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Figure 1: We propose a novel variance estimate for neural networks and apply it to a denoiser (here Intel Open Image Denoise) to
obtain a denoising-aware sampling map (left). The close-ups show comparisons of our adaptive sampling method with uniform
sampling and deep adaptive sampling (DASR) [Kuznetsov et al. 2018] (top row) and with additional post-correction using the
neural James-Stein (NJS) combiner [Gu et al. 2022] (bottom row). In all cases, our adaptive sampling method leads to faster
convergence (right). Scene: Country Kitchen by Jay-Artist (CC-BY).

ABSTRACT
Monte Carlo rendering is a computationally intensive task, but com-
bined with recent deep-learning based advances in image denoising
it is possible to achieve high quality images in a shorter amount of
time. We present a novel adaptive sampling technique that further
improves the efficiency of Monte Carlo rendering combined with
deep-learning based denoising. Our proposed technique is general,
can be combined with existing pre-trained denoisers, and, in con-
trast with previous techniques, does not itself require any additional
neural networks or learning. A key contribution of our work is a
general method for estimating the variance of the outputs of a
neural network whose inputs are random variables. Our method
iteratively renders additional samples and uses this novel variance
estimate to compute the sample distribution for each subsequent
iteration. Compared to uniform sampling and previous adaptive
sampling techniques, our method achieves better equal-time error
in all scenes tested, and when combined with a recent denoising
post-correction technique, significantly faster error convergence is
realized.
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1 INTRODUCTION
Monte Carlo ray tracing methods, and in particular light transport
algorithms such as path tracing [Kajiya 1986], have become the de
facto standard in offline production rendering and have recently
also been gaining attention in interactive and real-time applications.
The stochastic nature of such algorithms means that many samples
per pixel (spp) are often required to achieve noise-free images, and
despite faster and dedicated ray tracing hardware, doing so can still
be prohibitively expensive.

Advances in image denoising methods have enabled the in-
creased adoption of Monte Carlo ray tracing, as these enable one to
remove noise from a rendered image whilst sufficiently preserving
image details. Substantial progress wasmade even prior to the wider
adoption of deep learning, an overview is available from Zwicker
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et al. [2015]. Some of these methods in particular relied on the use
of auxiliary features, sample statistics, and error estimates to opti-
mize various filter parameters. As deep learning gained popularity
and ease of use, research produced new denoising techniques, the
majority based on convolutional neural networks and also relying
on auxiliary features such as surface albedo and normals.

Sample variance is generally non-uniform over image space.
Adaptive sampling has thus seen wide usage in production ren-
derers [Kulla et al. 2018; Christensen et al. 2018; Fascione et al.
2018; Burley et al. 2018], often simply guided by variance since the
higher sample counts used in production allow for better variance
estimates. Earlier non-learning based denoising methods have pro-
posed combining iterative adaptive sampling with denoising [Li
et al. 2012], as the use of filtering enables computing a variance or
error estimate of the denoised image which may be of more inter-
est than the noisy rendered image. More recently, methods have
been proposed based on deep learning where a neural network,
trained in tandem with a denoising network, is used to predict the
sample distribution for the renderer [Kuznetsov et al. 2018; Salehi
et al. 2022]. One drawback of such an approach is that the resulting
prediction may be more a function of the network’s training and
might have less to do with the variance of the denoised image.

In this paper, we bridge the gap between previous adaptive sam-
pling work and modern deep-learning based denoisers by introduc-
ing a novel variance estimate for denoised outputs. We compute
this in a single pass while simultaneously denoising the image. Our
estimate is based on a first-order Taylor series expansion of the
denoiser, and is computed using forward mode automatic differen-
tiation and the Jacobian-vector product. The estimated variance is
then used to compute the sample distribution for the subsequent
rendering iteration, similar to previous methods. The advantage is
that our sample distribution places additional samples where they
will benefit the denoised image rather than the noisy input image.

In a progressive rendering, we would prefer to always look at
the denoised image. Maybe even the tone-mapped version. Modern
denoisers use a neural network, so our method enables a direct way
of achieving denoising-aware adaptive sampling. We can let our
method adapt to the tone mapping as well. If we run the denoiser
for every progressive update to always look at the denoised image,
the overhead of our method is modest. Even if not, the cost is not
more than using a separate neural network for adaptive sampling.
Recent work suggests adaptive progressive pixelwise blending of
the denoised image with the input image to ensure consistency
(convergence to the ground truth) [Firmino et al. 2022; Gu et al.
2022]. By correspondingly blending the variance estimates, our
method enables denoising-aware adaptive sampling for this type
of consistent denoised progressive rendering too.

2 RELATEDWORK
2.1 Monte Carlo Denoising
Image denoising is a vital component of modern rendering pipelines,
necessary in production rendering for the practical application
of Monte Carlo light transport algorithms such as path tracing.
Pioneering approaches for denoising Monte Carlo rendered images
sought to reduce stochastic noise by locally blurring the image
using a variety of non-linear filters [Mitchell 1987; Lee and Redner

1990; Rushmeier and Ward 1994; Xu and Pattanaik 2005; Overbeck
et al. 2009]. Later work locally adapt these filters by incorporating
knowledge on auxiliary image features such as surface normals and
albedo, pixel variance, and estimates of reconstructed error [McCool
1999; Li et al. 2012; Rousselle et al. 2013; Bitterli et al. 2016].

