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Hybrid fur rendering: combining volumetric fur with explicit
hair strands
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Niels Jørgen Christensen

Abstract Hair is typically modeled and rendered us-

ing either explicitly defined hair strand geometry or a

volume texture of hair densities. Taken each on their

own, these two hair representations have difficulties in

the case of animal fur as it consists of very dense and

thin undercoat hairs in combination with coarse guard

hairs. Explicit hair strand geometry is not well-suited

for the undercoat hairs, while volume textures are not

well-suited for the guard hairs. To efficiently model and

render both guard hairs and undercoat hairs, we present

a hybrid technique that combines rasterization of ex-

plicitly defined guard hairs with ray marching of a pris-

matic shell volume with dynamic resolution. The latter

is the key to practical combination of the two tech-

niques, and it also enables a high degree of detail in

the undercoat. We demonstrate that our hybrid tech-

nique creates a more detailed and soft fur appearance as
compared with renderings that only use explicitly de-

fined hair strands. Finally, our rasterization approach is

based on order-independent transparency and renders

high-quality fur images in seconds.

Keywords Fur · Hair strand · Rasterization ·
Ray marching · Photorealistic rendering · Order-

independent transparency · Shell volume

1 Introduction

Modeling and rendering of fur is essential in a number

of applications within the entertainment and visual ef-

fects industry. In addition, digitally created fur is useful
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within the cosmetic and clothing industry as a tool for

designing new products. This work aims at fur visual-

ization for applications such as virtual clothing, where

the goal is to come close to the appearance of real fur

while retaining an aspect of interactivity in the render-

ing. It is a great challenge to semi-interactively generate

and render fur which is qualitatively comparable to real

fur. The challenge arises from the considerable number

of hair strands present in fur. Mink fur like the dressed

pelt in Fig. 1 (left) has around 20 thousand hair strands

per square centimeter [13].

There are two standard ways to model fur: explicit

models, where every hair strand is represented geomet-

rically; and implicit models, where hair strands are rep-

resented by volume densities. Explicit models excel at

creating visually distinguishable hair strands, but are
often prone to aliasing artifacts due to the thinness of

individual strands [3]. For dense animal furs, the alias-

ing artifacts become prohibitively processing intensive

to deal with. In contrast, implicit methods excel at rep-

resenting dense furs by treating the fur as a partici-

pating medium with scattering properties based on the

hair density. Implicit models, however, lack the ability

to represent an individual hair strand so that it is vi-

sually discernible from other nearby hair strands [11].

With high-resolution volumes, implicit models can rep-

resent individual hair strands [8], but this becomes too

processing and memory intensive for our application.

As exemplified in Fig. 1, we present a hybrid technique

that enables simultaneous rendering of explicitly and

implicitly modeled hair.

In Fig. 2, photos of a brown mink fur underline the

visual importance of undercoat and guard hairs: thick,

long guard hairs protrude from a fine, soft layer of un-

dercoat fur (right). The guard hairs exhibit a shiny ap-

pearance as opposed to the diffuse undercoat hairs. The
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Reference photo of a brown mink fur Explicit hair strands Hybrid fur (strands and volume)

Fig. 1 Most animal furs consist of both guard hairs and undercoat (left, as an example). These two fur layers are very different
and hard to model and render believably with explicit hairs only (middle) or volumetric fur only. We present a pipeline for
hybrid fur rendering that enables efficient combination of explicit hair strands with volumetric fur (right).

Fig. 2 Close-up photos of a brown mink fur. The fur skin is
bent to better illustrate the visual differences of the undercoat
hairs and the guard hairs. Both fur layers should be modeled
to qualitatively match the appearance of real fur.

undercoat hairs have a tendency to “clump” together

in cone-like structures (left), which resemble the ap-

pearance of a smooth noise function. As in previous

work [11,4], we find that both undercoat and guard

hairs have a significant impact on the overall appear-

ance of the fur. Kajiya and Kay [11] render both fur

layers in the ray marching pipeline used for volumetric

fur, but cannot clearly produce individual hair strands.

Bruderlin [4] renders both fur layers using explicit hair

strands and a micropolygon rasterization pipeline. How-

ever, the undercoat fur seems too sparse in comparison

with real animal fur. In addition, it appears too dark

when the general direction of the hair strands is close

to being parallel with the viewing direction.

We model the guard hairs with explicit camera-

facing geometry. For the undercoat, we extrude a shell

volume from the original polygonal model and dynam-

ically choose the subdivision level of each individual

triangle (dynamic resolution). We facilitate ray march-

ing of this shell volume by a new polygon neighbor data

structure and an on-the-fly lookup functionality for as-

sociating a position in space with an element of a volu-

metric data set (a voxel). To combine the volumetrically

modeled undercoat with geometrically modeled guard

hairs, we present two techniques using order-indepen-

dent transparency (OIT) [39] in a new way. These tech-

niques enable us to blend the implicit and explicit fur in

a physically plausible way while retaining an aspect of

interactivity (high-quality frames render in seconds).

