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Trade-off problem in photon mapping

I Effect of changing bandwidth (no. of photons in estimates):

Low High

I The trade-off is between noise and blur.



Why photon differentials?

I Using the same number of photons in the map:

Standard PM Photon Differentials

I Ray differentials improve texture filtering.

I Photon differentials improve photon flux density estimation.

Ray differentials
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I A ray is modelled by the parametrisation of a straight line:

r(s) = x + s ~ω , s ∈ [0,∞[ , |~ω| = 1 .

I Suppose we let
I u and v parameterise the image plane
I s ′ be the distance to the first intersection along the ray

then r(s ′) 7→ r(u, v), and the ray differential [Igehy 1999]

Dr =
[
Dur Dv r

]
=
[
∂r
∂u

∂r
∂v

]
tells where a ray would end up if slightly offset in uv -space.
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First-order ray differentials
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I In the first order Taylor approximation, a ray differential is
given by two pairs of differential vectors.

I Positional differential vectors: Dx =
[
Dux Dvx

]
I Directional differential vectors: D~ω =

[
Du~ω Dv~ω

]
.

I The differential vectors span parallelograms which define
ray footprint (Dx) and beam spread (D~ω).

Photon differentials
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I No camera: we need different local coordinate systems.
I u and v parameterise the light source surface.
I θ and φ parameterise the emission solid angle.

I Now r(s ′) 7→ r(u, v ; θ, φ) = x(u, v) + s ′(u, v ; θ, φ) ~ω(θ, φ) .
I Photon differential: Dr = (

[
Du Dv

]
+
[
Dθ Dφ

]
)r .

I Photon differential vectors:
I Positional differential vectors: Dx =

[
Dux Dvx

]
I Directional differential vectors: D~ω =

[
Dθ~ω Dφ~ω

]
define light ray footprint (Dx) and beam spread (D~ω).



Photon footprint

I The parallelogram spanned by the positional differential
vectors is the ray footprint.

x

ray footprint

Ar

vD x

uD x xp

pvD x

photon footprint

AppuD x

I The max area ellipse inscribed in the parallelogram with
centre in the photon position xp is the photon footprint.

I The area of the photon footprint is then

Ap =
π

4
Ar =

π

4
|Duxp × Dvxp| ,

I and, by analogy, the photon solid angle is

ωp =
π

4
|Dθ~ωp × Dφ~ωp| .

A  = 0p

Aṕ

ωp

Emitting photon differentials

I A light source emits photons from points xe across an area Ae

and in directions ~ωe within a solid angle ωe .
I The initial differential vectors of an emitted photon are

I
[
Duxe Dvxe

]
an orthogonal basis of the tangent plane at xe .

I
[
Dθ~ωe Dφ~ωe

]
an orthogonal basis of the plane normal to ~ωe .

I To ensure
∑

p Ap = Ae and
∑

p ωp = ωe , we set the initial
lengths of the vectors to

|Duxe | = |Dvxe | = 2

√
Ae

πne

|Dθ~ωe | = |Dφ~ωe | = 2

√
ωe

πne
,

where ne is the number of photons emitted from the source.

I Point lights emit photons with Duxe = Dvxe = 0.

I Collimated lights emit photons with Dθ~ωe = Dφ~ωe = 0.



Photon tracing

I Emitted flux is confined by the solid angle of the ray.

I Flux carried by a ray changes like radiance upon reflection and
refraction.

I Tracing photons is like tracing ordinary rays.

I Whenever the photon is traced to a non-specular surface:
I It is stored in a kd-tree.
I Position is stored.
I Direction from where it came is stored.
I Flux (Φp) is stored.

I Russian roulette is used to stop the recursive tracing.

Tracing photon differentials

I Emitted flux is confined by the cone which is spanned by the
photon differential.

I Photon differentials change like ray differentials upon
reflection and refraction.

I Tracing photon differentials is like tracing ordinary ray
differentials.

I Whenever the photon is traced to a non-specular surface:
I It is stored in a kd-tree.
I Position is stored.
I Direction from where it came is stored.
I Irradiance (Ep = Φp/A

′
p) is stored (instead of flux).

I Positional differential vectors Du′x′ and Dv ′x′ are stored.

I Russian roulette is used to stop the recursive tracing.