Advances in the training of neural networks, coupled with the
wider availability of capable hardware led to the use of deep learning
in new denoising algorithms. Approaches have been diverse and
range from prediction of filter parameters [Kalantari et al. 2015], or
entire filter kernels [Bako et al. 2017; Vogels et al. 2018], to direct
prediction of radiance values and coupling denoising with super-
sampling [Xiao et al. 2020; Thomas et al. 2022]. In terms of image
quality, particularly at lower sample counts [Chaitanya et al. 2017;
Gharbi et al. 2019; Hasselgren et al. 2020], learning-based denoisers
have outclassed previous classical approaches, however difficulties
relating to non-zero bias at high sample counts has led to the recent
development of post-correction techniques [Back et al. 2020]. In
this area, Zheng et al. [2021] proposed an ensemble method for
combining multiple denoised images, Firmino et al. [2022] proposed
training a network on error estimates to infer blending parameters
between rendered and denoised images, Back et al. [2022] proposed
a self-supervised loss for correcting network parameters during
denoising, and most recently Gu et al. [2022] proposed a method
based on James-Stein theory and using a network to help estimate
the variance of the unbiased input. Our method enables adaptive
sampling that adapts to such denoising techniques.

2.2 Adaptive Sampling
Adaptive sampling can improve the quality of Monte Carlo rendered
images by, for example, allocating samples proportionally to sample
variance. Many of the classical denoising works applied this to
image reconstruction by developing error or variance estimates
for the reconstructed image and using those estimates to guide
adaptive sampling, thus achieving better image quality in equal
time [Dippé and Wold 1985; Lee et al. 1985; Painter and Sloan 1989].
In the development of adaptive sampling [Zwicker et al. 2015], the
a posteriori techniques are the ones more closely related to our
work. Rousselle et al. [2012], for example, leverage denoising based
on non-local means filtering and estimate output variance using
the difference of two independent filtered images. Local, unbiased
error estimates of cross-bilateral filters was also found beneficial for
adaptive sampling [Li et al. 2012; Rousselle et al. 2013]. We transfer
this type of adaptive sampling to a neural network setting.

With denoising based on neural networks, methods for adaptive
sampling have been proposed that also rely on recent advances in
deep learning. Vogels et al. [2018] investigated training an error-
predicting network to be used for adaptive sampling and evaluated
the quality of different guiding metrics. Kuznetsov et al. [2018] tack-
led the problem of adaptive sampling at very low sample counts by
training a sampling map predictor in tandem with the denoising
network by propagating gradients through the renderer. This idea
was later combined with temporal optimization by Hasselgren et
al. [2020] to improve quality at interactive rendering rates. Salehi et
al. [2022] made the training of such networks practical for higher
sample count rendering, eschewing the expensive rendering of
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samples during training, and instead generating them from ana-
lytical distributions. One commonality between these methods is
the quality of the predicted sampling distribution, which relies on
the quality of the network training and may therefore be unable to
adapt to new scenes or sample counts outside the training dataset’s
distribution. We contrast these previous approaches by instead
basing our method on statistical estimates of the denoiser’s output.

2.3 Statistical Estimates for Denoised Images
We briefly review estimates of two statistics, variance and error, ap-
plicable to images denoised using deep-learning based approaches
and cite their appearance in rendering literature.

2.3.1 Double-Buffer Variance Estimate. A common method for es-
timating the variance involves rendering two independent images,
x𝑎 and x𝑏 , such that the denoised images 𝑓 (x𝑎) and 𝑓 (x𝑏 ) are in-
dependent from each other. Their variance can then be estimated
by simply calculating the squared difference:

Var [𝑓𝑖 (x)] = 1
2E

[
(𝑓𝑖 (x𝑎) − 𝑓𝑖 (x𝑏 ))2

]
.

It should be noted that this variance estimate is not of the combined
and denoised samples, 𝑓 ( 12 (x𝑎 + x𝑏 )), as one might wish. For 𝑓 (·)
as a learning-based denoiser, this estimate appears in the method
of Gu et al. [2022]. Earlier it appeared in the context of adaptive
sampling [Rousselle et al. 2012] and denoising [Bitterli et al. 2016].

