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We propose a method for direct comparison of rendered images with a corresponding photograph in order
to analyze the optical properties of physical objects and test the appropriateness of appearance models. To
this end, we provide a practical method for aligning a known object and a point-like light source with the
configuration observed in a photograph. Our method is based on projective transformation of object edges
and silhouette matching in the image plane. To improve the similarity between rendered and photographed
objects, we introduce models for spatially varying roughness and a model where the distribution of light
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1. INTRODUCTION

Photorealistic rendering has many applications: product ap-
pearance prediction, digital prototyping, inverse rendering to
acquire optical properties, 3D soft proofing, etc. In most of
these applications, it is important to validate the photorealism
of the employed rendering technique. In graphics, side-by-side
visual comparison of rendered and photographed images has
traditionally been the validation method of choice. Phong [1],
for example, qualitatively compared a rendered sphere with a
photographed sphere as a final evaluation of his shading and
lighting models. Similarly, the Cornell box [2, 3] was presented
as a test scene for qualitative comparison of photographs and
rendered images. Rushmeier [4] was seemingly the first to dis-
cuss quantitative comparison of photographed and rendered
images, and Pattanaik et al. [5] then presented a difference image
for rendering versus photograph of a version of the Cornell box.
Differences in scene geometry and the view-light configuration
tend to be the main difficulty in setting up such pixel-by-pixel
comparisons [4, 6].

Alignment of rendered and photographed images has
reached good precision in controlled setups for geometry and
reflectance acquisition [7]. For images captured in less controlled
settings, the main difficulties are pose estimation of an object
from a given computer-aided design (CAD) model and light
source estimation. These are most often considered two sepa-
rate problems. For pose estimation, a large dataset is usually
employed to train a statistical model [8, 9]. A multitude of tech-
niques exist for light source estimation [10, 11]. However, as

we estimate the object pose, we may as well use the pose for
light source estimation. Moreover, if we use the cast shadow
for estimating the light position, we can use it to improve the
estimate of the object pose as well.

Inverse rendering [12] enables recovery of both lighting and
reflectance properties but often assumes a known object with
a known pose. More recent inverse rendering techniques [13–
15] allow pose estimation and deformation of object geometry
too. These techniques are based on differentiable rendering,
where per pixel derivatives are computed as part of the render-
ing. While this is a powerful approach for estimating surface
displacements and spatially varying reflectance [13], it is also a
gradient-based optimization based on per pixel derivatives that
requires careful initialization to avoid local minima [14]. In this
landscape, we missed a practical method for estimation of both
object pose and light source position to enable pixel-by-pixel
comparison of a photograph with a rendering. We propose such
a method and find that it delivers a good starting point for vali-
dating rendering techniques, estimating optical properties, and
testing appearance models. In addition, our method is useful
for initialization of inverse rendering techniques.

Our outset is a photograph of a single object of known geom-
etry that has been captured with a known camera. We assume
that the object is placed on a diffuse planar surface and illu-
minated by a point-like light source. We let the term point-like
refer to a small source with a uniform far-field radiant intensity
distribution within the part of the scene observed by the camera.
In this scene configuration, we let the user approximately ini-
tialize the orientation of the object relative to the planar surface
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Fig. 1. Pixel-by-pixel comparison of renderings with a photograph enables a detailed investigation of the virtues and deficiencies of
an appearance model. Our practical alignment technique is here used for testing different models: rough transparent (top), rough
translucent (middle), and metallic (bottom). The signed difference images to the right have been scaled by a factor of 2.

(this could be done using a physics engine), or we use a camera
calibration. Our method then estimates the light source position
and the camera and object poses. We do this by segmenting
the photograph and matching the object and the shadow silhou-
ettes to the silhouettes of the virtual object found by projective
transformation of the edges.

We exemplify our method using three scanned objects (see
Fig. 1): the Stanford bunny [16], a cupped angel figurine, and
an aluminium bust of H. C. Ørsted (the scientist who discov-
ered electromagnetism and who was also the first to isolate
aluminium). The Stanford bunny was scanned by Greg Turk
using a technique for zippering several range scans [17], and
we 3D scanned the other two objects using structured light and
stereo vision [18]. We use a translucent 3D printed version of
the Stanford bunny, the angel figurine was 3D printed using an
almost transparent photopolymer, while we used the aluminium
bust as is. This enabled us to take photographs and test appear-
ance models for both subsurface scattering, rough refraction,
and metallic rough reflection. We quantitatively test the abil-
ity of such models to match the appearance of object samples
from the real world (Fig. 1), and we suggest improved models
based on our findings. Notably, we for the first time integrate
rough surface scattering [19] with the directional dipole model
for subsurface scattering [20].

2. RELATED WORK

In many side-by-side comparisons of renderings with pho-
tographs [1–3, 6, 12, 21], alignment is done manually. This is usu-
ally a time-consuming process with an imprecise result. When a
comparison is done in the context of 3D acquisition, alignment
is given with good accuracy because the object geometry was

acquired in a calibrated setup [22, 23]. We are however looking
for an alignment method that does not require concurrent 3D
scanning of the object. Differentiable rendering [13, 15, 24, 25]
is an option, but the aim of such a technique is usually more
than alignment. We think of our technique as an enabler for
an inverse (differentiable) rendering system, which is then free
to focus on estimation of parameters not related to alignment.
In Sec. 6.B, we compare our object pose estimation with that
of a differentiable rendering method [15] to demonstrate the
advantages of our specialized technique.

