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Presenter
Presentation Notes
Before starting, I would like to bring three corrections to the thesis. 
1) The sample time of the RTO layer in the thesis is reported to be 5 min, it is 25 min. 
2) The sample time of the RTO layer in the industrial implementation is reported to be 5 min, it is 30 sec.
3) In the three simulations provided, the stickiness constraint of the simulation model is not plotted corretly.
With these corrections, i will continue the presention.
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• Introduction

• Spray Dryer Modelling

• Control strategies

• Proportional and integral (PI) Control

• Linear tracking MPC with RTO

• Economic Nonlinear Model Predictive Control

• Comparison

• Industrial application of MPC with RTO

• Conclusion

Outline

Presenter
Presentation Notes
Follows the structure of the thesis..
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• Introduction



• Global changes such as population growth, urbanization, climate 
changes etc. pose new challenges to the food industry.
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Megatrends in the Food Industry



• Enables transportation of surplus milk to areas with a deficit of milk. 
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Milk Powder Plant

Presenter
Presentation Notes
Skim milk is pre-concentrated and spray dried to milk powder. 





• Increasing the energy efficiency and the residual moisture content 
(yield) of the spray drying process is the main concern and topic of 
this thesis.
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Milk Powder Plant

Presenter
Presentation Notes
+ energy savings!
MVR energy eff. is 4000% and Spray Dryer energy eff. is 50%.

150 kg/h * 7200 hr/year * 2.5 EUR/kg = 540,000 EUR/year (4 mio. DKK/year)
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The Multi-Stage Spray Dryer

Presenter
Presentation Notes
Complex process dynamics and delay

Constant adjustments of the dryer operation is needed, to reject the effect of the disturbances and maintain energy efficient operation.



• Inputs, main disturbances and controlled outputs
• Complex dynamics, fast disturbance changes and constraint satisfaction
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The Multi-Stage Spray Dryer

Presenter
Presentation Notes
Complex process dynamics and delay

Constant adjustments of the dryer operation is needed, to reject the effect of the disturbances and maintain energy efficient operation.
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The Value of Good Control

• “Squeeze and shift” of controlled outputs
• Moves the residual moisture closer to the specification
• Increases the product flow rate
• Increased the energy efficiency

Presenter
Presentation Notes
“Squeeze and shift”
Residual moisture in the powder closer to the specification
Increased capacity
Increased energy efficiency
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The Value of Good Control

• PI control

• MPC with RTO

• E-MPC

Presenter
Presentation Notes
“Squeeze and shift”
Residual moisture in the powder closer to the specification
Increased capacity
Increased energy efficiency
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• Spray Dryer Modeling

Presenter
Presentation Notes
Have a high presission, but have many parameters to fit. Good for simulation purposes.

Complexity reduced model is faster to compute (fewer states) and have less parameters to fit.
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Spray Dryer Modeling

• Simulation model
• First-principles engineering model
• Best simulation accuracy
• Differential algebraic equation (DAE) index-1 model

• Complexity reduced control model
• Lumped model
• Fewer states and parameters
• Ordinary differential equation (ODE) model 

• State-space model
• Obtained by linearization of the ODE model

co
m

pl
ex

ity

Presenter
Presentation Notes
Differential algebraic equation
Ordinary differential equations
State space models
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Simulation Model

2.

3. 4.

1.

• Modeling principle

• Assumptions
• The air satisfies the ideal 

gas law
• Hold-ups of dry air and 

solid powder are constant.
• The stages are assumed 

well stirred.
• The kinetic and potential 

energy are negligible. 

Presenter
Presentation Notes
Assumptions:
A1 The air is an ideal gas and satisfies the ideal gas law.
A2 The hold-ups of dry air and solid powder are constant.
This is a good approximation for continuous operation.
A3 The pressure in the dryer is constant and equal to the standard
atmospheric pressure.
A4 The stages are assumed well stirred, i.e. the temperature
of the stage air and powder are identical within each stage.
A5 The kinetic and potential energy of the powder and the air
are negligible compared to the internal energy.