2.3.2 Double-Buffer Error Estimate. For estimating the squared
error of a denoised image, a method in the same vein as Section 2.3.1,
involves rendering two independent images, x𝑎 and x𝑏 , such that
the denoised image 𝑓 (x𝑎) is independent of x𝑏 , and likewise for
𝑓 (x𝑏 ) and x𝑎 . The corresponding error estimate for the 𝑖th pixel,
E
[
(𝑓𝑖 (x) − 𝜇𝑖 )2

]
, is equal to

E

[
1
2 ((𝑓𝑖 (x𝑎) − x𝑏,𝑖 )2 − �̂�2𝑏,𝑖 + (𝑓𝑖 (x𝑏 ) − x𝑎,𝑖 )2 − �̂�2𝑎,𝑖 )

]
,

where �̂�2𝑎 and �̂�2
𝑏
are unbiased estimates of the variance of x𝑎 and

x𝑏 , respectively. However, just as the variance estimate before,
this error estimate is not of the combined and denoised samples,
𝑓 ( 12 (x𝑎 + x𝑏 )). This error estimate forms the basis of the self-
supervised loss function recently proposed by Back et al. [2022].

2.3.3 Stein’s Unbiased Risk Estimate (SURE). Another possibility
is using SURE [Stein 1981], which has previously been used for
adaptive sampling by Li et al. [2012]. The expression for SURE, in
the general multivariate normal case, is [Liu 1994]

E
[
(𝑓𝑖 (x) − 𝜇𝑖 )2

]
= E

[
(𝑓𝑖 (x) − x𝑖 )2 + 2(J𝑓 (x) Σ̂)𝑖,𝑖 − �̂�2𝑖

]
,

where J𝑓 (x) is the Jacobian matrix of 𝑓 , and Σ̂ is the estimated co-
variance matrix of x. This estimate is valid for normally-distributed
x, a condition which may be approximately satisfied given a suffi-
ciently high sample count, as per the Central-Limit Theorem.

3 DENOISING-AWARE ADAPTIVE SAMPLING
We consider possibilities for a posteriori methods of performing
adaptive sampling in tandem with neural network based denoisers.
As pointed out by Zwicker et al. [2015], this will require at least
estimating some statistic about the denoised image, such as error
or variance. Methods prior to learning-based denoisers had the

advantage of being able to derive closed-form solutions for such
estimates, as the denoising filter was often also expressed in closed-
form. In the following section we seek to bridge this gap with
our variance estimate for deep neural networks, which forms the
backbone of our denoising-aware adaptive sampling proposal.

3.1 Deep Neural Network Variance Estimate
To avoid the need for a second denoised image (double-buffer) and
improve on the noise in previous denoiser variance estimates, we
introduce a novel Monte Carlo estimate of a deep neural network’s
output variance given variance estimates of its input. We find a
method for its practical computation using forward mode auto-
differentiation available in popular deep learning frameworks.

Given a function 𝑓𝑖 : R𝑁 → R of independent random variables
𝑋1, ..., 𝑋𝑁 with variancesVar[𝑋 𝑗 ] = 𝜎2𝑗 , a first-order approximation
of the variance of 𝑓𝑖 , based on its Taylor series expansion, is (the
law of propagation of errors) [Mandel 1964; Wolter 2007]

Var[𝑓𝑖 (𝑋1, ..., 𝑋𝑁 )] ≈
𝑁∑︁
𝑗=1

���� 𝜕𝑓𝑖𝜕𝑥 𝑗
����2 𝜎2𝑗 . (1)

The non-constant part of a first-order Taylor expansion is a direc-
tional derivative. For a neural network function 𝑓 , we leverage
forward mode auto-differentiation to find a practical method for
computing the directional derivative of the network’s output. This
directional derivative is synonymous with the Jacobian-vector prod-
uct [Grosse 2021]. For a neural network function 𝑓 : R𝑁 → R𝑀 ,
its Jacobian-vector product (JVP) of v ∈ R𝑁 at x ∈ R𝑁 is equal to
J𝑓 (x)v ∈ R𝑀 , where J𝑓 (x) ∈ R𝑀×𝑁 with J𝑓 (x)𝑖, 𝑗 =

𝜕𝑓𝑖
𝜕𝑥 𝑗

(x).
We select v ∈ R𝑁 as a vector of random variables for which each

element 𝑣 𝑗 = {+
√
�̂�2
𝑗
,−

√
�̂�2
𝑗
} with equal probability, and where �̂�2

𝑗

is an unbiased estimate of 𝜎2
𝑗
. Then E[𝑣 𝑗 ] = 0, E[𝑣2

𝑗
] = 𝜎2

𝑗
, and

E[𝑣 𝑗𝑣𝑘 ] = E[𝑣 𝑗 ]E[𝑣𝑘 ] = 0 for 𝑗 ≠ 𝑘 . Considering observed x, the
expectation of the square of the 𝑖th element of the JVP at x is then

E

[((
J𝑓 (x)v

)
𝑖

)2]
= E

[(∑𝑁
𝑗=1

𝜕𝑓𝑖
𝜕𝑥 𝑗

(x)𝑣 𝑗
)2]

= E

[∑𝑁
𝑗=1

��� 𝜕𝑓𝑖𝜕𝑥 𝑗
(x)

���2 𝑣2𝑗 + 2
∑𝑁
𝑗=1

∑𝑗−1
𝑘=1

(
𝜕𝑓𝑖
𝜕𝑥 𝑗

(x) 𝜕𝑓𝑖𝜕𝑥𝑘
(x)