Our work is related to CAD-based vision [26], where the
CAD model of a 3D object is used to recognise the physical
version of the object in an image. An important part of such
recognition is pose estimation of the object. In a view-based
approach [27, 28], multiple views of the object are used for the
training of a statistical model to recognise the object and suggest
an initial pose. The views can be obtained from photographs
captured in a calibrated robot setup [27] or from rendered images
of object edges [8, 28, 29]. After estimating an initial pose using
a statistical model, the pose is typically refined using iterative
shape matching [28, 30]. We combine some of these ideas. Petit
et al. [29] suggest a method based on foreground/background
segmentation in the case of a moving object. Our method is also
based on such a segmentation but for a static object. As in the
discussed previous work, we use the edges of the CAD model
for pose estimation, specifically the silhouette [8], but we avoid
the training of a statistical model based on a dataset with many
views.

Iterative methods for pose estimation [30] are good for pose
refinement but also prone to local minima if not carefully ini-
tialised. An exhaustive search for initial parameters is then
needed if we want to avoid the training of a statistical model,
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but such a search is infeasible for the full 6D pose of an object.
An option is then to limit the dimensionality of the search space
using invariants [31, 32]. Hu’s moment invariants [33] are for
example invariant to scale, rotation, and translation. For a 2D
shape, this reduces the search space in pose estimation to two
angular dimensions [31]. We use this concept for 3D shapes by
applying it to the object silhouette found in the image plane.

If one is willing to generate a dataset of object silhouettes
(for example) as observed across a view sphere, the pose esti-
mation can be accomplished using shape descriptors even for
cluttered scenes [34]. After image segmentation and initial pose
estimation, refinement is still required using an iterative method.
Several other learning-based techniques are available as well [35–
38]. These all require a large dataset for training and pose re-
finement after estimating the initial pose. Interestingly, Tekin
et al. [39] report a fast learning-based method that does not re-
quire pose refinement, but then Li et al. [40] present an iterative
learning-based method for pose refinement with improvements
over Tekin et al. Peng et al. [9] present an improved method
inspired by Tekin and others that indeed seems not to require a
posteriori pose refinement. This is based on an extensive dataset
augmented with 20,000 synthetic images of each object. These
learning-based techniques contribute robustness with respect to
object detection. This is however not important for our scenes
which must, in any case, be uncluttered to enable photorealistic
rendering of a corresponding digital scene.

A distinctive advantage of our silhouette matching approach
is that we can estimate the light source position too. In this way,
we avoid the traditional calibration of a point light by observing
highlights in mirroring spheres [7]. Our method employs the
shadow silhouette, which we find using Blinn’s projection shad-
ows [41]. In some related work [42], the shadow silhouette was
detected in an input image with depth information (RGB-D) and
used for estimating the position of one or more light sources.
However, since we estimate the pose of a known object together
with the position of the light, we do not need the depth infor-
mation. In addition, our treatment of pose and light as a joint
problem enables us to refine the estimation of both.

3. ALIGNMENT METHOD

Our method is based on the following input:

- image of an object on a uniform ground plane illuminated
by a point-like light source

- segmentation of the image into object, shadow, and back-
ground

- 3D model of the object
- camera intrinsics (focal length / camera constant / field of

view)
- approximate rotation of the object relative to the ground

plane.

Any camera can be used to capture the input image, but we
need to know the field of view. If this is not known for a given
camera, we can obtain it through camera calibration, but we
exclude images captured with an unknown and unavailable
camera. In most cases, the segmentation can be accomplished by
appropriate thresholds of the input image. In harder cases, such
as transparent objects, a good segmentation can be obtained
through background subtraction based on one image with and
one without the object.

Although we work with one light source per view, we also
illuminate a static object with multiple light sources in different

Algorithm 1. Computing a silhouette from edges of a mesh
projected to a plane. Each edge exists once in each direction.

p := p0 (the leftmost point)
e := edge from p with the largest slope
repeat

from p follow e until next intersection, pnew
enew := choose from edges intersecting pnew

such that angle(enew, e) is minimized
p := pnew, e := enew

until p = p0

positions one at a time. In this case, we use the additional
information to improve the object pose and light source positions
in a final refinement step.

To obtain object pose and light source position (in R3), we
project the 3D model into the image plane of the camera and
extract the silhouette. Our method aligns the silhouette in this
plane with the corresponding silhouette in the input image. We
obtain the latter from the segmentation of the input image. The
silhouette is a useful representation that enables different com-
parisons of two silhouettes with options for being either exact or
invariant to various measures such as rotation and translation,
all while being differentiable.

We define a silhouette as a list of 2D point pairs each rep-
resenting an edge with a direction. In analogy with a triangle
mesh, we can use an indexed edge set to represent a silhouette
or a set of lists of 2D points, where the points in each list are
connected by edges. This works in general, as we can describe
objects with holes (nonzero genus) by having both outer and
inner perimeters. An inner perimeter should then be in the
opposite direction.

A. Silhouette Computation

To compute the silhouette of the real object, we enlarge the seg-
mentation resolution by a factor of two using nearest neighbor
sampling. We then use the algorithm by Suzuki and Abe [43, 44]
to trace the perimeter of the object. We downscale the traced
perimeter and round the coordinates so that they lie exactly on
the border between object and background. After tracing the
perimeter, we have an optional step to simplify the perimeter
to accelerate computations later on. The optional simplification
is done using the Ramer-Douglas-Peucker algorithm [45, 46].
If the lens distortion of the camera that captured the ground
truth image is known, the silhouette points can be undistorted,
removing the need to undistort the segmentation itself.

We compute silhouettes of the 3D models without rasteri-
zation. This makes the silhouettes directly differentiable with
respect to scene parameters, which is an advantage in a gradient-
based optimization. Given a CAD model, we extract a polygo-
nal mesh and build a half-edge representation of this for easy
queries. For a given view matrix, we project the vertex positions
to the image plane and connect them using the edges of the mesh
polygons. To compute the silhouette, we traverse these edges
using Algorithm 1. This algorithm assumes a fully connected
object silhouette without holes. Extension to objects with holes
is done by restarting the algorithm inside each hole.

