal glucose concentration, and EG is the inhibitory e�ect on
EGP of glucose exceeding basal levels. C is the plasma glucagon concentration,
Cb is the basal glucagon concentration, and EC is the stimulatory e�ect on EGP
of glucagon exceeding basal levels.
Equation (4.17) describes how the basal EGP is stimulated by glucagon concen-
trations exceeding basal and glucose concentrations below basal. Similarly, EGP
is inhibited when glucagon is below basal and glucose is above basal. The e�ects
of glucose and glucagon levels di�erent from basal are determined independently
and the overall contribution to EGP is found by addition.

Table 4.5: Speci�c model parameter values used for simulation of the Peng et
al. EGP model [125]. *25% of the original value.

Parameter Value Unit
EGPb 7.53 µmol/kg/min
EC 1.013* -

Table 4.5 lists the model parameter values of (4.17) used for the simulations
displayed in Figure 4.5. As the glucose level is clamped at basal, 5 mmol/L,
the fraction of the glucose contribution to EGP equals 1 and the value of EG
becomes irrelevant. Notice in this model, that the e�ect of glucagon is directly
proportional to the concentration in the plasma compartment without delay.
The parameter of EC used for simulations is one-fourth of the published value
in order to have a response in the same range as the other simulations. With an
even lower value of EC the response to glucagon is further reduced as exempli�ed
in Figure 4.5.
The in�uence of insulin on EGP is not captured in the model equations, and
thus the third scenario with an insulin bolus preceding a glucagon bolus is not
simulated.
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Figure 4.5: EGP simulations of the model proposed by Peng et al. [125] after
a SC glucagon bolus (left), and SC glucagon infusion (right), see
Figure 4.1 for the corresponding PK pro�les. The solid curves
show the responses using a value of 1.013 for EC , and the dashed
curves show responses when EC is 0.675. The e�ect of insulin is
omitted as it is not described by the model.

4.6 Glucagon Evanescence E�ect

Based on data from a study with glucose clamp and constant insulin and IV
glucagon infusions Hinshaw et al. proposed a new model of EGP [35]. The
model is the �rst to describe the evanescence e�ect of glycogenolysis:

EGP (t) = kG6PG6P (t) (4.18)

dG6P (t)

dt
= −kG6PG6P (t) +GGG(t) +GGNG,b (4.19)

GGG(t) = [GGGb
+ SC ·max(0, C(t)− Cthres)] · E(t) (4.20)

E(t) =
1

2

[
1− tanh

(
t− tD
τ

)]
(4.21)

G6P is glucose 6-phosphate and kG6P is the rate of dephosphorylation. GGG
is the EGP contribution from glycogenolysis. GGGb

and GGNG,b are the basal
glycogenolysis and gluconeogenesis, respectively. SC is the sensitivity of gly-
cogenolysis to glucagon concentration, C, exceeding a threshold concentration,
Cthres. E is the evanescence e�ect of glycogenolysis. tD is the delay of the
evanescence e�ect at which it reduces the glycogenolysis by 50% and τ is the
time constant of the evanescence phenomenon.
Equations (4.18)-(4.21) describe how EGP depends on glucagon. EGP also
depends on glucose indirectly as it a�ects gluconeogenesis with some delay.
However, in this simulation with a euglycemic clamp the glucose dependency is
neglected. The relationship between glucagon concentration and glycogenolysis
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Figure 4.6: EGP simulations of the model proposed by Hinshaw et al. [35]
after a SC glucagon bolus (left), and SC glucagon infusion (right),
see Figure 4.1 for the corresponding PK pro�les. The solid curves
show the responses when including the evanescence e�ect as pub-
lished [35], and the dashed curves show responses when neglecting
the evanescence e�ect of the model. The e�ect of insulin is not
shown as it is not included in the model.

is linear when glucagon exceeds a threshold, although it is dampened and made
non-linear by the evanescence e�ect.

Table 4.6: Speci�c model parameter values used for simulation of the Hinshaw
et al. EGP model [35].

Parameter Value Unit
kG6P 0.032 min−1

GGNG,b 4.4 µmol/kg/min
GGG,b 6.6 µmol/kg/min
SC 0.272 µmol/kg/min per pg/mL

Cthres 80 pg/mL
tD 74.77 min
τ 15.99 min

Table 4.6 lists the model parameter values of (4.18)-(4.21) used for the simu-
lations displayed in Figure 4.6. The values of GGG,b and GGNG,b are guessed
by the author based on Cherrington stating that basal EGP is approximately
11 µmol/kg/min with gluconeogenesis contributing 40% [36]. The value of SC
might be o� by a factor of 103 because the unit is reported as per ng/mL in [35].
If assuming the unit is correct, the response to changes in glucagon from the
threshold becomes very small and in fact the EGP response to a bolus and an
infusion becomes practically identical. In this model, the e�ect of glucagon on
EGP is not delayed but suppressed by the evanescence e�ect after tD minutes.
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The di�erence in the response with and without the evanescence e�ect is exem-
pli�ed in Figure 4.6. Note, that the model was based on IV glucagon infusions
which would reach steady state much faster than SC infusion of glucagon. Also,
because neither the SC bolus or SC infusion yield a steep increase in glucagon
concentration like an IV infusion would, the parameter accounting for a rapid
increase in glucagon is ignored.
The in�uence of insulin on EGP is not captured in the model equations, and thus
the third scenario with an insulin bolus preceding a glucagon bolus is omitted.

4.7 Glucagon Rate of Change

Based on a model comparison of nine published or new EGP models, Emami et
al. found that a multiplicative relationship between insulin and glucagon was
needed to describe the interaction between the two hormones [114]. Moreover,
the glucagon rate of change was included in the �nal model description achieving
the best �t:

EGP (t) = max(1− SIIE(t), 0) ·max(G∆C(t) + SCC(t), 0) +GGNG (4.22)

dG∆C(t)

dt
= −kGdCG∆C(t) + S∆C∆C(t) (4.23)

dIE(t)

dt
= kI [I(t)− IE(t)] (4.24)

I and C are the plasma insulin and glucagon concentrations. IE is the insulin
concentration in the e�ect compartment. G∆C is an e�ect compartment de-
pending on the glucagon rate of change. SI and SC are insulin and glucagon
sensitivities. S∆C is the sensitivity to glucagon rate of change. kGdC and kI are
transfer rate constants. GGNG is a constant EGP contribution independent of
insulin and glucagon corresponding to gluconeogenesis.

Table 4.7: Speci�c model parameter values used for simulation of the Emami
et al. EGP model [114].

Parameter Value Unit
GGNG 5.54 µmol/kg/min
SI 0.02 per mU/L
SC 0.063 µmol/kg/min per pg/mL
S∆C 0.0015 µmol/kg/min per pg/mL
kGdC 0.022 min−1

kI 0.068 min−1

Equations (4.22)-(4.24) describe how insulin and glucagon pull the EGP in op-
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Figure 4.7: EGP simulations of the model proposed by Emami et al. [114]
after a SC glucagon bolus (left), SC glucagon infusion (middle),
and SC insulin bolus followed 150 minutes after by a SC glucagon
bolus (right), see Figure 4.1 for the corresponding PK pro�les.
The solid curves (left and middle) show the responses using a
published parameter value of S∆C [114], and the dashed curves
show responses when S∆C is 35 (bolus) or 200 (infusion) times
as large. The solid curve (right) show the impact of insulin above
basal. The dotted curve is equal to the solid curve of the left graph
with 150 minutes delay.

posite directions. The e�ect of glucagon vanishes when the remote insulin con-
centration exceeds S−1

I . The model also includes an e�ect compartment related
to the glucagon rate of change.

Data used for model building originated from a clinical study of 11 subjects with
T1D undergoing a euglycemic glucose clamp with constant insulin infusions at
various levels and multiple glucagon boluses [48]. Both glucose and insulin were
constant throughout a study day.

Table 4.7 lists the model parameter values of (4.22)-(4.24) used for the simu-
lations displayed in Figure 4.7. Overall, the EGP responses to glucagon follow
the dynamics of the plasma glucagon concentrations. The rise and fall of EGP
becomes steeper with an increased sensitivity to the glucagon rate of change as
illustrated in the left and middle graphs of Figure 4.7. The increased steepness
of EGP also shortens time to peak EGP with a few minutes. With a very high
sensitivity to the glucagon rate of change, the EGP response to glucagon infu-
sion start overshoots and returns to a baseline above basal.
The e�ect of insulin is visible in the right graph of Figure 4.7, where the solid
line represents the in�uence of insulin on EGP compared to the dotted line with
insulin remaining constant at the basal level. After the insulin bolus but with
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glucagon remaining constant and basal, the EGP drops slightly from its basal
level. The insulin level has an in�uence on the EGP response to glucagon as
the peak is noticeably lower in the presence of insulin above basal.

4.8 Saturation of Glucose Production

Inspired by the model presented in section 4.7, Wendt et al. proposed yet
another model of EGP [18]. The model was developed based on data from dogs
who received very high glucagon boluses making it necessary to introduce a
saturation e�ect of the response to glucagon. Furthermore, the model was tested
in healthy volunteers [19], and validated using leave-one-out cross-validation in
seven diabetes patients [20]. Using the same terminology as in the previous
sections the model is described by the following equations:

EGP (t) = GGG(t) +GGNG (4.25)

GGG(t) =
max(1− SIIE(t), 0)

1− SIIb
[Emax −GGNG]

C(t)

CE50 + C(t)
(4.26)

dIE(t)

dt
= kI [I(t)− IE(t)] (4.27)

GGG and GGNG are the glycogenolysis and gluconeogenesis, respectively. SI is
the insulin sensitivity, IE is the insulin concentration in the e�ect compartment,
and Ib is the basal insulin concentration. C is the glucagon concentration, CE50

is the glucagon concentration at which the response is half maximum, and Emax
is the maximum response at basal insulin. kI is the transfer rate constant of
insulin from plasma to the e�ect compartment.
Equations (4.25)-(4.27) describe how the EGP depends on insulin and gluca-
gon. Insulin reduces the response to glucagon and completely suppresses the re-
sponse when the remote insulin concentration exceeds S−1

I . The glycogenolytic
response to glucagon follows Michaelis-Menten kinetics and saturates for high
concentrations of glucagon.

Table 4.8: Speci�c model parameter values used for simulation of the Wendt
et al. EGP model [20].

Parameter Value Unit
GGNG 6 µmol/kg/min
SI 0.0415 per mU/L

Emax 84.4 µmol/kg/min
CE50 285 pg/mL
kI 0.0068 min−1
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Figure 4.8: EGP simulations of the model proposed by Wendt et al. [20]
after a SC glucagon bolus (left), SC glucagon infusion (middle),
and SC insulin bolus followed 150 minutes after by a SC glucagon
bolus (right), see Figure 4.1 for the corresponding PK pro�les.
The solid curves (left and middle) show the responses using a
published parameter value of CE50 [20], and the dashed curves
show responses when CE50 is reduced by a factor of 2.85. The
solid curve (right) show the impact of insulin above basal. The
dotted curve is equal to the solid curve of the left graph with 150
minutes delay.

Data used for model validation originated from a clinical study of 8 subjects with
T1D undergoing four study days with an insulin bolus followed by a glucagon
or saline bolus [56]. Neither glucose, insulin or glucagon were constant during
an entire study day.

Table 4.8 lists the model parameter values of (4.25)-(4.27) used for the simula-
tions displayed in Figure 4.8. The EGP responses to glucagon boluses are not as
peaked as previous simulations which might be explained by the high glucagon
concentrations leading to saturation of the EGP response during parts of the
simulation. The value of CE50 in�uences the glucagon concentration at which
the response saturates - the smaller the value, the lower glucagon concentration
is required to reach maximum response. Changes in CE50 in�uences the overall
magnitude and the peakedness of the EGP response as illustrated in the left
and middle graphs of Figure 4.8.
The e�ect of insulin is visible in the right graph of Figure 4.8, where the solid
line represents the in�uence of insulin on EGP compared to the dotted line with
insulin remaining constant at the basal level. After the insulin bolus but with
glucagon remaining constant and basal, the EGP drops slightly from its basal
level. The insulin level has a pronounced in�uence on the EGP response to
glucagon as the peak is noticeably lower in the presence of insulin above basal.
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4.9 Model Comparison

The seven presented models of glucagon's e�ect on EGP have some similari-
ties but also numerous di�erences. This section compares the models to each
other, and discusses the models in relation to the known physiology explained in
Section 2.3. Model comparison is based on the general structure, the dynamic
responses to a glucagon bolus or infusion, the absolute responses to glucagon
at basal insulin and following an insulin bolus, and the steady state glucagon
concentration-response relationship.

4.9.1 Model Structure

The models in the previous sections seek to describe the EGP response to gluca-
gon. Three of the models depend on glucagon delayed by an e�ect compartment
[122, 123, 124], whereas the four other models depend directly on the plasma
glucagon concentration [20, 35, 114, 125]. Four of the seven models depend on
insulin delayed by a single e�ect compartment [20, 114, 122, 124], and one model
delays insulin by two e�ect compartments [123]. Thus two of the models do not
describe the e�ect of insulin on EGP [35, 125].
Table 4.9 provides an overview of some of the most important structural model
features: glucose dependency, interaction (multiplicative) or independence (ad-
ditive) relationship of glucagon and insulin e�ects, constant production from
independent mechanism, evanescence e�ect of glycogenolysis, glucagon rate of
change dependency, and saturation of glucose response to glucagon.

Table 4.9: Comparison of structural model elements in the seven presented
EGP models: glucose level (G), insulin level (I), glucagon level (C),
gluconeogenesis (GGNG), evanescence e�ect (E), glucagon rate of
change (∆C), saturation of EGP response (EGPmax).

Model G I + C I · C GGNG E(t) ∆C EGPmax
Herrero [122] × ×
Dalla Man [123] × × ×
Schneck [124] × ×
Peng [125] ×
Hinshaw [35] × × ×
Emami [114] × × ×
Wendt [20] × × ×
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4.9.2 Impact of Glucose

Four of the presented models explicitly include the e�ects of glucose on EGP.
Two models describe an additive e�ect of glucose and glucagon [123, 125],
whereas two other models present a multiplicative relationship between glu-
cose and glucagon [122, 124]. The model by Hinshaw et al. includes the e�ect
of glucose indirectly by increasing gluconeogenesis after prolonged hypoglycemia
[35]. The remaining two models are not in�uenced by the glucose level [20, 114].
As outlined in Section 2.3, the ambient glucose level does not in�uence the im-
mediate e�ect of glucagon on EGP. Therefore, the models with multiplicative
relationships of glucagon and glucose seem least physiologic. Moreover, gluca-
gon stimulates gluconeogenesis rather than glycogenolysis after three hours of
hypoglycemia. Though the model by Hinshaw et al. describes this phenomenon,
it only describes this for a speci�c blood glucose level of 3.3 mmol/L and is thus
not generalizable to other hypoglycemic glucose levels. Furthermore, the number
of delay compartments determining the delay of the hypoglycemia stimulating
e�ect on gluconeogenesis are not public available.

4.9.3 Impact of Insulin

The EGP models behave very similar after a glucagon bolus during euglycemia
and constant basal insulin concentration. Though, in the models including
the e�ects of insulin, the EGP response to glucagon changes in the presence
of a preceding insulin bolus and the model di�erences become more obvious.
Due to the extra remote insulin compartment, the insulin action is delayed
the longest in the model by Dalla Man et al., see Figure 4.9. Comparing the
EGP responses in Figures 4.2-4.4 and 4.7-4.8, we observe that insulin has little
in�uence on the EGP response to glucagon when the model structure has an
additive relationship of insulin and glucagon [122, 123]. On the contrary, when
the insulin-glucagon relationship is multiplicative, the response to a glucagon
bolus in the presence of insulin is noticeably reduced [20, 114, 124]. Figure 4.9
shows that the absolute EGP responses using the Emami and Wendt models
in the presence of insulin are very similar. As outlined in Section 2.3, high
insulin levels suppress the EGP response to glucagon, and thus the models with
multiplicative descriptions of insulin and glucagon seem most physiologic as they
can describe this phenomenon. Another issue with the additive insulin-glucagon
models is visible in Figure 4.9, where the EGP becomes negative when insulin is
above basal and glucagon remains basal because the basal EGP is zero [122, 123].
The EGP being zero at basal and becoming negative during the simulation reveal
that an additive insulin-glucagon relationship is non-physiologic.
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Figure 4.9: Direct comparison of EGP response to glucagon in the presence of
insulin above basal. At time=0 a bolus of 4 U insulin was given
followed by a glucagon bolus of 300 µg at time=150.

4.9.4 Glucagon time-response relationship

The EGP response generally follows the glucagon PK when insulin is basal,
except when the evanescence e�ect is present [35], when the sensitivity to gluca-
gon rate of change dominates [114], or when the glucagon response saturates for
large parts of the simulated glucagon levels [20]. Figure 4.10 directly compares
the seven EGP models at basal insulin using nominal parameter values. After
an identical SC glucagon bolus, all models simulate a rise in EGP although with
varying steepness and time of maximum response as seen in the left graph. After
100 to 150 minutes all models simulate that the EGP has returned to baseline
which is zero in two models [122, 123] and around 10 µmol/kg/min according to
the other models [20, 35, 114, 124, 125]. In Figure 4.11a, the EGP response to
a glucagon bolus peaks after approximately 20 minutes and returns to baseline
after 120 minutes. Comparing the left graph of Figure 4.10 to Figure 4.11a,
the return to baseline is well captured by the EGP models, but several of them
simulate a much slower time to maximum response.
Following initiation of an identical SC glucagon infusion, six of the models sim-
ulate with nominal parameter values that the EGP immediately increases and
reach a steady state plateau within 100 minutes although at levels ranging from
less than 10 to 60 µmol/kg/min as seen in Figure 4.10. The model by Hinshaw
et al. stands out as the increase in EGP is delayed and the e�ect transient
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Figure 4.10: Direct comparison of simulated EGP responses to glucagon when
insulin is basal and parameter values are nominal. EGP re-
sponses after a 300 µg glucagon bolus (left) and initiation of
1 µg/min glucagon infusion (right).

which is due to the evanescence e�ect of glucagon included in the model. In
Figure 4.11b, the EGP response to initiation of a glucagon infusion rapidly in-
creases and then returns to a new elevated baseline after 120 minutes despite
the continued infusion of glucagon. Although the Hinshaw model includes the
evanescence e�ect, it still does not seem to capture the true time course of
EGP after glucagon infusion. However, remembering the middle graph of Fig-
ure 4.7, the response mimics the evanescence e�ect described in literature when
the sensitivity to glucagon rate of change is 200 times the nominal value.

The literature in Section 2.3 con�rms that the EGP response to a continuous
glucagon stimulation wanes over time. Due to the mathematical formulation
in (4.21), the evanescence e�ect is irreversible due to the tangent hyperbolic
function. It is unclear what happens to the evanescence e�ect when multiple
doses are injected. Physiologically, when glucagon stimulation is discontinued
the EGP system might be desensitized for some time, but should then return to
normal. Having a refractory period where further stimulation does not produce
a response is well known from neurons essentially also acting through receptor
mechanisms although in such cases the refractory period only lasts for millisec-
onds. However, the reversal of the evanescence e�ect of glucagon is not studied
thoroughly and can therefore not be modelled until investigated in a clinical
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(a) EGP response to SC glucagon bo-
luses, from [48].

(b) EGP response to an IV glucagon in-
fusion, from [36].

Figure 4.11: Time course of EGP response to glucagon.

setting. To have a reversible situation the evanescence e�ect could perhaps be
modelled through a chain of compartments rather than a tangent hyperbolic
function.

4.9.5 Absolute Glucagon Concentration

The left graph of Figure 4.1 displays the glucagon PK pro�le after a bolus of 300
µg based on the model and parameters summarized in Section 4.1. According
to the model parameter, Cb, the baseline glucagon concentration for this virtual
subject is 11 pg/mL. The glucagon PK model was based on data measured by
a novel assay technique with high accuracy. Comparison of this assay to com-
mercially available assays showed that they tend to overestimate the glucagon
concentration by as much as 100% due to lack of speci�city and precision [32].
This di�erence in assay performance could explain the variations in baseline
glucagon concentration reported together with the models: ∼48 pg/mL [122],
∼130 pg/mL [124], ∼60 pg/mL [125], ∼35 pg/mL [35], and ∼100 pg/mL [114].
Data used for model building by both Herrero et al. and Emami et al. were
measured by an immunoassay from Millipore, and the data used by Hinshaw
et al. was measured by a double antibody radio-immunoassay from Linco Re-
search. Neither Schneck et al. nor Peng et al. provide information on which
assay was used for sample analysis of glucagon. Thus, in all of these EGP mod-
els based on glucagon data with higher baseline than the virtual subject, the
EGP responsiveness to glucagon i.e. the sensitivity, might be underestimated.
Moreover, the model by Hinshaw et al. uses a speci�c threshold of 80 pg/mL
to describe the concentration above which glucagon a�ects EGP. Applying this
threshold to the virtual subject, the required glucagon concentration increase
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Figure 4.12: Comparison of the concentration-response relationship between
glucagon and EGP for the presented EGP models assuming a
steady state for discrete glucagon concentrations.

from baseline to yield an e�ect is close to 70 pg/mL, which con�icts with liter-
ature stating that even small glucagon increments of 10 pg/mL are e�ective in
stimulating EGP [36].
These issues emphasize what was already pointed out in Section 2.2.4. Thus
applying a PK model based on data from one method of sample analysis could
lead to over or under estimation of the concentration-response sensitivity in the
PD model if the PD parameters are based on glucagon data obtained by an
assay with di�erent accuracy.

4.9.6 Glucagon Concentration-Response Relationship

Although most of the EGP models are time-dependent, their behaviour in steady
state for various levels of glucagon can be compared. Figure 4.12 presents the
steady state EGP response to glucagon of the seven EGP models with nominal
parameter values. Six of the models describe the glucagon-EGP relationship
with a linear or piece-wise linear function. The model by Wendt et al. stands
out as the only model describing a saturation of the EGP response to high
concentrations of glucagon. As described in Section 2.3, glucagon stimulates
EGP through a receptor mediated mechanism and therefore it makes physio-
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Figure 4.13: EGP as a function of glucagon concentration with data from dogs
(black dots) and humans (white dots), from [36]. To convert from
mg/kg/min to µmol/kg/min the value is multiplied by 5.55, thus
10 mg/kg/min = 55.5 µmol/kg/min.

logically sense to have a model with a maximum EGP response. Figure 4.13
provides another evidence that the EGP response to glucagon approaches sat-
uration for high glucagon concentrations. Comparing Figure 4.12 and 4.13, the
concentration-response relationship of the Wendt model compares well to the
clinical results in terms of maximum response and concentration yielding half
maximum e�ect. For low concentrations of glucagon not exceeding 400 pg/mL
a linear approximation of the glucagon-EGP relationship might be su�cient,
but for higher concentrations of glucagon, the discrepancies between the model
with saturation and the linear models become large. In the presented simula-
tion example with a bolus of 300 µg glucagon the plasma concentration reached
600 pg/mL and even at this concentration we observe large variations in the
size of the steady state EGP response. Notice, that the models by Herrero et
al. and Emami et al. having used the same assay for glucagon analysis, both
underestimate the EGP response to low concentrations of glucagon compared to
the Wendt model. The remaining four models seem to follow the Wendt model
for low concentrations of glucagon but greatly overestimates the EGP response
for glucagon concentrations exceeding ∼200 pg/mL.

It is interesting to observe how the models describe the EGP response to glu-
cagon for concentrations approaching zero. Figure 4.12 visualizes that both the
models by Dalla Man et al. and Hinshaw et al. require glucagon to exceed a
threshold before having a stimulatory e�ect on EGP. The model by Herrero et
al. reveals to be even more non-physiologic as the EGP becomes negative when
the glucagon concentration is zero.
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4.9.7 Closing Remarks

Calculation of EGP from clinical data is not straightforward. A major limitation
in development of EGP models is the data used for model building. The golden
standard for measuring EGP is a triple tracer dilution technique followed by
application of a two compartment model [126]. However, none of the above
models have been developed based on data from a study using the triple tracer
technique. Two studies used a single glucose tracer technique to estimate EGP
[35, 114], and the remaining models were developed based on datasets with
measurements of insulin, glucagon and glucose. Using a single tracer technique
rather than a triple tracer technique, the calculations highly depend on the
associated compartment model [127]. When EGP is not estimated, but included
as part of a larger glucoregulatory model, the parameter values associated with
the EGP model will depend even more on the encompassing model.

The present model comparison and discussion of seven published EGP models
serves to highlight advantages and disadvantages of each model. Unfortunately,
a single model does not seem to capture the full complexity of the EGP response
to glucagon. This overview might inspire creation of more exhaustive glucagon-
EGP models. Although, creating more complex models will also require more
complex data preferably obtained using triple tracer technique and demonstrat-
ing the physiologic phenomenons sought to be described mathematically.



Chapter 5

Simulating Glucoregulatory
Dynamics

The �rst part of this chapter provides the model equations and parameters for
a simulation model describing the glucoregulatory system in patients with T1D.
The glucose PD model accounts for the e�ects of both insulin and glucagon on
EGP. The equations and parameters of the associated insulin and glucagon PK
models are provided for completeness. The model validation is brie�y described.
A discussion of the model strengths and weaknesses when applying it for simu-
lations concludes the model presentation.
The second half of this chapter provides examples of what the glucose-insulin-
glucagon simulation model have been used for. The selected in silico studies
include replication of an in vivo study showing the e�ect of micro-boluses of
glucagon at varying insulin levels. The in vivo study was also recreated by
administering a wider range of glucagon boluses to further investigate the dose-
response relationship of glucagon and EGP. Finally, the simulation model was
used to propose glucagon dosing regimens for treatment of insulin-induced mild
hypoglycemia depending on the ambient insulin level.
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5.1 Simulation Model

The PK and PD simulation models in this section including equations and pa-
rameter values were published by Wendt et al. in Journal of Diabetes Science
and Technology February 2017 [20]. This section serves as a summary of the
glucoregulatory model providing the information necessary to discuss it and use
it for simulations. For details on the model validation and parameter estima-
tion not stated in this section, the reader is referred to [20], which is included
in Appendix C.

5.1.1 Insulin Pharmacokinetics

The insulin PK model is adopted from Haidar et al. [28] and describes how
insulin is transferred from the SC tissue to the central compartment using a
simple two-state model with identical time constants for the absorption rate
and the elimination rate.

dX1(t)

dt
= uI(t)−

X1(t)

tmax
X1,SS = uI,SS · tmax (5.1)

dX2(t)

dt
=
X1(t)

tmax
− X2(t)

tmax
X2,SS = uI,SS · tmax (5.2)

I(t) =
1

tmax

X2(t)

W · ClF,I
106 + Ib ISS =

uI,SS
W · ClF,I

106 + Ib (5.3)

Table 5.1: Interpretation of insulin PK model states, input, output and pa-
rameters.

Class Variable Unit Interpretation

States
X1(t) U mass due to SC dosing, in SC tissue
X2(t) U mass due to SC dosing, in serum

Input uI(t) U/min dose
Output I(t) mU/L concentration in serum

Parameters

Ib mU/L basal concentration
tmax min time to maximum serum concentration
W kg body weight
ClF,I mL/kg/min apparent clearance
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Figure 5.1: Examples of insulin PK pro�les after one bolus administration of
2 U in eight virtual patients (left), and in one randomly selected
virtual patient (no. 2) following various insulin boluses (right).
The left orange curve is identical to the right purple curve.

Table 5.1 lists the interpretations of the insulin PK model variables. The steady
state conditions are listed together with the model equations in (5.1)-(5.3).
When the system is undisturbed, thus uI being zero, both states are equal
to zero and the serum concentration equals the basal concentration Ib, which is
maintained by a constant basal insulin infusion. The basal concentration was
modelled as a parameter due to the basal infusion rate being unknown in the
data used for model �tting. However, rearranging the steady state equation
in (5.3), the required insulin infusion rate to yield a speci�c basal steady state
concentration can be obtained when the model parameters are known. The
parameter, Ib, can then be omitted and replaced by an input describing the
constant basal infusion accordingly.
The model could be expanded to handle IV insulin infusions by addition of an
input variable to the second state equation in (5.2). Caution must be taken
if the bioavailability after SC and IV administration are not identical as this
will in�uence the model parameters. Moreover, as regular insulin exerts �ip-
�op kinetics [31], the elimination of drug estimated after SC administration will
underestimate the true elimination of drug after IV administration due to the
slow SC absorption. The slow SC absorption might also mask the existence of a
distribution compartment that is clearly identi�ed after IV administration and
the model in (5.1)-(5.2) might therefore not be adequate to describe PK after
IV administration after all. Chapter 2 explained the PK after intravascular and
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extravascular administration in details and can be consulted for further clari�-
cation.
Section 5.1.5 presents individual insulin PK model parameter values and when
they apply for eight virtual T1D patients. Figure 5.1 visualizes the di�erences in
insulin PK after administration of an identical bolus to each patient of the vir-
tual population, and the dose-concentration relationship in one of the patients.

5.1.2 Glucagon Pharmacokinetics

The glucagon PK model is adopted from Wendt et al. [18] and describes how
glucagon is transferred from the SC tissue to the central compartment using
a simple two-state model with di�erent absorption rate and elimination rate
constants, where the elimination rate is greater than or equal to the absorption
rate.

dZ1(t)

dt
= uC(t)− k1Z1(t) Z1,SS =

uC,SS
k1

(5.4)

dZ2(t)

dt
= k1Z1(t)− k2Z2(t) Z2,SS =

uC,SS
k2

(5.5)

C(t) =
k2Z2(t)

W · ClF,C
+ Cb CSS =

uC,SS
W · ClF,C

+ Cb (5.6)

The steady state conditions are listed together with the model equations in (5.4)-
(5.6). When the system is undisturbed thus no SC glucagon bolus or infusion,
both states are equal to zero and the plasma concentration equals the basal
concentration maintained by a constant endogenous production.
Similar to the insulin PK model described in Section 5.1.1, the glucagon PK
model can also be modi�ed to include IV dosing of glucagon, although the same
cautions apply regarding bioavailability, and underestimation of elimination of
drug and applicability due to �ip-�op kinetics. The PK of glucagon is explained
in details in Section 2.2.