)
𝑣 𝑗𝑣𝑘

]
=

∑𝑁
𝑗=1

��� 𝜕𝑓𝑖𝜕𝑥 𝑗
(x)

���2 E[𝑣2𝑗 ] + 2
∑𝑁
𝑗=1

∑𝑗−1
𝑘=1

(
𝜕𝑓𝑖
𝜕𝑥 𝑗

(x) 𝜕𝑓𝑖𝜕𝑥𝑘
(x)

)
E[𝑣 𝑗𝑣𝑘 ]

=
∑𝑁
𝑗=1

��� 𝜕𝑓𝑖𝜕𝑥 𝑗
(x)

���2 𝜎2𝑗 ≈ Var[𝑓𝑖 (𝑋1, ..., 𝑋𝑁 )] . (2)

In practice, the common approach for computing the Jacobian-
vector product is to evaluate the directional derivative at each of
the neural network’s layers with respect to that computed in the
previous layer, and this can be computed in a single pass while
simultaneously evaluating the network. An even more efficient
method for computing the JVP was recently proposed [Balestriero
and Baraniuk 2021]. Our approach can directly reap the benefits
once this method becomes commonly available. We found our pro-
posed estimate to resemble an older method described by Chris-
tianson and Cox [2006], with the key difference being their method
requiring the propagation of every coefficient of a multivariate
first-order Taylor series to each output, an approach intractable
for neural networks. In this manner, our suggestion of using the
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Figure 2: Qualitative comparison of two different estimates
of the relative variance of a denoised image using: (a) two
independently denoised 16spp inputs (Section 2.3.1) or (b) one
or eight v-vector samples (1x or 8x) for the estimate in Eq. 2
on a single denoised 32spp input. We also show (c) ground
truth values, computed using many independently rendered
and denoised images. The double-buffer estimate exhibits
more low-frequency errormaking it a poor guide for adaptive
sampling, as large regions may erroneously receive too few
samples. The rightmost plot shows the relative variance and
relative squared bias of the denoised image up to 32k samples
per pixel, revealing that variance is a relevant component of
its error up to at least 10k samples for this scene.

Jacobian-vector product which requires the propagation of only a
single scalar to each output is the advancement required for making
the estimate applicable to neural networks.

In the context of uncertainty quantification in deep learning [Ab-
dar et al. 2021], our estimate is related to the quantifying of aleatoric
uncertainty that arises from noise in the network’s input. In con-
trast to the variance propagation method of Postels et al. [2019],
used to estimate the epistemic uncertainty of a model using Monte
Carlo dropout, our method does not ignore the covariance between
features in the network’s hidden layers, stated as a practical limita-
tion in their work and in one experiment resulting in a magnitude
underestimation of 93.7%.

For the case of Monte Carlo denoising, where the neural net-
work’s output is local as it is effectively a weighted sum of many
individual pixel estimates, its output has significantly less (although
correlated) variance than its inputs. This is also reflected in our
estimate of its variance, which exhibits little to no pixel-wise inde-
pendent noise, as exemplified in Figure 2.

3.2 Denoising-Aware Adaptive Sampling
We present an algorithm for use with iterative adaptive sampling
(see Figure 3): given a pre-existing neural network based denoiser,
we distribute samples according to the variance of the current
denoised image. The initial iteration uses samples uniformly dis-
tributed over the image plane. After the rendering phase of each
iteration, we denoise the accumulated samples while simultane-
ously computing the variance of the denoised image. The variance
of each denoised pixel is then divided by the square of the denoised
radiance value of that same pixel. We also divide by the number
of accumulated samples so that sampling is proportional to the
expected relative variance decrease from one additional sample.
The resulting image has values

Var[𝑓𝑖 (x)]
(𝑁𝑖 + 1) (𝑓𝑖 (x)2 + 𝜖)

, (3)

Figure 3: General overview of the proposed iterative adaptive
sampling algorithm. Forward auto-differentiation is used
to calculate a variance estimate of the denoised image, as
described in Eq. 1. The sample distribution for the subsequent
iteration is calculated according to Eq. 3.

where we use 𝜖 = 10−2 to avoid dividing by 0. This image is clipped
to a minimum of 0, blurred using a gaussian filter with a standard
deviation of 0.5 in a 5×5 window, and subsequently normalized.
The blurring is done to avoid large discontinuities in the sample
distribution, as the denoiser used may not always be robust to such
inputs. For unbounded images, we opted to use relative variance to
guide our adaptive sampling to avoid over-emphasizing brighter
areas of the image, similar to previous work [Li et al. 2012].