For the silhouette computation in Algorithm 1, we find the
signed angle between two vectors in 2D using

angle
([

a1
a2

]
,
[

b1
b2

])
= atan2 (a1b2 − a2b1, a1b1 + a2b2) . (1)
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The majority of time in Algorithm 1 is spent computing edge
intersections [47]. Computational complexity thus depends on
the number of edges. We significantly reduce this number by
exploiting that an edge can only be part of the silhouette if
it is shared by one face facing the camera and another facing
away [48]. If we let n⃗e,1 and n⃗e,2 denote the 3D surface normals
of the faces bordering an edge e, the edge e can only be part of
the silhouette if(⃗

ne,1 · (ve − c)
)(⃗

ne,2 · (ve − c)
)
≤ 0 , (2)

where ve is any point on the edge and c is the position of the
camera. After removing all edges that cannot be part of the
silhouette and building a bounding volume hierarchy for the
remaining edges, intersection testing is inexpensive.

Another way to reduce the computation time of this algo-
rithm is to use a mesh with a lower polygon count for the silhou-
ette while retaining the original mesh for rendering. A modest
mesh simplification often has a negligible influence on the sil-
houette.

We have several options when computing silhouette deriva-
tives. For simplicity, we use finite differences. Exact derivatives
can be obtained with automatic differentiation.

B. Shadow Contours
To include the shadow of an object when considering its silhou-
ette, we assume that the object is placed on a planar surface and
use projection shadows [41]. This is also done without rasteri-
zation to keep our method valid for the entire image plane. We
project the edges of the mesh to the ground plane to generate
shadow edges. We then project both object and shadow edges
to the image plane of the camera. After this, we use Algorithm 1
to compute the silhouette of the object including its shadow.
The number of edges in the shadow that we need to consider is
reduced early in the procedure by substituting c with the light
position in Eq. (2).

C. Silhouette Matching
To be able to align silhouettes, we introduce a silhouette similar-
ity metric. We refer to the silhouette of the real object observed
by camera c as Rc, and the union of object and shadow silhou-
ettes as Rc,ℓ, where ℓ is the light source causing the shadow.
Equivalently, we define for the virtual object Vc and Vc,ℓ. We
now let P(X, t) denote a parameterization of the silhouette X
with t ∈ [0, 1]. We measure the similarity of two silhouettes by
using a function (d) that finds the shortest distance from a point
to a silhouette. Taking n equidistantly sampled points on the
silhouettes, we find the shortest distance to the other silhouette
and take the sum. The similarity is then computed by

sim(R, V, n) =
n

∑
i=1

(
d
(

R, P
(

V, i
n

))2
+ d

(
V, P

(
R, i

n

))2
)

,

(3)
A visualization of what sim computes is in Fig. 2. We can again
use a spatial data structure to obtain an efficient implementation
of the d function [49]. Our similarity metric (sim) has the ad-
vantage that it has a nonzero gradient even for non-intersecting
silhouettes, which enables the use of our method with a poor
initial guess.

Our final goal is to minimize the difference between the sil-
houettes of the real and virtual objects. For a silhouette without
shadow, we measure the similarity by

Ec = sim(Rc, Vc, ⌈∥Rc∥⌉) , (4)

R
V

Fig. 2. Illustration of how sim(R, V, n) is computed for a small
value of n. The arrows illustrate evaluations of d(·, ·).

where ∥ · ∥ denotes the length of a silhouette in pixels. Ideally,
we would like to sample as many points as possible. In this
performance vs. accuracy trade-off, we have chosen n = ⌈∥Rc∥⌉
to place the sampled points approximately one pixel apart.

To compare silhouettes including shadows, we introduce
a similarity measurement Ec,ℓ. As mentioned previously, we
would like to refine estimates using multiple cameras and light
sources as long as only one is active per image. We compute the
sum of comparisons of silhouettes over one or more configura-
tions as follows:

Es = ∑
ℓ

∑
c

(
sim(Rc,ℓ, Vc,ℓ, ⌈∥Rc,ℓ∥⌉)︸ ︷︷ ︸

Ec,ℓ

+Ec

)
. (5)

In the following, we describe how we estimate object pose and
light source position using these silhouette similarity measure-
ments.

D. Pose Estimation
We compute the pose of the object independently for each cam-
era. We do this in camera space, where the camera is fixed at the
origin. In the end, we can then use the known relation between
object and ground plane to position each camera in world space.

Starting in camera space, the first step of the pose estimation
is to find an initial guess for the position of the object. We do
this by minimizing Ec with respect to the position, which places
the virtual object approximately in the same position as the real
object.

To find a good initial guess of the rotation, we randomly sam-
ple rotations. For each rotation, we compare the silhouette of
the digital object to the real object using Hu’s moment invari-
ants [33]. These are calculated from image moments but are
invariant to scale, rotation, and translation. For an image of
pixel values I(x, y), the image moments are defined by

Mpq =
∫ ∞

−∞

∫ ∞

−∞
xpyq I(x, y) dx dy, (6)

where the p and q exponents are the moment orders and inte-
gration is across the image plane. Since the silhouette can be
considered a polygon, the image moments can be computed
efficiently by applying Green’s theorem [50]. Hu’s moment in-
variants are seven polynomial combinations of image moments
that we store in a vector and compare using the sum of squared
differences. Using the Hu moment invariants, the search space
of the rotation is practically reduced to two dimensions. The
rotation giving the silhouette that best matches the Hu moment
invariants of the real silhouette is chosen as the initial guess of
the rotation. We parameterize the rotation using quaternions
and use the centroid of the object as the rotation centre.