Table 5.2 lists the interpretations of glucagon PK model variables. Individual
glucagon PK model parameter values of eight virtual patients with T1D are pre-
sented in Section 5.1.5. Figure 5.2 visualizes the di�erences in plasma glucagon
concentration after an identical bolus administered to each patient of the virtual
population, and the dose-concentration relationship in one of the patients.
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Table 5.2: Interpretation of glucagon PK model states, input, output and pa-
rameters.

Class Variable Unit Interpretation

States
Z1(t) pg mass due to SC dosing, in SC tissue
Z2(t) pg mass due to SC dosing, in plasma

Input uC(t) pg/min dose
Output C(t) pg/mL concentration in plasma

Parameters

Cb pg/mL basal concentration
k1 min−1 absorption rate constant
k2 min−1 elimination rate constant
W kg body weight

ClF,C mL/kg/min apparent clearance

Figure 5.2: Examples of glucagon PK pro�les after one bolus administration
of 300 µg in eight virtual patients (left), and in one randomly
selected virtual patient (no. 6) following various glucagon boluses
(right). The left turquoise curve is identical to the right yellow
curve.
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5.1.3 Glucose Pharmacodynamics

The majority of the glucose PD model explained in the following was originally
published by Hovorka et al. [117], and then extended with an EGP model in-
cluding the e�ects of both insulin and glucagon by Wendt et al. [18]. The
glucoregulatory model by Hovorka was chosen as the model foundation since
it was validated using a multi tracer technique and the publication provided
parameter values for six subjects, which served as prior information during pa-
rameter estimation.
The model extension was developed using preclinical data from healthy dogs
[18], included in Appendix A. It was then tested with clinical data from healthy
humans to con�rm that the model extension translated to the human species
[19], included in Appendix B. Finally, the PD model was cross-validated success-
fully in seven T1D patients [20], included in Appendix C. The complete model
structure is described by (5.7)-(5.13).

dQ1(t)

dt
= −F01 − FR − STx1(t)Q1(t) + k12Q2(t) +GGG(t) +GGNG (5.7)

dQ2(t)

dt
= STx1(t)Q1(t)− [k12 + SDx2(t)]Q2(t) (5.8)

GGG(t) =
max(1− SEx3(t), 0)

1− SEIb
[Emax −GGNG]

C(t)

CE50 + C(t)
(5.9)

G(t) =
Q1(t)

V
(5.10)

dx1(t)

dt
= ka1[I(t)− x1(t)] (5.11)

dx2(t)

dt
= ka2[I(t)− x2(t)] (5.12)

dx3(t)

dt
= ka3[I(t)− x3(t)] (5.13)

Table 5.3 lists the interpretations of PD model states, inputs, outputs and pa-
rameters. In this model formulation, the EGP is the sum of GGG and GGNG as
explained in detail in Section 4.8. Equations (5.14)-(5.18) list the steady state
conditions of the model.
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Figure 5.3: Examples of glucose PD pro�les after an insulin bolus of 2 U fol-
lowed by a glucagon bolus of 200 µg when the blood glucose de-
creased below 3.9 mmol/L in eight virtual patients.

Q1,SS = GSS · V (5.14)

Q2,SS = Q1,SS
x1,SS

x2,SS + k12
(5.15)

x1,SS = Ib (5.16)

x2,SS = Ib (5.17)

x3,SS = Ib (5.18)

Section 5.1.5 presents subject speci�c glucose PD model parameters. Figure 5.3
visualizes the di�erences in plasma glucose concentration after an identical SC
insulin bolus followed by an identical SC glucagon bolus when plasma glucose
decreased below 3.9 mmol/L in each patient of the virtual population.
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5.1.4 Validation

The PD model validation used data from a glucagon dose-�nding study in eight
well-controlled patients with T1D [56]. The patients completed four similar
study days in random order. On each study day, patients received a SC insulin
bolus aiming to lower plasma glucose to 3 mmol/L. When plasma glucose de-
creased below 3.9 mmol/L, a single SC bolus of either 100 µg (visit B), 200 µg
(visit C), 300 µg (visit D) glucagon, or saline (visit A) was administered. Serum
insulin, plasma glucagon and plasma glucose was measured during the study.
Model validation was carried out as a 4-fold leave-one-out cross-validation leav-
ing all data from one visit out per fold. As each subject participated in four
visits, each subject had four training datasets comprised of data from three
visits and four corresponding test datasets with data from one visit:

� Training: B-C-D, Test: A

� Training: A-C-D, Test: B

� Training: A-B-D, Test: C

� Training: A-B-C, Test: D

Thus, all four visits were used for testing once without being used for optimiza-
tion during that fold. To validate the PD model in a subject, at least one PD
model test-�t of a dataset from a glucagon visit (B, C or D) should be accepted.
The simulation accuracy of the model on datasets not used for parameter opti-
mization was assessed by the bias calculated as the mean prediction error (MPE)
and the precision calculated by the mean absolute prediction error (MAPE). A
model test-�t was accepted if the MPE was less than ±15% and the MAPE
was less than 20%. Datasets with MAPE of test-�ts exceeding 50% was consid-
ered outliers and removed from further analysis. Therefore, the �nal individual
model parameters were based on data from either three or four visits. Further
details on study design, model validation and the results thereof can be found
in [20].
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5.1.5 Parameters

The majority of PK and PD model parameters are subject speci�c and listed in
Table 5.4.
The insulin PK parameters describe insulin aspart (NovoRapid®, Novo Nordisk
A/S, Bagsværd, Denmark) concentration in serum after SC bolus administration
measured by a Mercodia assay (Mercodia AB, Uppsala, Sweden). The glucagon
PK parameters describe glucagon (GlucaGen®, Novo Nordisk A/S, Bagsværd,
Denmark) concentration in plasma after SC bolus administration measured by
a novel assay technique with high accuracy [32]. Due to the �ip-�op kinetics
of both insulin and glucagon, where absorption rate is slower than elimination
rate following SC administration, the elimination of drug will be underestimated
compared to data following IV administration.
Other insulin and glucagon types might be described by the same PK models as
de�ned in Sections 5.1.1 and 5.1.2, however their parameters will di�er depend-
ing on assay accuracy and the formulation of drug-product - some agents will
increase others decrease the absorption rate. Moreover, analogues of insulin and
glucagon might have di�erent potencies that would in�uence the sensitivities of
the PD model.
It should be noted that both insulin and glucagon were sampled suboptimal in
the clinical study. Insulin samples were missing around the time of expected
maximum concentration (Tmax) and the exact dosing time of glucagon was un-
certain. Due to the lack of dense sampling around Tmax, the insulin PK model
could only be estimated by inferring prior knowledge on the parameters describ-
ing the kinetics, which could have introduced a bias. Given the short time to
maximum concentration for glucagon, identi�cation of the correct dosing time
was critical. The most likely dosing time of glucagon was identi�ed before esti-
mation of the �nal glucagon PK parameters, which could have led to errors in
Tmax of up to ±4 minutes.

The glucose PD model de�ned in Section 5.1.3 was validated using leave-one-out
cross-validation in seven out of the eight T1D patients. The model parameters
of patient 8 are reported although the model could not be validated in this sub-
ject. Therefore, simulations in the following sections include only subjects 1-7.
The population of T1D patients were well-controlled and had no endogenous in-
sulin production. The publication of the clinical study provides detailed patient
characteristics [56].
A few parameters of the PD model were �xed for all subjects including the rate
of gluconeogenesis, GGNG, at 6 µmol/kg/min [37], and the glucose volume of
distribution, V , at 160 mL/kg [117]. The renal clearance of glucose was zero
unless the plasma glucose concentration exceeded 9 mmol/L in which case it was
calculated as 0.003 · (G− 9) ·V [128]. Similarly, the insulin independent glucose
�ux was calculated as F01 · G/4.5 when the plasma glucose concentration was
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below 4.5 mmol/L [128].

5.1.6 Strengths and Limitations

Although the presented simulation model of the glucoregulatory system is de-
tailed and accounts for many glucose-insulin-glucagon dynamics, it is still not
perfect. This section serves to discuss pros and cons of the model. Moreover, it
provides guidelines for when the model is appropriate to use and which dynam-
ics it can not be expected to capture.
A model can only be expected to describe dynamics present in the data used
for model development and parameter estimation, if data is sampled su�ciently
often and at the right times. As an example, the PD model failed to identify
the correct steady state glucose level [21]. This limitation arose because the
data used for parameter estimation contained very little information about the
insulin, glucagon and glucose levels before the system was disturbed with an
insulin bolus. On the contrary, in the data used for parameter estimation, a
steady state seemed to appear towards the end of the experiment when the
glucose concentration was approaching hypoglycemia and both glucagon and
insulin had returned to their baseline levels. This data sampling explains why
the model assumes glucose steady state lower than one would expect at baseline
levels of insulin and glucagon.
Unlike other datasets used for model development, this dataset was dynamic
and included an insulin-only phase and an insulin-glucagon phase. Thus, the
model is best used to describe glucose dynamics when insulin and glucagon lev-
els are changing. As the e�ect of glucagon is governed by the evanescence e�ect
during continuous exposure, the simulation model can not be used to simulate
the glucose response to continued glucagon infusion. Datasets with constant
glucose, insulin and/or glucagon levels should be used for investigating isolated
dynamics like the evanescence e�ect.
During the experiment, the patients received relatively small correcting insulin
boluses aiming to lower the blood glucose to 3 mmol/L. The dataset did not con-
tain information about how the glucose dynamics i.e. the fall rate might change
in the case of an over-bolus and can therefore not be expected to simulate this
reliably.

Factors in�uencing the model parameters can not be included in the description
of the parameters if the factors do not vary in the training dataset. As an
example, exercise and stress are long known to alter the insulin sensitivity [82],
and recently Ranjan et al. found that diet might in�uence the response to
glucagon [58]. None of these factors are accounted for in the glucose PD model
used for simulations in the following sections.
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The model does not include a feedback mechanism of the glucose levels to the
endogenous production of insulin and glucagon. Typically, patients with T1D
do not have endogenous insulin production and therefore it is fair not to in-
clude this mechanism in a model describing the glucoregulatory system of this
population. Although blunted, the glucagon production is existing in patients
with T1D. However, the endogenous glucagon response to hypoglycemia corre-
sponds to plasma increases observed after SC boluses of 1-10 µg [20]. With SC
glucagon doses signi�cantly larger than 10 µg, it is fair to neglect the possible
endogenous glucagon response to hypoglycemia as the endogenous contribution
will be minor.

Despite all the limitations, the model de�nitely also has some advantages. The
model equations together with parameters describing seven T1D patients are
public accessible [20]. The model describes the glucose dynamics of patients
rather than healthy subjects and features both insulin and glucagon. The model
describes a population for which it is relevant to have a simulation model so that
researchers can develop improved treatment regimens for patients with T1D.
Although the population is limited to seven patients, the model is validated
using leave-one-out cross-validation, which is rarely executed when new models
are proposed.

5.2 In Silico Studies

Having a reliable simulation model of the glucoregulatory system can aid in the
planning of clinical trials and investigation of dose selection. In silico studies
bene�t over in vivo trials in not being restricted by the number of studies per
subject or in total, the number of samples during same day experiments, and the
amount of drug administrated. Moreover, nuisance factors disturbing clinical
study outcomes are not present in simulation studies. The following sections
present examples of applications for the simulation model just presented in
Section 5.1.

5.2.1 Replication of an in Vivo Study

The simulation model was used to replicate a clinical study by El Youssef et
al. with the title "Quanti�cation of the Glycemic Response to Microdoses of
Subcutaneous Glucagon at Varying Insulin Levels" [48]. The simulation study
was published as a technical report with in silico replications of all in vivo re-
sults [21], which is included in Appendix D. This section presents highlights of
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the technical report focusing on comparison of three in silico to in vivo results:
time course of EGP after four di�erent glucagon boluses, the EGP over 60 min-
utes separated by insulin infusion rate (IIR) and glucagon bolus size, and �nally
dose-response curves of glucagon and EGP separated by IIR.
The study was a cross-over where each patient participated in three study days
of ten hours duration. Patients received IV IIRs of either low, medium or high.
Glucose infusion rates were controlled using a proportional integral derivative
(PID) controller aiming at a blood glucose concentration of 85 mg/dL. When
blood glucose read below 60 mg/dL the controller regulated the glucose infusion
rate every �ve minutes, otherwise every ten minutes. After an initial two hours
run-in period the subjects received the �rst glucagon bolus. They received the
second glucagon bolus after another two hours until a total of four glucagon
boluses were delivered and observed for the following two hours. The glucagon
boluses were delivered in a pseudo-random order by varying the initial dose,
but keeping the order: 25 µg, 75 µg, 125 µg, and 175 µg (e.g. 125-175-25-75).
Each subject received the same pseudo-random order of glucagon boluses dur-
ing each study day. The in vivo study included 11 patients while the in silico
study was based on the seven virtual patients. However, one virtual subject
(no. 7) was excluded due to almost similar IIRs thereby almost no di�erence in
EGP response at various insulin levels. The T1D patients in the in vivo study
had slightly higher body mass indexes and were less well-controlled with higher
HbA1c values than the virtual patients. However, we consider these population
di�erences of minor importance. The in vivo study used regular human insulin
(Humulin R, Eli Lilly and Company) and glucagon (GlucaGen, Novo Nordisk).
The simulation model is based on GlucaGen too, but insulin is described by
insulin aspart (NovoRapid, Novo Nordisk). Since the insulin infusion was con-
stant during a study day the potential PK di�erences are negligible, but the PD
e�ect of the two insulins could be di�erent. The EGP was calculated using a
single tracer technique in vivo, and obtained directly from the model in silico.

Figure 5.4b replicates Figure 5.4a with many similarities but also some di�er-
ences showing the time course of EGP after four di�erent glucagon boluses.
Most importantly, the magnitudes of average peak EGP to the four glucagon
doses were similar. The EGP increase appeared to be more rapid in silico than
in vivo yielding a faster Tmax, which could be partly explained by a faster glu-
cagon Tmax observed in silico than in vivo. However, with sampling of only
every ten minutes the observed Tmax could be anywhere between 10-30 minutes
and the simulated Tmax could be between 0-20 minutes (the average is in fact
12 minutes). If the true Tmax of EGP in response to glucagon was between
10-20 minutes, this agreed with both the observed and simulated results.
The in vivo estimated EGP returned fast to baseline and after 60 minutes it
was below the production before injection of the preceding glucagon bolus. The
simulated EGP had slower return to baseline and only slightly negative values
after the lowest glucagon dose.
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Figure 5.5a presents one of the most interesting results which is replicated by
simulation in Figure 5.5b showing the EGP over 60 minutes separated by IIR
and glucagon bolus size. The averages of the simulated data were di�erent from
the observed averages. However, considering the standard error of measurement
of both datasets, the simulated data was not di�erent from the observed data.
The EGP responses to doses of glucagon during medium IIR were very similar
to the EGP responses during low IIR in the measured data, whereas they were
di�erent between the responses during the two IIRs when simulating the exper-
iments. The simulated data showed small increases in response to increasing
glucagon boluses even at high IIR, which was not pronounced in the original
observed data. In general, the standard error of measurements were smaller in
silico than in vivo.
Figure 5.6b replicates Figure 5.6a, but without extrapolation of the dose-response
curves of glucagon and EGP separated by IIR. The original graph shows the ac-
tual data in the dose-range of 25-175 µg glucagon and extrapolates the presumed
trends down to 1 µg and up to 10 mg. Note, this is a wild extrapolation with
no data to support it. Within the data-range the simulated results matched the
observed results although the simulated EGP at low IIR tended to be higher
than the observed. Having only four points very closely spaced on a log-scale,
a single point can largely in�uence the overall interpretation of the curves.
In conclusion, the simulated results are similar to the results obtained in vivo.
The simulation also emphasized some limitations of the clinical study which
then inspired the simulation study in the following section.
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(a) In vivo from [48].

(b) In silico (n=6) from [21].

Figure 5.4: Time pro�les of calculated EGP by glucagon dose, baseline cor-
rected for EGP at the time of dose.
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(a) In vivo from [48]. (b) In silico (n=6) from [21].

Figure 5.5: Mean EGP AUC separated by glucagon dose and insulin infusion
rate.

(a) In vivo from [48]. (b) In silico (n=6 or 18) from [21].

Figure 5.6: Dose-response curve across all doses, and for low and high insulin
infusion rate experiments, estimated from simulated data.
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Figure 5.7: Simulated averages of seven T1D patients' dose-response curves of
glucagon boluses ranging from 1 µg to 10 mg at various insulin
levels expressed as multiples of the basal IIR, modi�ed from [21].

5.2.2 Dose-Response Study

Inspired by the replicated in vivo study in Section 5.2.1, the simulation model
in Section 5.1 was used to further investigate the dose-response relationship of
glucagon and EGP at various constant insulin levels normalized to the basal
insulin level. This section presents the most important results and learnings
from the simulation study reported in [21]. The technical report is provided in
Appendix D.
The seven virtual patients were included in an in silico cross-over study that
comprised 115 study days per subject. At each study day, the IIR was constant
at one to �ve times the basal rate and the glucose infusion rate was controlled
every �ve minutes by a PID controller to maintain a glucose clamp of 5 mmol/L.
A glucagon bolus was administered at steady state and followed up till �ve hours
after the bolus. The e�ect of glucagon boluses in the range from 1 µg to 10 mg
was assessed by calculating the area under the EGP curve for the �rst 60 min-
utes following the bolus.
Figure 5.7 plots the results of the simulation study for each glucagon dose strati-
�ed by IIR. The response to glucagon doses below approximately 25 µg are very
similar independent of IIR. However, with increasing glucagon doses the curves
for each IIR separate. The higher the IIR, the lower response to a glucagon
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(a) ED50 independence of IIR. (b) Rmax independence of IIR.

Figure 5.8: Fitted dose response curves when using doses of 25, 75, 125, and
175 µg as in the study by El Youssef et al. [48] assuming indepen-
dence of insulin for either ED50 or Rmax, from [21].

bolus. Small increases in glucagon dose during low IIR increase the response
signi�cantly although it seems to saturate for some glucagon dose. The indi-
vidual curves could be described by classic Michaelis-Menten kinetics as de�ned
in (2.11) in Chapter 2, with similar values for the concentration yielding half
maximum response and distinct values for maximum response depending on
the insulin level. This observation was expected, as the model used for simula-
tions describes how insulin modulates the maximum achievable EGP response
to glucagon, but does not in�uence the concentration yielding half-maximum
response.

Whether the simulated dose-response curves in Figure 5.7 re�ect the reality is
currently unknown. Discussion with peers have led to two hypotheses of how
the ambient insulin level might a�ect the EGP response to glucagon:

� insulin level in�uences the maximum response to glucagon (Rmax)

� insulin level in�uences the glucagon dose at which half-maximum response
is achieved (ED50)

The hypotheses could be examined by carrying out a smaller in vivo study.
However, the glucagon doses must be carefully chosen to make sure to capture
the essential parts of the dose response curve. If all tested doses are below the
true ED50 both hypotheses would describe the data equally well.
According to a small simulation study, the validity of the above hypotheses can
not be investigated using the glucagon doses from the in vivo study in Section
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(a) ED50 independence of IIR. (b) Rmax independence of IIR.

Figure 5.9: Fitted dose response curves when using SC glucagon doses of 25,
100, and 1000 µg assuming independence of insulin for either ED50

or Rmax, from [21].

5.2.1, thus 25, 75, 125, and 175 µg as displayed with simulations in Figure 5.8.
In the left graph, the ED50 is constant across all insulin levels and in the right
graph the Rmax is constant across all insulin levels. Because the four doses are
within a narrow dose range and all doses are below the simulated ED50, both
hypotheses �t the simulated data equally well.

If the glucagon doses had been distributed across a larger dose range encompass-
ing the ED50, the di�erence between the hypotheses would be clearer according
to a simulation study similar to the one just described. Figure 5.9 shows the
results when using realistic glucagon doses spanning a larger dose range, thus
25 µg, 100 µg, and 1 mg. The graphs visualize a clear di�erence in the �tness of
the two hypotheses making one more plausible than the other; that ED50 does
not depend on ambient insulin levels, but that Rmax does.

This simulation study has helped to identify which glucagon doses could be rel-
evant to test in an in vivo study to investigate how the ambient insulin level
in�uences dose-response of glucagon and EGP, and speci�cally test the hypothe-
ses that insulin impacts maximum EGP response or the glucaogn dose at which
half maximum EGP response occurs.
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5.2.3 Dose Selection Study

Both of the previous simulation studies were designed to investigate the EGP
response to glucagon at various insulin levels and how this interaction can be
explored further. The simulation model can also be used for more practical
purposes with direct relevance for clinicians and patients. We used the model
in Section 5.1 to conduct in silico studies exploring insulin-dependent optimal
glucagon dosing regimens for treatment of insulin-induced mild hypoglycemia
based on clinically relevant criteria [22]. A draft of the paper is included in
Appendix E.
As explained in Section 2.3, the EGP responsiveness to glucagon depends on the
insulin level. Thus, the insulin level must in�uence the glucagon dose needed
to recover from hypoglycemia. Currently, it is not possible to measure serum
insulin concentration in real time, but research is being done to develop a con-
tinuous insulin monitor [129]. However, pumps with bolus calculators o�er as
standard calculation of insulin on board (IOB), which is provided as informa-
tion to the user to avoid insulin stacking due to the slow insulin absorption and
onset of action. The IOB approximates the remaining e�ect of insulin in the
body after an insulin bolus.
The in silico study evaluated the e�ect of glucagon at various insulin levels in-
terpreted as: serum insulin concentration uncorrected or normalized to basal
insulin concentration, and IOB uncorrected or normalized to individual total
daily dose (TDD) of insulin. The serum insulin concentration was directly ob-
tained from the PK model and the IOB was calculated as a linear decay based
on individual insulin action times. The insulin level interpreted as normalized
serum concentration to basal was not included in the paper, but the results of
the experiments are presented in this section.

At the beginning of each experiment in a study the patients' blood glucose were
normoglycemic. The patients then received an individualized insulin bolus that
would yield a prede�ned insulin level when the plasma glucose concentration
decreased beyond the hypoglycemia threshold. At hypoglycemia, a glucagon
bolus in the range of 25 µg to 2.5 mg was administered. The glucose response
after the glucagon bolus was evaluated in terms of average success among the
virtual patient population in raising the glucose concentration above 5 mmol/L,
keeping glucose concentration less than 10 mmol/L and maintaining the glucose
concentration above the threshold of hypoglycemia for at least two hours. The
individual success criteria of recovering from hypoglycemia was summarized in
a single variable describing the overall success of hypoglycemia treatment cal-
culated as a weighted harmonic mean. The optimal glucagon bolus was chosen
as the lowest dose yielding maximum overall success.

Figure 5.10 presents the optimal glucagon dose as a function of the insulin level
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Figure 5.10: Optimal glucagon bolus for a population of T1D patients to re-
cover from insulin-induced mild hypoglycemia as a function of the
ambient insulin concentration normalized to basal insulin concen-
tration.

interpreted as serum insulin concentration normalized to basal insulin concentra-
tion. The graph showed that the higher ambient insulin concentration compared
to basal, the larger glucagon bolus was required to best treat the population for
hypoglycemia. At concentrations of insulin less than two and a half times the
basal value, glucagon boluses from 125 to 500 µg were ideal to treat the majority
of the virtual population for hypoglycemia. Notice, that an optimal glucagon
bolus might be suboptimal for an individual, but viewing the seven virtual pa-
tients as a population, the optimal doses could be given to any subject in the
population and still yield satisfying recovery from hypoglycemia in most cases.
With serum insulin concentrations exceeding two and a half times the basal level
it would be more desirable for the patient to consume a carbohydrate snack since
the optimal glucagon bolus to recover from mild hypoglycemia would be close
to the bolus of 1 mg used to rescue patients from severe hypoglycemia.
The normalized concentration was chosen over the absolute concentration, be-
cause one patient had very high basal concentration making the obtainable range
of absolute concentrations for all virtual patients very narrow and less meaning-
ful than the range obtained by normalising the concentration.
The studies interpreting insulin level by IOB had similar relationships between
insulin level and optimal glucagon dose. Mild hypoglycemia was treatable with
less than 0.5 mg glucagon when IOB was less than 2 U or IOB corresponded to
less than 6% of TDD.
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This simulation study showed that unlike the �xed rescue bolus of 1 mg glu-
cagon for treatment of severe hypoglycemia, there might not be a one-size-�ts-
all-solution to treatment of mild hypoglycemia because of the impeding insulin
level highly in�uencing the e�ect of glucagon. The treatment success of mild
hypoglycemia greatly depended on the ambient insulin level independent of if
the level was assessed as a normalized concentration to basal, IOB or IOB nor-
malized to TDD.

5.2.4 In Silico as Supplement to in Vivo

This section presented examples of application of a glucose-insulin-glucagon
simulation model spanning replication of an independent clinical study, dose
optimization for a clinical study, and a large original simulation study. The
model was used to show the e�ect of glucagon on EGP at various insulin levels
and also suggested new glucagon doses that should be applied clinically in a
similar study design to further investigate the dose-response relationship of glu-
cagon and EGP. Finally, the model was used to generate glucagon mini-bolus
dosing regimens for patients with T1D to recover from insulin-induced mild hy-
poglycemia depending on the ambient insulin level.
The simulation model could be expanded to include models of e.g. meal ab-
sorption, exercise, and other hormones. Such a simulation model could be used
in optimization of diabetes treatment and speci�cally in developing and testing
control strategies for a dual hormone closed-loop device (arti�cial pancreas).
The simulation model can however not replace clinical studies. It should be
regarded as a supplement that can aid in study design to maximize the yield of
clinical studies and investigate glucoregulatory dynamics qualitatively.



90 Simulating Glucoregulatory Dynamics



Chapter 6

Conclusions

This thesis demonstrated methods for PK/PD modeling of glucagon, insulin,
and glucose in biological data. It showed how likelihood principles and Bayesian
methods can be used for parameter estimation in datasets not initially intended
for modeling and thus not optimally sampled. The CTSM package for R proved
to be useful for ML and MAP parameter estimation.

The project succeed in developing a SC PK model of glucagon and the glucagon
analogue ZP-GA-1 in healthy dogs as documented in Appendix A. The same
dataset was used to design a model describing the EGP as a function of both
glucagon or ZP-GA-1 and insulin. A sigmoid Emax model described the e�ect
of glucagon and ZP-GA-1 on EGP. A multiplicative relationship between the
e�ects of insulin and glucagon or ZP-GA-1 on EGP was needed to capture that
EGP is suppressed at high insulin concentrations. The EGP model was embed-
ded in Hovorka's glucoregulatory model and �tted 20 datasets from �ve dogs
well.
The novel EGP model of glucagon translated from healthy dogs to healthy hu-
mans. Only the PK/PD models of marketed glucagon was �tted to human data
due to unavailability of data describing ZP-GA-1 in humans. The glucoregula-
tory model �tted ten datasets from ten healthy subjects well as documented in
Appendix B.

In a model comparison, the novel EGP model showed both strengths and weak-



92 Conclusions

nesses compared to other published models. Among the strengths, it was not
possible for the model to yield non-physiologic negative glucose production as
the lowest output corresponded to the constant gluconeogenesis. The model in-
cluded the e�ect of insulin and glucagon and could describe insulin's suppressing
e�ect even at high glucagon concentrations. The immediate e�ect of glucose on
EGP was not included in the model. The PK/PD model parameter values were
published for seven validated T1D patients. Moreover, the novel model was the
only model among the reviewed ones, that included physiologic saturation of re-
sponse at high glucagon concentrations and matched the concentration-response
relationship reported in literature.
However, the model failed to identify the correct glucose steady state and it did
not account for the evanescence e�ect of glucagon.

Model parameters of insulin and glucagon PK models were estimated in a popu-
lation of eight diabetes patients. The glucoregulatory model including the novel
description of EGP was successfully validated by leave-one-out cross-validation
in seven of the eight T1D patients. The model thus proved its validity for simu-
lations of seven virtual subjects with T1D using the parameter sets of the seven
validated patients. The �nal patient speci�c model parameter sets described
three to four study days in each patient with SC glucagon boluses ranging 0 to
300 µg.

The simulation model replicated a clinical study within the uncertainty limits.
Simulations were also used to recommend glucagon doses for a theoretical repe-
tition of the in vivo study to further investigate the relationship between EGP
and glucagon at various insulin levels. Finally, the simulation model was used
to conduct a large original in silico study to determine the optimal glucagon
mini-bolus to treat mild insulin-induced hypoglycemia at various insulin levels
assessed as concentration or IOB based on clinically relevant criteria.
Although validated, the simulation model can not replace clinical studies, but
it has proved to be a useful supplement and tool in the planning of studies.