3.2.1 Denoising with Post-Correction. Our variance estimate is
easily applied to the recently proposed neural James-Stein (NJS)
combiner [Gu et al. 2022], yielding an effective adaptive sampling
technique. In their work, two biased inputs, denoted here as 𝑓 (x𝑎)
and 𝑓 (x𝑏 ), produced by denoising independent unbiased estimates
𝑥𝑎 and 𝑥𝑏 , are blended by predicted per-pixel parameters 𝛼𝑖 , and
then combined with the unbiased input x = (x𝑎 + x𝑏 )/2 using
parameters 𝜌𝑖 whose calculation is based on James-Stein theory. The
variance of the two denoised inputs, Var[𝑓 (x𝑎)] and Var[𝑓 (x𝑏 )],
can be computed using our estimate from Section 3.1, with which,
along with the variance estimate of the unbiased input Var[x], the
variance of the final combined output is estimated by
𝜌2𝑖 (𝛼

2
𝑖 Var[𝑓𝑖 (x𝑎)] + (1 − 𝛼𝑖 )2Var[𝑓𝑖 (x𝑏 )]) + (1 − 𝜌𝑖 )2Var[x] , (4)

which we directly substitute for the numerator in Eq. 3 to get the
adaptive sampling technique. We overlook the fact that 𝛼𝑖 and
𝜌𝑖 are themselves random variables, and this simplification seems
reasonable given that we expect these parameters to have little to no
variance, possibly except when the post-correction is transitioning
from biased to unbiased inputs. We also omitted the regression-
based optimization used by Gu et al. [2022], which improves the
quality of the biased inputs at lower sample counts, as enabling it
would have required deriving the variance of the regressed images.

3.2.2 Tone Mapping. It is useful to consider that the final output
image may be tone mapped to values in [0, 1], and that we may
wish to incorporate this in our adaptive sampling. We can easily
incorporate a tone-mapping operator T : R𝑁 → R𝑁 into our
method by redefining the denoising function, 𝑓T (x) = T (𝑓 (x)),
using auto-differentiation to compute

𝜕

𝜕𝑥 𝑗
𝑓T𝑖 (x) =

𝑁∑︁
𝑘=1

(
𝜕

𝜕𝑓𝑘
T𝑖 (𝑓 (x))

𝜕

𝜕𝑥 𝑗
𝑓𝑘 (x)

)
(5)
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and in this way include the tone mapping in our variance estimate.
When computing the sample distribution, it is no longer necessary
or desirable to use relative variance as in Eq. 3 since the output is
now bounded, so we simply use Var[𝑓T𝑖 (x)]/(𝑁𝑖 + 1).

4 IMPLEMENTATION
We implemented our method in PyTorch [Paszke et al. 2019] using
its forward auto-differentiation (autodiff) capabilities to compute
the Jacobian-vector product (JVP) and neural network variance
as outlined in Section 3.1. For the denoising network, we opted
for the U-Net architecture [Ronneberger et al. 2015] and used the
pre-trained weights from version 1.4.3 of Intel’s Open Image De-
noise [Áfra 2019], as it is already of high quality and doing so
saved us from the trouble of training a denoising network from
scratch. An additional advantage of the U-Net architecture is that it
is relatively simple and standard, meaning we could apply forward
autodiff and compute the JVP out of the box. Evaluating the net-
work while simultaneously computing the JVP takes approximately
three times longer than just evaluating the network.

While we could have picked a different denoising architecture,
such as KPCN [Bako et al. 2017] and used pre-trained weights from
existing work, doing so would have required implementing forward
differentiation for the custom operations of that work. Writing the
corresponding forward autodiff operations should not be more
challenging than implementing the backward autodiff operations
typically required for training. Unlike backpropagation, forward
propagation does not require storing additional state. The time and
space complexity of computing the forward autodiff steps is the
same as the forward evaluation steps, unless the operation involves
difficult to compute derivatives which is rarely the case.

Of note when combining our method with the post-correction
method of Gu et al. [2022], as their method is implemented in a
machine learning framework other than PyTorch, we omit the high
time overhead of switching between contexts, approximately 130
milliseconds, such that our reported results are representative to
that of a regular implementation.

For our experiments, we used Mitsuba 3 [Jakob et al. 2022] with
a block size of 2×2 pixels to better facilitate thread parallel adaptive
sampling. For certain scenes, adaptive sampling takes longer to
render an overall equal amount of samples. This is due to the non-
uniform cost per sample for each pixel and ourmethod often placing
samples in regions with higher cost. We briefly experimented with
measuring this cost and taking it into account when distributing
samples, akin to recent work considering the cost of parameter
decisions [Grittmann et al. 2022; Rath et al. 2022]. While this re-
sulted in slightly quicker rendering iterations, it did not improve
the overall speed-up with regard to the error metrics used.

We also experimented with changing the granularity of the ren-
dering iterations, from sample counts as low as 4 to as high as 128.
The benefit of finer iterations is the time to first image and subse-
quent benefits from adaptive sampling. However, after sufficient
samples there was little benefit in terms of equal-time quality. One
penalty from using finer iterations is the increased overhead of
switching context between rendering and denoising, and while our
method proved robust to finer iterations, we ultimately settled on
32 samples per pixel as providing a good balance.