With these initial guesses for position and rotation, we min-
imize Ec, which gives an object pose for each view. We use
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Levenberg-Marquardt [51, 52] for the minimization. This is pos-
sible as Ec is a sum of squares. As part of our input, we know
the object pose in relation to the ground plane. We use this to
convert the per camera object poses into camera poses in world
space.

E. Light Positions and Final Refinement

To estimate the position of each light, we randomly sample posi-
tions and then choose the one with the lowest Ec,ℓ for each light.
Following this, Ec,ℓ is minimized using Levenberg-Marquardt.

The last step of our method is a joint optimization where
we minimize Es with respect to object pose, camera pose(s),
light position(s), and a non-uniform scaling of the mesh. The
non-uniform scaling of the mesh is to compensate for some of
the shrinkage that may occur during 3D printing. The final
optimization of the object pose is beneficial as the inclusion of
the shadow silhouette(s) enables us to use more information
from the input image.

F. Known Camera Poses

If camera poses are known in advance, for example from a stereo
calibration of the camera rig, we can use the same steps as in
Sec. 3.D to find the pose for all cameras jointly. When finding
the rotation, it is then no longer desirable to have rotational
invariance for all cameras. Instead, we propose to rotate the
object to align the normalized image moments of the virtual and
digital objects in the best way possible along a randomly chosen
camera’s viewing direction. The rotation is found by aligning
the principal components of the two silhouettes [53]. We choose
the rotation that best matches the normalized image moments
across all cameras as the best rotation.

An initial guess of the object’s scale is required, but if the
camera poses are known in relation to the ground plane, we need
not know the rotation of the object relative to the ground plane.
The method for light source estimation is as with unknown
camera poses.

4. APPEARANCE MODELS FOR REAL OBJECTS

Rendering systems provide a multitude of rendering techniques
that we need to choose among when composing an appearance
model for a real object. We start from a very approximate model
at the most macroscopic scale. We then gradually increase com-
plexity by reconsidering the involved optical properties [54] and
what types of materials and visual effects that they can model.

At the most macroscopic scale, we have the bidirectional
reflectance/transmittance distribution function (BRDF/BTDF)
and the simplest models at this scale are the ones for perfectly
diffuse and perfectly specular materials [55]. To cover a broad
spectrum of different material types, we consider three different
starting points: (a) diffuse, (b) metallic, or (c) transparent. In
the following, we describe existing appearance models for these
material types as well as model extensions (Secs. 4.A–4.C).

The perfectly diffuse (or Lambertian) material is a good start-
ing point for objects that exhibit a significant amount of subsur-
face scattering (a). The BRDF of a perfectly diffuse material is
fr,d = ρd/π, where ρd is the bihemispherical diffuse reflectance,
which we can set in an RGB renderer using a color vector in
[0, 1]3. This reflectance represents the subsurface scattering of
the material. We can then add an interface to model highlights
and switch to a bidirectional scattering-surface reflectance dis-
tribution function (BSSRDF) to model translucency. The Fresnel

equations for reflection are an excellent starting point for metallic
and transparent objects (b-c).

The BRDF/BTDF of a perfectly smooth or a rough interface
are available from Walter et al. [19]. The BRDFs presented by
these authors work just as well for metals as long as we use
the complex index of refraction of the metals to find the Fresnel
factor. The key difficulty in use of the Fresnel equations is that
indices of refraction are physical parameters that are defined
as a spectrum rather than colors. We can convert a spectrum
to a representative RGB vector using weighted averages based
on RGB color matching functions [56, 57]. Assuming known
(complex) index of refraction, the key parameter for metallic and
transparent objects is the surface roughness (which is different
for different surface microfacet distributions [19, 58]).

A natural extension of the diffuse model (a) is to introduce a
refractive interface. The BRDF then becomes a sum of a specu-
lar and a diffuse component [59]. We can think of the specular
term as in-surface scattering and of the diffuse term as sub-
surface scattering. The Fresnel equations are then useful for
ensuring energy conservation (and reciprocity) both for smooth
surfaces [60] and for rough surfaces [61, 62]. The trick is to
sample the BRDF/BTDF of a transparent surface [19] and then
let incident light that refracts into the material reflect diffusely
before it refracts back out of the material using the BTDF of
the surface again but this time for the outgoing direction. This
enables addition of glossy reflections and highlights to an object
with an otherwise matte appearance.

A natural extension of the transparent model (b) is to account
for absorption based on the distance d that a ray travels through
the interior of the object. This is done using an (RGB) absorption
coefficient σa and Bouguer’s law of exponential attenuation of
light (attenuation factor e−σad). The absorption coefficient is di-
rectly linked to the imaginary part of the index of refraction [63].
The index of refraction was assumed known, and for metals
σa is very large. We can thus assume that all light transmitted
into a metal is absorbed. However, for transparent objects, σa
is often very small and may need some adjustment to account
for dissolved substances [56] or impurities [57]. The absorption
coefficient then becomes an RGB parameter in the model that
controls the color of transmitted light.

A further extension of the diffuse model (a) is to replace fr,d
with proper subsurface scattering, where light may be incident at
one surface position and observed at another. In terms of input
parameters, this requires knowledge of the (RGB) scattering co-
efficient σs and the phase function. The latter is the distribution
of the scattered light, which is often represented by an analyt-
ical model taking an (RGB) asymmetry parameter (g) as input.
Several rendering techniques are available for evaluating the
volumetric light transport between two surface positions [64].
For highly scattering materials, however, a full-fledged unbiased
path tracing technique [65] is unpractical due to long rendering
times. We need faster rendering when tuning parameters based
on comparison of renderings with a reference photograph. A
more practical rendering technique for subsurface scattering is
then to use an analytical approximation of the BSSRDF [20, 21].