6.1 Future Work

The novel EGP model has some limitations that could be subject for future
studies and would justify collection of new physiologic data. More data describ-
ing the glucose concentration during steady state should be collected to identify
the correct level thereof. The evanescence e�ect of glucagon also needs to be
studied further in order to include it in an EGP model. Especially the refrac-
tory period indicating when normal glucagon responsiveness is restored after
desensitization, should be investigated.
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The simulation model could be used to conduct other in silico studies than the
ones here presented. The simulation environment can also aid in the design of
clinical studies to avoid common pitfalls and in the planning of relevant nominal
sampling times.
It would be interesting to carry out the proposed dose-response study with a
wide range of glucagon boluses to investigate how the e�ects of insulin and
glucagon interact and in�uence the EGP. Furthermore, the proposed insulin-
dependent glucagon dosing regimens would be highly relevant to study further
in vivo.
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Appendix A

Technical Report 1
PK/PD in Healthy Dogs

This appendix presents the technical report with the title "PK/PD modelling of
glucose-insulin-glucagon dynamics in healthy dogs after a subcutaneous bolus
administration of native glucagon or a novel glucagon analogue" published by
the Technical University of Denmark in April 2016 [18].
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Objective We aim to develop a simulation model of the complex glucose-insulin-glucagon dynamics
based on physiology and data. Furthermore, we compare pharmacokinetic (PK) and pharmacodynamic
(PD) characteristics of marketed reconstituted glucagon with a stable liquid glucagon analogue invented
by Zealand Pharma A/S.
Research Design and Methods We expanded a physiological model of endogenous glucose production
with multiplicative effects of insulin and glucagon and combined it with the Hovorka glucoregulatory
model. We used a Bayesian framework to perform multidimensional MAP estimation of model param-
eters given priors reported in the literature. We used profile likelihood analysis to investigate parameter
identifiability and reduce the number of model variables. We estimated model parameters in pre-clinical
data from one cross-over study with a total of 20 experiments in five dogs. The dogs received two subcu-
taneous (SC) bolus injections of low and high doses of glucagon and ZP-GA-1 (20 and 120 nmol/kg).
Results We report posterior probability distributions and correlations for all identifiable model parame-
ters. Based on visual inspection and residual analysis, the PD model described data satisfactorily for both
glucagon and the analogue. Parameter estimates of the PD model were not significantly different between
the two compounds.
Conclusions The new PK/PD model enables simulations of the glucose-insulin-glucagon dynamics after
a SC bolus of glucagon or glucagon analogue. The novel glucagon analogue by Zealand Pharma A/S
shows PK and PD characteristics similar to marketed glucagon.

Keywords: Pharmacokinetics, PK, Pharmacodynamics, PD, modeling, modelling, glucagon, glucagon
analogue, glucose, insulin, glucoregulatory, ODE, SDE, MAP, simulation, profile likelihood
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1 Introduction

Conventionally, diabetes type 1 is treated with multiple daily injections of insulin or continuous infusion
of insulin using a pump. The stress of calculating the needed amount of insulin based on food intake,
exercise and insulin sensitivity has led to research in creating an artificial pancreas (AP). A basic AP is
a closed-loop (CL) system consisting of an insulin pump, a continuous glucose monitor (CGM) and a
control algorithm to adjust insulin dosage through the pump based on CGM sensor readings.
Until recently, researchers and developers of the AP have mainly focused on a single hormone ap-
proach [1]. However, research in the field of dual hormone AP systems is growing substantially and
clinical studies are being conducted by research groups in Boston [2–4], Montreal [5–8], Portland [9,10],
and Amsterdam [11–14]. In multiple studies of single hormone open-loop (OL) versus single hormone
CL and/or dual hormone CL systems these groups have demonstrated that time in range increases when
using a CL system compared to an OL system. Moreover, comparative studies show significant reduction
of time spent in hypoglycaemia and number of hypoglycaemic events using a dual hormone CL system
versus a single hormone CL system [6, 7, 9].

The unstable nature of native glucagon in liquid formulation challenges the development of a dual hor-
mone AP. The hormone is currently marketed in dry form and needs reconstitution daily [16, 17]. Im-
mediately after reconstitution glucagon starts degrading and forming fibrils. The fibrillation can cause
the pump tubing to occlude and the degradation reduces the efficacy of the compound. Currently, only
reconstituted glucagon is available for dual hormone AP studies which frequently experience glucagon
pump occlusions [3, 13, 14].
At least two pharmaceutical companies are developing glucagon stable in liquid solution suitable for
pump use. Xeris Pharmaceuticals Inc. is developing native glucagon stabilized in dimethyl sulfoxide
(DMSO) [18], whereas Zealand Pharma A/S is developing a glucagon analogue in aqueous solution [19].
With this ongoing development of liquid stable glucagon suitable for pump use, the realization of a dual
hormone AP is becoming practically possible.

In silico experiments are useful during the development of a control algorithm for a dual hormone AP

Figure 1: Endogenous glucose production due to glucagon and insulin. Left) The relationship between
liver glucagon concentration and glucose production. Solid circles represent data from dogs, and open cir-
cles represent data from humans. Right) The relationship between liver insulin concentration and glucose
production in dogs by gluconeogenesis and glycogenolysis. Data were acquired during basal arterial and
portal glucagon concentrations, basal arterial insulin concentrations and mostly during euglycemia. Both
graphs are from Cherrington [15].
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Figure 2: The effect of increased glucagon on glycogenolysis and gluconeogenesis in the dog. Somato-
statin (SRIF) was given along with basal (B) replacement amounts of insulin and glucagon intraportally.
At time zero the glucagon infusion rate was increased. The data is from Wada et al. [27].

before applying the algorithm in a clinical trial. Simulations in silico can also provide new insights
in physiological system. A model describing the dynamics between glucose and insulin is validated
by tracer data [20], and widely used in the literature for simulations of the endocrine regulatory sys-
tem [21–23]. Recent proposed extensions include the effect of glucagon on endogenous glucose produc-
tion (EGP) [24–26]. It is important to understand the glucose dynamics of the body to evaluate if these
glucagon-glucose models are capturing the complexity of the reality.

The quantitative dynamics of insulin and glucagon on EGP are complex and not completely under-
stood [15]. Two processes contribute to EGP: gluconeogenesis (GN) and glycogenolysis (GG). GN is the
formation of glucose from non-carbohydrate substrates like glucogenic amino acids, glycerol, pyruvate
and lactate. GG is the breakdown of stored glycogen in the liver to glucose. Studies show that glucagon
and insulin have very little effect on GN as opposed to GG [15, 29, 30], see Figures 1 and 2. Thus the
hormones influence mainly the EGP by regulating GG; glucagon stimulates it whereas insulin inhibits
it. Increasing the glucagon concentration stimulates GG until a certain point where-after the response
saturates. Saturation of response is typical for receptor mediated processes due to the limited number of
receptors in a physiological system [31]. As opposed to glucagon, insulin inhibits GG and completely
suppresses the breakdown of glycogen at insulin concentrations exceeding approximately 45 mIU/L [15].
A recent study by El Youssef et al. showed that at high insulin concentrations (46.0±12.5 mIU/L) the
EGP is greatly reduced independent of the glucagon dose [28], see Figure 3. Moreover, the rates of EGP
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Figure 3: Endogenous glucose production with increasing glucagon doses (25, 75, 125, 175 µg) at high,
medium and low insulin infusion rates (0.016±0.006 IU/kg/h, 0.032±0.003 IU/kg/h, 0.05±0.0 IU/kg/h)
giving plasma insulin concentrations of 17.6±13.0 mIU/L, 29.1±8.9 mIU/L, and 46.0±12.5 mIU/L, re-
spectively. The graph is from El Youssef et al. [28].

at high insulin concentrations match the rates of GN. The results are in agreement with previous studies
showing that insulin suppresses GG but does not affect GN. These results suggest that the effect of insulin
prevails over glucagon at high insulin concentrations. Some studies indicate that not only does the abso-
lute glucagon concentration affect EGP but also the glucagon rate of change [15, 27].

The glucose kinetics model by Herrero et al. is based on the minimal model and describes the glu-
cose changes with additive effects of insulin and of glucagon [25, 32]. The EGP model by Dalla Man
et al. also describes the effects of insulin and of glucagon additively [24]. The glucose kinetics model
of Hovorka includes the interaction of insulin and EGP, but does not describe the effect of glucagon on
EGP [20]. The only model including the interaction and effect of both glucagon and insulin on EGP is
proposed by Emami et al. [26]. This model approximates the EGP response to either glucagon or insulin
with linear effects and includes the effect of glucagon rate of change on the EGP. The linear assumption of
the EGP response to glucagon is fair as long as the glucagon concentration does not exceed approximately
400 pg/mL. Based on deviance information criterion the novel model outperformed several other models
including the one proposed by Herrero et al. The model by Emami et al. assumes that the glycogen stores
are never depleted. This is a valid assumption at normal conditions since a recent study showed that small
repeated glucagon doses over a short time span did not significantly alter the glycogen stores even after
an overnight fast [22].

This technical report presents a novel model of the glucose-insulin-glucagon dynamics by combining
the validated insulin-glucose model and the physiological EGP model for the purpose of simulation. The
insulin-glucose model by Hovorka et al. forms the basis of the dynamical system [20]. The model by
Emami et al. extends the EGP part of the Hovorka model to include glucagon [26]. The EGP model
is modified further to ensure saturation of the EGP at high glucagon concentrations in accordance with
literature and physiological receptor activation concepts.

Furthermore, this report aims to thoroughly illustrate and explain the mathematical methods applied dur-
ing the model fitting procedure of the pharmacodynamics model. The final model is fitted to individual
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datasets using a multidimensional Bayesian framework. Parameter identifiability is investigated using
profile likelihood analysis. Model validity is confirmed by estimating the noise contribution of the sys-
tem using the grey-box modelling approach with stochastic differential equations (SDEs) [33]. After
validation, final parameter estimation is conducted using the white-box modelling approach with ordi-
nary differential equations (ODEs) making the model suitable for simulations. We use a programming
environment in R created for continuous time stochastic modelling (CTSM) for the entire model fitting
procedure [34].

Previously, PK data of this report were used for model fitting by a different technique and presented
as a poster at the 8th International Conference on Advanced Technologies & Treatments for Diabetes
(ATTD) in February 2015 [19]. PD results of this report were presented as a poster at the 9th ATTD in
February 2016 [35].
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Table 1: Data summary.

Study Drug Dose, nmol/kg Dogs Nominal Sample Times, minutes post dose

1
Glucagon

20

5 0, 5, 10, 15, 20, 30, 40, 50, 60, 75, 110, 140, 180
120

ZP-GA-1
20

120

2 Data

Zealand Pharma A/S is developing a new glucagon analogue with increased stability in liquid solution for
treatment and better control of hypoglycemia in diabetes patients. The novel compound, ZP-GA-1, was
tested against marketed glucagon (GlucaGen R©, Novo Nordisk A/S) in pre-clinic. Both compounds are
peptides and act as glucagon receptor agonists.

2.1 Data collection

Data originates from a pre-clinical study in dogs designed by Zealand Pharma A/S and conducted at Co-
vance Laboratories Ltd (Covance site, Harrogate UK). The Institutional Animal Care and Use Committee
approved the study and all procedures carried out on the dogs were in accordance with the Animals (Sci-
entific Procedures) Act 1986. The study is summarized in Table 1 and described in Section 2.1.1.
Data was originally collected for the purpose of showing a PD effect of the glucagon analogue in vivo and
to compare it with the PD effect of marketed glucagon.

2.1.1 Study 1

Five healthy Beagle dogs (bodyweight 13.6 ± 1.3 kg; mean ± SD) were included in this randomized
cross-over study and named dog 1-5. At four dosing occasions each dog received a subcutaneous (SC)
bolus injection of 20 or 120 nmol/kg glucagon or ZP-GA-1. Blood samples were collected at 0, 5, 10,
15, 20, 30, 40, 50, 60, 75, 110, 140, and 180 minutes after dose administration. Sample concentrations
of glucagon and of ZP-GA-1 were analyzed using an in-house developed LC-MS/MS method. Plasma
concentration of insulin was analyzed using a commercially available immunoassay from Meso Scale
Discovery (MSD) (catalog no. K152BZC). Although the MSD assay was designed for mouse/rat plasma,
an in-house validation showed that it was also valid for analysis of insulin in dog plasma. Plasma concen-
tration of glucose was analyzed using Roche glucose method (UV test) [36]. Figure 4 presents an example
of raw data from one dog in study 1.

2.2 Bioavailability

The bioavailability is obtained from the ratio between the dose-normalized area under the curve (AUC)
after SC administration compared to IV. The AUC’s were calculated using non-compartmental analysis
(reported at Zealand Pharma A/S). The bioavailability varies between the drugs. Thus, for each drug the
bioavailability is used in the input to the PK model, see summary in Table 2.

2.3 Unit conversion

In the study, glucagon and analogue concentrations were measured in nmol/L, insulin concentration was
measured in pg/mL and glucose concentration was measured in mmol/L. Model parameters concerning
glucagon and of insulin are often reported so that concentrations thereof should be in pg/mL and mIU/L,
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Figure 4: Raw data from dog 2 in study 1. Plasma concentrations after low or high doses of glucagon and
ZP-GA-1 are red crosses or blue dots, respectively.

Table 2: Bioavailability and molar mass of glucagon and glucagon analogue in study 1.

Study Drug Bioavailability Molar mass, g/mol

1
Glucagon 37.5% 3482.75
ZP-GA-1 50% 3339.7

respectively [20,21,25]. The units of the PK and the PD data were converted to these generally used units
before modelling.

2.3.1 Glucagon

To convert the plasma concentration of the administered compound from nmol/L to pg/mL, PK data is
multiplied by the molar mass of the compound since the following yields units of pg/mL.

[nmol]

[L]

[L]

103 [mL]

103 [pmol]

[nmol]

MolarMass [pg]

[pmol]
(1)

The molar masses of glucagon and the analogue are listed in table 2.

2.3.2 Insulin

To convert the insulin concentration from pg/mL to mIU/L, insulin PD data is multiplied by 0.023 since
the following yields units of (mIU/L).

[pg]

[mL]

103 [mL]

[L]

0.023 [IU]

[µg]

103 [mIU]

[IU]

[µg]

106 [pg]
(2)

The assay used for analysis uses the WHO standard of 0.023 (IU/µg).
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Table 3: List of removed outliers in the datasets substituted with linear interpolation of neighbouring
observations. *Outlier not substituted by interpolation but removed.

Study Dog Drug Dose, nmol/kg Analyte Time, min
1 1M Glucagon 20 Glucagon *6
1 1M ZP-GA-1 20 Glucose 6
1 1M ZP-GA-1 20 Glucose 16
1 2M ZP-GA-1 20 Glucose 30
1 3M Glucagon 20 Glucose 15
1 3M Glucagon 20 Glucose 40

2.4 Basal concentrations

After an overnight fast in healthy human adults, the glucagon concentration is around 91 pg/mL (range
40-400 pg/mL) and the fasting insulin concentration is approximately 10-15 mIU/L [37]. Based on the
two present studies, the basal insulin concentration in dogs are considerably lower with an average around
3 mIU/L and range 1.6-5.7 mIU/L, thus less than one third of the human basal insulin concentration. As
there is a negative relationship between basal insulin concentration and insulin sensitivity in humans [38],
this lower basal insulin concentration in dogs indicate a higher insulin sensitivity.
Basal glucagon concentration in dogs is around 41-54 pg/mL [27]. The lower level of quantification
(LLOQ) for glucagon measured in study 1 was 0.2 nmol/L corresponding to nearly 700 pg/mL. All mea-
surements at time zero were below LLOQ. The basal concentration of glucagon can thus not be determined
in this study.

2.5 Data cleaning

No formal tests of the significance of an outlier were used but rather visual inspection. Table 3 lists all
data points that the modeller considered to be outliers. The glucagon outlier appeared to have too high
concentration after just 6 minutes, whereas the removed glucose observations showed sudden drops in
glucose concentration that did not seem physiological. Figure 4 shows an example of such a data point
with a drop at 30 minutes after the low dose of glucagon analogue ZP-GA-1. Figures 16-20 in Appendix
A present raw data from all datasets including outliers.
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3 Models

3.1 PK model

The glucagon pharmacokinetics (PK) are investigated using a simple model as formulated by Haidar et
al. [39,40], defined in (3)-(5) and visualized in Figure 5. The PK model is a one-compartment model of the
disturbance in plasma concentration from baseline after extravascular drug administration with first order
absorption kinetics from the SC tissue to the plasma. The model has two states; the first corresponding
to the SC tissue and the the second corresponding to the central compartment (plasma and instantaneous
equilibrating tissues). The model includes two rate constants; one describing absorption from the SC
tissue to the central compartment and another describing elimination from the central compartment. To
minimize confusion, the parameter naming is kept as closely to the formulation by Haidar et al. as
possible.

dq1(t)

dt
= u(t)− k1q1(t) q1(0) = 0 (3)

dq2(t)

dt
= k1q1(t)− k2q2(t) q2(0) = 0 (4)

C(t) =
k2q2(t)

wCl
· 103 + Cb (5)

Model input: u(t) = δ(t) ·Dose · bioavailability
Model observation: C(tn)
Model output: C(t)
Fixed parameter(s): w, (Cb)
Model parameters: k1, k2, Cl, Cb

C(tn) is the measured glucagon concentration in plasma (nmol/L) at discrete timepoints, n = 1, ..., N .
C(t) is the simulated glucagon concentration in plasma at continuous time. Cb is the basal glucagon con-
centration in plasma (nmol/L). In case of administration of the glucagon analogue, Cb is fixed to zero as
no basal level exists in the body.
w is the measured bodyweight (kg). Cl is the clearance rate normalized by weight (mL/kg/min). k1 is the
absorption rate constant and k2 is the elimination rate constant (min−1).
The concentration of glucagon in the central compartment is obtained by multiplying the content with an
expression similar to per volume of distribution in (5). In classical PK it is trivial that clearance is equal to
the product of the elimination rate constant and volume of distribution [31]. Since clearance is normalized
by weight the denominator is multiplied by the bodyweight.
The bioavailability does not influence the fit of the model to data, but is necessary to get physiological
parameter estimates of clearance. The Dose (nmol) is multiplied by the Dirac delta function to model the
bolus injection at time zero.

A surrogate marker for the onset of action, tmax, is obtained analytically from the absorption and elimi-
nation rate constants.

tmax =
log(k1/k2)

k1 − k2
(6)

In (6) log is the natural logarithm.
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3.2 PD model

3.2.1 Version 1.0 - Integrating Emami in Hovorka

The pharmacodynamics (PD) of glucagon and insulin on glucose are described by combining two pub-
lished models. The glucose-insulin part of the model was published by Hovorka et al. [20] and listed in
equations (7)-(12). A few changes to this model include removal of glucose input, removal of the labelled
glucose kinetics, and parameter substitution of insulin sensitivities instead of ratios between activation
and deactivation rate constants. To minimize confusion, the parameter naming is kept as closely to the
original publication as possible. The model is initially in steady state, but could be initialized in any state.

dQ1(t)

dt
= −F01 − STx1(t)Q1(t) + k12Q2(t) +GG(t) Q1(0) = Q10 (7)

dQ2(t)

dt
= STx1(t)Q1(t)− [k12 + SDx2(t)]Q2(t) Q2(0) = Q1(0)

x1(0)

x2(0) + k12
(8)

G(t) =
Q1(t)

V
(9)

dx1(t)

dt
= ka1[I(t)− x1(t)] x1(0) = Ib (10)

dx2(t)

dt
= ka2[I(t)− x2(t)] x2(0) = Ib (11)

dx3(t)

dt
= ka3[I(t)− x3(t)] x3(0) = Ib (12)

(13)

The model is extended to include a GG model as proposed by Emami et al. [26], defined in equations
(14)-(15). The combined PD model is visualized in figure 5.

GG(t) = (1− SEx3(t)) · (SgdEgd(t) + SgC(t))

where 1− SEx3(t) ≥ 0 and SgdEgd(t) + SgC(t) ≥ 0 (14)
dEgd(t)

dt
= −kgd

(
Egd(t)−

dC(t)

dt

)
(15)

Since CTSM-R does not accept if statements to supplement the state equations, the conditional statements
are implemented as 1

2 + 1
2 · tanh(100 ·”conditionalstatement”) multiplied by the conditional statement.

Thus, when the statement is positive the expression equals one, and when the statement is negative the
expression is zero.
The PD model not only includes a term for the absolute concentration of glucagon, but also a term de-
scribing the glucagon rate of change in (15). The analytical solution to the glucagon rate of change is
derived from (4)-(5) yielding units of nmol/L/min.

dC(t)

dt
=

k2

wCl
· 103 · (k1q1(t)− k2q2(t)) (16)

Model inputs: C(t), dC(t)
dt , I(t)

Model observation: G(tn)
Model output: G(t)
Fixed parameters: V, Ib
Model parameters: F01, k12, ST , SD, SE , ka1, ka2, ka3, Sg, Sgd, kgd
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Figure 5: Schematic presentation of the full model including the PK part at the left and the PD part at the
right. The open arrow symbolizes SC input of glucagon. Solid arrows indicate mass transfer to/from a
compartment. Dashed arrows indicate effect without mass transfer. Solid lines ending with a dot indicate
how an output is derived from the content of a compartment. Plasma compartments of glucagon, insulin
and glucose are colored. A red dashed square surrounds the part of the model published by Hovorka et
al. [20].

C(t) and dC(t)
dt are the simulated concentration (pg/mL) and rate of change (pg/mL/min) of glucagon

in plasma at all times, respectively. I(tn) is the measured insulin concentration in plasma (mIU/L) at
discrete timepoints, n = 1, ..., N . To match the time resolution of the glucagon input, the insulin obser-
vations are linearly interpolated to give the model input I(t).
G(tn) is the measured glucose concentration in plasma (mmol/L) at discrete timepoints, n = 1, ..., N .
G(t) is the simulated glucose concentration in plasma at all times.
Ib is the basal insulin concentration for each dog averaged over a maximum of four occasions (mIU/L). V
is the glucose volume of distribution and is fixed to 160 mL/kg based on literature [20].
F01 is the net total non-insulin-dependent glucose out-flux from the plasma compartment

(
µmol

kg·min

)
. GN is

included in F01 and assumed constant and independent of insulin and glucagon as this process is affected
very little by the two hormones. k12 is the transfer rate constant from the non-accessible glucose com-
partment to the accessible plasma compartment (min−1). ST is the insulin sensitivity on glucose transport
(min−1 per mIU/L). SD is the insulin sensitivity on glucose disposal (min−1 per mIU/L). SE is the insulin
sensitivity on EGP (1/(mIU/L)). ka1, ka2 and ka3 are insulin deactivation rate constants (min−1).
Sg is the glucagon sensitivity on GG

(
µmol

kg·minper pg/mL
)

. Egd is a fictive rate of change compartment
contributing to rate of change of GG due to glucagon rate of change (pg/mL/min). Sgd is the glucagon

rate of change sensitivity on GG
(
µmol

kg per pg/mL
)

. kgd is the delay of glucagon rate of change on EGP

(min−1).
The full PK-PD model is presented in figure 5.
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Figure 6: Comparison of GG model by Emami et al. [26] and modified model capturing the physiological
saturation effect of glucagon on GG. The saturation part is proposed roughly to the data presented by
Cherrington [15], compare with Figure 1. The graphed models assume basal insulin concentration and
constant glucagon concentration. The curves do not start in (0,0) as GN is included.

3.2.2 Version 1.1 - Saturation of EGP

As reviewed in Section 1, GG saturates for some concentration of glucagon at basal insulin concentration,
see Figure 1. The model stated in (14) is a linear approximation of the GG response to constant glucagon
concentration and only covers the linear range of the dose response curve. No saturated data was available
during the model development and therefore this dynamic was not captured in the model. However, the
available data from Zealand Pharma A/S takes on very high concentrations of plasma glucagon and thus
we assume that the GG response to glucagon is saturated for some parts of the studies if not the entire
study duration. The GG model in (14) is modified to saturate GG at 65 µmol

kg·min at basal insulin level. The
saturation is approximated by a simple tangent hyperbolic function and figure 6 confirms that the linear
part of the curve resembles the original linear formulation at basal insulin concentration. The GG model
with saturation is

GG(t) = (1− SEx3(t)) · 65

0.69
tanh

(
2.5

1400
· SgdEgd(t) + SgC(t)

Sg

)

where (1− SEx3(t)) ≥ 0 and (SgdEgd(t) + SgC(t)) ≥ 0 (17)

3.2.3 Version 1.2 - Basal insulin

Dogs have lower basal insulin concentrations than humans (∼3 mIU/L versus ∼10 mIU/L), as described
in section 2.4. Therefore, we can not assume that (1 − SEx3(t)) equals 0.69 at basal as in humans
(calculated as EGPb/EGP0 from Hovorka et al. [20]). The model is thus changed to

GG(t) =
(1− SEx3(t))

(1− SEIb)
· 65 · tanh

(
2.5

1400
· SgdEgd(t) + SgC(t)

Sg

)

where (1− SEx3(t)) ≥ 0 and (SgdEgd(t) + SgC(t)) ≥ 0 (18)
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Figure 7: Relationship between plasma glucagon concentration and EGP. GN is constant and the GG is
fitted with a sigmoid Emax model. The graph assumes basal insulin concentration. The solid data points
originate from [27,41,42] and the open dots are approximated from [15] since the original data could not
be retrieved. Note that EGP is not zero at zero glucagon due to the glucagon independent GN.

The change ensures that GG saturates at 65 µmol
kg·min at basal insulin concentration. Moreover, this addition

ensures that at higher insulin levels than basal, the saturation value of GG is lower than 65 µmol
kg·min . Simi-

larly, at lower insulin levels than basal the saturation value of GG is higher than 65 µmol
kg·min . Qualitatively

speaking, insulin ”modulates” the maximum GG response to glucagon.

3.2.4 Version 2.0 - Sigmoid Emax model

As discussed by Emami et al., the glucagon rate of change was added to the model to be able to capture
the weakened response to a constant plasma glucagon concentration [26], also see Figure 2. Since we do
not have data to describe this phenomenon and do not have a physiological explanation for how rate of
change affects the GG response, we simplify the GG model to only depend on the absolute concentration
of glucagon. We justify this with reference to Emami et al. who found that the GG model using both ab-
solute glucagon concentration and glucagon rate of change was only slightly better than a similar model
using only the absolute glucagon concentration [26].
To make the model parameters more physiological interpretable, we substitute the empirical tangent hy-
perbolic saturation model with the sigmoid Emax model which is used to describe receptor mediated
kinetics [43]. The sigmoid Emax model is essentially a first order process at low concentrations, and a
zero order process at high concentrations [31]. The model by Emami et al. in (14) describes the first
order process and is approximated from data where first order kinetics apply [26]. The effect of plasma
glucagon on the GG response is reformulated to comply with literature data [15,27,41,42], and the mean
prior parameter values of this model are identified by optimization. The data used to fit the parameters
and the optimal solution is presented in Figure 7. The new GG model and the fitted parameters are listed
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Figure 8: Qualitative visualization of the consequences of the multiplicative GG model showing how the
total EGP response to glucagon changes at low, basal, high and very high insulin concentrations.

in (19).

GG(t) =
(1− SEx3(t))

(1− SEIb)
·
(

(Emax − E0)
C(t)γ

ECγ50 + C(t)γ

)
where (1− SEx3(t)) ≥ 0 (19)

Emax = 72.1
µmol

kg ·min
, E0 = 8

µmol

kg ·min
, EC50 = 337.8

pg

mL
, γ = 1.25

The model describing the saturation of EGP due to glucagon consists of four parameters - two describing
the minimum and maximum effect, E0 and Emax, and two describing the curvature, EC50 and γ. E0

is describing GN. EC50 is the concentration at the half maximum effect. The parameter γ reflects the
number of molecules binding to one receptor and determines the steepness of the curve. We hypothesize
that E0 and Emax will be identical whether using marketed glucagon or the analogue. However, the
parameters describing the curvature, i.e. the potency, might differ. Figure 8 visualizes the GG model with
the multiplicative effect of glucagon and insulin qualitatively.
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3.2.5 Final PD model

The equations describing the glucose-insulin-glucagon PD model are listed in (20)-(26) and the model
visualized in Figure 9.

dQ1(t)

dt
= −F01 − STx1(t)Q1(t) + k12Q2(t) +GG(t) Q1(0) = Q10 (20)

dQ2(t)

dt
= STx1(t)Q1(t)− [k12 + SDx2(t)]Q2(t) Q2(0) = Q1(0)

x1(0)

x2(0) + k12
(21)

GG(t) =
(1− SEx3(t))

(1− SEIb)
·
(

(Emax − E0)
C(t)γ

ECγ50 + C(t)γ

)
where (1− SEx3(t)) ≥ 0 (22)

G(t) =
Q1(t)

V
(23)

dx1(t)

dt
= ka1[I(t)− x1(t)] x1(0) = Ib (24)

dx2(t)

dt
= ka2[I(t)− x2(t)] x2(0) = Ib (25)

dx3(t)

dt
= ka3[I(t)− x3(t)] x3(0) = Ib (26)

Model inputs: C(t), I(t)
Model observation: G(tn)
Model output: G(t)
Fixed parameters: V, Ib
Model parameters: F01, k12, ST , SD, SE , ka1, ka2, ka3, E0, Emax, EC50, γ

The parameters and their units are described in previous sections 3.2.1-3.2.4.
We assume that F01 is constant at all times since we are not measuring any glucose concentrations below
4.5 mmol/L in the datasets to be fitted. However, for simulation purposes it is important to include the
extended formulation of F01 taking the current glucose concentration into account [23].
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Figure 9: Schematic presentation of the final full model including the PK part at the left and the PD part at
the right. The open arrow symbolizes SC input of glucagon. Solid arrows indicate mass transfer to/from a
compartment. Dashed arrows indicate effect without mass transfer. Solid lines ending with a dot indicate
how an output is derived from the content of a compartment. Plasma compartments of glucaogn, insulin,
and glucose are colored. A red dashed square surrounds the part of the model published by Hovorka et
al. [20].
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4 Methods

4.1 Mathematical concepts

4.1.1 Maximum likelihood

The likelihood measures how likely a set of parameters are given data and a model. The likelihood is
equal to the probability density considered as a function of the parameter set, θ, and a time series, YN , of
N observations.

L(θ, YN ) = p(YN |θ) (27)

Different parameters of the model will give different values of the likelihood function. Finding the param-
eter set that maximizes the likelihood function for given data and a model gives the maximum likelihood
(ML).

4.1.2 Profile likelihood

For a parameter, θi, and a time series, YN , of N observations, we can calculate the profile likelihood,
which is defined as

Lp(θi, YN ) = max
θ\θi

L(θ, YN ) (28)

For a fixed value of θi the likelihood function is maximized across all other parameters of the parameter
set θ which yields the profile likelihood of parameter θi [44, 45]. The profile likelihood of a parameter
can be used to evaluate whether the parameter in the model is identifiable. Identifiability of parameters
are determined by model structure (structural identifiability) and the input dynamics (practical identifia-
bility) [44].
Structural identifiability is related to the transfer function from the input to the output. However, in large
complex systems where the transfer function is non-trivial to derive, profile likelihood analysis provides
a method for investigating the parameter identifiability.
Practical identifiability is related to the dynamics of the input. Thus, a model can only identify parameters
describing dynamics present in data used for model fitting. Also in this case, profile likelihood analysis is
a powerful tool.