BAT
HROOM

BAT
HROOM2

BED
ROOM

CAR
CAR2

CLA
SS

ROOM

COFFE
E

DINING-ROOM

GLA
SS

-OF-W
AT

ER
HOUSE

KIT
CHEN

LA
MP

LIV
ING-ROOM

LIV
ING-ROOM-2

LIV
ING-ROOM-3

ROVER

SPA
CES

HIP

STA
IRC

ASE

STA
IRC

ASE
2

TE
APO

T-F
ULL

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

d-
Up

1.30

1.63

2.01

Uniform DASR MC-SURE Ours

Figure 4: Speed-up over uniform sampling, in equal-error
terms using relMSE, after 30s of rendering for the different
adaptive sampling methods. Our main proposed method con-
sistently outperforms all others. Horizontal lines indicate
average speed-up over the 20 scenes.

4.1 Adaptive Sampling with MC-SURE
In their adaptive sampling work, Li et al. [2012] find the derivatives
of the cross-bilateral filters they use. With these, they can obtain the
middle term of the SURE expression (Section 2.3.3) in its entirety.
To compute SURE for a neural network, we follow the approach of
Firmino et al. [2022] and compute the middle term using the Monte
Carlo SURE estimate put forward by Ramani et al. [2008]:

(J𝑓 (x) · Σ̂)𝑖,𝑖 ≈
1
𝜖𝐾

𝐾∑︁
𝑘=1

(
𝑏𝑇
𝑘
(𝑓 (x + 𝜖bk) − 𝑓 (x))

)
𝑖
.

In this expression, 𝑏𝑘 are random vectors distributed according to
N(0, Σ̂), 𝜖 = 10−4, and 𝐾 = 4 is the number of samples for the
estimate. Computing SURE in this manner, using the denoiser in
question, stands in contrast to computing SURE for cross-bilateral
filters despite denoising with a neural network. The latter approach
was used in the adaptive sampling comparisons of Kuznetsov et
al. [2018], where they found their approach superior to that of Li
et al. [2012]. When performing adaptive sampling using SURE, we
simply substitute the error estimate for the numerator of Eq. 3
and use a standard deviation of 4.0 with a 17×17 window for the
Gaussian filter due to the higher variance of the estimate. As adap-
tive sampling using SURE in this manner has not previously been
carried out, we consider it part of our contribution and include it
in our comparisons, denoted MC-SURE.

5 RESULTS AND DISCUSSION
Our results are presented in equal-time terms when comparing
to uniform sampling and other adaptive sampling methods. This
allows us to account for the fact that iteratively computing the JVP
incurs higher overhead than simply denoising, and that rendering
samples that are adaptively distributed often takes longer due to
the non-uniform sample cost between different pixels. We com-
pared our main proposed method, and MC-SURE, to deep adaptive
sampling and reconstruction (DASR) [Kuznetsov et al. 2018]. For
our implementation of their method, we used the same sampling
map estimator network trained in their work. As in their work, the
sampling map is computed only once after one sample per pixel
and is used for the rest of the rendering. The main discrepancy in
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Figure 5: Comparison of different adaptive sampling tech-
niques when combined with the post-correction method by
Gu et al. [2022]. Speed-up is over uniform sampling (without
post-correction to enable comparison with the factors in Fig-
ure 4) in equal-error terms using relMSE after 30 seconds.

our implementation is not using a denoiser trained in tandem with
the sampling network, although the network architecture remains
similar. Another caveat of our comparison to DASR, is that it is
targeted at very low sample count rendering which is not the tar-
get domain of our work, and a better comparison would be to the
method of Salehi et al. [2022].

The images in our experiments were rendered at 1280×720 or
comparable resolution. On average, denoising took 33 milliseconds,
or 110 milliseconds when simultaneously estimating the variance of
the output. The duration of our rendering iterations, all 32 samples
per pixel, varied depending on scene but on average lasted 2.60 sec-
onds for uniform sampling, and 2.91 seconds for adaptive sampling.
In all of our experiments, rendering was performed using a 32-core
CPU, and denoising done using an NVIDIA RTX 3090 GPU. In our
results, we report whole image errors using relative mean squared
error (relMSE), 1

|𝑃 |
∑ |𝑃 |
𝑖=1 (𝑡𝑖 −𝑟𝑖 )

2/(𝜖 +𝑟2
𝑖
) where 𝜖 = 10−2, with the

exception of the tone mapping experiment which uses root mean
squared error (RMSE), ( 1

|𝑃 |
∑ |𝑃 |
𝑖=1 (𝑡𝑖 − 𝑟𝑖 )

2)1/2, with 𝑡𝑖 and 𝑟𝑖 being
the 𝑖th pixel of the test and reference images, respectively, and |𝑃 |
the number of pixels times channels (three).

Path Tracing with Denoising. For comparing the various adaptive
sampling techniques on path-traced inputs, we used a dataset of 20
publicly available scenes [Bitterli 2016]. The rendered images were
denoised and their resulting error computed for every 32 samples.
This error was then used to calculated the speed-up over uniform
sampling. The results, after 30 seconds of rendering, are shown in
Figure 4, with detailed results for specific scenes in Figure 7.