The standard dipole approximation for subsurface scatter-
ing [21] does not model how the direction of the incident light
influences the subsurface scattering. To include this component,
we can use a directional dipole approximation [20]. However,
these models use Fresnel terms that assume a perfectly smooth
interface. Donner and Jensen [66] explained how to account for a
rough surface with a distribution of microfacet normals [58, 59].
In the following, we describe how to account for a rough surface
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in the case of a model that accounts for the directional depen-
dency of the subsurface scattering. We also describe simplistic
models that we use to account for spatial variation in the surface
roughness of our example objects.

A. Directional Subsurface Scattering for Rough Surfaces
The BSSRDF depends on the object geometry X, the position xi
and the direction ω⃗i of the incident light as well as the position
xo and the direction ω⃗o of the observed light. The normals at the
points of incidence and observation n⃗i and n⃗o are known from
the object geometry. An analytic BSSRDF model developed for a
material with a smooth surface then usually has the form

S(X; xi, ω⃗i; xo, ω⃗o) = Ft(ω⃗o · n⃗o)(Sd + S∗)Ft(ω⃗i · n⃗i) , (7)

where Ft is Fresnel transmittance, Sd is the diffusive part, which
is typically modeled by a dipole, and S∗ is the remaining light
transport. The number of arguments used with Sd and S∗ is
different for different models.

To incorporate a rough surface in a BSSRDF model of this
kind, we add a BRDF in the special case where the point of
incidence equals the point of emergence, and we insert hemi-
spherical transmittance integrals in place of the Fresnel terms:

S(X; xi, ω⃗i; xo, ω⃗o) = δ(xo − xi) fr(xo, ω⃗i, ω⃗o)

+
∫

2π

∫
2π

ft(xo, ω⃗21, ω⃗o)(−n⃗o · ω⃗21)(Sd + S∗) dω21

ft(xi, ω⃗i, ω⃗12)(−n⃗i · ω⃗12) dω12 , (8)

where fr is the BRDF and ft is the BTDF of the surface, δ is a
Dirac delta function, ω⃗12 is the direction of a ray transmitted into
the volume, and ω⃗21 is the direction of a ray to be transmitted
out of the volume. The directions ω⃗12 and ω⃗21 would thus be
the ones to use as arguments for the S-functions.

The S∗ term is usually fully directional, and the integrations
over BTDFs at xi and xo are evaluated using regular volume
path tracing with rough refraction at the interfaces. In the case
of the standard dipole [21], S∗ = S(1) includes evaluation of
single scattering in the volume. In the case of the directional
dipole [20], S∗ = SδE is evaluated in the same way as absorp-
tion in a transparent material, but with a modified coefficient
in the exponential attenuation. One should note that analytic
expressions are available for the Fresnel transmittance integrals
in cases where Sd is independent of ω⃗i and/or ω⃗o [66, 67]. Some
care must be taken as some models [20, 67] assume a diffuse dis-
tribution of the light at xo and then include the integration over
ω⃗21 in their formulation. In the case of the directional dipole,
our expression becomes

S(X; xi, ω⃗i; xo, ω⃗o) = δ(xo − xi) fr(xo, ω⃗i, ω⃗o) + S∗
δE

+
∫

2π
Sd,dir(xi, ω⃗12; xo) ft(xi, ω⃗i, ω⃗12)(−n⃗i · ω⃗12) dω12 , (9)

where Sd,dir is the diffusive part of the BSSRDF in the directional
dipole model, but taking the transmitted direction directly as
input instead of ω⃗i, and S∗

δE is the modified reduced intensity
term appearing in this model, but here including the BTDF
integrations (rough refractions at the interfaces).

Comparing Eq. (8) to common illumination models [1, 59],
the first term corresponds to the specular term and the second
term corresponds to the diffuse term. The BRDF fr to be used
for the first term should therefore not include an added diffuse
term. The BSDF (collective name for BRDF and BTDF) used in
Eq. (8) should rather depend only on surface properties, such

as a distribution of microfacet normals, see the work of Walter
et al. [19] for examples. In particular, we use the so-called GGX
distribution developed by these authors. This distribution has a
width parameter αg that we refer to as the GGX roughness.

B. Surface Roughness of a 3D Printed Object

Since most 3D printers print in layers, the surface of a printed
object is usually rougher when the intended surface normal
points in a direction aligned with layer edges in the voxel cubes
of the print volume. If the z-axis is the print direction, we can
use the following function to control the GGX roughness (αg)
based on the z-component of the surface normal (nz):

αg = ρ + (1 − ρ)
| sin(2θ)|s

s
= ρ + (1 − ρ)

(
2|nz|

√
1 − n2

z

)s

s
,

(10)
where θ is the angle of the surface normal n⃗ with the z-axis. We
can think of the user parameters as follows: ρ ∈ [0, 1] is the
minimum roughness and s > 0 is the shininess, which controls
the height and width of the bumps in the curve around angles
of ±45◦, ±135◦.

C. Surface Roughness of a Polished Metal Object

Quick hand polishing of a metallic object can result in an object
with a rougher surface in curved areas and a smoother surface
in flat areas. One way to specify the curvature of an object is
using the mean curvature normal H [68]. This is a quantity that
we can precompute for a triangle mesh using vertex circulators
and store as a vertex attribute. The dot product of the outward-
pointing surface normal n⃗ and the mean curvature normal H
provides a signed measure of the curvature, where positive is a
concavity and negative is a convexity. We use the absolute value
of this dot product as an indicator of areas that were maybe not
as easy to polish. To reduce noise from the surface scan and set a
high roughness for curved areas, we employ a sigmoid function.
Our use of the mean curvature normal is demonstrated in Fig. 3,
and the formula is

αg = ρ +
1 − ρ

1 + exp(s (1 − 30 |H · n⃗|)) , (11)

where ρ is again minimum roughness and s is a sort of shininess
while H is the mean curvature normal after division by the
length of the longest mean curvature normal in the triangle
mesh.