• Conservation equations

• State functions
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Simulation Model – Stage Model

Temperature

Air humidity

Moisture content

Presenter
Presentation Notes
Stage model is used for each stage of the dryer

Læs formulering I MSDmodel. The XX equations governs the amount of water in the stage, the XX equation governs the amount of vapour in the stage and the last equation governs the accumulated heat in the stage.

DAE, due to U state function!
State functions, is holdup of energy and mass

Hin2out e is the enthalpy of mass exchange
Qin2out e heat conduction between the stages



• Constitutive equations
• Evaporation rate

in which the diffusion term and the equilibrium moisture content is

• Heat exchange

,
• Heat loss
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Simulation Model – Stage Model

Presenter
Presentation Notes
Solved by the esdirk method



• Stochastic DAE model with piecewise constant inputs

in which F is the solution of the system of differential equations

• In addition, the model provides
• Key performance indicators
• Stickiness of the powder based on a laboratory experiment.
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Simulation Model

Presenter
Presentation Notes
Solved by the esdirk method
DAE model = differential algebraic equations model



• Equipment
• GEA MSD-20 spray dryer
• Residual moisture measurements (NIR)
• Exhaust air humidity measurement

• Experiment
• Drying of sugar (maltodextrin)
• 28 hours for estimation and 17 hours 

for validations
• Steps in inputs and disturbances
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Simulation Model – Equipment and Experiments
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Simulation Model – Validation Data

SD

SFB

VFBh
VFBc
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• Control strategies

• Proportional and integral (PI) Control

• Conventional Tracking MPC with an RTO layer

• Economic Nonlinear Model Predictive Control
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PI Control

• Measures and controls the exhaust air temperature, to a target, 
by manipulating the feed flow.

• Inlet air temperatures are not manipulated.

• Disadvantages
• Stickiness of powder and residual moisture content are not controlled
• Optimal back-off and inlet air temperatures unknown
• Cross-coupled dynamics make adjustment

difficult for the operator

• Consequently, energy consumptions is
high and residual moisture is low.

Presenter
Presentation Notes
This implies that the residual moisture cannot be guaranteed to satisfy the quality constraints
and that deposits may form on the chamber walls due to sticky powder inside
the dryer. The additional inputs and outputs of the dryer that are related to
control of these properties are highly cross-coupled and long process delays may
be present. These features make it difficult to optimally operate the spray dryer
using additional PI controllers. The cross-coupled dynamics also makes the
process difficult to operate under the current PI control strategy for the operator.
The operators therefore tend to x the exhaust air temperature target at a
high level, resulting in extensively dried powder, to meet the residual moisture
constraint and avoid stickiness of the powder at all time. Thus, the energy
consumption is increased, the energy efficiency is decreased and the powder
residual moisture content is often very low.
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Industrially recorded disturbances
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PI Control – Measured Outputs 
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PI Control – Manipulated Variables
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• Control strategies

• Proportional and integral (PI) Control

• Conventional Tracking MPC with an RTO layer

• Economic Nonlinear Model Predictive Control
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MPC with RTO

• MPC with RTO is a two layer optimization based controller
• MPC brings the controlled outputs, z, to the target, r, by manipulating, u.
• RTO provides steady-state cost optimal targets
• Uses a state-space model, nonlinear constraints and profit function

• Advantage
• Stickiness of powder is controlled
• Product quality is controlled
• Setpoints are updated according to the 

measured disturbances
• Cross-coupled dynamics are handled

• Consequently, profit of operation is 
increased

Presenter
Presentation Notes
Setpoints are now changed according to disturbances! Which allow..
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MPC

• State estimator 
• Linear time varying (LTV) Kalman filter used for state estimation, and 

handles different sample frequencies of the measurements
• Maximum Likelihood (ML) tuning
• Offset-free control and output estimation by model augmentation

• The optimal control problem
• Convex objective and linear constraints

Presenter
Presentation Notes
MPC consists of a state estimator and a regulator. QP
Augmented MODEL!

Solvers. Condensed … boxed constrained..
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RTO

• The Real-Time Optimization
• Linear model, nonlinear objective and constraints

• Model mismatch and unknown disturbances are handled by state estimator
• Back-off to maintain controllability in the MPC and comparable constraint 

violations.