Our experiments indicate that adaptive sampling using our pro-
posed variance estimate resulted in the best improvement, com-
pared to MC-SURE, or the learned method. We attribute the better
performance of our main contribution to two factors: the variance
estimate has itself significantly less variance than the MC-SURE
estimate, and therefore does not need to be as aggressively fil-
tered; adaptive sampling proportionally to variance should provide
greater benefit than sampling proportionally to error (variance plus
squared bias), as there is a direct relationship between the input
variance and output variance (Eq. 1) while the relationship between

Table 1: The impact of incorporating the tone-mapping op-
erator in the variance estimate, Var[T (𝑓 )], used for adaptive
sampling, versus not, Var[𝑓 ]. Speed-up over uniform sam-
pling, in equal error terms using RMSE on tone-mapped
images, after 30 seconds.

Speed-up Average Worst Best
Var[𝑓 ] / Var[T (𝑓 )] 1.49 / 1.92 0.81 / 1.30 2.77 / 3.35

input variance and output bias for neural network denoisers is less
clear. We verify this benefit further below in our comparisons to
ground-truth sampling. The learned method from Kuznetsov et
al. [2018], while it did improve over uniform sampling, was on
average worse than both of our methods after our methods’ ini-
tial iterations. Unlike our methods however, DASR is capable of
predicting its sampling map after just one sample per pixel, and
at very low sampling rates achieves lower error, while ours would
lack reliable statistical estimates.

Post-Correction Denoising. We combined our proposed adaptive
sampling technique to the recent post-correction denoiser from
Gu et al. [2022] as described in Section 3.2.1. Our results shown
in Figures 5 and 11 indicate improved error convergence when
combining post-correction denoising with adaptive sampling.

As our method samples according to the variance of the denoised
image, it ignores its bias. Post-correction methods will however
trade the bias for variance when the squared error of the denoised
image begins to exceed the variance of the unbiased image. This
trade may increase the variance of the combined image, meaning
our method will increase its sampling in such areas. Whether this
possible feedback loop can be detrimental or not is an open question,
however as our results show substantial improvement over uniform
sampling we suggest it is likely an overall positive.

Comparison to Ground-Truth Sampling. We compare our methods to
adaptive sampling in proportion to ground-truth relative variance
and error, which are estimated after each iteration by denoising
32 independently rendered images using the current iteration’s
cumulative pixel-wise sample count. As computing these estimates
is costly and impractical for actual usage, we report our results, Fig-
ures 8 and 9, in equal sample count terms. This experiment’s results
indicate that adaptive sampling in proportion to denoised variance
leads to faster convergence for overall error versus sampling in
proportion to denoised error, even when post-correction denois-
ing is used. Furthermore, these results suggest that our method’s
performance is not significantly worse than ground-truth variance
sampling, this despite the noise inherent in our variance estimate
of Section 3.1.

Tone Mapping. Using the ACES tone mapping curve [Arrighetti
2017], which is popular in modern game engines, we investigated
the impact of including tone mapping in the variance estimate using
auto-differentiation. As the tone-mapped values are bounded, we
opted to use root mean squared error (RMSE) rather than relative
mean squared error (relMSE) for this experiment. The results, see
Table 1, demonstrate a large benefit to incorporating tone mapping
when performing adaptive sampling, and this benefit is exemplified
in Figure 10.
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When the desired final output are tone-mapped values, our re-
sults in Table 1 and Figure 10, show it is useful to incorporate it
with adaptive sampling. Tone-mapping curves often exhibit a toe
and shoulder, at their lower and upper bounds respectively, where
the curve flattens significantly. This has the effect of compressing
the range of radiance values in those areas, as well as their variance,
which is easily incorporated into our method. The result is that addi-
tional samples are placed wherever else the visible benefit is larger.
We likewise found that different choices of guiding metric (i.e. the
relative variance used in Eq. 1), optimize for different error metrics.
For example, if using (root) mean squared error as the error metric,
variance as the guiding metric, perhaps unsurprisingly, performs
significantly better than relative variance. Therefore, choosing a
good metric is essential to achieving the best perceptual results, as
was the conclusion of prior adaptive sampling works [Bolin and
Meyer 1998; Hasselgren et al. 2020].

6 LIMITATIONS AND FUTURE WORK
One limitation of our method, perhaps inherent to all adaptive
sampling techniques, is the undersampling of small details as illus-
trated in Figure 6. While this limitation did not particularly stand
out in most scenes, it is nevertheless present in some. Our adaptive
sampling guide ignores error due to bias, and although this can
be addressed by post-correction denoising which trades bias for
variance, it first requires sufficient samples in the region of interest,
which may be missed due to allocating samples elsewhere.

In our experiments, we utilized an existing pre-trained denoiser
as its standard architecture eased our implementation while its
relative popularity serves to demonstrate the immediate applicabil-
ity of our method. This network has possibly been trained solely
on uniformly sampled images, and while we did not notice any
obvious artifacts, we note that using a network trained on adap-
tively sampled images may improve quality. Applying our variance
estimate to denoisers of a different network architecture remains
future work, as does an experimental comparison to the recent
work of Salehi et al. [2022].