A parameter is identifiable only if the maximum of the profile likelihood is well defined [44]. Whether the
maximum of the profile likelihood of θi is well defined is evaluated using a 100(1-α)% confidence interval
bound by when the natural logarithm of a likelihood ratio test exceeds a chi-squared distribution [45].

log

(
Lp(θi, YN )

L(θ̂, YN )

)
= log(Lp(θi, YN ))− log(L(θ̂, YN )) > −1

2
χ2

1−α (29)

In words, the profile likelihood is log-transformed yielding the profile log-likelihood. The maximum value
of the profile log-likelihood is subtracted from the profile log-likelihood so that the maximum function
value is zero. The limit of the confidence interval is determined by the 100(1-α) percentile of the chi-
squared distribution with one degree of freedom. As an example, a 95% confidence interval of a model
parameter is bound by the log-likelihood ratio exceeding approximately −1.92. A profile likelihood
confidence interval could be asymmetric, whereas e.g. the Wald statistic applies a quadratic and thus
symmetric approximation of the confidence interval [45].
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4.1.3 Bayesian inference

Bayesian estimates refer to parameters of a model being treated as random variables belonging to some
distribution. To fit a parameter in a Bayesian framework a prior distribution of the parameter is needed.
The parameters of the prior distribution are called hyper-parameters i.e. if a prior follows a normal distri-
bution, two hyper-parameters define it: mean and standard deviation (SD). The estimated parameter will
then be a summary of the posterior probability density function conditioned on the data.
The posterior distribution of a parameter, θ, given the data, YN , is identified using Bayes’ theorem:

p(θ, YN ) =
p(YN |θ)p(θ)
p(YN )

(30)

where p(θ) is the prior distribution of θ, p(YN ) is the marginal distribution and p(YN |θ) is the likelihood
of YN given θ as defined in (27).
Finding the set of parameters given data, a model and prior distributions of parameters yielding the maxi-
mum of the posterior distribution is called maximum a posteriori (MAP).

4.1.4 Maximum a posteriori estimation

MAP estimation is an optimization approach seeking the parameter estimate that maximizes the posterior
distribution [46]. Maximizing (30) then reduces to optimizing:

p(θ, YN ) ∝ p(YN |θ)p(θ) (31)

MAP estimation reduces to maximizing the likelihood function when the prior is a uniform distribution
(i.e. p(θ) is constant), see (27) and (31). This indicates that ML is a special case of MAP. Also, the weaker
a prior is (i.e. having a large standard deviation), the less difference there is between MAP estimation and
ML. In general, one distinguishes between informative (highly peaked) and non-informative (not peaked)
priors.

Introducing the following notation where σθ is a matrix with the prior standard deviations in the diag-
onal and Rθ is the prior correlation matrix:

µθ = E{θ} (32)

Σθ = σθRθσθ = V {θ} (33)

εθ = θ − µθ (34)

Assuming that the priors all follow a Gaussian distribution, the posterior distribution can be rewritten as:

p(θ|YN ) ∝




N∏

k=1

exp
(
−1

2ε
T
kR
−1
k|k−1εk

)

√
det(Rk|k−1)

(√
2π
)l


 p(y0|θ)

exp
(
−1

2ε
T
θ Σ−1

θ εθ
)

√
det(Σθ)

(√
2π
)p (35)

Conditioning the posterior probability on y0 and taking the negative logarithm gives:

− log(p(θ|YN , y0)) ∝ 1

2

N∑

k=1

(
log(det(Rk|k−1)) + εTkR

−1
k|k−1εk

)
+

1

2

((
N∑

k=1

l

)
+ p

)
log(2π)

+
1

2
log(det(Σθ)) +

1

2
εTθ Σ−1

θ εθ (36)
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The MAP solution is found by solving the nonlinear optimization problem:

θ̂ = arg min
θ∈Θ
{− log(p(θ|YN , y0))} (37)

This nonlinear optimization can be solved numerically through gradient-methods. Another method for
finding the MAP solution is by using Markov Chain Monte Carlo (MCMC) simulations. MCMC is a
brute force method that samples from the posterior distribution to create a rough shape of the posterior
distribution and thereby estimates the MAP solution as implemented in WinBUGS [21, 26]. It is compu-
tationally time consuming because it can require thousands of samples before reaching convergence. On
the contrary, gradient methods converge faster but suffer great difficulties if the objective function is noisy
with local gradients not leading to a smaller value of the objective function.

4.1.5 Stochastic differential equations

Modelling a completely known physical system can be done using deterministic ordinary differential
equations (ODEs) defined as

dX

dt
= f(X(t), t) (38)

yk = X(tk) + ek (39)

where X(t) is the state of the system, f() is the model, yk is the discrete observations, and ek is the
measured errors, i.e. observation noise, assumed to be independent and identically distributed (i.i.d.)
following a Gaussian distribution [47]. However, in biology one does not always know the true underlying
system. In such cases, the discrepancies between the deterministic model and data from the physical
system is composed of noise from two sources: measurement errors and systemic model errors. The
magnitude of the systemic noise can be identified using stochastic differential equations (SDEs) defined
as

dxt = f(xt, ut, t, θ)dt+ σ(xt, ut, t, θ)dwt (40)

yk = h(xk, uk, tk, θ) + ek (41)

The only difference between the ODE formulation in (38)-(39) and the SDE formulation in (40)-(41) is
the diffusion term σ(xt, ut, t, θ)dwt corresponding to the system noise. Thus, solving an SDE with a very
small value of σ is approximating solving an ODE. The term f(xt, ut, t, θ)dt is called the drift and is the
main process driving the system whereas the diffusion term is the system noise. Together, the drift and
the diffusion describes the physical state of the system.

4.2 Application in CTSM-R

A team at the Technical University of Denmark (DTU) wrote a package for R allowing to do continuous
time stochastic modelling (CTSM) [34,46]. The package was used to obtain the results in this report. This
subsection focuses on how the mathematical concepts in the previous subsection are applied in CTSM-R.

4.2.1 Model structure

CTSM-R accepts Itô SDEs in the state space form as presented in (40)-(41). However, CTSM-R does not
allow the system noise to depend directly on the state of the system [47], and thus (40) changes to

dxt = f(xt, ut, t, θ)dt+ σ(ut, t, θ)dwt (42)
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Letting the system noise depend on the state can be mitigated in CTSM-R using a transformation of
variables called the Lamperti transform [47, 48].
Although the nonlinear equations describing the model in (20)-(26) are presented as ODEs, they are
implemented in CTSM-R as SDEs. The ODE presentation is chosen for simplicity.

4.2.2 Initial values

The CTSM-R environment is sensitive to the initial values of the states and thus good initial values are
needed to converge to a solution within a reasonable number of iterations. When fitting the PD model,
the initial value of the observed state was automatically identified in most datasets as the plasma glucose
concentration at time 0. If the initial plasma glucose was not available in one dataset, the initial concen-
tration in the same dog at the other dosing occasions were averaged and used as the initial value of the
dataset missing an initial observation. Using the measured or averaged initial glucose concentration the
model parameters did not converge to a solution in al datasets. In those cases the initial value was adjusted
manually until convergence was reached.

4.2.3 Prior information

In the following all hyper-parameters are fixed, thus all prior probability distributions of parameters are
fixed. The values of the hyper-parameters are determined from literature [15,20] and listed in Table 4. All
parameters are assumed positive. All parameters of the Hovorka part of the model are assumed to follow
a log-normal distribution, except F01 which is normally distributed [21]. We also assume that E0, Emax,
EC50, and γ follow normal distributions.
The insulin sensitivities in [20] were overestimated compared to the results of [21]. As pointed out in
Section 2.4, dogs appear to be more sensitive to insulin than humans and thus the estimates listed in [20]
are kept as prior information. However, the standard deviation in the logarithmic domain is doubled to
allow a different distribution than in humans. The standard deviations of the parameters describing the
effect of glucagon on GG are unknown and thus arbitrarily defined as 25% of the mean value estimated
from literature [15].

Overall, the prior correlation matrix has the structure presented in Table 5. The correlations of the param-
eters describing the glucagon part of the model are unknown and thus defined as zero. The values of the
prior correlation matrix are calculated from individual parameter fits [20] and presented in Table 6. Fixing
one or more of the parameters in the PD model leads to removal of the corresponding parameter rows and
columns from the correlation matrix.
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Table 4: Prior distributions of PD model parameters listed with source as (mean, SD) in the fitted do-
main and 95% confidence interval in non-transformed domain calculated as exp(mean ± 2 · SD) if log-
transformed and as mean± 2 · SD if non-transformed, respectively.

Parameter Source Transformation Prior distribution 95% confidence interval
k12 [20] log (-2.82, 0.46) [0.02-0.1]
ka1 [20] log (-5.69, 1.12) [0.0004-0.03]
ka2 [20] log (-2.89, 0.70) [0.01-0.2]
ka3 [20] log (-3.74, 0.77) [0.005-0.1]
ST [20] log (-5.48, 1.46) [0.0002-0.08]
SD [20] log (-7.58, 2.34) [5·10−6-0.05]
SE [20] log (-3.19, 1.74) [0.001-1.3]
F01 [20] - (9.68, 2.14) [5.4-14]
E0 Section 3.2.4 - (8, 2) [4-12]
Emax Section 3.2.4 - (72.1, 18) [36-108]
EC50 Section 3.2.4 - (337.8, 85) [168-508]
γ Section 3.2.4 - (1.25, 0.3) [0.65-1.85]

Table 5: Overall structure of the full prior correlation matrix.

k12 ka1 ka2 ka3 ST SD SE F01 E0 Emax EC50 γ

k12 1 ρk12,ka1 . . . . . . ρk12,F01 0 · · · · · · 0
ka1 ρka1,k12

. . . . . .
...

...
ka2

. . .
...

ka3
...

. . . . . .
...

...
ST

. . .
...

SD
...

. . . . . .
...

...
SE

. . . ρSE ,F01

F01 ρF01,k12 . . . . . . ρF01,SE
1 0 ...

E0 0 · · · · · · · · · 0 1 . . .

Emax
...

. . . . . . . . .
...

EC50
...

. . . . . . 0
γ 0 · · · · · · · · · · · · · · · 0 1
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Table 6: Values of the full prior correlation matrix.

k12 ka1 ka2 ka3 ST SD SE F01 E0 Emax EC50 γ

k12 1 0.73 -0.83 -0.14 0.27 0.46 0.22 0.07 0 0 0 0
ka1 1 -0.97 -0.15 -0.23 -0.16 0.03 0.24 0 0 0 0
ka2 1 0.08 0.20 0.05 0.08 -0.22 0 0 0 0
ka3 1 -0.06 -0.16 -0.28 0.45 0 0 0 0
ST 1 0.61 0.77 0.24 0 0 0 0
SD 1 0.54 -0.51 0 0 0 0
SE 1 0.02 0 0 0 0
F01 1 0 0 0 0
E0 1 0 0 0
Emax 1 0 0
EC50 1 0
γ 1
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Figure 10: Theoretical examples of three types of profile likelihood plots; from left to right: highly
peaked (identifiable), flat (structural non-identifiable), and asymmetric (practical non-identifiable). The
95% confidence limit (CL) is blue. The x-axis shows the 95% lower limit (LL) and upper limit (UL) of
the parameter value.

4.2.4 Parameter identifiability

We have performed profile likelihood analysis of each model parameter using graphical presentation to
investigate which model parameters are identifiable, see Figure 10 for examples of profile log-likelihood
plots. A profile log-likelihood with values only exceeding the 95% confidence limit for the entire phys-
iological range of a parameter indicates that the parameter is not structural identifiable, i.e. if the profile
likelihood is flat, the parameter value does not influence the maximum achievable likelihood in fitting the
dataset and might as well be fixed. To improve the parameter estimates of the remaining parameters, the
unidentifiable parameters were fixed at their prior mean values. On the contrary, if a profile likelihood is
highly peaked, the parameter is identifiable and should not be fixed. When a profile likelihood is asym-
metric with either no upper or lower limit as seen in Figure 10 at the right, the parameter value is not
practically identifiable and could also be fixed if the prior mean value is included in the 95% confidence
interval. However, having a prior distribution it is not necessary to fix a parameter with an asymmetric
profile log-likelihood but could increase the certainty of the remaining parameters.
As the calculation of a profile likelihood is very time consuming due to optimization of the remaining
parameters for each fixed parameter value, the profile log-likelihood plots are initially very coarse with
only few points. Profiles are refined as unidentifiable parameters are fixed and calculations are speeding
up. Ideally, one should continue the cycle of fixing unidentifiable parameters until all remaining param-
eters are identifiable. In this study, we have only carried out five cycles of profile likelihood analysis.
More parameters could possibly be fixed without changing the likelihood of the model fit significantly.
Fitting a model containing unidentifiable parameters using MAP estimation is not wrong, but it comes at
the expense of larger confidence intervals of the remaining parameters. The fitted values of parameters
having flat or asymmetric profile likelihoods i.e. unidentifiable parameters will mainly be determined by
the prior parameter distributions and less determined by data.
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4.2.5 Model fitting and validation

Each PK dataset was fitted separately by ML using ODEs by fixing the system noise terms at small values.
Since the PK model will be used for simulations we seek the ODE solution instead of the SDE solution.
The basal concentration of glucagon was sought estimated. However, the basal level for the analogue was
defined as zero and thus not estimated.

Each PD dataset was fitted separately by MAP with the priors listed in Table 4 and the correlation matrix
displayed in Table 6. The parameters of each dataset were identified separately based on prior information
rather than a population model. All parameters of the Hovorka model except F01 were fitted in the log-
arithmic domain as they are assumed to follow a log-normal distribution [21]. Moreover, all parameters
were assumed to be positive. When dealing with small values like the transfer rate constants and sensitiv-
ities, log-transformation of the parameters ensure that they are always positive.

During the profile likelihood analysis the PD model was fitted as ODEs. After several model parameters
were fixed we fitted the model using SDEs. However, since equations (21) and (24)-(26) were validated by
tracer data in a previous publication [20], we fixed the diffusion terms of these states to small values and
considered the equations as ODEs. The only modified and thus non-validated state was equation (20) and
thus we estimated the diffusion term thereof. As described in Kristensen et al. [33], to validate the model
structure, the model was first fitted using SDEs and if the diffusion term was insignificant, i.e. having a
large p-value, the model was fitted again using ODEs to obtain the final parameter estimates for simulation
purposes. However, if the diffusion term was not insignificant the model structure was incorrect [33]. The
necessity of each of the varying model parameters was confirmed by significant p-values less than 0.05.

Furthermore, the model validity was investigated by residual analysis. Residuals should ideally be i.i.d.
which was examined by plotting the residuals as a function of time and by plotting the autocorrelation
function (ACF). The residuals plot can reveal if there is a drift or change in variance of the residuals
over time i.e. if they are identically distributed. The ACF can reveal if there is a pattern in the residuals
showing correlation between residuals at different lags i.e. if they are independent [49]. Moreover, very
large values of the ACF exceeding the confidence limit imply that the model is not describing the data well.

Simulations of the mean prediction and standard deviations are carried out using extended Kalman fil-
ter without updating the states [34]. Predicting future values in a system with very little system noise and
thus no updating corresponds to deterministic simulation.
It is however possible to perform stochastic simulations in CTSM-R by adding system noise to simulate
real life experimental data [34]. Each realization of the stochastic process will be slightly different from
another although determined by the size of the noise terms. We can interpret the actual data used for
model fitting as one realization of the underlying stochastic process.

5 Results

Despite CTSM-R uses a robust estimation method [46], extreme outliers can largely impact the fit when
the number of observations is small. Fitting of the PK data to the simple model was mostly robust to
outliers. However, one PK datapoint as listed in Table 3 was so extreme that removing it greatly changed
and improved the fit.
The PD model was more sensitive to outliers in both the input data and in the observations due to the large
number of model parameters compared to number of observations. Six glucose observations appeared to
be outliers as listed in Table 3. Due to the number of model parameters, the glucose observations had to
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Table 7: Fitted or fixed PK model parameters (mean, SD). ∗Non significant. 4Fixed.

Parameter Unit Glucagon ZP-GA-1
k1 min−1 (0.134, 0.077) (0.125, 0.072)
k2 min−1 (0.0159, 0.0048) (0.0116, 0.0031)
Cl mL/kg/min (56.9, 13.2) (88.5, 18.8)
Cb pg/mL 0∗ 04

Table 8: PK endpoints extracted from PK model fits (mean, SD).

PK endpoint Unit Dose level Glucagon ZP-GA-1

Tmax min
low (23.9, 11.4) (25.3, 9.4)
high (19.3, 5.4) (22.4, 6.6)

Cmax/Dose nmol/L per nmol/kg
low (0.059, 0.018) (0.043, 0.010)
high (0.097, 0.017) (0.059, 0.010)

be replaced by linear interpolation to maintain an identifiable model.

5.1 PK

5.1.1 Parameter estimates

Table 7 lists the average and standard deviation of the PK model parameters for each drug over the popu-
lations. As mentioned in section 2.4, it was not possible to measure low glucagon concentrations in any
datasets. Due to this lack of data at low concentrations, it was not possible to estimate basal glucagon
concentration in plasma.
The PK model fit is used as an input to the following PD model fitting and could also be used for simula-
tion purposes.

5.1.2 PK Model fits

After fitting the PK model to data, relevant endpoints were extracted from the fits and presented in Table 8.
Paired t-tests of the surrogate marker for onset of action, Tmax, showed no difference between ZP-GA-1
and glucagon (p-value = 0.3).
Cmax is significantly different for ZP-GA-1 compared to glucagon (p-value = 0.006).
Figure 11 displays examples of PK model fits with 95% confidence limits of the simulation both with
regular and logarithmic base-10 y-axes (log10). Figures 21-25 in Appendix B shows all PK fits.

5.2 PD

A few model building cycles have been carried out. The following sections only show results of the last
and final model. However, the sections will refer qualitatively to observations made during the model
building cycle to justify the decisions made by the model builder.

5.2.1 Reducing variables

Having a large model with twelve parameters and observation noise, some parameters had to be fixed to
increase the certainty of other model parameters. To investigate which model parameters were unidentifi-
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Figure 11: PK responses to low and high doses of glucagon and ZP-GA-1 in dog 3. Left graphs are with
regular y-axes and right graphs are with logarithmic base-10 y-axes (log10).

able, we plotted profile likelihoods of all parameters for each dataset. Figure 12a shows an example from
the first cycle of profile likelihood analysis in one dataset. After the first cycle one parameter with a flat
profile likelihood was fixed, and another cycle of profile likelihood analysis was carried out. These cycles
continued until a total of four parameters were fixed at their prior mean values: ka2, E0, EC50, and γ.
However, γ was fixed at 1 since this reduced the model complexity and makes biologic sense. Figure 12b
shows an example from the last cycle of profile likelihood analysis in the same dataset as above.
The reduction of variables is justified by reasoning regarding model structure and input dynamics. E0

corresponding to GN can not be identified due to the model structure i.e. subtraction from Emax. The
two parameters determining the curvature of the GG response to glucagon, EC50 and γ, can not be deter-
mined due to input dynamics. As previously mentioned, most dogs had very high plasma concentrations
of glucagon or analogue during the entire study time and we therefore expect the GG response to be sat-
urated at all times. Not having data with low glucagon concentrations makes it impossible to determine
these parameters describing the response at low glucagon concentrations.
Unidentifiability of ka2 is likely due to the model structure since the parameter describes the insulin trans-
fer that affects the glucose disposal of the non-accessible compartment. Determining the influence of
insulin on glucose disposal requires tracer data which is not available.
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(a) Initial profile likelihoods when no parameters are fixed.
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(b) Fourth iteration of profile likelihood analysis when four parameters are fixed.

Figure 12: Profile likelihoods of all twelve model parameters in dog 3 after high dose of glucagon. Red
points illustrate fixed parameter values. Red curves illustrate prior parameter distributions. Horizontal
blue lines are 95% confidence limits of parameter values.
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Table 9: Ratio of datasets with significant p-values less than 0.05 corresponding to 95% confidence level
when estimated in SE setting versus OE setting. P-values of fixed parameters do not exist but the param-
eters are included in the table for completeness.

Glucagon ZP-GA-1
Parameter SE OE SE OE
k12 10/10 10/10 10/10 10/10
ka1 10/10 10/10 10/10 10/10
ka2 -
ka3 10/10 10/10 10/10 10/10
ST 10/10 10/10 10/10 10/10
SD 10/10 10/10 10/10 10/10
SE 10/10 10/10 10/10 10/10
F01 10/10 10/10 10/10 10/10
E0 -
Emax 7/10 10/10 9/10 10/10
EC50 -
γ -
σ1 0/10 - 0/10 -

As an example, the increase in certainty of parameter value when reducing the number of variables is
graphically evident for ka1 in Figure 12. At the initial cycle the 95% confidence interval of the logarithm
of the parameter is approximately [-7 to -3], but reduces to [-5 to -3.5] when four parameters are fixed.
Same tendency can be observed for other model parameters.

5.2.2 Model validity

After reduction of variables using profile likelihood analysis we investigate using SDEs if the model de-
scribes the physiological system adequately i.e. if the model has insignificant system noise. As previously
argued, we only examine the noise of equation (20). Table 9 lists the proportion of datasets with signifi-
cant p-values for each PD model parameter with and without the coefficient of the diffusion term, σ1, for
both of the compounds. Using SDEs we observe that the model parameters are significant at a 5% confi-
dence level in the majority of datasets and that the diffusion coefficient is insignificant in all datasets. σ1

is then fixed at a small value and the PD model parameters re-estimated using ODEs. After fixing σ1, all
model parameters are significant in all datasets. We can not reject that the model describes the underlying
physiological system.

5.2.3 Residual Analysis

After the final estimation of PD model parameters using ODEs we analyse the standardized residuals to
verify the quality of the model in describing data. Figure 13 shows an example of the standardized residu-
als plot and ACF showing i.i.d. residuals thus no trends in residuals and no significant correlation between
residuals.

However, dealing with data having very few observations makes it challenging to be strict to the rules
of i.i.d. residuals. Especially the residuals plot is difficult to interpret in most cases due to few obser-
vations. The ACF also has some limitations in that data was not equidistantly sampled. Most ACF are
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Figure 13: Example of standardized residuals plot and ACF of residuals of model fit to dataset from dog
3 after high dose of glucagon.

within the confidence limits.
Based on the residual analysis the model describes the dynamics in the data well.

5.2.4 PD Model fits

In Section 5.2.1 we reduced the number of PD model parameters by removing unidentifiable parameters.
In Section 5.2.2 we described how the model structure is sufficient to capture the dynamics of the physical
system. In Section 5.2.3 we confirmed that the fit did not give rise to trends in the residuals. Finally, we
can verify that the model is satisfactory based on visual inspection of the PD model fit together with data.
Figure 14 presents examples of PD model fits together with model inputs after administration of glucagon
at low and high dose levels in one dog. In the two examples, the model is fitting data well with narrow
confidence limits around the simulation. Within 100 minutes we observe a peak in glucose concentration
and a return to baseline. At the end of the sampling period the glucose concentrations show a tendency to
rise slowly.
Figure 15 presents examples of PD model fits together with model inputs after administration of ZP-GA-1
at low and high dose levels in one dog. The trends in data and the PD model fits are similar to the ones
after administration of glucagon described above.
Figures 26-30 in Appendix C present all PD model fits.
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(b) Dog 3, 120 nmol/kg.

Figure 14: Plasma concentrations of PD model inputs glucagon and insulin together with PD model fit of
glucose after administration of glucagon.

Time, min

A
na

lo
gu

e,
 p

g/
m

L

0 30 60 90 120 150 1801e
+0

2
1e

+0
3

1e
+0

4

● ●

● ● ●

●
●

● ●

●

●

Time, min

In
su

lin
, m

IU
/L

0 30 60 90 120 150 180

0
50

10
0

●

●

●

●
●

●

●

●

●
●

● ● ●

●

●

●

●

●
●

●

●
● ● ●

●
●

Time, min

G
lu

co
se

, m
m

ol
/L

0 30 60 90 120 150 180

5
10

15

●

●

●

●

●
●

●

●
● ● ●

●
●

(a) Dog 3, 20 nmol/kg.

Time, min

A
na

lo
gu

e,
 p

g/
m

L

0 30 60 90 120 150 1801e
+0

2
1e

+0
3

1e
+0

4

●

● ●

●

●
●

●
● ●

●

●

●

Time, min

In
su

lin
, m

IU
/L

0 30 60 90 120 150 180

0
50

10
0

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

● ● ●

●

● ●
●

●

Time, min

G
lu

co
se

, m
m

ol
/L

0 30 60 90 120 150 180

5
10

15

●

●

● ●

●

● ● ●

●

● ●
●

●

(b) Dog 3, 120 nmol/kg.

Figure 15: Plasma concentrations of PD model inputs ZP-GA-1 and insulin together with PD model fit of
glucose after administration of ZP-GA-1.
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Table 10: Posterior distributions of PD model parameters for the population in fitted domain reported as
(mean, SD). Parameters not in parenthesis are fixed.

Parameter Glucagon ZP-GA-1
log(k12) (-2.87, 0.27) (-3.02, 0.23)
log(ka1) (-5.19, 0.86) (-5.90, 0.83)
log(ka2) -2.89 -2.89
log(ka3) (-4.88, 0.73) (-4.70, 0.98)
log(ST ) (-5.65, 0.86) (-5.35, 0.50)
log(SD) (-9.11, 0.93) (-8.72, 1.15)
log(SE) (-2.71, 0.57) (-2.95, 0.43)
F01 (9.8, 1.5) (9.6, 2.0)
E0 8 8
Emax (50.1, 13.7) (53.8, 16.5)
EC50 337.8 337.8
γ 1 1

5.2.5 Parameter estimates

We assume that the variations in parameters within dogs are negligible compared to the variations between
dogs. As prior information we used Gaussian distributions and using the individually fitted parameters we
can calculate similar posterior distributions of PD model parameters.
Table 10 lists the posterior distributions of each parameter separated by drug and study for the popula-
tion of dogs. During the PK analysis we noticed that the onset of action and maximum concentration of
glucagon were different between the studies. We therefore separate the parameters of the two studies in
this analysis, too. During estimation, most parameters are log-transformed.
For ease of comparison to values reported in literature [20], the averages of the log-transformed param-
eters are transformed back and listed together with ranges in Table 11. Fixed parameters are listed for
completeness in both tables.
Table 12 shows the posterior correlation matrix of both PK and PD model parameters.
The following Section describes observations related to these posterior distributions and correlations.
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Table 11: Average of PD model parameters in normal domain together with range. Fixed parameters are
listed for completeness.

Parameter Glucagon ZP-GA-1
k12 0.057 (0.038-0.085) 0.049 (0.033-0.081)
ka1 0.0056 (0.0019-0.0279) 0.0027 (0.0009-0.0192)
ka2 0.055 0.055
ka3 0.0076 (0.0038-0.0508) 0.0091 (0.0038-0.0657)
ST · 10−4 35 (13-117) 48 (27-110)
SD · 10−4 1.1 (0.2-3.8) 1.6 (0.6-35.8)
SE · 10−4 666 (178-1323) 523 (281-892)
F01 9.8 (8.0-13.1) 9.6 (5.3-12.3)
E0 8 8
Emax 50.1 (26.6-73.2) 53.8 (24.1-71.8)
EC50 337.8 337.8
γ 1 1

Table 12: Posterior correlation matrix of PK and PD model parameters and body weight.

k1 k2 Cl w log(k12)log(ka1)log(ka3)log(ST )log(SD)log(SE) F01 Emax
k1 1 0.26 0.33 -0.54 -0.08 -0.25 0.49 0.52 -0.01 -0.13 0.50 -0.55
k2 1 -0.27 -0.24 0.34 0.17 0.12 0.16 -0.03 -0.11 0.27 0.04
Cl 1 -0.51 -0.37 -0.55 0.44 0.60 0.11 -0.22 0.35 -0.10
w 1 0.10 0.32 -0.46 -0.63 0.02 0.19 -0.55 0.25
log(k12) 1 0.78 -0.13 -0.21 0.02 0.01 0.11 0.09
log(ka1) 1 -0.45 -0.68 -0.44 0.31 -0.07 0.18
log(ka3) 1 0.60 0.00 -0.80 0.78 -0.59
log(ST ) 1 0.36 -0.32 0.53 -0.19
log(SD) 1 0.00 -0.45 0.04
log(SE) 1 -0.57 0.40
F01 1 -0.40
Emax 1
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Table 13: P-values of two-tailed paired t-tests comparing PD model parameter estimates of glucagon
versus analogue within study.

Parameter Glucagon vs. ZP-GA-1
k12 0.29
ka1 0.09
ka2 -
ka3 0.42
ST 0.19
SD 0.42
SE 0.14
F01 0.81
E0 -
Emax 0.51
EC50 -
γ -

5.2.6 Native glucagon versus glucagon analogue

The reason for doing cross-over studies of glucagon and the glucagon analogue is to be able to compare
the dynamics of the compounds without too many confounding factors like biological variations. Table
13 presents p-values of paired t-tests between glucagon and the glucagon analogue. No model parameters
are significantly different on a 5% confidence level.

6 Discussion

In this report, we present a novel model describing how insulin and glucagon contribute to the EGP in
dogs. The model is based on physiological knowledge and parameter estimates are based on data from
pre-clinical studies in five dogs. The PD model description is contentious compared to most existing
models in several ways: claiming that GG is completely suppressed when insulin concentration exceeds a
threshold as in Hovorka et al. [20], claiming that GG saturates when glucagon concentration is high, and
claiming a multiplicative effect of insulin and glucagon as in Emami et al. [26]. Moreover, we have used
the model to compare PD characteristics of marketed glucagon and a novel glucagon analogue invented
by Zealand Pharma A/S.