Presenter
Presentation Notes
Setpoints are now changed according to disturbances! Which allow..
Computes optimal target, r, given the state estimate and the measured disturbance vector
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MPC with RTO – Measured Outputs 
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MPC with RTO – Manipulated Variables
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• Control strategies

• Proportional and integral (PI) Control

• Conventional Tracking MPC with an RTO layer

• Economic Nonlinear Model Predictive Control
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E-MPC

• E-(N)MPC is a one layer optimization based controller
• Computes the inputs, u, at each sample time to maximize the predicted 

profit of operation directly
• Uses complexity reduced model, constraints and profit function

• Advantage
• Profit and constraints directly in the control layer
• Back-off in MVs are not necessary
• Cross-coupled dynamics are handled

• Consequently, profit of operation may 
be increased further

Presenter
Presentation Notes
Setpoints are now changed according to disturbances! Which allow..
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E-MPC

• State estimator 
• Nonlinear time varying (LTV) extended Kalman filter used for state 

estimation
• Offset-free output estimation provided by model augmentation

• The optimal control problem

Presenter
Presentation Notes
MPC consists of a state estimator and a regulator. QP
Augmented MODEL!
Certainty-equivalence E-MPC. No explicitly back-off considered
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E-MPC

• The objective function consists of
an economic objective function,

an l2-l1 penalty term,

and an input rate of movement regularization term

Presenter
Presentation Notes
MPC consists of a state estimator and a regulator. QP
Augmented MODEL!
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E-MPC – Measured Outputs 
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E-MPC – Manipulated Variables



40

• Comparison
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Comparison - KPI

• Key performance indicators

Presenter
Presentation Notes
E-MPC improvements are mainly due to the necessary back-off in the MPC with RTO strategy
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Comparison - Stickiness Estimate

• Simulation model
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Comparison - Stickiness Constraint

• Complexity reduced control model
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• Industrial application of MPC with RTO

Presenter
Presentation Notes
Drying of enriched milk powder
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Industrial Implementation

• MPC with RTO is implemented
• Performance improvement is comparable to E-MPC
• Attractive model mismatch and disturbance rejection behavior

• First-order plus time delay transfer-function model.
• Perturbation of plant based on repeated steps on the inputs.

• The MPC sample time is 20 sec and the RTO sample time is 30 sec. 

• Running on an industrial PC connected to the plant PLC.

Presenter
Presentation Notes
Setpoints are now changed according to disturbances! Which allow..



• SCADA faceplate
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Industrial Implementation
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Industrial Implementation

Residual Moisture in 
powder [%]

SFB powder temperature
In constraint(min limit)

Exhaust air humidity [g/kg]

Exhaust air temperature
at constraint(min limit)

• MPC 2

Presenter
Presentation Notes
Biegler; combining the two-layer RTO approach into asingle dynamic optimization may lead to significant improvementsin process performance. In particular, artificial setpoints used in (7) and determined from a steady state optimization are no longer needed. Instead, a dynamic optimization directly maximizes aneconomic objective using a well-tuned dynamic process model.

Citer Rawlings, Bonne, artikel.. “Unreachable setpoints in model predictive control”
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Industrial Implementation

• Key performance indicators

• The annual profit increase is estimated to be, 186,000 euro/year from 
the 0.14 p.p. improved residual moisture and 6,900 euro/year from 1 
p.p. the energy efficiency increase. 
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• Conclusion
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• Modeling of a four-stage spray dryer
• Simulation model for validation of controllers
• Complexity reduced model(s) for design of controllers
• Validated against experimental data

• Development and simulation of MPC strategies 
• Both methods increases energy efficiency, production rate and profit of operation
• Maintain the process within and closer to process constraints

• Application of MPC to an industrial spray dryer
• MPC with RTO has been successfully applied and improves the KPIs of the process.

Conclusion

Presenter
Presentation Notes
Process knowhow, advanced control methods and costumer acceptance.
Reelt har vi taget kendt teknologi, kombineret det, og vist at det har en kæmpe effekt i virkeligheden..
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• Questions and comments

Thanks for Your Attention
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