5. RENDERING

We implemented a progressive unidirectional path tracer using
OptiX [69]. To include subsurface scattering, we sample a new
set of surface positions for each progressive update. For each
update and within each pixel, the ray tracer generates a random
position xp in pixel coordinates. With the rotation of the camera
relative to the object R and the camera intrinsic matrix K, we get
the direction of the corresponding ray using

ω⃗ = (KR)−1S xp = RTK−1S xp . (12)

Since the intrinsic matrix K is locked to the resolution of the
camera (Wc × Hc), which is usually very high, we use the scaling
matrix S = diag(Wc/Wr, Hc/Hr, 1) to enable rendering in a
different resolution (Wr × Hr).
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0.5 + H ·~n |H ·~n| αg

Fig. 3. Model of spatially varying roughness αg for an alu-
minium bust that has from time to time been subjected to hand
polishing. We use the dot product of the mean curvature nor-
mal H and the surface normal n⃗. The model correctly marks
eyes, hair, nostrils, and engraved letters as rough, but also in-
correctly marks edges along the box-like base of the bust as
being very rough.

6. RESULTS

The three objects of interest are (a) a translucent 3D print of the
Stanford bunny, (b) an aluminium bust, and (c) a cupped angel
figurine 3D scanned and printed using almost transparent resin.
Two of our test objects (b-c) were 3D scanned using structured
light based on phase shifting [18]. The employed 3D scanner
has a precision of around 100 µm [70]. Our 3D printed objects
(a, c) were produced using vat photopolymerization additive
manufacturing processes. In our pose estimation and renderings,
we used the geometry of these objects without correction for
print artifacts. The Stanford bunny was printed by Luongo et
al. [71] using red Industrial Blend resin (manufactured by Fun
To Do) and a digital light processing (DLP) printer developed for
research. The vertical resolution of this printer is 18 µm and the
horizontal resolution is 15.08 µm. The angel was printed using
general-purpose resin IM2.0 GP1 (manufactured by AddiFab)
and a Peopoly Moai stereolithography (SLA) printer. The laser
spot size (horizontal resolution) of this printer is 70 µm, and
we used a vertical resolution of 50 µm. In simulation, we use
a real index of refraction of 1.54 for the printed objects as this
is in the middle of the range of commercial acrylic resins with
low shrinkage after photopolymerization [72]. Our three objects
all have a rough surface and exhibit different types of spatial
variation in this roughness.

We used our method to align renderings of the objects of
interest with their photographs. We then tested different ap-
pearance models following the presented guidelines, where
we started from a simplistic model and gradually added com-
plexity. In each case, our end result is an appearance model
and a rendering paired with a photograph for validation that
would serve as a suitable starting point for an inverse ren-
dering technique. The optical properties that we estimated
for our different objects are in Table 1. The reference pho-
tographs and the associated CAD files and relative camera and
light source alignments will be available as a supplement (at
https://eco3d.compute.dtu.dk/pages/appearance). We encour-
age the reader to use this dataset for testing preferred appearance
models and rendering software and for finding better optical
properties including better spatial variation of surface roughness
by means of inverse rendering.

Object

Shadow

Fig. 4. Each image is an additive blend of three photos of the
bust illuminated by the light source at different positions and
overlaid with aligned silhouettes of the digital object.

Object
Shadow

Fig. 5. Photo of the bunny overlaid with the aligned silhouette
of the digital object.

A. Acquisition
The objects were placed on a flat piece of paper and illuminated
by a Thorlabs MNWHL4 LED light source. This source is neutral
white with a point-like radiation distribution within an angular
diameter of 10◦. The bunny (a) and the angel (c) were captured
using a FLIR Grasshopper3 GS3-U3-60QS6C-C camera, while
the bust (b) was captured using D3200, D7000, D7500 and D750
cameras from Nikon. We used four cameras to cover all angles
of the object while also taking multiple images from the same po-
sitions with different light positions. As different cameras were
used, the images of the bust were color calibrated using a Col-
orChecker from X-Rite. All images were captured with a small
aperture so that all parts of the object and shadow were in fo-
cus. We performed camera calibration [44, 73] using a ChArUco
board which is a checkerboard with ArUco markers [74]. For
the bunny (a), we did not use the estimated extrinsics and only
used the estimated focal length from the intrinsics. Lens dis-
tortion from the camera calibrations were used to undistort the
reference photographs and ground truth silhouettes.

B. Alignment
To segment the photographs as required by our alignment
method, we used thresholding followed by hole closing and
selected the largest connected component. For the images of the
bunny and the angel, some manual cleaning of the segmentation
was necessary due to caustics.

Our test cases span different setups to showcase the flexibility
of our alignment method. For the bunny (a), we use just a single

https://eco3d.compute.dtu.dk/pages/appearance
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Table 1. Estimated optical properties.