According to our PD model there exists a certain threshold of insulin concentration at which the GG
is completely suppressed. From equation (22) the threshold can easily be identified using the insulin sen-
sitivity on GG as S−1

E . Using the average parameter estimate listed in Table 11 we find a threshold of less
than 20 mIU/L. This threshold is considerably lower than the threshold identified by Cherrington as 45
mIU/L [15]. Also, El Youssef et al. found that insulin concentrations exceeding 40 mIU/L only results in
EGP of roughly 20 mg/kg during 60 minutes [28]. This EGP production of ∼0.33 mg/kg/min is similar
magnitude as GN of ∼0.5 mg/kg/min observed by Cherrington [15]. Thus, the results by El Youssef et al.
at insulin concentrations exceeding 40 mIU/L could be explained by insulin’s suppression of GG.
The human prior of SE suggested an insulin threshold of 19 mIU/L [20], whereas a later publication sug-
gested an average insulin threshold of 85 mIU/L based on the value of SE [21]. However, both of these
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estimates of SE were based on human data. As discussed in Section 2.4 dogs have lower basal insulin
levels than humans and are therefore more sensitive to insulin than humans. It is thus reasonable that the
threshold at which the GG is completely suppressed is lower in dogs than in humans.
The graphs of raw data in Appendix A reveal that the dog’s insulin concentrations exceed even the human
threshold of GG suppression during at large parts of the study time. In some datasets we notice a slight
increase in blood glucose concentrations during the last part of the study which could be explained by
GG no longer being suppressed by insulin and a plasma glucagon concentration that is still much higher
than basal levels. However, we only observe this slight increase in plasma glucose in some datasets. This
could be explained by the delay in insulin action on plasma glucose described by the small rate constant
with a half-life of approximately 90 minutes which corresponds to the remaining of the sampling period
after plasma insulin concentrations have returned to baseline.

The diabetes community is speculating whether glucagon works when insulin inhibits GG. El Youssef
et al. found in diabetes patients that increasing glucagon doses of 25-175 µg increases EGP at insulin
concentrations less than 30 mIU/L [28], but increasing doses up to 175 µg have no effect on EGP at in-
sulin concentrations exceeding 40 mIU/L as explained previously. Blauw et al. investigated the glucose
response in patients with diabetes to various doses of glucagon from 0.1-1 mg at different blood glucose
levels and concluded that blood glucose level was irrelevant to the glucose response to glucagon [50].
Unfortunately, the study does not report insulin concentrations. Ranjan et al. investigated the glucose
response in diabetes patients to glucagon doses of 100-300 µg at insulin concentrations of 8-20 mIU/L
and found no significant increase in glucose response after a glucagon dose of 300 µg compared to 200
µg [51]. A study by Graf et al. in healthy showed no further effect size of glucagon doses larger than
250 µg [52]. The studies by Ranjan et al. and Graf et al. suggest a saturation effect of glucagon in both
healthy and patients with diabetes.
The glucagon doses used in the pre-clinical dog study ranged 20-120 nmol/kg (0.07-0.4 mg/kg) cor-
responding to human equivalent doses of 0.04-0.2 mg/kg using allometric scaling. Thus, the previous
studies suggesting a saturation effect of glucagon doses exceeding 0.2 mg supports our observations that
the glucose responses of the dogs were saturated at all dose levels.
According to Cherrington the GG response to glucagon is almost saturated for glucagon concentrations
exceeding approximately 1000 pg/mL [15]. From the graphs of raw data in Figures 16-20 we observe that
plasma glucagon concentrations are higher than 1000 pg/mL most of the study duration. We only have
very limited data when glucagon concentrations are low. During the reduction of variables we recognized
this fact since we were not able to identify the parameters describing GG response to glucagon at low con-
centrations, but only at saturated concentrations. We still believe that the sigmoid Emax model presented
here is valid in describing the effect of glucagon on GG because it builds on knowledge from literature in
particular Cherrington [15]. Moreover, we believe that this novel model is more physiologically correct
than previous models based on the minimal model or a linear approximation since these models do not
describe the saturation effect of glucagon on GG [24–26]. Future studies should be designed so that the
plasma glucagon concentration does not yield saturated EGP response for the entire study duration.

The multiplicative effect of insulin and glucagon on GG was proposed by Emami et al. [26]. The idea was
derived from Hovorka et al. who states that with increasing insulin concentration the total EGP decreases
linearly [20]. The model by Emami et al. multiplies the effect of insulin as described by Hovorka et al.
with an expression stating that GG increases linearly when glucagon increases.
In this report, we have extended the model by Emami et al. to include saturation of glucagon. As the glu-
cose response to glucagon was saturated during the entire study time for most datasets, the sophisticated
sigmoid Emax model practically reduces to a constant value and thus the expression for GG originally
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proposed by Hovorka et al.

Despite the saturated GG response due to glucagon, the model assumes that the glucogen stores in the
liver are never depleted. As the study was conducted over short time, this is a fair assumption. Moreover,
the glucose response from breakdown of glycogen is suppressed by insulin most of the study time. Recent
data shows that small frequent glucagon boluses do not deplete the glucogen stores [22]. The study by
Castle et al. has a few limitations in that it was carried out over short time and all participant were well-fed
and had good control of their diabetes. It is however especially the poorly controlled patients that would
need the glucagon bolus regularly. The effects of repeated daily and long term use of glucagon remain
unknown. Studies investigating the long term effects are needed to verify that the glucose response to
glucagon does not change over time.

The used datasets posed other challenges than not covering low glucagon concentrations. The study
was not optimal for the purpose of fitting models describing the glucose-insulin-glucagon dynamics nor
designed for identifying how insulin and glucagon affect EGP. The datasets were sparsely sampled which
made it necessary to fix some parameters in order to increase the certainty of the estimates of the re-
maining parameters. We used profile likelihood analysis to justify fixation of four PD model parameters.
Residual analysis of time series with only 14 observations is challenging and should not be considered as
strict as an analysis using ten times the number of observations. Not all residuals plot and ACFs showed
i.i.d. but visual inspection of model fits confirmed that the model described data well for the purpose of
simulation.
We chose not to do cross-validation of the model, as this would be a waste of our limited amount of data.
Also, with inter and intra biological variation, we would not expect to get good PD model fits testing
parameters estimated in one dataset in another. Only in cases with constant conditions can such cross
validation methods lead to meaningful and fair results.

In this report we focused on fitting data from individual trials using prior information in order to ob-
tain a model suitable for simulation of the glucose-insulin-glucagon dynamics. The posterior parameter
distributions and correlation matrix form a population from which a parameter set can be sampled for
simulation of a subject. The estimated model parameters depend on the prior parameter distributions to
some extend. However, comparing the prior parameter distributions in Table 4 with the posterior param-
eter distributions in Table 10, we observe that most posterior distributions are much narrower than the
initial prior distributions of parameters, i.e. the parameter distributions are more informative.
The parameter estimation could be re-done by performing population modelling thus determining, not
only the individual model parameters, but the hyper-parameters, i.e. population parameters, too. We also
expect this simulation model to be valid in describing human glucose-insulin-glucagon dynamics although
possibly with different population parameter distributions and parameter correlations.

We used a simple PK model together with the novel PD model to compare glucagon with a novel glucagon
analogue referred to as ZP-GA-1 invented by Zealand Pharma A/S. Comparing PK between compounds,
we did not find any significant differences for ZP-GA-1 compared to glucagon. However, we did find a
significantly higher peak concentration of the analogue compared to glucagon. This is in agreement with
the higher bioavailability of the analogue compared to glucagon, see Table 2 in Section 2.2. Comparing
PD model parameters between glucagon and the analogue we did not find any significant differences at a
95% confidence level. Therefore, we can not reject that the analogue has similar PD effect on the glucose
response and has similar PK characteristics to marketed glucagon.
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In conclusion, we developed a novel model of the complex glucose-insulin-glucagon dynamics based
on physiology and data. We demonstrated that the model describes the glucoregulatory system well and
enables simulations of glucose dynamics knowing insulin and glucagon plasma concentrations.
Comparisons of marketed glucagon with the novel glucagon analogue did not show any differences in PK
or PD characteristics.
This report presents parameter estimates for simulations of the glucose-insulin-glucagon dynamics in dogs
but could be extended to simulations of the human dynamics after obtaining parameter estimates based on
similar studies in humans.
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Appendix

A Raw data
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Figure 16: Raw PK and PD data with outliers measured in dog 1. Data from low or high doses of glucagon
and ZP-GA-1 are red crosses or blue dots, respectively.
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Figure 17: Raw PK and PD data with outliers measured in dog 2. Data from low or high doses of glucagon
and ZP-GA-1 are red crosses or blue dots, respectively.
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Figure 18: Raw PK and PD data with outliers measured in dog 3. Data from low or high doses of glucagon
and ZP-GA-1 are red crosses or blue dots, respectively.
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Figure 19: Raw PK and PD data with outliers measured in dog 4. Data from low or high doses of glucagon
and ZP-GA-1 are red crosses or blue dots, respectively.
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Figure 20: Raw PK and PD data with outliers measured in dog 5. Data from low or high doses of glucagon
and ZP-GA-1 are red crosses or blue dots, respectively.
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B PK Model fits
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Figure 21: PK model fit after low and high doses of glucagon (green) and ZP-GA-1 (blue) in dog 1. Left
graphs are with regular axes and right graphs are with log10 axes.
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Figure 22: PK model fit after low and high doses of glucagon (green) and ZP-GA-1 (blue) in dog 2. Left
graphs are with regular axes and right graphs are with log10 axes.
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Figure 23: PK model fit after low and high doses of glucagon (green) and ZP-GA-1 (blue) in dog 3. Left
graphs are with regular axes and right graphs are with log10 axes.
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Figure 24: PK model fit after low and high doses of glucagon (green) and ZP-GA-1 (blue) in dog 4. Left
graphs are with regular axes and right graphs are with log10 axes.
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Figure 25: PK model fit after low and high doses of glucagon (green) and ZP-GA-1 (blue) in dog 5. Left
graphs are with regular axes and right graphs are with log10 axes.
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C PD model fits
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(a) 20 nmol/kg of glucagon.
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(d) 120 nmol/kg of ZP-GA-1.

Figure 26: Plasma concentrations of PD model inputs glucagon and insulin together with PD model fit of
glucose in dog 1. Administered doses and drugs are written in each subfigure.
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(a) 20 nmol/kg of glucagon.
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(d) 120 nmol/kg of ZP-GA-1.

Figure 27: Plasma concentrations of PD model inputs glucagon and insulin together with PD model fit of
glucose in dog 2. Administered doses and drugs are written in each subfigure.
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(b) 120 nmol/kg of glucagon.
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(d) 120 nmol/kg of ZP-GA-1.

Figure 28: Plasma concentrations of PD model inputs glucagon and insulin together with PD model fit of
glucose in dog 3. Administered doses and drugs are written in each subfigure.
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Time, min

G
lu

ca
go

n,
 p

g/
m

L

0 30 60 90 120 150 1801e
+0

2
1e

+0
3

1e
+0

4

●

●
●

●
● ●

●

●

●
●

●

Time, min

In
su

lin
, m

IU
/L

0 30 60 90 120 150 180

0
50

10
0

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

Time, min

G
lu

co
se

, m
m

ol
/L

0 30 60 90 120 150 180

5
10

15

●

●

●

●

●

●

●

●
●

●

●

●

●

(b) 120 nmol/kg of glucagon.

Time, min

A
na

lo
gu

e,
 p

g/
m

L

0 30 60 90 120 150 1801e
+0

2
1e

+0
3

1e
+0

4

●

● ●

●
●

● ● ●

●

● ● ●

Time, min

In
su

lin
, m

IU
/L

0 30 60 90 120 150 180

0
50

10
0

●

●

●

●
●

●
●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

Time, min

G
lu

co
se

, m
m

ol
/L

0 30 60 90 120 150 180

5
10

15

●

●

●

●

●

●
●

●
●

●

●
●

●
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(d) 120 nmol/kg of ZP-GA-1.

Figure 29: Plasma concentrations of PD model inputs glucagon and insulin together with PD model fit of
glucose in dog 4. Administered doses and drugs are written in each subfigure.
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(a) 20 nmol/kg of glucagon.
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(b) 120 nmol/kg of glucagon.
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(d) 120 nmol/kg of ZP-GA-1.

Figure 30: Plasma concentrations of PD model inputs glucagon and insulin together with PD model fit of
glucose in dog 5. Administered doses and drugs are written in each subfigure.
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Appendix B

Conference Paper
PD in Healthy Humans

This appendix presents the 1-page paper with the title "Modelling of Glucose-
Insulin-Glucagon Pharmacodynamics in Man" accepted at the 38th annual in-
ternational conference of the IEEE Engineering in Medicine and Biology Society
(EMBC'16) in Orlando, Florida during August 2016 [19].
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Modelling of Glucose-Insulin-Glucagon Pharmacodynamics in Man

S. L. Wendt1,2, J. K. Møller2, A. Haidar3, C. B. Knudsen1, H. Madsen2, J. B. Jørgensen2

Abstract— The purpose is to build a simulation model of the
glucoregulatory system in man. We estimate individual human
parameters of a physiological glucose-insulin-glucagon model.
We report posterior probability distributions and correlations
of model parameters.

I. INTRODUCTION

In healthy individuals, insulin and glucagon work in a
complex fashion to maintain blood glucose levels within a
narrow range. Recent studies suggest a multiplicative effect
of insulin and of glucagon on endogenous glucose production
(EGP) [1].

II. MATERIALS AND METHODS

A. PD Model

The pharmacodynamics (PD) model is mainly inspired by
Hovorka et al. [2].

Q̇1(t) = −F01 − STx1(t)Q1(t) + k12Q2(t) + FIC(t) (1a)

Q̇2(t) = STx1(t)Q1(t)− (k12 + SDx2(t))Q2(t) (1b)
ẋi(t) = ki (I(t)− xi(t)) i = 1, 2, 3 (1c)

Q1(t) and Q2(t) are the masses of glucose per bodyweight
(µmol/kg) in the accessible and non-accessible compart-
ments. Glucose concentration (mmol/L) in the accessible
compartment is Q1(t)/V with V fixed at 160 mL/kg. I(t) is
the insulin concentration (mIU/L) in the accessible compart-
ment. xi(t) are the remote effects of insulin (mIU/L).
F01 is the non-insulin-dependent glucose flux. k12 and ki
are transfer rate constants. SD, SE , and ST are insulin
sensitivities.
The model in (1) is modified so FIC(t) is the insulin and
glucagon dependent EGP [3].

FIC(t) =
(1− SEx3(t))

(1− SEIb,y)
·
(
(Emax − E0)

C(t)

CE50 + C(t)

)

(2)

C(t) is the glucagon concentration (pg/mL) in the accessible
compartment. Ib,y is the fixed basal insulin concentration
(mIU/L) for subject y, and E0 is the minimum EGP fixed at
8 µmol/(kg·min). Emax is the maximum EGP at Ib,y . CE50

is the glucagon concentration at half maximum EGP.

1 Department of Bioanalysis & Pharmacokinetics, Zealand Pharma A/S,
DK-2600 Glostrup, Denmark slw@zealandpharma.com

2 Department of Applied Mathematics and Computer Science, Technical
University of Denmark, DK-2800 Kgs. Lyngby, Denmark jbjo@dtu.dk

3 Department of Biomedical Engineering, McGill University, Montreal,
Quebec, Canada

B. Parameter Estimation
We used maximum a posteriori to estimate PD model

parameters and profile likelihood analysis to reduce uniden-
tifiable parameters in data with measurements of glucose,
insulin and glucagon from ten healthy male subjects who
received a 1 mg subcutaneous bolus of marketed glucagon.

III. RESULTS

TABLE I
POSTERIOR DISTRIBUTIONS OF PARAMETERS ACROSS POPULATION.

Parameter Unit Mean SD
CE50 pg/mL 407 39
Emax µmol/(kg·min) 38.8 5.0
F01 µmol/(kg·min) 10.5 0.95

ln(k12) min−1 -3.48 0.26
ln(k2) min−1 -2.11 0.03
ln(k3) min−1 -4.20 0.74
ln(SE) per mIU/L -3.19 0.67
ln(ST ) min−1 per mIU/L -5.73 0.54
ln(k1) min−1 -5.69 *
ln(SD) min−1 per mIU/L -7.58 *

* Fixed unidentifiable parameter.

TABLE II
POSTERIOR CORRELATION MATRIX OF IDENTIFIABLE PARAMETERS.

CE50 Emax F01 k12∗ k2∗ k3∗ SE∗ ST ∗ BW
CE50 1
Emax 0.31 1
F01 0.32 -0.30 1
k12∗ 0.45 0.23 0.22 1
k2∗ -0.63 0.06 -0.13 -0.30 1
k3∗ 0.13 -0.34 0.82 -0.02 -0.33 1
SE∗ -0.82 -0.26 -0.40 -0.22 0.43 -0.35 1
ST ∗ -0.20 -0.22 -0.13 0.45 -0.28 -0.14 0.57 1
BW 0.61 -0.43 0.39 0.24 -0.70 0.42 -0.60 0.00 1

* Correlation of ln-transformed parameter.

IV. CONCLUSIONS

The model enables simulations of the glucose-insulin-
glucagon dynamics in man at the following concentrations:
glucagon (180-8000 pg/mL), insulin (1.2-81.9 mIU/L) and
glucose (3.3-11.5 mmol/L).

REFERENCES

[1] A. Emami et al., “Modelling glucagon action in patients with type 1
diabetes,” J-BHI, 2016, submitted.

[2] R. Hovorka et al., “Partitioning glucose distribution/transport, disposal,
and endogenous production during IVGTT,” Am J Physiol Endocrinol
Metab, vol. 282, no. 5, pp. E992–E1007, 2002.

[3] S. L. Wendt et al., “PK/PD modeling of glucose-insulin-glucagon
dynamics in healthy dogs after a subcutaneous bolus administration of
native glucagon or a novel glucagon analogue,” DTU Compute, Tech.
Rep. 2016-2, 2016.

153



154
Conference Paper

PD in Healthy Humans



Appendix C

Journal Paper 1
PK/PD in Diabetes

Patients

This appendix presents the journal paper by Wendt et al. with the title "Cross-
Validation of a Glucose-Insulin-Glucagon Pharmacodynamics Model for Simu-
lation using Data from patients with Type 1 Diabetes" published in Journal of
Diabetes Science and Technology in February 2017 [20].
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﻿1–11
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Reprints and permissions: 
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Original Article

The treatment goal for patients with type 1 diabetes is near-
normalization of plasma glucose levels. Few patients achieve 
this even with intensive insulin treatment.1 New approaches 
with automatic glucose controlled insulin and glucagon 
delivery, known as a dual-hormone artificial pancreas (AP), 
may offer a solution to improve glycemic control.2-6 To 
design and tune control algorithms for AP devices prior to in 
vivo tests, a validated simulation model capturing the dynam-
ics between glucose, insulin and glucagon is needed to per-
form helpful in silico experiments.7-9

Glucagon primarily affects hepatic glucose production by 
increasing glycogenolysis, while the rate of gluconeogenesis 
seems less affected by changes in both insulin and glucagon 
concentrations.10 Currently marketed glucagon is approved as 

a 1 mg rescue-treatment for severe hypoglycemia, although 
the interest in mini-dose glucagon is increasing.11,12 Recent 

693254 DSTXXX10.1177/1932296817693254Journal of Diabetes Science and TechnologyWendt et al
research-article2017

1Zealand Pharma A/S, Glostrup, Denmark
2Department of Applied Mathematics and Computer Science, Technical 
University of Denmark, Kgs. Lyngby, Denmark
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Denmark
4Danish Diabetes Academy, Odense, Denmark
5Faculty of Health and Medical Sciences, University of Copenhagen, 
Copenhagen, Denmark

Corresponding Author:
Sabrina Lyngbye Wendt, Zealand Pharma A/S, Smedeland 36, DK-2600 
Glostrup, Denmark. 
Email: slw@zealandpharma.com

Cross-Validation of a Glucose-Insulin-
Glucagon Pharmacodynamics Model for 
Simulation Using Data From Patients 
With Type 1 Diabetes

Sabrina Lyngbye Wendt, MScBME1,2, Ajenthen Ranjan, MD3,4,  
Jan Kloppenborg Møller, MSc, PhD2, Signe Schmidt, MD, PhD3,4, 
Carsten Boye Knudsen, MSc, PhD1, Jens Juul Holst, MD, DMSc5,  
Sten Madsbad, MD, DMSc3,5, Henrik Madsen, MSc, PhD2,  
Kirsten Nørgaard, MD, DMSc3, and John Bagterp Jørgensen, MSc, PhD2

Abstract
Background: Currently, no consensus exists on a model describing endogenous glucose production (EGP) as a function of 
glucagon concentrations. Reliable simulations to determine the glucagon dose preventing or treating hypoglycemia or to tune 
a dual-hormone artificial pancreas control algorithm need a validated glucoregulatory model including the effect of glucagon.

Methods: Eight type 1 diabetes (T1D) patients each received a subcutaneous (SC) bolus of insulin on four study days to 
induce mild hypoglycemia followed by a SC bolus of saline or 100, 200, or 300 µg of glucagon. Blood samples were analyzed 
for concentrations of glucagon, insulin, and glucose. We fitted pharmacokinetic (PK) models to insulin and glucagon data using 
maximum likelihood and maximum a posteriori estimation methods. Similarly, we fitted a pharmacodynamic (PD) model to 
glucose data. The PD model included multiplicative effects of insulin and glucagon on EGP. Bias and precision of PD model 
test fits were assessed by mean predictive error (MPE) and mean absolute predictive error (MAPE).

Results: Assuming constant variables in a subject across nonoutlier visits and using thresholds of ±15% MPE and 20% MAPE, 
we accepted at least one and at most three PD model test fits in each of the seven subjects. Thus, we successfully validated 
the PD model by leave-one-out cross-validation in seven out of eight T1D patients.

Conclusions: The PD model accurately simulates glucose excursions based on plasma insulin and glucagon concentrations. 
The reported PK/PD model including equations and fitted parameters allows for in silico experiments that may help improve 
diabetes treatment involving glucagon for prevention of hypoglycemia.

Keywords
cross-validation, glucagon, glucoregulatory model, parameter estimation, simulation model, type 1 diabetes
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studies proved that the glycemic response to low-dose gluca-
gon is dependent on ambient insulin levels,13 but neither on 
plasma glucose level14,15 nor on prior glucagon dosing.16 At 
high circulating insulin concentrations (50-60 mU/l), the 
endogenous glucose production (EGP) is completely inhib-
ited,17 and at insulin levels exceeding ~40 mU/l the EGP can-
not be stimulated by glucagon.13

The ability of insulin to suppress the glycogenolytic 
response to glucagon at high insulin concentration is not 
reflected in previously published models of glucose-gluca-
gon dynamics.18-20 A comparative study found that a multi-
plicative relationship was needed to describe insulin’s 
inhibitory effect and glucagon’s stimulating effect on glyco-
genolysis with insulin overriding the effect of glucagon at 
high concentrations of both hormones.21 Recently, we 
extended the multiplicative model by incorporating the 
interaction between insulin and glucagon on glycogenoly-
sis.13,22 The model extension was developed using preclini-
cal data from dogs and was fitted to clinical human data in 
previous studies.23,24 In this article, we aim to validate the 
multiplicative glucose-insulin-glucagon model for simula-
tion studies in humans using data from eight patients with 
type 1 diabetes.

Methods

Data Collection

Clinical data originated from a glucagon dose-finding 
study in eight well-controlled patients with type 1 diabetes 
(5 females, age range: 19-64 years, BMI range: 20.0-25.4 
kg/m2, HbA1c range: 6.1-7.4%), who were insulin pump-
treated and had no endogenous production of insulin.25 
Table S1 summarizes the patient characteristics. In brief, 
the patients completed four similar study days in random 
order. On each study day, patients arrived at the research 
facility in the morning in a fasting state. A subcutaneous 
(SC) insulin bolus (NovoRapid®, Novo Nordisk A/S, 
Bagsværd, Denmark) was administered via the patient’s 
insulin pump, aiming to lower plasma glucose to 54 mg/dl 
if no interventions were made. The insulin bolus was cal-
culated based on each patient’s individual sensitivity fac-
tor, which was determined prior to the first study visit 
using a standard procedure.26 When plasma glucose 
reached ≤70 mg/dl, a single SC bolus of either 100 µg 
(visit B), 200 µg (visit C), 300 µg (visit D) glucagon 
(GlucaGen®, Novo Nordisk A/S, Bagsværd, Denmark), or 
saline (visit A) was administered (see Figure 1). Blood was 
sampled and analyzed for plasma glucose (YSI 2300 STAT 
Plus, Yellow Springs Instrument, Yellow Springs, OH), 
plasma glucagon27 and serum insulin aspart (Mercodia AB, 
Uppsala, Sweden). The insulin pump continuously infused 
insulin as a basal rate during the study days. The insulin 
infusion rate was adjusted before the first study day, to 
keep near constant blood glucose values in the fasting and 

resting condition. The individual insulin infusion basal 
rates were similar between study visits.

Models

When applying a pharmacokinetic (PK) model, we assume 
that all increases in insulin and glucagon concentrations are 
due to exogenously dosed drugs so that endogenous produc-
tion is constant or negligible.

Insulin Pharmacokinetic Model.  Previous studies showed that a 
simple two-state model with identical time constants for 
absorption and elimination could be used to describe the PK 
of insulin aspart after SC dosing.28
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Table 1 lists the interpretations of the insulin PK model 
parameters and their units. The insulin concentration in 
serum is the sum of external rapid acting insulin dosage and 
basal infusion. The model assumes steady state insulin 

Figure 1.  Schematic design of the study days. Baseline blood 
samples were taken at time –(X+Y). An insulin bolus was given 
after Y minutes. In a few cases, multiple insulin boluses had 
to be administered to lower the plasma glucose sufficiently. 
When the plasma glucose measured below 70 mg/dl, a saline or 
glucagon bolus was given depending on the study day. At 180 
or 240 minutes after the saline/glucagon bolus the experiment 
was stopped. Basal insulin infusion continued throughout the 
experiment. From t = –x to t = 0, plasma glucose was measured 
every 15-30 minutes, while plasma glucagon and serum insulin 
were measured every 60 minutes. Plasma glucose was measured 
every 5 minutes from t = 0 to t = 60, every 10 minutes from t 
= 60 to t=120 and then every 15 minutes. Plasma glucagon and 
serum insulin were measured every 5 minutes from t = 0 to t 
= 15, every 15 minutes from t = 15 to t = 60, every 30 minutes 
from t = 60 to t = 120, and then every 60 minutes.
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concentration, I
b
, maintained by the basal infusion when no 

exogenous rapid acting insulin is dosed.

Glucagon Pharmacokinetic Model.  A two-state model with dif-
ferent absorption and elimination rate constants can describe 
glucagon PK after SC dosing.23
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Table 1 lists the interpretations of the glucagon PK model 
parameters and their units. The glucagon concentration in 
plasma is the sum of constant endogenous glucagon, C

b
, and 

external glucagon dosage. The model does not include an 
endogenous response to hypoglycemia.

Glucose Pharmacodynamic Model.  The glucose PD model was 
originally derived by Hovorka et al29,30 and further extended 
by Wendt et al.23
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Table 1.  Interpretation of Insulin PK (Top Rows), Glucagon PK (Middle Rows), and Glucose PD (Bottom Rows) Model Parameters and 
Their Units.

Parameter Unit Interpretation

X
1
(t) U Insulin mass due to exogenous dosing, in SC tissue

X
2
(t) U Insulin mass due to exogenous dosing, in serum

u
I
(t) U/minute Insulin dose

t
max

minutes Time from dose to maximum serum concentration
W kg Body weight
Cl

F,I
ml/kg/minute Apparent insulin clearance

I
b

mU/l Steady state insulin concentration
I(t) mU/l Insulin concentration in serum
Z

1
(t) pg Glucagon mass due to exogenous dosing, in SC tissue

Z
2
(t) pg Glucagon mass due to exogenous dosing, in plasma

u
C
(t) pg/minute Glucagon dose

k
1

minute-1 Absorption rate constant
k

2
minute-1 Elimination rate constant

Cl
F,C

ml/kg/minute Apparent glucagon clearance
C

b
pg/ml Steady state glucagon concentration

C(t) pg/ml Glucagon concentration in plasma
Q

1
(t) µmol/kg Glucose mass per W in the accessible compartment

Q
2
(t) µmol/kg Glucose mass per W in the nonaccessible compartment

x
1
(t) mU/l Remote effects of insulin on glucose transport

x
2
(t) mU/l Remote effects of insulin on glucose disposal

x
3
(t) mU/l Remote effects of insulin on glycogenolysis

G(t) mmol/l Glucose concentration in plasma
G

GG
(t) µmol/kg/minute Glucose production due to glycogenolysis

G
GNG

µmol/kg/minute Glucose production due to gluconeogenesis
F

01
µmol/kg/minute Insulin independent glucose flux

F
R

µmol/kg/minute Renal glucose clearance
S

T
minute-1/(mU/l) Insulin sensitivity of glucose transport

S
D

minute-1/(mU/l) Insulin sensitivity of glucose disposal
S

E
l/mU Insulin sensitivity on glycogenolysis

k
12

minute-1 Transfer rate constant from the nonaccessible to the accessible compartment
k

a1
minute-1 Insulin deactivation rate constant

k
a2

minute-1 Insulin deactivation rate constant
k

a3
minute-1 Insulin deactivation rate constant

E
max

µmol/kg/minute Maximum EGP at basal insulin concentration
C

E50
pg/ml Glucagon concentration yielding half of maximum EGP

V ml/kg Glucose volume of distribution
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Table 1 lists the interpretations of the glucose PD model 
parameters and their units. The endogenous glucose produc-
tion is the sum of glycogenolysis, G

GG
, and gluconeogenesis, 

G
GNG

. The gluconeogenesis is fixed at 6 µmol/kg/minute.10 
F

01
 is constant when plasma glucose concentration exceeds 

81 mg/dl.30 The renal glucose clearance is zero when plasma 
glucose concentrations do not exceed 162 mg/dl.30 The glu-
cose volume of distribution is fixed at 160 ml/kg.29

Model Fitting

All model fitting was executed in R version 3.1.0 Spring 
Dance using the additional packages CTSM-R and num-
Deriv.31 Additional data handling was carried out using 
Microsoft Excel 2013. Unless stated otherwise, the results 
are reported as means with 95% Wald confidence intervals 
(CIs) derived from the inverse Hessian, which provides the 
curvature of the log-likelihood function.32

We fitted the insulin PK model using ordinary differential 
equations (ODEs) and estimated the log-normally distributed 
observation noise variance using maximum likelihood 
(ML).33 Due to missing insulin data around the expected time 
of maximum insulin concentration both t

max
 and Cl

F,I
 were 

estimated using maximum a posteriori (MAP) while I
b
 was 

estimated using ML. Prior distributions of t
max

 and Cl
F,I

 were 
reported in Haidar et al28 and further information regarding 
t
max

 was extracted from the product monograph on insulin 
aspart.34 Table S2 lists the prior parameter distributions. No 
prior correlation between t

max
 and Cl

F,I
 was assumed.

