Modelling and Programming

Week 2

Deliverables

- Report 1: Assignments 5-8.

Per capita growth rate and its associated differential equation

Assignment 5 requires you to solve the autonomous differential equation which relates the per capita growth rate of a population to its development over time. To learn more about this type of differential equation, do the following exercises:

- C: Problems 59-60 of Section 4.6.1. (Hint: Closely related to Example 6 of Section 4.6 in C.)
- C: Problem 17 of Section 8.1.4. (Hint: Closely related to Example 3 of Section 8.1.2 in C.)

Now, solve Assignment 5.

Linear Equations

Assignment 6 and one part of Assignment 7 are based on the assumption that you know about linear relationships and proportionality. If you do not recall these concepts, do the following exercises:

- C: Problems 7-8 of Section 1.1.7. (Hint: See Section 1.1.2 in C.)
- C: Problems 45-46 of Section 1.1.7. (Hint: Closely related to Example 5 of Section 1.1.2 in C.)

Solve Assignment 6.

Exponential decay

Assignment 7, the other part, is about exponential decay. To learn about the model for exponential decay, do the following exercises:

- C: Problems 61 and 64 of Section 1.2.9.
- C: Problem 2 of Section 1.5.

Hint: These problems are closely related to Examples 10 and 11 of Section 1.2.5 in C.
Now, solve Assignment 7.

Matlab practice

Assignment 8 again requires some MATLAB programming skills. Albeit no more than what you needed for Assignment 4. If you would, nevertheless, like to refresh your memory, work on the following exercises:

- P: Exercises 1 (a-d) and 2 of Section 5.5.

Hint: Take particular notice of Sections C-C. 2 in \mathbf{P}.
Solve Assignment 8.

Curriculum

C Sections 4.1, 4.6, 8.1-8.1.2. Derivatives and Solving Differential Equations.
LA Sections 1.2-1.3. Basic Vector and Matrix Arithmetics.
P Chapters 4-5 and Sections C-C.2. Data Types and Array Expressions.
Although Appendix \mathbf{C} of \mathbf{P} is not mentioned on the weekly schedule of the course overview until Week 4, we recommend that you read it bit by bit in Weeks 2 and 3 and then again in Week 4 because it is essential to the contents of this course.