An alternative to using the estimate by Ramani et al. [2008] to
estimate themiddle-term of SURE is to take the product (J𝑓 (x)v)𝑖v𝑖 ,
with the terms defined as in Section 3.1. While the benefits of this
alternative estimate are yet to be investigated and although they
may improve the SURE method, as the ground-truth experiments
indicate that adaptive sampling using variance leads to faster overall
error convergence, we think it is unlikely to affect our conclusions.

In production settings, quasi-Monte Carlo (QMC) integration is
often preferred due to its faster convergence rate. It remains future
work to test if our method could be applied to randomized-QMC,
which allows for estimating variance by creating few randomized
replications of a deterministic sample sequence [Owen 1998], as-
suming the denoiser used is robust to correlated sampling.

Temporal denoising is an exciting avenue to explore, for our
adaptive sampling technique as well as for our variance estimate.
While the denoiser we use does not address temporal denoising,
we briefly investigated denoising sequences of independent images
and noted a visible decrease in the temporal variance of the output,
which was expected as placing more samples in areas of high output
variance should subsequently decrease variance. It is possible to

time/spp/relMSE
BATHROOM

123.5s/1088/0.00380
Uniform

123.0s/1024/0.00298
Ours

248.7s/2048/0.00219
Ours (2x samples)

Figure 6: Despite the overall lower error, adaptive sampling
can result in under sampling details compared to uniform,
due to placing too many samples elsewhere as evidenced in
this example after 120s. Given sufficient samples however,
and due to the (𝑁𝑖 + 1) term in the denominator of Eq. 3, our
method eventually samples the undersampled region (right).

back-propagate gradients through the forward-propagated variance
estimate, which would allow it to become part of the loss function
used in training neural network denoisers. Penalizing output vari-
ance might lead to denoisers that are inherently more temporally
stable, while the bias-variance trade-offs of doing so present an
interesting question.

Outside of the rendering application presented here, we believe
that the deep neural network variance estimate could have an
impact in other fields. In particular, it could be applicable wherever
neural networks are employed on data that could be interpreted
as random variables, such as on noisy sensor measurements or
estimates from other types of Monte Carlo simulations.

7 CONCLUSION
We have proposed an a posteriori adaptive sampling method for
neural network denoisers, and shown better performance than uni-
form sampling and adaptive sampling based on error estimates
in equal-time comparisons. In the process, we have presented a
general method for estimating the variance of the outputs of a
deep neural network whose inputs are random variables, and this
estimate is computed using the Jacobian-vector product while simul-
taneously evaluating the network. When combined with a recent
post-correction denoising algorithm, even better error convergence
is achieved by our method, and we also demonstrate that incorporat-
ing tone mapping into our variance estimate yields an improvement.
The generality of our proposed adaptive sampling algorithm eases
its implementation in applications already using neural network
denoisers. Our generic variance estimate for neural networks could
be of general interest with potential applications beyond denoising.
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Figure 7: Equal time comparison of the different adaptive sampling methods on two different path-traced scenes (available
from Bitterli [2016]), and illustration of the sample distribution from our main proposed method. Directly estimating the
variance using the denoising network in question leads to sample distribution that performs better, and leads to less visible
denoising artifacts, than the learning based (DASR) and error estimate (MC-SURE) approaches.
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Figure 8: Ground-truth error and variance are costly to obtain.
If thesewere available for adaptive sampling, we could obtain
the speed-up shown here (in terms of average sample count)
over uniform sampling in equal-error terms using relMSE,
after 256 spp on average. Our method compared to adaptive
sampling using ground-truth error and variance (left), using
post-correction denoising (right). Average of 20 scenes.
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Figure 9: Comparing the cumulative sample distribution after
256 spp of our method with those from adaptively sampling
using ground-truth estimates of denoised error and variance.
Despite the noise in our variance estimate, we note agree-
ment between our sample distribution and that produced by
ground-truth variance. The plot on the right demonstrates
that sampling proportional to variance leads to faster con-
vergence versus error, and that our method approaches the
ground-truth rates. Scene: Coffee by cekuhnen (CC-BY).

LIVING-ROOM Samples, Var[𝑓 ] Samples, Var[T (𝑓 )]
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Figure 10: Example of the improved error and sample dis-
tribution achieved when incorporating tone mapping in the
variance estimate (Section 3.2.2). Tone-mapping the image
causes areas in the glossy floor to have their radiance values
compressed resulting in the final image having relatively lit-
tle variance there, as seen in the sample distribution. Scene:
The Grey & White Room by Wig42 (CC-BY).
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Figure 11: Results from incorporating the recent neural James-Stein (NJS) post-correction denoiser [Gu et al. 2022] with our
adaptive sampling algorithm, Section 3.2.1. By estimating the variance of the biased inputs, adapting to the blend of the
post-correction with the unbiased input, and distributing samples in proportion to variance, our method achieves substantially
faster convergence in all scenes tested, see Figure 5.
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