Insulin PK parameters were optimized on a subject basis to 
datasets from all four visits (8 parameter sets reported). Despite 
SC infusion rates of short acting insulin (ie, the basal rates) 
were similar per subject for all study visits, the baseline insulin 
concentration varied as evident from the raw data plotted in 
Figures S1-S7. Therefore, the parameter describing the steady 

state insulin level was estimated separately for each visit. Using 
the subject specific optimized parameters, the insulin PK was 
simulated every minute and used as input to the PD model.

We fitted the glucagon PK model for visits B, C, and D 
using ODEs and estimated the log-normally distributed 
observation noise variance using ML. Plasma glucagon was 
sampled adequately to perform ML estimation of all param-
eters in the glucagon PK model. There was some uncertainty 
regarding the exact dosing time of the glucagon bolus, which 
was given after the blood sampling at time zero but before 
the next blood sampling five minutes after. Due to this uncer-
tainty, we estimated the dosing time by choosing the discrete 
dosing time within the five-minute interval yielding the fit 
with the highest likelihood value and kept this updated dos-
ing time throughout the data fitting and handling.

As the absolute elimination rate of glucagon is limited by 
the absorption rate, glucagon exerts flip-flop kinetics.35 To 
avoid the flip-flop phenomenon and to reduce the population 
variation in the two time constants, k

2
 was parameterized 

such that it was greater than k
1
 in all datasets.

The glucagon PK parameters were estimated to the datas-
ets from visits with glucagon dosing (24 parameter sets, data 
not shown) and the PK simulated every minute to be used as 
input when fitting the PD model. On a subject basis, the glu-
cagon PK parameters were optimized to datasets from all 
three glucagon visits (8 parameter sets reported). Due to the 
limited amount of data, we assumed the parameters did not 
differ between the visits.

The data following administration of saline (visit A) were 
not fitted to the glucagon PK model but described using lin-
ear interpolation between measurements. These interpolated 
data were used as inputs to the PD model.

The PD model was fitted using ODEs and the log-nor-
mally distributed observation noise variance estimated using 
ML. The remaining parameters (E

max
, C

E50
, F

01
, k

12
, k

a1
, k

a2
, 

k
a3

, S
D
, S

E
, S

T
) were estimated using MAP with priors inspired 

by literature.22,29 We used priors for the time constants rather 
than fixing the four parameters.30 The time constants and the 
insulin sensitivities were log-transformed during the param-
eter estimation. Table S2 lists the prior PD model parameter 
distributions. The PD model parameters have units yielding 
a glucose output measured in mmol/l, but the output is con-
verted and graphically displayed with units of mg/dl. We 
assumed no prior correlation between parameters. As previ-
ously mentioned, glucose volume of distribution and gluco-
neogenesis were both fixed based on literature.10,29 I

b
 was 

fixed for each subject based on their average steady state 
insulin concentration. The final PD model parameters were 
obtained by optimizing the fit to all nonoutlier visits by each 
subject (8 parameter sets reported).

Pharmacodynamic Model Validation

To quantify the simulation accuracy of the model on datasets 
not used for parameter optimization, the bias was calculated 
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by the mean prediction error (MPE) and the precision calcu-
lated by the mean absolute prediction error (MAPE). MPE 
and MAPE were calculated as percentages.36
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The variables pred
j
 and obs

j
 are the jth predicted and observed 

value, respectively of a total of N observations. If the MPE is 
less than ±15% and the MAPE is less than 20%, we regard 
the model fit as accurate, precise and suitable for simula-
tions. Cut-off limits were based on categorizing some fits as 
“good,” “medium,” and “bad” prior to knowledge of those 
fits’ MPE and MAPE values by two independent raters. The 
limits were chosen so that all fits categorized as “good” by 
both raters would be accepted and all fits categorized as 
“bad” by both raters would not meet the acceptance criteria.

The PD model validation was carried out as a fourfold 
leave-one-out cross-validation leaving all data from one visit 
out per fold. As each subject participated in four visits, each 
subject had four training datasets comprised of data from 
three visits and four corresponding test datasets with data 
from one visit:

•• Training: B-C-D, Test: A
•• Training: A-C-D, Test: B
•• Training: A-B-D, Test: C
•• Training: A-B-C, Test: D

Thus, all four visits were used for testing once without being 
used for optimization during that fold. If the MAPE of a test 
fit exceeded 50%, the test visit was considered an outlier and 
removed from further analysis. After removal of the outlier 
dataset another round of leave-one-out was performed on the 
remaining three datasets. To validate the PD model in a sub-
ject, we required that at least one PD model test fit of a data-
set from a glucagon visit (B, C or D) was accepted.

Results

Table 2 lists the estimated insulin PK model parameters. The 
fasting steady state insulin concentration had day-to-day 
variation within patients of up to 6 mU/l and ranged from 3.0 
mU/l to 22.6 mU/l between subjects. The mean of all steady 
state insulin concentrations was 9.7 mU/l. The time to maxi-
mum concentration ranged from 40.8 to 68.5 minutes and the 
apparent clearance ranged from 14.8 to 26.8 ml/kg/minute.

Table 3 lists the estimated glucagon PK model parameters 
and the calculated time to maximum concentration. The fast-
ing steady state glucagon concentrations were similar in the 
range 7.6-11.6 pg/ml for all patients except patient 8 who had 

a concentration of 19.0 pg/ml. The absorption and elimina-
tion time constants ranged from 0.022 to 0.058 minute-1 and 
0.058 to 0.28 minute-1, yielding a calculated time to maxi-
mum concentration of 7.5-19.1 minutes. The apparent clear-
ance ranged from 91 to 200 ml/kg/minute.

Table 4 provides an overview of the leave-one-out cross-
validation procedure of the PD model. The MPE and MAPE 
for the test fits are listed together with a dichotomous decision 
of acceptance or not using the criteria outlined in the 
“Pharmacodynamic Model Validation” section. Based on the 
MAPE during leave-one-out, we excluded four outlier datas-
ets from further analysis and these four patients had a second 
round of leave-one-out including the remaining three datasets. 
Overall, the test fit was accepted two to three times out of three 
in three patients, and one to two times out of four in four 
patients. In patient 8 we did not accept any of the test fits even 
after removal of an outlier dataset. Figure 2 presents examples 
of PD model test fits and corresponding MPE and MAPE val-
ues of the test fits both passing and violating the acceptance 
criteria. In summary, the PD model successfully predicted 
unseen glucose data at least once in seven patients and there-
fore we regard the PD model as validated and suitable for 
simulation studies of these seven type 1 diabetes patients.

Table 5 lists the PD model parameters optimized to all 
nonoutlier visits in each patient with mean parameter values 
and 95% CI. The parameter describing the maximum EGP at 
steady state insulin concentration, E

max
, ranged from 56 to 84 

µmol/kg/minute. The glucagon concentration at which the 
effect is half maximum, C

E50
, ranged from 141 to 436 pg/ml. 

Extrapolated to zero insulin and at basal glucagon concentra-
tion, the EGP ranged from 7 to 13.3 µmol/kg/minute. 
According to the inverse of the parameter describing the 
insulin sensitivity to EGP, S

E
, the calculated insulin concen-

tration at which the effect of glucagon shuts off ranged from 
22 to 71 mU/l. Figures 3 and S1-S7 provide simulations of 
patient optimized PD model fits and data.

Discussion

We fitted simple PK models of serum insulin and plasma glu-
cagon after SC bolus administrations of the hormones. The 

Table 2.  Summary of Insulin PK Model Parameters for Simulation 
With Range of Means and 95% CI or Mean and 95% CI.

Patient I
b
 (mU/l) t

max
 (min) Cl

F,I
 (ml/kg/min)

1 6.6-7.8 (6.0-8.3) 57.6 (50.9-64.3) 18.9 (17.3-20.6)
2 10.0-11.2 (9.1-12.0) 57.3 (48.8-65.9) 18.5 (16.1-21.2)
3 10.3-13.4 (9.7-14.0) 40.8 (37.6-44.0) 14.8 (13.6-16.1)
4 7.8-9.4 (7.4-9.9) 67.9 (63.5-72.2) 17.4 (16.6-18.3)
5 5.2-8.2 (4.8-8.8) 48.5 (44.7-52.4) 17.3 (15.7-19.0)
6 3.0-8.5 (2.3-9.4) 46.5 (41.7-51.3) 24.6 (22.9-26.3)
7 16.8-22.6 (15.6-23.6) 68.5 (60.6-76.4) 23.7 (21.3-26.4)
8 4.7-9.1 (4.4-9.6) 55.4 (49.6-61.2) 26.8 (24.8-29.0)
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simulated concentrations of insulin and glucagon were used 
as inputs to the PD model. We sought to validate the PD 
model for simulations in eight type 1 diabetes patients and 
succeeded in seven. Finally, we estimated the patient’s indi-
vidual PD model parameters.

The fitted insulin PK model assumes that all changes in 
serum insulin concentration are due to SC insulin dosing. 
This is a valid assumption as no patients had measureable 
endogenous insulin secretion after glucagon stimulation.25 
Patients’ insulin levels are at steady state when no insulin 
bolus is administered.

The clinical study focused on generating data describing 
the effect of glucagon on glucose, and therefore only few 
data points describing the insulin PK were obtained. The 
insulin PK data were sampled very sparsely around the 
expected time of maximum concentration. The missing data 
did not allow for ML estimation of the insulin PK model. 
However, using literature informed prior distributions of 
both t

max
 and Cl

F,I
 and optimizing for all four visits simulta-

neously we obtained reasonable fits by MAP estimation.28,34

As the insulin PK model was fitted to in-hospital seden-
tary patients, its application in patients with type 1 diabetes 
outside the hospital setting may be limited due to numerous 
factors affecting insulin absorption rate, sensitivity and bio-
availability. Such factors could be accounted for by introduc-
ing time-variant model parameters, which was beyond the 
scope of this work.9,37,38 Especially, differences in insulin 
absorption could explain the observed intrapatient variation 
in steady state insulin concentration despite equal basal rates 
at all four visits.

Patients with type 1 diabetes have a blunted glucagon 
response to hypoglycemia compared to healthy subjects.39 
The fitted glucagon PK model assumes that all changes in 
plasma glucagon concentration are due to SC dosing and that 
the endogenous production is constant or negligible. To verify 
this assumption, we determined the size of the endogenous 
glucagon response to hypoglycemia during the saline day and 
compared it to simulations of glucagon PK in each of the 
eight subjects (data not shown). We found that exogenous 
glucagon doses of 1-10 µg would equal the plasma glucagon 
increase to hypoglycemia. Since the endogenous glucagon 
response to hypoglycemia was at most one tenth of the admin-
istered dose during the glucagon days, this confirmed that the 

endogenous response during these days was negligible com-
pared to the exogenous dosed glucagon. However, the endog-
enous response was not negligible during the saline day and 
therefore the glucagon PK model was not applicable to those 
datasets.

The glucagon PK fit was challenged by the short time to 
maximum concentration combined with the uncertainty of 
the exact dosing time of glucagon. This could potentially 
result in an error in time to maximum concentration of up to 
±4 minutes. However, this possible deviation has minor 
impact on the PD model fit when the glucagon PK fit is used 
as an input. Despite the dosing time uncertainty, the calcu-
lated times to maximum concentration are within reasonable 
range of population averages reported in the literature.28,40 In 
the model by Haidar et al,28 the glucagon absorption rate and 
elimination rate were identical which we only observed in 
patient 4. In the remaining seven patients, the elimination 
rate was significantly higher than the absorption rate. 
Moreover, having different absorption and elimination rate 
constants we observed a higher clearance rate. Compared to 
Haidar et al, we found lower basal concentration of gluca-
gon, which could be attributed to differences in the assays for 
analysis of plasma glucagon concentration.26

Despite using informed priors for all PD model parame-
ters, some optimized parameters are very different from the 
population mean and vary considerably more than originally 
listed in Hovorka et al.29 However, the original reference is 
based on a population of only six subjects, which makes it 
unlikely that all true population variations were captured, 
and we believe, therefore, that our parameter estimates are 
still valid. Similarly, with a population of eight subjects, we 
did not fit a population model but focused on estimating 
parameters for each subject individually.

The limited human data on EGP response to glucagon are 
consistent with data from dogs.22 As the human response to 
high glucagon concentrations has not been thoroughly investi-
gated, the dog data provide best guesses of the human values. 
The maximum EGP due to glucagon and glucagon concentra-
tion at half-maximum effect at basal insulin average around 60 
µmol/kg/minute and 300 pg/ml in dogs.22 Our results match 
the reference values and therefore seem plausible.

We found that EGP at zero insulin and basal glucagon is 
somewhat lower than previous publications, which state 

Table 3.  Summary of Glucagon PK Model Parameters for Simulation With Mean and 95% CI.

Patient C
b
 (pg/ml) k

1
 (min-1) k

2
 (min-1) Cl

F,C
 (ml/kg/min) t

max
 (min)

1 10.7 (9.4-12.0) 0.042 (0.036-0.048) 0.14 (0.10-0.22) 94 (83-105) 12.2
2 7.6 (6.9-8.3) 0.056 (0.052-0.062) 0.26 (0.18-0.38) 106 (96-116) 7.5
3 7.6 (5.9-9.3) 0.022 (0.018-0.028) 0.10 (0.06-0.17) 114 (96-132) 19.1
4 10.9 (9.2-12.6) 0.058 (0.011-0.313) 0.058 (NA) 159 (133-184) 17.3
5 8.7 (7.7-9.8) 0.038 (0.032-0.044) 0.19 (0.13-0.29) 200 (176-223) 10.7
6 8.9 (7.8-10.0) 0.035 (0.031-0.040) 0.28 (0.19-0.41) 125 (111-138) 8.6
7 11.6 (10.1-13.0) 0.035 (0.030-0.041) 0.25 (0.16-0.39) 136 (120-152) 9.2
8 19.0 (16.1-22.0) 0.052 (0.037-0.072) 0.090 (0.04-0.26) 91 (78-105) 14.5
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10-20 µmol/kg/minute29 and ~30 µmol/kg/minute.22 This 
might be due to the fixation of gluconeogenesis at 6 µmol/kg/

minute,10 which is increased in subjects with poorly con-
trolled type 1 diabetes compared to the present well-con-
trolled patients or healthy subjects.25,41 Assuming the 
proposed model of EGP is correct, the insulin concentration 
at which the glycogenolysis, hence the effect of glucagon, 
shuts off is reasonable compared to the limited publications 
showing glycogenolysis at various insulin concentrations.22,42 
Rizza et al found that the glucose production was suppressed 
by insulin beyond approximately 60 mU/l.17 El Youssef et al 
found that at serum insulin concentrations beyond 40 mU/l 
glucagon concentrations below 450 pg/ml did not stimulate 
EGP.13 Further clinical studies are needed to investigate 
whether high insulin concentrations completely suppress the 
effect of glucagon or whether the maximum EGP is still 
attainable though at higher glucagon concentrations.

A major limitation to some of the previously published 
models describing the effect of glucagon on glucose pro-
duction is lack of validation.18,21 We were able to mimic 
never-before-seen glucose data at least once and at most 
three times in seven of the eight subjects using the pre-
sented glucose PD model. We did not expect to accept the 
test fit of all nonoutlier datasets in each subject as the visits 
often described complimentary dynamics of the glucose-
insulin-glucagon relationship; for instance the placebo day 
had very limited information on how different glucagon 
concentrations affects EGP as glucagon levels were 

Table 4.  PD Model Validation Using Leave-One-Out Cross-
Validation.

Patient
Training 

visits
Test 
visit

MPE 
(%)

MAPE 
(%)

Accept? 
(Y/N)

1 BCD A –25.0 25.0 N
ACD B –11.3 13.7 Y
ABD C 78.8 78.8 Na

ABC D 3.3 25.5 N
BD A –10.3 11.1 Y
AD B 10.4 13.1 Y
AB D 4.0 21.3 N

2 BCD A 29.1 29.8 N
ACD B –18.2 18.7 N
ABD C –6.3 7.5 Y
ABC D 6.3 10.0 Y

3 BCD A 10.3 17.4 Y
ACD B –2.3 8.6 Y
ABD C 23.4 24.6 N
ABC D –20.1 20.1 N

4 BCD A –17.3 18.9 N
ACD B –9.4 11.1 Y
ABD C –23.6 23.7 N
ABC D 38.2 38.4 N

5 BCD A –13.4 13.4 Y
ACD B –30.0 30.4 N
ABD C –16.3 21.3 N
ABC D 74.6 74.6 Na

BC A –1.7 4.5 Y
AC B –9.8 14.1 Y
AB C –7.5 17.4 Y

6 BCD A –23.5 24.2 N
ACD B –4.5 12.0 Y
ABD C 59.0 59.0 Na

ABC D –8.6 16.3 Y
BD A –13.7 16.9 Y
AD B 16.7 17.5 N
AB D 4.7 15.8 Y

7 BCD A 43.0 43.3 N
ACD B –19.0 19.0 N
ABD C –2.9 19.0 Y
ABC D 6.0 8.0 Y

8 BCD A –8.0 12.4 Y
ACD B –32.9 33.0 N
ABD C –14.5 24.2 N
ABC D 174.1 174.1 Na

BC A –26.2 26.2 N
AC B –24.6 24.6 N
AB C 42.5 42.5 N

Initially, data from three visits are used for training the model, ie, 
optimizing model parameters, and data from the fourth visit are used for 
testing the model with the optimized parameters.
aA test fit with MPE or MAPE exceeding 50% is considered an outlier. The 
outlier dataset is removed and another round of leave-one-out cross-
validation is performed on the remaining three visits.

Figure 2.  Examples of validation PD model fits with “good,” 
“medium,” and “bad” MPE and MAPE. Top graph is test of 
patient 2’s visit C (accepted). Middle graph is test of patient 1’s 
visit B (accepted). Bottom graph is test of patient 8’s visit B (not 
accepted).

163



8	

T
ab

le
 5

. 
Su

m
m

ar
y 

of
 P

D
 M

od
el

 P
ar

am
et

er
s 

fo
r 

Si
m

ul
at

io
n 

W
ith

 M
ea

n 
an

d 
95

%
 C

I.

ID
D

at
a

C E5
0 (

pg
/m

l)
E m

ax
 (

µm
ol

/k
g/

m
in

)
F 01

 (
µm

ol
/k

g/
m

in
)

k 12
*1

0-4
 (

m
in

-1
)

k a1
*1

0-4
 (

m
in

-1
)

k a2
*1

0-4
 (

m
in

-1
)

k a3
*1

0-4
 (

m
in

-1
)

S D
*1

0-4
 (

m
in

-1
/

(m
U

/l)
)

S E*1
0-4

 
((

m
U

/l)
-1
)

S T*1
0-4

  
(m

in
-1
/(

m
U

/l)
)

1
A

BD
43

6 
(3

55
-5

17
)

56
.4

 (
51

.1
-6

1.
8)

14
.2

 (
12

.9
-1

5.
5)

24
4 

(1
81

-3
30

)
16

 (
7-

35
)

52
2 

(2
21

-1
23

3)
21

5 
(5

9-
77

8)
1.

5 
(0

.6
-3

.3
)

15
5 

(8
3-

28
9)

23
 (

16
-3

1)
2

A
BC

D
40

5 
(3

39
-4

71
)

67
.4

 (
59

.3
-7

5.
5)

13
.8

 (
12

.8
-1

4.
7)

28
5 

(2
23

-3
63

)
15

 (
7-

35
)

49
5 

(2
36

-1
03

9)
23

1 
(1

37
-3

89
)

1.
2 

(0
.6

-2
.3

)
33

4 
(2

32
-4

81
)

19
 (

15
-2

5)
3

A
BC

D
40

1 
(3

27
-4

75
)

57
.4

 (
49

.8
-6

5.
0)

15
.5

 (
14

.2
-1

6.
8)

39
7 

(2
77

-5
68

)
18

 (
8-

42
)

54
8 

(2
68

-1
12

1)
32

7 
(1

68
-6

38
)

1.
4 

(0
.7

-2
.5

)
23

7 
(1

83
-3

08
)

25
 (

17
-3

6)
4

A
BC

D
28

5 
(2

26
-3

44
)

84
.4

 (
73

.9
-9

4.
8)

12
.8

 (
11

.3
-1

4.
4)

21
3 

(1
57

-2
89

)
18

 (
9-

36
)

43
7 

(1
83

-1
04

4)
68

 (
42

-1
13

)
2.

0 
(1

.0
-3

.8
)

41
5 

(3
47

-4
96

)
18

 (
13

-2
5)

5
A

BC
33

9 
(2

51
-4

27
)

65
.4

 (
53

.8
-7

7.
1)

12
.0

 (
10

.6
-1

3.
5)

28
1 

(1
94

-4
06

)
15

 (
7-

32
)

51
7 

(2
23

-1
20

1)
23

5 
(9

5-
58

6)
1.

1 
(0

.4
-2

.6
)

22
9 

(1
27

-4
15

)
31

 (
20

-4
7)

6
A

BD
42

4 
(3

33
-5

15
)

60
.1

 (
46

.3
-7

4.
0)

13
.1

 (
11

.7
-1

4.
5)

23
8 

(1
72

-3
30

)
10

 (
4-

22
)

35
3 

(1
02

-1
22

1)
74

 (
23

-2
32

)
2.

6 
(1

.1
-6

.2
)

40
4 

(1
85

-8
82

)
21

 (
14

-3
2)

7
A

BC
D

14
1 

(9
6-

18
7)

78
.0

 (
68

.9
-8

7.
1)

14
.2

 (
12

.2
-1

6.
1)

35
8 

(2
52

-5
09

)
49

 (
23

-1
05

)
62

4 
(3

19
-1

22
1)

17
8 

(6
9-

45
9)

4.
4 

(3
.2

-6
.0

)
14

0 
(9

9-
19

9)
21

 (
16

-2
9)

8
A

BC
30

7 
(2

28
-3

86
)

75
.3

 (
61

.5
-8

9.
1)

13
.4

 (
11

.4
-1

5.
4)

28
9 

(1
97

-4
24

)
37

 (
18

-7
5)

51
8 

(2
03

-1
32

4)
15

4 
(6

8-
34

8)
4.

2 
(2

.8
-6

.5
)

46
3 

(3
77

-5
69

)
29

 (
20

-4
2)

164
Journal Paper 1

PK/PD in Diabetes Patients



Wendt et al	 9

changing very little. On the contrary, the placebo datasets 
were rich in information about the effects of insulin on 
plasma glucose. Some glucagon datasets had few observa-
tions of the effects of insulin on EGP as the plasma glucose 
some days reached the bolus threshold of 70 mg/dl quickly, 
for example, in subjects 2 and 7 shown in Figure S2 and 
Figure 3, respectively. As an example, this difference in 
data sampling can explain why it was not possible to vali-
date the model using subject 2’s visit B as the test dataset. 
For this particular patient, the placebo visit was stopped 
early and therefore does not contain much information 
about the insulin dynamics. Moreover, the insulin only 
phase of visit B lasted nearly five hours and only two hours 
during visits C and D. Leaving visit B out of the training 
dataset does not provide the model with enough informa-
tion to predict the insulin dynamics present in visit B. We 
noted that in most cases when the test fit was not accepted 
there was a monotone bias in the residuals yielding almost 
equal values of absolute MPE and MAPE (see Table 4). 
This bias indicates that the test fit would either over- or 
undershoot compared to data and thus both insulin and glu-
cagon dynamics of the test dataset were not well described 
by the training datasets. Analyzing the PD model parame-
ters during leave-one-out in Tables S3-S10, we observed 
that when a test fit could not be accepted, usually one or 
more parameters were outside the CI obtained when fitting 
to all nonoutlier data. Therefore, failing to accept the test 
fit during a fold is not necessarily a sign of an incorrect 

model structure. Rather it could emphasize that the test 
dataset contains unique information about the dynamics, 
which are not present in any of the training datasets.43 
However, in four patients one dataset was so different from 
the other three datasets that it had to be excluded from the 
final PD model estimation as it would otherwise affect the 
parameters and yield bad fits for all four study days.

Simulation models are rarely validated on unseen data. 
The only glucose model including glucagon that is currently 
validated and FDA approved has undisclosed parameter val-
ues and can only be accessed by payment.19,44 We believe 
that this article is a step toward more openly sharing simula-
tion models that will allow more research groups to test 
dual-hormone dosing strategies and control algorithms for 
managing diabetes before carrying out expensive simula-
tions or clinical trials.

Conclusion

We have successfully validated a model describing the 
glucose-insulin-glucagon dynamics in seven type 1 diabe-
tes subjects using leave-one-out cross-validation. We have 
reported model parameter sets with uncertainties for each 
subject, which could be used for in silico experiments. 
Simulations could also aid in optimizing treatment for 
type 1 diabetes patients such as glucagon dosing strategies 
for preventing hypoglycemia and tuning control strategies 
for an AP.

Figure 3.  Data from all of patient 7’s visits (left to right: visit A to D) with insulin PK model fits (top row, logarithmic y-axes) and 
glucagon linear interpolation or PK model fits (middle row, logarithmic y-axes) both used as inputs to the glucose PD model for 
simulation built with data from all four visits (bottom row). The triangles indicate dose time of the insulin and glucagon boluses, 
respectively.
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Abbreviations

AP, artificial pancreas; BMI, body mass index; BW, body weight; 
CI, confidence interval; EGP, endogenous glucose production; 
FDA, Food and Drug Administration; HbA1c, glycated hemoglo-
bin A1c; MAP, maximum a posteriori; MAPE, mean absolute pre-
diction error; ML, maximum likelihood; MPE, mean prediction 
error; ODE, ordinary differential equation; PD, pharmacodynam-
ics; PK, pharmacokinetics; SC, subcutaneous; SD, standard 
deviation.
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Appendix D

Technical Report 2
Simulation Studies

This appendix presents the technical report with the title "Simulating Clinical
Studies of the Glucoregulatory System: in Vivo Meets in Silico" published by
the Technical University of Denmark in February 2017 [21].
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Abstract: In this report we use a validated model of the glucoregulatory system in-
cluding effects of insulin and glucagon for simulation studies in seven type 1 diabetes
patients. Using simulations, we replicate the results from a clinical study investigating
the effect of micro-doses of glucagon on glucose metabolism at varying ambient insulin
levels. The report compares in vivo and in silico results head-to-head, and discusses
similarities and differences. We design and simulate simple studies to emphasize the
implications of some glucoregulatory dynamics which are ignored in most previous
clinical studies: the effect of discontinuing insulin and glucose infusions prior to glu-
cagon administration, the delayed effect of insulin, timing of data sampling, and carry-
over effects from multiple subcutaneous doses of glucagon. We also use simulations to
discuss two hypotheses of how insulin and glucagon might interact in influencing the
glucose response. Following the simulations we propose a study design that potentially
could explore if the hypotheses are true or false.
Keywords: Glucagon, Glucoregulatory system, Glucose, Insulin, Simulation
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Preface
This technical report aims to discuss how to conduct clinical studies seeking to elu-
cidate the dynamics in the glucoregulatory system with focus on glucagon. The dis-
cussion is based on published clinical data and simulation experiments using a newly
validated glucose-insulin-glucagon model [1].
Simulation models describing insulin and glucagon pharmacokinetics and glucose phar-
macodynamics are presented in the first section along with subject specific model pa-
rameters and their interpretations.
Second section presents an in silico replication of the highly cited study by El Youssef
et al. from 2014 with the title ”Quantification of the Glycemic Response to Microdoses
of Subcutaneous Glucagon at Varying Insulin Levels” [2]. All results and graphs of the
original paper are replicated using simulations. We present a comparison between the
in silico and the in vivo results.
Third section describes a simulation study exploiting the ability of computer simula-
tions to conduct infinite number of trials thereby creating smooth dose-response curves
for glucagon at varying insulin levels with glucagon doses ranging from 1 µg to 10 mg.
This section also discusses two possible hypotheses describing the interaction between
insulin and glucagon, and suggests a study design that could evaluate the hypotheses.
Based on simulation studies and published clinical studies, fourth section discusses
pearls and pitfalls for conducting clinical studies of the glucoregulatory system with
focus on trials including glucagon. This last section contains a thorough discussion of
the importance of clamp study designs and limitations to identify dynamics in data.

2

172
Technical Report 2
Simulation Studies



Abbreviations

AUC area under the curve
AUC60 AUC over 60 minutes
EGP endogenous glucose production
HbA1c glycated hemoglobin A1c
IIR insulin infusion rate
IQR inter quartile range
MPC model predictive control
PD pharmacodynamic
PID proportional integral derivative
PK pharmacokinetic
SD standard deviation
SS steady state
SC subcutaneous
Tmax time to maximum concentration
T1D type 1 diabetes
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1 SIMULATION MODEL

1 Simulation Model
The simulation models in this section including equations and parameter values were
published by Wendt et al. [1]. For details on the model validation and parameter es-
timation the reader is kindly referred to the original publication. This section serves
as a summary of the model providing the information necessary to use the model for
simulations.