Radiance estimation using photon differentials

I Irradiance of a projected photon differential

Ep = Φp/A
′
p

I Reflected radiance

Lr (x, ~ω) =

∫
2π

fr (x, ~ω′, ~ω) dE (x, ~ω)

I Radiance estimate

Lr (x,ω) ≈ L̂r (x, ~ω) =
n∑

p=1

fr (x, ~ωp, ~ω)∆Ep(x, ~ωp)

I To ensure that no energy is lost in the estimate, we must find
all the n photons with footprints that overlap a surface point.

I We can induce smoothing by scaling all photon footprints.

Adaptive anisotropic kernel density estimation

I Transform by Mp =
[

1
2Duxp

1
2Dvxp ~np

]−1
,

where ~np =
Duxp×Dvxp
|Duxp×Dvxp | is the surface normal at xp.
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I Radiance estimate with filtering

L̂r (x,ω) =
n∑

p=1

πK
(
|Mp(x− xp)|2

)
fr (x, ~ωp, ~ω)Ep



Case studies
Refraction Reflection

Photon distribution in the map

Rendered reference images

Optimal bandwidth - knn photon mapping

I Finding the optimal bandwidth using image quality measures:
I RMSE: root mean square error.
I SSIM: structural similarity index.
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Optimal bandwidth - photon differentials

I Finding the optimal bandwidth using image quality measures:
I RMSE: root mean square error.
I SSIM: structural similarity index.
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Refraction - equal number of photons comparison
Method RMSE-optimal bandwidth SSIM-optimal bandwidth

knn

RMSE = 0.0686 SSIM = 0.8426

pd

RMSE = 0.0361 SSIM = 0.8972

I Using 20,000 photons in the map.
I Comparing

knn k-nearest neighbours photon mapping.
pd photon differentials.



Refraction - equal quality comparison
Method RMSE-optimal bandwidth SSIM-optimal bandwidth

knn
n = 200,000, RMSE = 0.0363 n = 200,000, SSIM = 0.8776

n = 500,000, RMSE = 0.0250 n = 500,000, SSIM = 0.8973

pd

n = 20,000, RMSE = 0.0361 n = 20,000, SSIM = 0.8972

Reflection - comparison
Method RMSE-optimal bandwidth SSIM-optimal bandwidth

knn

n = 20,000, RMSE = 0.0740 n = 20,000, SSIM = 0.8207

n = 75,000, RMSE = 0.0505 n = 75,000, SSIM = 0.8513

n = 420,000, RMSE = 0.0262 n = 420,000, SSIM = 0.8919

pd

n = 20,000, RMSE = 0.0508 n = 20,000, SSIM = 0.8921



The gold ring cardioid caustic - equal time comparison

path
traced
reference
(20 h)

RMSE=0.085

SSIM=0.79

path
tracing
( 20

250 h)

RMSE=0.044

SSIM=0.95

standard
photon
mapping

RMSE=0.030

SSIM=0.96

photon
differen-
tials

References on photon differentials and more applications

I Photon differentials

- Schjøth, L., Frisvad, J. R., Erleben, K., and Sporring, J. Photon differentials. In Proceedings of
GRAPHITE 2007, pp. 179–186, ACM, 2007.

I Photon differentials for diffuse interreflections.

- Fabianowski, B., and Dingliana, J. Interactive global photon mapping. Computer Graphics Forum
(Proceedings of EGSR 2009) 28, 4 (June-July), pp. 1151–1159, 2009.

I Photon differentials for temporal blur.

- Schjøth, L., Frisvad, J. R., Erleben, K., and Sporring, J. Photon differentials in space and time. In
Computer Vision, Imaging and Computer Graphics: Theory and Applications, P. Richard and J. Braz, eds.,
Communications in Computer and Information Science 229, pp. 274–286, December 2011.

I Photon differentials for participating media.

- Schjøth, L. Anisotropic Density Estimation in Global Illumination, PhD thesis, University of Copenhagen,
Faculty of Science, 2009.

- Jarosz, W., Nowrouzezahrai, D., Sadeghi, I., and Jensen, H. W. A comprehensive theory of volumetric
radiance estimation using photon points and beams. ACM Transactions on Graphics 30(1), pp. 5:1–5:19,
January 2011.