Material n σa σs ρ s

Bunny (FTD, red Industrial Blend) 1.54 (0.33, 25, 67) · 103 m−1 (10, 21, 0.083) · 103 m−1 0.20 2.4

Angel (AddiFab, IM2.0 GP1) 1.54 (0.032, 32, 640) m−1 0 0.15 5.0

Bust (aluminium) (1.04, 0.76, 0.49) + i (6.45, 5.73, 4.76) 1.3 · 108 n/a 0.22 4.5

Object

Shadow

Fig. 6. Photos of the angel overlaid with the aligned silhouette
of the digital object.
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Fig. 7. Convergence plots of our pose estimation method ap-
plied to the bunny, showing the total time elapsed, with verti-
cal dashed lines separating the different steps of our method.
Left: as described in Sec. 3.D, steps: translation optimiza-
tion, random rotation search, pose optimization. Right: as
described in Sec. 3.E, steps: random light search, light position
optimization, joint optimization.

picture with unknown camera pose to align the scene. For the
angel (c), we use two camera poses and a single light position to
do the estimation. Finally, the bust (b) was captured from four
camera poses, each with four different light source positions,
yielding a total of 16 images that we used to do the alignment.
The more light source positions, the more information we have
available for the pose estimation. This comes at the small cost of
increasing the dimensionality of the optimization problem. If we
again consider our method an enabler for inverse rendering, it is
an advantage to have multiple light positions as these provide
additional samples for estimation of BRDFs, for example.

Outputs from our alignment method are in Figs. 4 to 6. We
achieve good alignment of the outlines of the bust, which makes
sense as this is the only object in our collection for which the
geometry is directly from the photographed object. Both the
angel and the bunny have a quite good alignment, but especially
the bunny has noticeable differences between the rendered sil-
houette and the object. We presume these mostly stem from
non-linear shrinkage during printing that our method cannot
account for. For the angel, our method estimated shrinkage of
3%, 6%, 1% in the x, y, z directions as compared to the size of an
ideal 3D print.

As the bunny (a) is the more difficult case (with only one view
and light source position to constrain the problem), we have
analyzed the performance of our method more closely for this
case. Convergence plots in Fig. 7 show that each step improves

RMSE: 0.1315 RMSE: 0.1304 RMSE: 0.1124
SSIM: 0.8065 SSIM: 0.7405 SSIM: 0.8181

Liu et al. [15] ours ours
for object pose w/o joint estimation final

Fig. 8. Ablation study shown with signed difference images
×2. Blue and red indicate positive and negative differences
(for rendering minus photograph): average of the color bands
in the third and the fourth column of Fig. 1, respectively.

the similarity (reduces Ec and Es). While the joint optimization
in the last step gives a smaller improvement of Es than other
steps, the improvement of the final rendered result is significant
as seen in Fig. 8. We also compare our alignment result with an
object pose obtained using the differentiable rendering method
of Liu et al. [15]. We observe that the performance of this related
work is similar to ours without joint optimization and we needed
many random initial guesses with this method too in order for
it to converge to a good solution. With other methods than
ours, we do not get the advantages of jointly estimating light
source position and mesh shrinkage. In the result found using
the method of Liu et al. (Fig. 8, left), we used the camera pose
and light source position from our final result. The key benefit
of our work is thus collective extraction of information available
in projected silhouettes (object pose, light source position, mesh
shrinkage), and that we can use joint optimization to collectively
improve each part of the result.

C. Appearance

Since our objects are placed on a piece of paper assumed to be
flat, we place a quad in the ground plane and resize it manually
to approximately fit the paper observed in the photograph. Pre-
cise alignment of the paper could be part of the object alignment,
but we find that it is not so important with respect to testing
the appearance model applied to the object. To start simple,
we consider the paper to be a diffuse surface. More complexity
could easily be added to the paper appearance model [75], but
we focus our attention on the objects of interest.

We initialise the diffuse reflectance of the paper to ρd =
(0.8, 0.8, 0.8) and select the simplest shading model for the mate-
rial category of the object in question. We then use the intensity
of the light reflected from the paper to estimate the intensity
of the point light. Since our source is neutral white, we use
the same intensity in all color bands. An easy way to do a
comparison is using two colored difference images: one for pos-
itive difference and one for negative difference (see examples
in Fig. 1). Once the light intensity has been set, we modify the
reflectance values until each color appears equally in the positive
and the negative difference image. We also evaluate our results
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RMSE: 0.1152 RMSE: 0.1237 RMSE: 0.1136 RMSE: 0.1127 RMSE: 0.1124
SSIM: 0.8108 SSIM: 0.7931 SSIM: 0.8145 SSIM: 0.8177 SSIM: 0.8181
Lambertian interfaced standard SSS directional SSS SV roughness

Fig. 9. Renderings (top) and absolute difference images ×2 (bottom) to test appearance models for the rough translucent bunny.
The interfaced model adds a rough surface with a GGX microfacet normal distribution [19, 60, 61]. The standard subsurface scat-
tering (SSS) model is the standard dipole including path traced single scattering and a rough surface [21, 66]. The directional SSS
model uses the directional dipole [20] and incorporates a rough surface (Sec. 4.A). The model with spatially varying (SV) roughness
uses Eq. (10). Further comparison of the input image with the end result is in Fig. 1. The not quite so flat paper worsens both RMSE
and SSIM by approximately 0.05.

quantitatively using root-mean-squared error (RMSE) (lower
is better) and structural similarity (SSIM) index [76] (higher is
better). The initial results for each of our three test cases are
leftmost in Figs. 9 to 11.

To estimate absorption and scattering coefficients (σa and σs),
we need the physical size of the object as these optical properties
are measured per distance unit that a ray has travelled through
the material. Using the physical dimensions of the object, we
get the coefficients in Table 1. We decided to leave the phase
function as isotropic (g = 0) since the analytic BSSRDF models
mostly use the reduced scattering coefficient σ′

s = σs(1 − g) and
thus do not distinguish much between a reduction in σs and an
increase of g. The directional dipole is not exclusively based
on the reduced scattering coefficient, but the role of g seems
limited. When estimating the coefficients, 10 over the length of
the bounding box diagonal is usually a good value to start with
for the absorption or the scattering to have a reasonable effect.