1.1 Insulin Pharmacokinetics Model
The insulin pharmacokinetics (PK) model is adopted from Haidar et al. [3] and de-
scribed by equations (1)-(3).

dX1(t)

dt
= uI(t)− X1(t)

tmax
(1)

dX2(t)

dt
=
X1(t)

tmax
− X2(t)

tmax
(2)

I(t) =
1

tmax

X2(t)

W · ClF,I
106 + Ib (3)

The steady state conditions of the system are both states, X1 and X2, equal to zero.
The interpretations of the insulin PK model variables are listed in Table 1. Individual
model parameter values are presented in Section 1.4.

Table 1: Interpretation of insulin PK model states, input, output and parameters.

Class Variable Unit Interpretation

States X1(t) U insulin mass due to SC doing, in SC tissue
X2(t) U insulin mass due to SC dosing, in serum

Input uI(t) U/min insulin dose
Output I(t) mU/L insulin concentration in serum

Parameters

Ib mU/L steady state insulin concentration
tmax min time to maximum serum concentration
W kg body weight
ClF,I mL/kg/min apparent insulin clearance
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1.2 Glucagon Pharmacokinetics Model
The glucagon PK model is adopted from Wendt et al. [4] and described by equations
(4)-(6).

dZ1(t)

dt
= uC(t)− k1Z1(t) (4)

dZ2(t)

dt
= k1Z1(t)− k2Z2(t) (5)

C(t) =
k2Z2(t)

W · ClF,C
+ Cb (6)

The steady state conditions of the system are both states, Z1 and Z2, equal to zero.
Table 2 lists the interpretations of glucagon PK model variables. Individual model
parameter values are presented in Section 1.4.

Table 2: Interpretation of glucagon PK model states, input, output and parameters.

Class Variable Unit Interpretation

States Z1(t) pg glucagon mass due to SC dosing, in SC tissue
Z2(t) pg glucagon mass due to SC dosing, in plasma

Input uC(t) pg/min glucagon dose
Output C(t) pg/mL glucagon concentration in plasma

Parameters

Cb pg/mL steady state glucagon concentration
k1 min−1 absorption rate constant
k2 min−1 elimination rate constant
W kg body weight

ClF,C mL/kg/min apparent glucagon clearance

1.3 Glucose Pharmacodynamics Model
The glucose pharmacodynamics (PD) model was first developed using preclinical data
from healthy dogs [4] and then tested with data from healthy humans [5]. Finally, the
PD model was validated for simulations in seven type 1 diabetes patients [1]. The
model structure is described by equations (7)-(13).

6
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dQ1(t)

dt
= −F01 − FR − STx1(t)Q1(t) + k12Q2(t) +GGG(t) +GGNG (7)

dQ2(t)

dt
= STx1(t)Q1(t)− [k12 + SDx2(t)]Q2(t) (8)

GGG(t) =
1− SEx3(t)

1− SEIb
·
(

(Emax −GGNG)
C(t)

CE50 + C(t)

)
(9)

G(t) =
Q1(t)

V
(10)

dx1(t)

dt
= ka1[I(t)− x1(t)] (11)

dx2(t)

dt
= ka2[I(t)− x2(t)] (12)

dx3(t)

dt
= ka3[I(t)− x3(t)] (13)

In equation (9), 1− SEx3(t) is always greater than or equal to zero. Interpretations of
PD model states, inputs, outputs and parameters are listed in Table 3. Subject specific
model parameters are presented in Section 1.4. The steady state conditions of the model
are listed in equations (14)-(18).

Q1,SS = GSS · V (14)

Q2,SS = Q1,SS
x1,SS

x2,SS + k12
(15)

x1,SS = Ib (16)
x2,SS = Ib (17)
x3,SS = Ib (18)

1.4 Model Parameters
The majority of PK and PD model parameters are subject specific and listed in Table
4. A few parameters are fixed for all subjects including the rate of gluconeogenesis,
GGNG, at 6 µmol/kg/min [6], and the glucose volume of distribution, V , at 160 mL/kg
[7]. The renal clearance of glucose is zero unless the plasma glucose concentration
exceeds 9 mmol/L in which case it is calculated as 0.003 · (G − 9) · V [8]. Similarly,
the insulin independent glucose flux is calculated as F01 · G/4.5 when the plasma
glucose concentration falls below 4.5 mmol/L [8].
The glucose PD model was validated using leave-one-out cross-validation in seven
out of eight type 1 diabetes patients. The model parameters of patient 8 are reported
although the model could not be validated in this subject. Therefore, simulations in the
following chapters are carried out using only subjects 1-7.
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2 THE STUDY BY EL YOUSSEF ET AL.

2 The Study by El Youssef et al.
In this section, using simulations we aim to replicate the clinical study by El Youssef
et al. published in Diabetes Care November 2014 with the title ”Quantification of
the Glycemic Response to Microdoses of Subcutaneous Glucagon at Varying Insulin
Levels” [2].

2.1 Study Design
The study by El Youssef et al. [2] included 11 type 1 diabetes (T1D) patients (5 fe-
males, age IQR: 36.5-46.0 years, BMI IQR: 23.0-31.1 kg/m2, HbA1c IQR: 7.0-8.2%).
The patients participated in three study days of each 10 hours duration with constant
intravenous insulin infusion rate (IIR) of either low, medium or high. Average results
during low, medium and high IIR are based on 10, 9, and 10 subjects, respectively.
Glucose infusion rates were controlled using a proportional integral derivative (PID)
controller aiming at a blood glucose concentration of 85± 20 mg/dL. When blood glu-
cose read below 60 mg/dL the controller regulated the glucose infusion rate every five
minutes, otherwise every ten minutes. After an initial two hours run-in period the sub-
jects received the first glucagon bolus. They received the second glucagon bolus after
another two hours until a total of four glucagon boluses were delivered and observed
for the following two hours. The glucagon boluses were delivered in a pseudo-random
order by varying the initial dose, but keeping the order: 25 µg, 75 µg, 125 µg, and 175
µg (25-75-125-175, 75-125-175-25, 125-175-25-75, 175-25-75-125). Each subject re-
ceived the same pseudo-random order of glucagon boluses during each study day.
The study used regular human insulin (Humulin R, Eli Lilly and Company) and gluca-
gon (GlucaGen, Novo Nordisk).

2.2 Simulation Study Details
In the in silico study we used the validated patient specific PK/PD models describing
seven T1D patients (4 females, age range: 19-64 years, BMI range: 20.0-25.4 kg/m2,
HbA1c range: 6.1-7.4 %) presented in Section 1 [1]. All virtual subjects participated
in experiments with low, medium and high IIRs. We followed the study design of the
clinical study described in Section 2.1. We allowed initialization of patients at steady
state (SS) at the beginning of the two hours run-in period by solving the patient specific
equations for SS.
The insulin and glucagon PK/PD model parameters were based on a study using insulin
aspart (NovoRapid, Novo Nordisk) and glucagon (GlucaGen, Novo Nordisk). As the
IIRs are constant during the experiment the possible differences in insulin PK between
Humulin R and NovoRapid are not confounding the study. Differences in insulin PD
effects are relevant, however, we assume that the insulins have identical PD effects.

2.2.1 Determining Infusion Rates

The low and medium IIR were chosen based on individual basal infusion rates and the
high IIR was fixed at 0.05 U/kg/h for all subjects. In the clinical study they used either
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2.2 Simulation Study Details 2 THE STUDY BY EL YOUSSEF ET AL.

0.01 U/kg/h or the patient’s average daytime basal rate as the lowest IIR, but the latter
information was not available in the simulation study. Therefore, the individual low
IIR was maximized to either 0.01 U/kg/h or the infusion rate yielding an insulin level
equal to one and a half times the fasting serum insulin concentration. The medium IIR
was chosen halfway between the low and high IIR.
The SS glucose infusion rate was calculated by solving individual glucoregulatory
models at SS given the pre-specified insulin infusion rate.

2.2.2 Proportional Integral Derivative Controller

We implemented a simple proportional integral derivative (PID) controller with clip-
ping to control the blood glucose concentration by adjusting the glucose infusion rate,
as listed in equations (19)-(22).

ek = GSS −Gk (19)
Ik = Ik−1 + ki ·∆t · ek (20)

dek =
ek − ek−1

∆t
(21)

Uk = max(0, USS + kp · ek + Ik + kd · dek) (22)

GSS is the glucose concentration at SS (set point of 85 mg/dL), Gk is the kth glucose
observation, and ek is the deviation from set point of the kth observation. Ik is the
discretization of the integral of errors until k, calculated as the sum of the previous
integral of errors, Ik−1, and the current integral of error weighted by ki. dek is the
discretization of the error derivative at k calculated by the backward difference. The
updated glucose infusion rate, Uk, is the sum of the SS glucose infusion rate, USS , the
error weighted by kp, the integral of errors, and the error derivative weighted by kd,
unless the sum is negative, in which case the glucose infusion rate is set to zero. We
used kp = 4, ki = 1, and kd = -2.

2.2.3 Calculation of Endogenous Glucose Production

The endogenous glucose production (EGP) due to glucagon was directly calculated
using the PD model. EGP was baseline-corrected by subtracting the EGP level at
the time of the most recent glucagon dose to avoid carry-over effects from previous
glucagon doses or from baseline production maintained by the constant insulin infusion
and SS glucagon concentration.

EGPCorrected(t) = EGP (t)− EGP (tDose,n) n = 1, ..., 4 (23)

The baseline-corrected EGP can thus become negative when current EGP is less than at
the time of the most recent glucagon dose. However, it can not be more negative than
the difference between EGP at SS and EGP at the time of the most recent glucagon
dose.
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2.3 Results and Discussion
2.3.1 Insulin and Glucose Infusion Rates

(a) In vivo from [2]. (b) In silico (n=7).

Figure 1: Box plot of glucose infusion rate (mg/kg/min) across all studies, by insulin
infusion group.

Table 5 compares the reported in vivo and simulated in silico average insulin and glu-
cose infusion rates at low, medium and high IIRs. At a first glance, insulin infusion
rates are very similar in the two studies based on averages and medians. However, the
virtual study contained one patient (no. 7) having a very high basal IIR yielding a low
IIR of 0.042 U/kg/h and a medium IIR of 0.046 U/kg/h. Ultimately, there was little
differences between the three IIRs in this subject and therefore only minor differences
in responses during the various insulin infusion rates. The high basal IIR indicates that
the subject is not very sensitive to insulin and therefore the response to glucagon during
the high IIR was little attenuated by the insulin level. No formal test was performed to
exclude this subject. However, the low IIR and medium IIR are more than two standard
deviations from the mean infusion rates reported in vivo which justifies the exclusion
of the subject from the analysis of EGP response to glucagon at various insulin levels.

Table 5: Summary of insulin and glucose infusion rates in vivo and in silico. Infusion
rates are reported as mean ± SD and median [IQR]. L = low, M = medium, H = high.

IIR In Vivo In Silico
Insulin L 0.016 ± 0.006 0.014 0.018 ± 0.011 0.014

rate M 0.032 ± 0.003 0.03 0.034 ± 0.006 0.032
U/kg/h H 0.05 ± 0.00 0.05 0.05 ± 0.00 0.05
Glucose L 0.7 ± 0.5 0.6 [0.2-1] 0.5 ± 0.8 0.0 [0.0-1.0]

rate M 2.9 ± 1.3 3.2 [1.9-4] 2.1 ± 0.9 2.3 [1.9-2.9]
mg/kg/min H 4.5 ± 2 5.1 [2.9-6.2] 3.8 ± 1.2 4.0 [3.2-4.8]

Summary statistics of glucose infusion rates are similar although the interquartile range
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is narrower in silico than in vivo. This difference is also evident in Figure 1 showing
smaller boxes but several outliers in silico compared to in vivo. Looking at the glu-
cose infusion rates over time in Figure 2b, we observe a difference in the response to
glucagon, thus the amount of decrease in glucose infusion rate compared to Figure 2a.
Moreover, the glucose infusion rate at SS is slightly lower during medium and high
IIRs. To the authors it is not clear how the large decrease in glucose infusion rate
during high IIR displayed in Figure 2a relates to the small EGP area under the curve
(AUC) displayed in Figure 8a.

(a) In vivo from [2].

(b) In silico (n=7).

Figure 2: Mean glucose infusion (mg/kg/min) over time by insulin infusion rate group
and glucagon dose: top left, all insulin infusion rates together; top right, bottom left,
and bottom right, low, medium, and high insulin infusion rates, respectively.
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2.3.2 Insulin and Glucose Concentrations

Table 6 compares reported and simulated serum insulin concentrations and plasma glu-
cose concentrations after the two hours run-in period. The distribution of serum insulin
levels are very similar in the clinical and virtual studies as seen in Figure 3. This con-
firms that the insulin PK model is applicable despite not being estimated from optimally
sampled data as described in [1]. On the contrary, the plasma glucose concentrations
differ. The glucose concentration is lower with less variation during the in silico ex-
periment especially during low and medium IIR. This is probably due to differences in
the PID controller settings achieving better control in the virtual population than in real
subjects. Moreover, using the SS equations of the individual subjects we calculated the
exact needed glucose infusion rate to counter the IIR. This is unfortunately not possi-
ble in real life. The plasma glucose concentration is equally well controlled during the
high IIR which is probably due to the attenuated EGP response to glucagon.

Table 6: Serum insulin and plasma glucose concentrations in vivo and in silico. Con-
centrations are reported as mean ± SD and median [IQR]. L = low, M = medium, H =
high.

IIR In Vivo In Silico
Serum L 17.6 ± 13.0 11.0 [9.7-24.6] 15.0 ± 7.2 13.1 [10.2-17.1]
insulin M 29.1 ± 8.9 28.1 [25.5-31.5] 29.7 ± 4.8 30.5 [28.0-31.9]
mU/L H 46.0 ± 12.5 41.7 [37.5-46.8] 44.4 ± 7.8 45.1 [37.4-48.1]

Plasma L 150.8 ± 68.3 100.5 ± 28.0
glucose M 92.9 ± 21.3 83.6 ± 14.6
mg/dL H 88.0 ± 16.0 83.4 ± 13.4

(a) In vivo from [2]. (b) In silico (n=7).

Figure 3: Box plot of serum insulin levels (mU/L) at low, medium, and high insulin
infusion rates.
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2.3.3 Glucagon

Table 7 compares time to maximum concentration (Tmax) of glucagon between the
clinical and virtual studies stratified by glucagon dose. In both studies, Tmax did not
dependent on glucagon dose. We found smaller Tmax with smaller variation in silico
than in vivo. One should keep in mind that blood was only sampled every 10 minutes
in the clinical study whereas data used for estimating glucagon PK model parameters
for simulations were sampled every 5 minutes. Blood sampling every 10 minutes does
not allow for accurate determination of glucagon’s Tmax.
Comparisons of glucagon AUCs in Figure 4 and concentration time profiles in Figure 5
to the in vivo findings should be made with caution as absolute glucagon concentration
highly depends on the assay [9]. Moreover, the in vivo study measured glucagon in
serum whereas the in silico study simulated glucagon in plasma. Overall, in silico glu-
cagon levels seem more variable, although with clearly separated average PK profiles
for each dose.
Figure 5a and 5b show that the plasma glucagon concentration is still above SS two
hours after most glucagon doses. Therefore, repeating glucagon dosing after only two
hours will likely introduce some carry-over effects from the previous dose, even when
baseline-corrected at the time of dose.

Table 7: Glucagon Tmax.

Dose In Vivo In Silico
25 µg 23.2 ± 13.5 11.1 ± 3.5

Glucagon Tmax 75 µg 17.1 ± 8.1 12.1 ± 4.3
min 125 µg 19.6 ± 6.1 12.1 ± 4.3

175 µg 20 ± 9.6 12.1 ± 4.3

(a) In vivo from [2]. (b) In silico (n=21).

Figure 4: Box plot of glucagon plasma level AUC over 60 min, stratified by dose.
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(a) In vivo from [2].

(b) In silico (n=21).

Figure 5: Mean incremental change in glucagon plasma levels (baseline corrected at
time = 0).
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2.3.4 Endogenous Glucose Production

The results in the following section highly depends on the method used for calculat-
ing EGP. In the in vivo study they derived the EGP from tracer data by fitting a two-
compartment model. In the in silico study we calculated the EGP directly from the
model description.
As mentioned in Section 2.3.1, one patient was considered an outlier because of nearly
no difference in IIRs and was excluded from the following analysis of EGP due to glu-
cagon at various insulin levels.

Figure 6b replicates Figure 6a with many similarities but also some differences. Most
importantly, the magnitudes of average peak EGP to the four glucagon doses are sim-
ilar. The EGP increase appears to be more rapid in silico than in vivo yielding a faster
Tmax, which can be partly explained by the faster glucagon Tmax. However, with the
sampling of every ten minutes the observed Tmax could be anywhere between 10-30
minutes and the simulated Tmax could be between 0-20 minutes (the average is in fact
12 minutes). If the true Tmax of EGP in response to glucagon is between 10-20 min-
utes, this fits with both the observed and simulated results.
The in vivo estimated EGP returned fast to baseline and after 60 minutes it was below
the production before injection of the preceding glucagon bolus. The simulated EGP
has slower return to baseline and we only observe slightly negative values after the
lowest glucagon dose.

The average EGP over the first 60 minutes is somewhat higher in silico than in vivo
as visualized in Figure 7b compared to Figure 7a. This difference is expected based
on the simulated slower return to baseline just described. The simulated averages are
however within the standard error of measurement of the observed data.

Perhaps the most interesting graph is Figure 8a which is replicated by simulation in
Figure 8b. The averages of the simulated data are different from the observed aver-
ages. However, considering the standard error of measurement of both datasets the
simulated data is not different from the observed data. The EGP responses to doses of
glucagon during medium IIR were very similar to the EGP responses during low IIR in
the measured data, whereas we observe a difference between the responses during the
two IIRs when simulating the experiments. We also find a small increase in response to
increasing glucagon boluses even at high IIR which is not pronounced in the original
observed data. In general, the standard error of measurements are smaller in silico than
in vivo.

Figure 9b is a replication of Figure 9a but without extrapolation. The original graph
shows the actual data in the dose-range of 25-175 µg glucagon and extrapolates the
presumed trends down to 1 µg and up to 10 mg. Note, this is a wild extrapolation with
no data to support it. Within the data-range the simulated results match the observed
results although the simulated EGP at low IIR tends to be higher than the observed.
Having only four points very closely spaced on a log-scale, a single point can largely
influence the overall interpretation of the curves.
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(a) In vivo from [2].

(b) In silico (n=6).

Figure 6: Time profiles of calculated EGP by glucagon dose, baseline corrected for
EGP at the time of dose.
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(a) In vivo from [2]. (b) In silico (n=18).

Figure 7: Mean EGP AUC over 60 min after the dose.

(a) In vivo from [2]. (b) In silico (n=6).

Figure 8: Mean EGP AUC separated by glucagon dose and insulin infusion rate.
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(a) In vivo from [2]. (b) In silico (n=6 or 18).

Figure 9: Dose-response curve across all doses, and for low and high insulin infusion
rate experiments, estimated from simulated data.

20

190
Technical Report 2
Simulation Studies



2.3 Results and Discussion 2 THE STUDY BY EL YOUSSEF ET AL.

Figure 10: Example of simulated raw data from patient 4 during the low IIR with first
bolus being 25 µg. Notice that the blood glucose concentration and glucose infusion
rate do not return to SS before the next glucagon bolus is administered.

2.3.5 Examples of Simulated Raw Data

Figures 10 and 11 show examples of raw data from the simulation study. The points
mark blood sampling times during the in vivo study.
The first figure presents data during low IIR and reveals that the blood glucose level
cannot be kept within ±20 mg/dL of the set point at all times. Especially after the
higher doses of glucagon the blood glucose exceeds the upper limit. The graph also
reveals that the glucose infusion rate is zero during most of the experiment. The ex-
planation to this observation is that during low IIR the glucose infusion rate needed
to maintain SS is equally low and cannot be lowered sufficiently after the glucagon
boluses to maintain the blood glucose within the boundaries. Moreover, the plasma
glucose concentration and glucose infusion rate do not return to SS before the next
glucagon bolus administration.
The second figure shows data during medium IIR where the glucose infusion rate is
never zero although decreased in response to glucagon boluses. The blood glucose is
mostly kept within the boundaries.
The raw data from the study by El Youssef et al. [2] are not available, making it im-
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Figure 11: Example of simulated raw data from patient 6 during the medium IIR with
first bolus being 75 µg. Notice how the glucose infusion is regulated to control the
blood glucose close to the set point.

possible to compare our examples to actual data.
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Figure 12: Simulated average of seven T1D patients’ dose-response curves of glucagon
boluses ranging from 1 µg to 10 mg at various insulin levels expressed as multiples of
the basal IIR.

3 Dose-Response Studies
In this section, we demonstrate the advantage of using simulations to conduct large
cross-over studies that would not be feasible in real life. Moreover, we use simulations
to design guidelines for realistically sized studies that, if the simulation model is cor-
rect, will provide the same information as the large in silico study, while exposing the
patients to a limited number of experiments.

3.1 Study Design
The in silico study included seven T1D virtual patients [1], that each underwent 115
cross-over study days. Model equations and subject specific model parameters are
listed in Section 1. At each study day, the IIR was constant at either 1, 2, 3, 4, or 5 times
the basal IIR and the glucose infusion rate controlled every five minutes as described
previously in Section 2.2.2 to maintain a glucose clamp of 5 mmol/L. After 60 minutes
SS run-in period, a glucagon bolus was administered and simulation continued till 5
hours after the bolus. We simulated the effect of the following glucagon boluses: 1 µg,
2.5 µg, 5 µg, 10 µg, 25 µg, 50 µg, 75 µg, 100 µg, 125 µg, 175 µg, 200 µg, 300 µg,
400 µg, 500 µg, 750 µg, 1 mg, 1.5 mg, 2 mg, 3 mg, 4 mg, 5 mg, 7.5 mg, and 10 mg.

23

193



3.2 Results and Discussion 3 DOSE-RESPONSE STUDIES

3.2 Results and Discussion
The EGP AUCs over 60 minutes (AUC60) were calculated as described in Section
2.2.3. The average EGP AUC60 for each dose stratified by IIR were calculated and
plotted in Figure 12. The response to glucagon doses below approximately 25 µg are
very similar independent of IIR. However, with increasing glucagon doses the curves
for each IIR separate. The higher the IIR, the less response to a glucagon bolus. Small
increases in glucagon dose during low IIR increase the response significantly although
it seems to saturate for some glucagon dose.
The results in Figure 12 represent classical dose-response curves and can be described
mathematically by the Michaelis-Menten equation:

EGPAUC60min = Rmax ·
Dose

ED50 +Dose
(24)

Rmax is the maximum response and ED50 is the dose yielding the half-maximum
response. The fitted Rmax and ED50 for each IIR are summarized in Table 8. The
ED50 does not seem to depend on the insulin level. On the contrary, Rmax is highly
dependent on the insulin level according to Table 8. This observation is expected, as
the model used for simulations describes how insulin modulates the maximum achiev-
able EGP response to glucagon, but does not influence the concentration yielding half-
maximum response.

Table 8: Fitted parameters for dose-response relationship between glucagon and EGP
at multiples of the average basal IIR.

IIR x basal Rmax, mg/kg ED50, mg
1 609 0.220
2 385 0.226
3 183 0.244
4 96 0.256
5 59 0.237
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(a) ED50 independence of IIR. (b) Rmax independence of IIR.

Figure 13: Fitted dose response curves when using doses of 25, 75, 125, and 175 µg as
in the study by El Youssef et al. [2] assuming independence of insulin for either ED50

or Rmax.

3.3 Dose Selection for an in Vivo Study
There is speculations to how the ambient insulin level affects the EGP response to
glucagon. Two hypothesis are proposed:

• insulin level influences the maximum response to glucagon, Rmax

• insulin level influences the glucagon dose at which half-maximum response is
achieved, ED50

The hypotheses could be examined by carrying out a smaller in vivo study. However,
the glucagon doses must be carefully chosen to make sure to capture the essential parts
of the dose response curve. If all tested doses are below the trueED50 both hypotheses
would describe the data equally well. This pitfall is illustrated in the following exam-
ple.

The in silico study just described in Section 3.1 was inspired by the results presented
in Figure 9 in Section 2.3.4. Assuming the in vivo study was carried out again with the
same glucagon doses of 25, 75, 125, and 175 µg at one to three times the basal IIR,
would one be able to decide which parameter in equation (24) insulin affects?
To answer this question, we simulated the small study and fitted the parameters of (24)
twice; first assumingED50 was constant across insulin levels and then assumingRmax

was constant across insulin levels. The results are presented in Figure 13. Because the
four doses are within a narrow dose range and all doses are below the simulated ”true”
ED50, both hypotheses fit the simulated data equally well. Although the case with
equal ED50 represents the simulated ”truth”, the commonly identified ED50 is much
lower than the parameter value presented in Table 8.
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(a) ED50 independence of IIR. (b) Rmax independence of IIR.

Figure 14: Fitted dose response curves when using SC glucagon doses of 25, 100, and
1000 µg assuming independence of insulin for either ED50 or Rmax.

If the glucagon doses had been distributed across a larger dose range encompassing
the ”true” ED50, would it then be possible to determine how insulin affects EGP? Re-
alistically, one can not administer more than 1 mg glucagon as a SC bolus injection
which causes some limitations to the maximum possible dose range in an in vivo study.
We simulated a small realistic study with three SC glucagon boluses of 25 µg, 100 µg,
and 1 mg at one to three times the basal IIR. We then fitted (24) assuming either ED50

or Rmax constant and independent of the ambient insulin level. Figure 14 presents the
results using the model analyzed in Section 3.2 where ED50 is constant and indepen-
dent of the ambient insulin level. The graphs visualize a clear difference in the fitness
of the two hypotheses making one more plausible than the other; that ED50 does not
depend on ambient insulin levels, but that Rmax does. Moreover, the identified com-
mon ED50 is similar although a bit lower than the values listed in Table 8.

If this study was to be carried out in real life, biological variation between subjects
might be dominating making it difficult to determine which hypothesis to accept and
which to reject. Instead of relying on the inter-subject variation being low, one could
fit (24) to data from individual subjects and hopefully reach the same conclusion in all
subjects. The individually confirmed hypothesis could then be transferred to the popu-
lation mean.
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4 Pearls & Pitfalls
This section focuses on the DOs and DON’Ts when conducting clinical studies of the
glucoregulatory system with focus on experiments involving glucagon. The points
will be exemplified through simulations and references to literature. We hope that this
section serves as an inspiration to researchers who are planning in vivo studies of the
glucoregulatory system.

4.1 Glucose Clamps
The blood glucose clamp is a procedure used to maintain the same glucose level through-
out an experiment either hypoglycaemic (below normal), euglycaemic (normal), or hy-
perglycaemic (above normal). The purpose of clamping the blood glucose is to elim-
inate the influence of varying glucose levels during an experiment where glucose is
believed to affect the investigated mechanism. As an example, the glucose clamp pro-
cedure could be used during a gastric emptying study to eliminate the negative feedback
mechanism between blood glucose concentration and gastric emptying rate [10].
The glucose clamp can be controlled using intravenous (IV) infusions of insulin and
glucose. Somatostatin may be infused to inhibit endogenous production of hormones
like insulin and glucagon in healthy subjects. The glucose regulating hormones are
then clamped at continuous rates and as a minimum clamped at the basal rates to sub-
stitute for baseline concentrations. Somatostatin may not be necessary in clamp studies
when investigating effects of exogenous supraphysiological glucagon doses in patients
with type 1 diabetes having no endogenous insulin production.

4.1.1 Glucose Level and Glucose Infusion

An in vivo study by Hinshaw et al. points to that the glucose level does not influence
the effect of glucagon [11]. However, Cherrington advocates there is an inhibitory ef-
fect of hyperglycemia on EGP [12]. Therefore, we recommend that the blood glucose
concentration is kept close to a set point throughout a clamp experiment involving glu-
cagon to minimize potential influence of the blood glucose concentration on EGP.
The simplest and fastest way to control the glucose level during a clamp is through
IV glucose infusion. The glucose infusion can be controlled automatically using vari-
ous controllers based on PID or Model Predictive Control (MPC). In Section 2.3.5 we
demonstrated that a simple PID controller was sufficient to maintain the blood glucose
close to a predefined set point while administering glucagon. Moreover, a simple PID
controller is easy to implement and may assist investigators in keeping the blood glu-
cose close to the predefined set point level. This is however only possible in cases when
the insulin and glucose infusions are sufficiently high to allow for the glucose infusion
to be reduced corresponding to the EGP contribution from the glucagon bolus.

4.1.2 Insulin Level and Insulin Infusion

Glucose clamps are not recommended to be controlled by IV insulin infusion although
it occurs. Studies have showed that high insulin levels during euglycaemia suppress the

27

197



4.1 Glucose Clamps 4 PEARLS & PITFALLS

Figure 15: In silico demonstration of the dynamics when stopping or continuing IV
insulin and glucose infusion during a clamp study in subject 4. Blood glucose was
clamped at 5 mmol/L by twice the basal IIR and constant glucose infusion. After
30 minutes SS, glucose and insulin infusions were stopped (left column) and 20 min-
utes after either no bolus (dashed line) or a 0.5 mg SC glucagon bolus (solid line)
was administered. In a different scenario, the insulin and glucose infusions continued
throughout the study and a 0.5 mg SC glucagon bolus was administered (right column).

effect of glucagon on EGP [2, 13]. In Section 2 we verified that our simulation model
achieved similar results as obtained in vivo by El Youssef et al. [2]. Should the insulin
infusion then be kept constant throughout a clamp experiment? Yes. In the following
we demonstrate in silico how much insulin levels influence the response to glucagon.