Refinement of the model for the rough translucent bunny (a), see Fig. 9.
We first add an interface to the model [60, 61] to enable rendering
of highlights. However, this also directs a lot of energy into a
glossy reflection lobe meaning that the missing transport of light
from the point of incidence to a different point of emergence
becomes apparent and RMSE and SSIM both worsen. As soon as
we switch to a model that accounts for this subsurface light trans-
port [21], the result becomes better than the Lambertian model.
This is true even without single scattering and assuming that the
surface is perfectly smooth. The directional dipole [20] and our
spatially varying roughness from Sec. 4.B further improve the
result. However, the models cannot fully represent the scattering
process. This is probably due to limiting assumptions such as
diffuse emergent light and a locally flat, convex object. It should
be mentioned that the bunny was printed using greyscale values
to reduce staircasing artefacts [71]. These staircasing artefacts
due to layered printing are significantly less pronounced for the
bunny as compared with the angel (which was not printed using
greyscale values). Nevertheless, the bunny object still exhibits
some spatial variation in its roughness that we have modelled.

Refinement of the model for the aluminium bust (b), see Fig. 11. We
use the complex index of refraction of aluminium from McPeak
et al. [77] (this is available for download at refractiveindex.info).
Since we have a dark scene with a point light, the appearance
is off without surface roughness (as highlights then disappear).
Adding a microfacet normal distribution was thus essential for
this case, and we found that the GGX distribution [19] provided
a good result. When adding spatially varying roughness based
on the curvature, we found that SSIM would improve for a larger
shininess s at the cost of a poorer RMSE. The SSIM-improved
result is in Fig. 1. The RMSE probably suffers from a slight
misplacement of the highlight peak in the forehead of the bust.

Refinement of the model for the rough transparent angel (c), see Fig. 10.
Using the convention that surface normals always point out-
wards, absorption is easily included by applying Bouguer’s law
of exponential attenuation to all rays that hit the surface from
the inside. Accounting for absorption and a rough interface is
highly important when modelling the appearance of the angel.
Apart from this, the print layers are visually obvious, especially
in highlights. We, therefore, tried to model the layers by calcu-
lating a layer index based on the point of intersection and using
an increased roughness for every second layer. This represents
the rougher layer edges more explicitly. Visually, we find this
layered result more convincing and it also has lower RMSE, but
SSIM disagrees. We tried adding single scattering to the ma-
terial, but this only seemed to worsen RMSE and SSIM. Thus,
it seems that the remaining deviations from the reference are
mostly due to geometric print artefacts and inaccuracies in the
spatial variation of the surface roughness.

7. DISCUSSION

Although our method is able to quantify the differences between
a rendering and a photograph, it does not provide a direct way of
determining what the source of these differences are. However,
when a change of reflectance model leads to a smaller error, it is
very likely that the previous model was a source of error.

While we use a pinhole camera model, one should note that
our method can also work for more advanced camera models as

https://refractiveindex.info/
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RMSE: 0.1267 RMSE: 0.1135 RMSE: 0.0741 RMSE: 0.0733 RMSE: 0.0730
SSIM: 0.7699 SSIM: 0.8051 SSIM: 0.8876 SSIM: 0.8870 SSIM: 0.8858

glass absorbing rough SV roughness layered

Fig. 10. Renderings (top) and absolute difference images ×2 (bottom) to test appearance models for the rough transparent angel.
We use the GGX microfacet normal distribution [19] and add absorption through analysis by synthesis [57] and spatially varying
(SV) roughness (Sec. 4.B). We also tested a layered variation of the roughness in the print direction (every second layer is rougher
to model a staircase). SSIM is sensitive to structure and takes a hit because the layers do not perfectly match the real layers. Further
comparison of the input image with the end result is in Fig. 1.

RMSE: 0.0311 RMSE: 0.0159 RMSE: 0.0134
SSIM: 0.9339 SSIM: 0.9693 SSIM: 0.9713

metallic rough SV roughness

Fig. 11. Renderings (top) and absolute difference images ×2
(bottom) to test appearance models for the aluminium bust.
We test spatially varying (SV) roughness as depicted in Fig. 3
and use high dynamic range when computing differences. The
input image is in Fig. 1, where it is compared with an SSIM-
improved result (RMSE: 0.0148, SSIM: 0.9725).

we can apply the necessary transformations to the object edges
before computing the silhouette. Extending to area lights is
however challenging and left for future work.

A disadvantage of using silhouettes is their simplicity. In
some cases, they describe the features of an object inadequately,
which can cause ambiguities in the pose estimation. An example
of this could be a bowl with contents, where the silhouette only
contains information enough to pose estimate the bowl. To have
more information, some methods [29] also use features on the
object itself. In cases where the segmentation has inaccuracies
and our pose may have small errors, our method is still useful
for obtaining a good initial guess that can be refined by other
methods (such as differentiable rendering).

8. CONCLUSION

We presented a practical method for aligning photographs with
rendered images. Our method is based on silhouette matching

and estimates both object pose and the position of a point-like
light source. If multiple images have been captured from differ-
ent views and/or with light sources in different positions, our
method can include this added information in the pose estima-
tion. As opposed to differentiable rendering techniques, our
method works not only in pixel space but in the entire image
plane. This means that we can estimate a pose from a very poor
initial guess. Thus we find our work a practical enabling tech-
nique for inverse rendering that could be based on differentiable
rendering.

Given an alignment, we proposed a procedure for compos-
ing an appearance model suitable for the photographed object.
The concept is to start from a simplistic model and gradually
increase the complexity of appearance models guided by differ-
ence images and quantitative metrics such as RMSE and SSIM.
As a consequence of this approach, we presented extensions of
existing models providing improved photorealism. One exten-
sion was the combination of a rough surface with directional
subsurface scattering. We believe that practical alignment of
photographs with renderings is an important step in furthering
the predictive abilities of appearance models.
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