The first in silico study design is inspired by Blauw et al. [14] to demonstrate that
it is difficult to interpret the glucose response to glucagon when too many dynamics
influence the response. This situation is illustrated in Figure 15 by simulations and ex-
plained in the caption. When insulin and glucose infusions are stopped during a clamp
procedure, the immediate response is a drop in glucose levels both due to the lack of
glucose infusion and because the effect of insulin persists after the infusion is stopped.
Although the glucose responses to glucagon in Figure 15 look fairly similar, more EGP
is produced when the infusions are stopped as measured by the AUC. The increased
EGP is hiding the drop in glucose that would have been seen if no glucagon bolus was
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administered. Even when no glucagon bolus is administered the EGP increases slightly
after infusion stop of insulin and glucose because of the fading insulin level.
It should be noted, that the insulin clearance parameters were estimated from data
following SC insulin administration rather than IV administration, which could under-
estimate the actual clearance since it is limited by the slow and variable SC absorption.

The second in silico study design explores what happens if one uses insulin to con-
trol a glucose clamp rather than glucose. The blood glucose of a patient undergoing
a glucose clamp responds immediately to the changes in the glucose infusion whereas
the effect of insulin is delayed. An example to illustrate the delayed effect of insulin
is demonstrated in Figure 16 by simulations and explained in the caption. Although
the same glucagon bolus of 0.5 mg was given at the same insulin concentration, the
responses were different - the larger the prior SC insulin bolus, the smaller response
to glucagon. However, not all virtual patients seem to have as pronounced delayed
response to insulin as in this example. The size of the delay highly depends on the
parameter ka3 in the PD model which represents the rate constant of remote insulin
action on EGP, see Table 4 in Section 1.4.

The simulated examples show that the insulin level highly influences the EGP response
to glucagon and the effect of insulin can be delayed.

4.2 Dynamics in Data
A model can only be expected to describe dynamics present in the data used for model
development and parameter estimation, if data is sampled sufficiently. To correctly es-
timate Tmax after a bolus administration in a PK model, data must be sampled densely
around Tmax. If Tmax of a compound is expected to be 50 minutes, and no samples
are collected the first two hours after dose administration, it is practically impossible
to determine Tmax without inferring prior knowledge. More importantly, if Tmax is
very short the exact notation of the dosing time is absolutely necessary in order to fit a
meaningful PK model to data.

Furthermore, factors influencing the model parameters can not be included in the de-
scription of the parameters if the factors do not vary in the training dataset. As an ex-
ample, exercise and stress are long known to alter the insulin sensitivity, and recently
Ranjan et al. found that diet might influence the response to glucagon [15]. None of
these factors are accounted for in the glucose PD model used for simulations through-
out this report [1]. Moreover, the model does not include a feedback mechanism of the
glucose levels to the endogenous production of insulin and glucagon.

4.2.1 Identifying Steady State

As described, the final fitted model is limited by the data used for estimating the model
parameters. Thus identifying the correct steady state can be difficult if the data do not
contain much information thereof. Figure 17 illustrates that the PD model described in
[1] does not estimate the correct steady state. Initializing patient 7 at euglycaemia with
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Figure 16: In silico demonstration of the delayed insulin effect on EGP. Blood glucose
was clamped at 5 mmol/L by basal IIR and controlled via IV glucose infusion every 5
minutes using the PID controller explained in Section 2.2.2. After 30 minutes steady
state, subject 4 received a SC insulin bolus of either 5 U (left), 3 U (middle) or 1 U
(right). When the insulin concentration dropped below 13 mU/L a SC glucagon bolus
of 0.5 mg was administered. The EGP responses are displayed in the bottom row; the
120 minutes AUCs are 323, 429, and 612 mg/kg, respectively.

baseline levels of insulin and glucagon as in Figure 17a, one would expect the glucose
level to stay constant or at least approach a level similar to either of the observed
initial values. However, the glucose concentration drops to a level below 50 mg/dL.
The reason for this behaviour is explained in the data used for estimating the model
parameters of patient 7 [1,16], see Figure 17b. The data contains very little information
about the insulin, glucagon and glucose levels before the system is disturbed with an
insulin bolus. On the contrary, it appears that a SS is achieved towards the end of
the experiment when the glucose concentration is around 50 mg/dL and both glucagon
and insulin have returned to their baseline levels. This phenomenon explains why the
model assumes glucose SS lower than one would expect at baseline levels of insulin
and glucagon.
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4.2.2 Repeated Glucagon Boluses

When conducting experiments in vivo one naturally wishes to maximize the informa-
tion from those experiments. Clinical studies are often set up to investigate multiple
glucagon doses during each trial day [2, 14]. However, depending on the size of the
glucagon bolus, it can take several hours before all administered drug is cleared from
the system and plasma concentration has returned to baseline. As evident in Figure
17b, plasma glucagon has only just returned to baseline four hours after a SC bolus of
300 µg glucagon. Be reminded of Figure 10 in Section 2 where the continuous increase
in glucose concentration is due to residual glucagon from the previous dose. One must
allow sufficient time in-between experiments and perhaps lower ones expectations to
what is practically possible to avoid carry-over effects from previous doses, rather than
rushing too many experiments in short time.

4.2.3 The Glucagon Evanescence Effect

The glucagon evanescence effect is well known and documented since the early 1980s
[11, 17, 18]. As implied in the name, the effect of glucagon tends to fade away over
time. This trend is observed during clamp studies with constant insulin and glucagon
levels where the EGP tends to return to baseline after approximately two hours al-
though the glucagon level is still significantly elevated above the baseline level [11,18].
Mechanisms to explain this phenomenon could be degradation/aggregation of infused
glucagon, hyperglycemia, intra-hepatic negative feedback mechanism or simply glyco-
gen depletion.
As the evanescence effect is observed even during clamped euglycaemia, hyperglyce-
mia can not solemnly explain the vanishing effect of glucagon [11].
Glycogen depletion seems like an easy explanation. However, the amount of infused
glucagon during the study by Hinshaw et al. [11] was 0.54 µg/kg over three hours dur-
ing the highest glucagon infusion rate. A study by Castle et al. [19] found that repeated
boluses of 2 µg/kg did not deplete the liver even after an overnight fast. Therefore,
it does not seem likely that the evanescence effect observed during clamp studies of
glucagon is due to depletion of the glycogen stores in the liver.
In vitro data suggest that the glucagon evanescence effect is due to desensitization of
the receptor regulated by cyclic AMP [20]. The reduced responsiveness to glucagon
was fully expressed after 2 hours which fits well with in vivo data [11,18]. Hinshaw et
al. [11] proposed a mathematical expression to capture the waning effect of glucagon.
However, it is unclear for how long this evanescence effect persists and if a sudden
increase in the glucagon infusion can overrule the evanescence phenomenon. More
studies of the glucagon evanescence effect are needed to fully understand the underly-
ing mechanisms and how the effect should be accounted for in a glucoregulatory model
including glucagon.
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(a) Simulation of subject 7’s modelled SS. Insulin and glucagon
are at baseline levels, and glucose concentration initiated at eugly-
caemia.

(b) Raw data and PK/PD model fits in subject 7: insulin PK (top), glucagon PK (middle), glucose
PD (bottom). Increasing glucagon boluses left to right: 0, 100, 200, 300 µg. Triangles indicate
time of insulin bolus (blue) and glucagon bolus (red). Please see [1] for further study details.

Figure 17: Comparison of modelled SS and data used for model building.
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4.3 Summary
The learnings of the previous sections can be summed up in the following statements
that should aid in the design of clinical studies:

• The glucose level during hypo- or euglycaemia does not influence the glucose
response to glucagon.

• Theoretically, a simple PID controller can control the needed glucose infusion to
maintain constant glucose levels when the insulin infusion is sufficiently high.

• The insulin infusion should be constant throughout the study duration.

• Nominal sampling times must be chosen carefully and actual sampling times
noted meticulously.

• A model can only be expected to account for dynamics present in the dataset
used for model building and parameter estimation.

• Less is more. Avoid multiple dynamics simultaneously by allowing enough time
between disturbances of the glucoregulatory system.

• The effect of glucagon wanes over time despite constant infusion.

• Glucagon doses should be distributed across a wide range encompassing the true
half maximum response in order to correctly identify the dose-response relation-
ship.
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Abstract 

Objective: To propose an insulin-dependent glucagon dosing regimen for treatment of mild hypoglycaemia 

in patients with type 1 diabetes. 

Methods: A validated insulin-glucagon pharmacodynamics model simulated three studies. The virtual 

patient population consisted of seven adults with insulin pump-treated type 1 diabetes. Each patient 

performed 170 experiments per study, in which 1 of 10 subcutaneous insulin boluses was administered to 

decrease plasma glucose (PG) from 7.0 mmol/l to below 3.9 mmol/l. For each experiment, the bolus size 

had to achieve similar target insulin levels in all patients. When PG reached 3.9 mmol/l, 1 of 17 

subcutaneous glucagon boluses was administered. In each of the three studies, insulin levels were either 

estimated as serum insulin, insulin on board (IOB) or ratio of IOB to total daily insulin dose (IOB/TDD). Each 

study evaluated success of glucagon doses at varying insulin levels in recovering from mild hypoglycaemia. 

The optimal glucagon bolus was the lowest dose to cause a PG peak 5.0-10.0 mmol/l and sustain PG ≥3.9 

mmol/l for 2 hours after the bolus. 

Results: In all studies, PG response to glucagon declined with increasing insulin levels. The glucagon dose to 

optimally treat mild hypoglycaemia was exponentially related to insulin levels, regardless of how insulin 

was estimated. A 125 µg glucagon dose was needed to optimally treat mild hypoglycaemia when no bolus 

insulin were administered in all patients. In contrast, glucagon doses >500 µg were needed when serum 

insulin levels were >25 mU/l, IOB >2.0 U or IOB/TDD >6%. 

Conclusion: Even though the proposed glucagon regimen needs confirmation in clinical trials, this is the 

first insulin-dependent glucagon dosing regimen for treatment of insulin-induced mild hypoglycaemia. 
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Introduction 

Intensive insulin therapy is recommended for patients with type 1 diabetes due to improvements in 

glycaemic control and reduction of micro- and macrovascular complications. The risk of hypoglycaemia 

increases with intensified insulin therapy (1). The fear of hypoglycaemia holds patients from seeking 

optimal glycaemic control and affects quality of life negatively. Consequently, different adjunct therapies 

and advances in insulin therapy have been tested but none markedly improved glycaemic control, risk of 

hypoglycaemia and/or quality of life (2). 

Some researchers suggest that low-dose glucagon as an add-on to insulin therapy may optimise glycaemic 

control and reduce hypoglycaemia risk (3). This dual-hormone approach has mainly been tested in settings 

with automatic delivery of the drugs (dual-hormone closed-loop system) (4,5). We believe that manual 

delivery of insulin and glucagon (open-loop dual-hormone therapy) may equally improve diabetes 

management. Haymond et al. showed the benefits of this concept in children with type 1 diabetes and 

gastroenteritis (6). To our knowledge, optimal glucagon doses to treat insulin induced mild hypoglycaemia 

have never been proposed for adults with type 1 diabetes. It is known that the anti-hypoglycaemic effect of 

glucagon highly depends on ambient insulin concentrations (7). Yet, no commercially available devices are 

able to measure insulin concentrations in real-time. Bolus calculators in insulin pumps have addressed this 

issue by using insulin on board (IOB) to reduce risk of insulin stacking and risk of hypoglycaemia (8,9). IOB is 

an approximated amount of active insulin, besides basal rate insulin, in the body and accounts for the 

pharmacodynamics of subcutaneously (SC) administered bolus insulin (10). 

In view of that, our aim was to propose a glucagon-dosing regimen for treatment of mild hypoglycaemia 

depending on the ambient insulin level. We used a validated glucoregulatory model to simulate how 

different insulin levels would affect the glucose response to different glucagon doses. Subsequently, the 

optimal glucagon dose to treat mild hypoglycaemia was determined based on three clinically relevant 

criteria.  

Methods 

Data: In this study, we used insulin and glucagon pharmacokinetics (PK) models and a validated glucose-

insulin-glucagon pharmacodynamics (PD) model to generate data from seven virtual type 1 diabetes 

patients (11). MATLAB 2016b (The MathWorks, Inc., Natick, MA) was used for model implementation and 

simulations. The population of virtual patients was based on seven adults (4 females, age range: 19-64 

years, BMI range: 20.0-25.4 kg/m2) with type 1 diabetes who were in good glycaemic control (HbA1c range: 

6.1-7.4%), had no endogenous insulin production and had a reduced endogenous glucagon response to 

hypoglycaemia (12). The PD model is an extension of Hovorka’s glucoregulatory model with effects of 

glucagon on endogenous glucose production (13). The expanded PD model was validated using leave-one-

out cross-validation of three to four datasets in seven type 1 diabetes patients (11). The PK models 

assumed that changes in insulin and glucagon concentrations were only due to the administered drugs: 

insulin aspart (NovoRapid®, Novo Nordisk) and glucagon (GlucaGen®, Novo Nordisk). More details about 

the model have been published (11). 

In silico experiments: We executed three in silico studies to investigate the glucose response to different 

glucagon doses depending on the ambient insulin levels during insulin induced mild hypoglycaemia (Figure 

1). In each experiment, a SC insulin bolus was administered at 7.0 mmol/l and a SC glucagon bolus 
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administered when plasma glucose (PG) concentration decreased below 3.9 mmol/l. Simulation of one 

experiment lasted for ten hours following the insulin bolus. Insulin bolus sizes were chosen so that patients 

had a predefined and similar insulin level at the time of glucagon bolus. Thus, patients received different 

insulin boluses to achieve same target of insulin levels. The three studies differed in the methods of 

estimating insulin levels. One study used serum insulin concentrations (se-insulin) obtained from the insulin 

PK model to describe the insulin level. The latter two studies used a linear decay function based on patient 

specific insulin action time to describe insulin on board (IOB) either unadjusted or as a ratio to the total 

daily dose of insulin (IOB/TDD). We investigated the glucagon efficacy at mild hypoglycaemia with following 

insulin levels: 

1) Serum insulin concentrations (se-insulin): 19, 20, 21, 22, 23, 24, 25, 26, 27 or 28 mU/l  

2a) Unadjusted insulin on board (IOB):  0.0, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, or 3.5 U  

2b) Ratio of IOB to total daily dose of insulin (IOB/TDD): 0, 1, 2, 3, 4, 5, 6, 7, 8, or 10%  

In all experiments, when PG reached 3.9 mmol/l, one of following 17 glucagon boluses was administered 

SC: 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0, or 2.5 mg.  

Treatment assessment: After each experiment, the success of a glucagon dose to treat mild hypoglycaemia 

but avoid hyperglycaemia was evaluated based on three dichotomous criteria: peak PG > 5.0 mmol/l 

(PG>5), peak PG ≤ 10.0 mmol/l (PG≤10) and PG > 3.9 mmol/l 120 min after the glucagon bolus (PG120≥3.9) 

(figure 1). The success rate of a glucagon bolus in accomplishing each of these criteria was calculated at 

various insulin levels. For each combination of glucagon dose and insulin level, a weighted harmonic mean 

of the three success criteria was calculated as: 

𝐻 =
1

0.4
𝑆𝑃𝐺>5

+
0.4

𝑆𝑃𝐺≤10
+

0.2
𝑆𝑃𝐺120≥3.9

 

, where S is the success rate, equal to the number of subjects fulfilling a criterion divided by the total 

number of subjects. For each insulin level, the lowest glucagon dose with the highest H-value was 

considered as the optimal bolus. 

Results 

Figures 2-4 show the percentage of patients achieving the predefined treatment criteria as function of the 

glucagon dose, stratified by se-insulin (Figure 2), IOB (Figure 3), and IOB/TDD (Figure 4). Here, the 

percentages of patients achieving the criterion of PG>5 (green line) and PG120≥3.9 (red line) increased with 

increasing glucagon doses. The curves for PG>5 criterion were left-shifted compared to the curves for 

PG120≥3.9 criterion, meaning that less glucagon was needed to fulfil the criterion of PG>5 compared with 

PG120≥3.9. On the other hand, the percentage of patients fulfilling the criterion of avoiding hyperglycaemia, 

PG≤10, declined with increasing glucagon doses (blue line). For instance when patients had a PG of 3.9 

mmol/l and IOB of 2U, a glucagon dose of 100 µg would increase PG>5.0mmol/l in 60% of patients, keep 

PG≥3.9 for two hours in 50% of patients, and keep PG < 10 mmol/l in all patients.  

Figure 5 shows the optimal glucagon dosing regimen for treatment of mild hypoglycaemia as function of 
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insulin levels extracted from Figures 2-4. The relation between optimal glucagon dose and the insulin levels 

could be expressed as an exponential function, regardless of the method for estimating insulin levels. 

Discussion  

In this in silico study, we propose an insulin-based glucagon dosing regimen to treat mild hypoglycaemia in 

patients with type 1 diabetes. Three dosing regimens are proposed according to whether insulin levels 

were estimated as serum insulin concentration, IOB or ratio of IOB to TDD. As expected, the anti-

hypoglycaemic effect of glucagon was highly dependent on insulin levels. If insulin levels were high, higher 

glucagon doses were needed to treat mild hypoglycaemia. This relation has previously been shown in 

another in vivo study by El Youssef et al., who quantified the glycaemic effects of glucagon at various insulin 

levels (14). In previous in silico study, the presently used PK/PD model was able to simulate and replicate 

the data by El Youssef (15). Furthermore, the PD model was validated on data from another in vivo dynamic 

clinical dose finding study with three different SC injections of glucagon for treatment of insulin-induced 

mild hypoglycaemia (12). Therefore, we consider the model to be valid for estimating the optimal glucagon 

dose for treatment of mild hypoglycaemia at varying levels of insulin.  

The strength of in silico studies is the ability to simulate large scale cross-over trials that are not feasible in 

real-life settings. In this study, we estimated the optimal glucagon dose at varying insulin levels based on 

virtual patients, each undergoing 170 cross-over visits per study. An optimal glucagon dose was achieved if 

PG increased from 3.9 mmol/l to a peak between 5.0-10.0 mmol/l, and was kept above 3.9 mmol/l for at 

least 120 minutes. The peak PG criterion was prioritised for the 2-hrs PG level. Consequently, we found an 

exponential relationship between the optimal glucagon doses to treat mild hypoglycaemia and the ambient 

insulin levels. However, the relationship tended to be linear in ranges of serum insulin from 19 to 25 mU/l, 

IOB from 0 to 2 U, and IOB/TDD from 0 to 5%. At very high insulin levels (se-insulin > 27 mU/l, IOB ≥3U, 

IOB/TDD>8%, the optimal glucagon dose exceeded the size used for severe hypoglycaemia. On the other 

hand, the lowest optimal glucagon dose was 0.125 mg when insulin levels were only maintained by basal 

insulin rate and bolus insulin was administered.  

To our knowledge, this is the first study to propose a dosing regimen of glucagon in an open-loop setting. 

The focus has primarily been on the closed-loop dual-hormonal settings in which very low glucagon doses 

are frequently given to prevent hypoglycaemia. This frequent administration cannot be applied in the open-

loop setting due to the inconvenience of multiple glucagon injections. Rather we consider low dose 

glucagon as an alternative to oral carbohydrate intake in treatment of mild hypoglycaemia. We can only 

speculate that low dose glucagon may provide more predictable glucose responses than oral carbohydrates 

in treatment of mild hypoglycaemia, especially concerning the risk of overeating and consequent post-

rescue hyperglycaemia.  

The glucagon dosing regimens were stratified by methods of estimating insulin levels. We included IOB 

because no real-time monitors of serum insulin concentrations are currently available (16). Furthermore, 

for many years insulin pumps with bolus calculators have used IOB feedback as standard to prevent insulin 

staking. IOB is a rough approximation of the active insulin in the body. The IOB is differently calculated 

depending on the bolus calculator manufacturer, i.e. linear or curvilinear (8). In the present study, we chose 

the linear approach as it is easier to understand than the curvilinear time profile. Each model of bolus 

calculators has distinct time profiles for IOB and most bolus calculators use a curvilinear time profile 
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because it better mimics the SC insulin PD profile (8). We consider the minor differences in IOB time 

profiles to be negligible for the success of glucagon treatment.  

We applied the same criteria for optimal glucagon dose on a previous in vivo dose finding study 

(supplementary table 1). Here a glucagon dose of 0.200 mg was needed to restore mild hypoglycaemia with 

an average IOB of 0.9U or IOB/TDD of 2%. This dose was higher than proposed by the in silico study of 

0.175 mg glucagon (figure 5). The success criteria used in this study are arbitrarily set and are no consensus 

exist on post rescue glucose excursion as well as for postprandial glucose excursions (17). We chose these 

targets from the American Diabetes Association recommendation (18). Treatment success would have been 

harder to succeed if peak PG had to be within 5-8 mmol/l as seen among healthy non diabetic individuals in 

a postprandial state. We consider the target levels to be clinically reasonable.  

At some point the optimal glucagon doses were too high (>0.500 mg) as a treatment option for mild 

hypoglycaemia, primarily due to increased risk of side effects and unapproved total daily glucagon use. In a 

previous study, a single bolus of 0.500 mg glucagon tended to cause more nausea than 0.100 mg glucagon 

during mild hypoglycaemia (19). In the present study, we found that 500 µg glucagon was needed if serum 

insulin concentration was 25 mU/l, IOB was 2 U, or IOB was 6% of TDD. Therefore, if patients have mild 

hypoglycaemia with insulin levels above these critical limits, we suggest ingestion of carbohydrates rather 

than mini-dose glucagon to restore PG. 

Since glucagon is currently only available in 1 mg vials and has to be reconstituted immediately before use, 

the therapy approach may not be feasible at the moment. However, stable soluble glucagon formulations 

may soon be on the market, and multi-dosing may be of interest for pharmaceutical companies developing 

such glucagon products. The proposed glucagon dosing regimen is based on reconstituted GlucaGen® from 

Novo Nordisk. The model parameters of the simulation model may need adjustments to describe other 

glucagon products.  

Another approach recently suggested is the intranasal administration of glucagon (20). This approach may 

be easier to manage regarding the administration, but the intra-individual variation in glucose response 

may be higher compared with subcutaneous administrations. However, recent studies found similar PD 

profiles after intranasal administration of glucagon between left versus right nostrils and congestion versus 

non-congestion.  

This study has limitations. First, the dose regimen was based on a simulation model which may not 

completely capture the real life events. The used samples size may not be transferable to a large scale 

population. Our virtual population consisted of only seven patients and thus the results of the optimal 

glucagon dose for other patients with type 1 diabetes may deviate. Further, the glucagon doses used were 

already predefined and categorically analysed, meaning the “actual” optimal glucagon dose may be 

between the doses used in this study. On the other hand, this is the first study to suggest an insulin-based 

dosing regimen for mini-doses of glucagon. We consider these findings as an initial step towards individual 

dose titration of glucagon for mild hypoglycaemia. Second, the validated model is based on human in-

patient studies and do not take low carbohydrate diet (19), alcohol, exercise and stress into account. These 

factors may affect the glucose responses to insulin and glucagon. Finally, the model has only been validated 

on lean patients with type 1 diabetes. Since the optimal glucagon dose was not weight adjusted in this 

study, the responses may be different in an obese population. Still, the proposed dose regimen is an 
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approximation and should be further optimised by future trials with glucagon as treatment for mild 

hypoglycaemia in patients with type 1 diabetes.  

In conclusion, we propose insulin-dependent glucagon dosing regimens for treatment of insulin induced 

hypoglycaemia. The regimens account for insulin levels evaluated as normalised serum insulin 

concentration, IOB and normalized IOB to TDD. The regimens were based on simulations of glucagon doses 

ranging from 25 µg to 2.5 mg and insulin doses yielding predefined insulin levels when blood glucose 

reached the hypoglycemia threshold. The proposed regimens therefore need to be adjusted or confirmed 

in a clinical trial in patients with type 1 diabetes.  
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FIG. 1: Schematic description of study design and treatment assessment. In seven virtual patients, 1 of 10 

boluses of subcutaneous insulin was administered (t=-x) to decrease PG from 7.0 mmol/l to below 3.9 

mmol/l. Each insulin bolus size had to achieve similar target insulin levels in all patients. When PG reached 

3.9 mmol/l (t=0), 1 of 17 subcutaneous glucagon boluses was administered. Treatment success of each 

glucagon dose was assessed on whether following peak PG was within 5 mmol/l (Green line: treatment 

limit) and 10 mmol/l (Blue line: Hyperglycaemia limit), and whether PG 120 min after the glucagon bolus 

was above 3.9 mmol/l (Red lines: Hypoglycaemia limit).  
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FIG. 2: Percentages of patients achieving treatment criteria as a function of glucagon dose and stratified 

by serum insulin concentrations. Treatment criteria were achieved if glucagon could increase PG to a peak 

between 5 mmol/l (Green line) and 10 mmol/l (Blue line), and keep PG above 3.9 mmol/l for 120 min after 

glucagon bolus (Red lines). The lowest optimal glucagon dose for each serum insulin concentration (Black 

vertical line) was chosen based on the highest weighted success rate of the three treatments criteria.     
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FIG. 3: Percentages of patients achieving treatment criteria as a function of glucagon dose and stratified 

by insulin on board. Treatment criteria were achieved if glucagon could increase PG to a peak between 5 

mmol/l (Green line) and 10 mmol/l (Blue line), and keep PG above 3.9 mmol/l for 120 min after glucagon 

bolus (Red lines). The lowest optimal glucagon dose for each serum insulin concentration (Black vertical 

line) was chosen based on the highest weighted success rate of the three treatments criteria.     
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FIG. 4: Percentages of patients achieving treatment criteria as a function of glucagon dose and stratified 

by insulin on board normalised to total daily insulin dose. Treatment criteria were achieved if glucagon 

could increase PG to a peak between 5 mmol/l (Green line) and 10 mmol/l (Blue line), and keep PG above 

3.9 mmol/l for 120 min after glucagon bolus (Red lines). The lowest optimal glucagon dose for each serum 

insulin concentration (Black vertical line) was chosen based on the highest weighted success rate of the 

three treatments criteria.     
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FIG. 5: Optimal glucagon dose as a function of ambient insulin levels stratified by serum insulin 

concentration (upper panel), insulin on board (middle panel), and insulin on board normalised to total 

daily insulin dose (lower panel). Virtual patients performed 170 experiments per panel to obtain 

predefined ratios of insulin and glucagon (each dot in the graphs) at PG level of 3.9 mmol/l. The optimal 

glucagon dose was chosen if able to increase PG from 3.9 mmol/l to peak between 5 mmol/l and 10 

mmol/l, and keep PG above 3.9 mmol/l for 120 min after glucagon bolus.  
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PTID 
TDD, 

U 
IAT, 
hrs 

Glucagon,  
µg 

Insulin, 
Unit 

Time to 
PG=3.9, 

min IOB,U 
IOB/ 
TDD 

PG 
>5 

PG 
<10 

PG120 

>3.9 
All 

criteria 

1 20.3 5 

0 1.60 180 0.64 3.2% N Y N N 
100 1.55 150 0.78 3.8% Y Y N N 
200 2.40 150 1.20 5.9% Y Y Y Y 
300 1.40 210 0.42 2.1% Y Y Y Y 

2 16.6 5 

0 0.30 60 0.24 1.4% N Y N N 
100 1.20 210 0.36 2.2% Y Y N N 
200 0.45 90 0.32 1.9% Y Y Y Y 
300 0.50 180 0.20 1.2% Y Y N N 

3 34.5 5 

0 3.00 90 2.10 6.1% N Y N N 
100 2.70 120 1.62 4.7% N Y N N 

200 2.40 90 1.68 4.9% Y Y N N 
300 3.20 210 0.96 2.8% Y Y Y Y 

4 37.0 4 

0 3.10 180 0.78 2.1% N Y N N 
100 3.55 210 0.44 1.2% Y Y Y Y 
200 1.30 180 0.33 0.9% Y Y N N 
300 3.45 150 1.29 3.5% Y Y Y Y 

5 54.7 4 

0 1.80 90 1.13 2.1% N Y N N 
100 5.00 210 0.63 1.1% Y Y N N 
200 2.75 150 1.03 1.9% Y Y Y Y 
300 3.45 120 1.73 3.2% Y Y N N 

6 29.5 4 

0 4.50 210 0.56 1.9% N Y N N 
100 3.40 150 1.28 4.3% Y Y N N 

200 3.00 210 0.38 1.3% Y Y N N 
300 3.00 150 1.13 3.8% Y Y N N 

7 58.3 4 

0 4.60 120 2.30 3.9% N Y N N 
100 1.05 60 0.79 1.4% Y Y Y Y 
200 4.60 180 1.15 2.0% Y Y N N 
300 1.60 120 0.80 1.4% Y N Y N 

8 27.0 4 

0 2.60 180 0.65 2.4% N Y N N 
100 1.50 210 0.19 0.7% Y Y N N 
200 2.40 210 0.30 1.1% Y Y Y Y 
300 1.40 120 0.70 2.6% Y Y Y Y 

        H-index 

Mean 34.7 4.4 

0 2.69 138.7 1.05 2.9% 0 8 0 0% 
100 2.49 165.0 0.76 2.4% 7 8 2 60% 

200 2.41 157.5 0.80 2.5% 8 8 4 83% 
300 2.25 157.5 0.90 2.6% 8 7 5 85% 

Supplemental table 1: Table overview of treatment assessment in an in vivo dose finding study (Ranjan et 

al. DOM 2016). For each patient insulin action time (IAT) and total daily insulin dose (TDD) was known and 

four study visits were performed. An insulin dose was given to induce a mild hypoglycaemia of PG( PG) 

below 3.9 mmol/l. When the PG was 3.9 mmol/l, either a saline or glucagon bolus (100, 200, 300 µg) was 
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given. The table shows the insulin on board (IOB) and the normalized IOB (IOB/TDD) at the moment when 

glucagon was administered. Further, the right side of the table shows how many patients with the given 

glucagon dose could increase PG from 3.9 mmol/l to peak between 5 mmol/l (PG>5) and 10 mmol/l 

(PG<10), and keep PG above 3.9 mmol/l for 120 min after glucagon bolus (PG120>3.9). The H-index for the 

weighted success rate is also shown as the far right panel.  
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