2 Prior work

Early examples of fur rendering were based on raster-

ization of an explicit polygonal fur model [5,22]. Such

techniques easily lead to aliasing problems. To over-

come these problems, Kajiya and Kay [11] place vox-

els on the surface of a parameterized model to form a

volumetric fur shell. They render this using ray march-

ing [12]. Perlin and Hoffert [31] also use a volumetric

fur model rendered by ray marching, but they compute

fur volume densities using noise-based procedural tech-

niques. Using a rasterization-based approach and blur-

ring techniques to include approximate multiple scat-

tering, Kniss et al. [14] present an interactive version of

this noise-based volumetric fur. Their way of generat-

ing volumetric fur densities is similar to ours. However,

they use a full volume representation, where we use a

shell volume, and they do not include explicitly mod-

eled hair strands.

As an extension of Kajiya’s and Kay’s [11] shell vol-

ume, Neyret [29] shows how mipmapping is useful for

multiscale representation of geometry stored in shell

volumes. Neyret [30] also suggests adaptive resolution

by compression of the mipmap to suppress unvarying

information. This compressed mipmap corresponds to

a sparse voxel octree. Heitz and Neyret [9] present effi-

cient use of a sparse voxel octree that accurately repre-

sents tiny opaque geometry. Although this is a volume

representation, it is more suitable for rendering vox-

elized explicit fur [8]. As opposed to this, we use our

shell volume to represent an anisotropic participating
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medium defined by hair densities and scattering prop-

erties. Using a shell as in earlier work [11,29] instead of

a sparse volume encapsulating the entire scene, we more

easily obtain the orientation of the hair medium. In ad-

dition, our use of triangular prisms instead of boxes

enables us to build the shell volume for a triangle mesh

in a straight forward way.

There are many ways to model explicit hair strands.

LeBlanc et al. [15] model each hair strand as a tube

(a curved cylinder). At render time, these hair prim-

itives are broken up into line segments and rendered

as camera-facing geometry. In this way, each line seg-

ment appears as a cylinder. Goldman [7] slightly mod-

ifies this concept by using tubes with variable radius

such that the hair segments become truncated cones.

We use these tubes with variable radius for the model-

ing of our explicit hair strands (Fig. 3(3)). Following the

approach of Van Gelder and Wilhelms [35], we gener-

ate explicit fur on a triangle mesh by randomly placing

hair strands according to density and bending them ac-

cording to gravity. We use cubic Bézier curves to shape

the hair strands [1], and we apply grooming based on

texture maps [27].

Rendering of explicitly defined hair strands entails

a number of problems in aliasing, shadowing, and light-

ing [15,41]. The large number of rendering primitives is

also a challenge with respect to memory and processing

efficiency. To address these problems, LeBlanc et al. [15]

describe a rasterization pipeline specifically for render-

ing of explicit hair. In recent years, this pipeline has

been implemented to run efficiently on modern hard-

ware. Yuksel and Tariq [41] describe how to deal with

the large number of rendering primitives using geom-

etry and tessellation shaders. Yu et al. [40] use order-

independent transparency [39] to depth sort fur frag-

ments and accurately blend the contributions from the

hair strands seen in a pixel. We use similar techniques to

efficiently render explicit hair strands, but our pipeline

is different as it includes rendering of implicit volumet-

ric fur (Fig. 3).

The light scattering model used for scattering events

in volumetric fur, or to shade individual hair strands,

is important with respect to the realism of the ren-

dered result. Kajiya and Kay [11] presented the first

hair shading model and used it with volumetric fur.

Their model also applies to polygonal fur [15], and it is

often used due to its simplicity. Several authors suggest

different improvements for the Kajiya–Kay model [10,2,

26], whereas others consider hair microstructure to cre-

ate more physically based shading models [20,42,34,6,

37]. For our volumetric undercoat fur, we use the stan-

dard Kajiya–Kay model. For our explicit guard hair

strands, we use the single scattering component of the

artist-friendly shading model [34], and we add the dif-

fuse component of the Kajiya–Kay model to approxi-

mate multiple scattering between the guard hairs. We

could trade efficiency for accuracy by using a physically

accurate model [37] both for explicit hair strands and

as the phase function in the rendering of volumetric fur.

Offline techniques include multiple scattering to im-

prove realism [42,23,24,34,6,32,37], but spend minutes

per rendering. Interactive techniques do exist that in-

clude approximate multiple scattering effects [14,43,33,

36]. Such a technique could be combined with ours.

Again, it is a trade-off between efficiency and accuracy.

Lengyel [18] and Lengyel et al. [17] propose an ap-

proach where fur appearance is precomputed and stored

in 2D textures referred to as shells and fins. This tech-

nique enables real-time frame rates and has been im-

proved in different ways [38,16]. However, it can ulti-

mately only produce the rendering quality delivered by

the technique used for the precomputation. Our hybrid

technique is useful as a fast technique for precomputing

shells and fins in high quality.

3 Method

We model guard hairs explicitly with camera-facing ge-

ometry and undercoat hairs implicitly with a volumetric

shell wrapped around a polygonal base mesh. The vol-

umetric shell is created by extrusion of the base mesh

along smoothed vertex normals, resulting in a number

of triangular prism shaped volumetric elements (pris-

matic voxels) located between the base mesh and the

shell. To enforce the strengths and limit the weaknesses

of these two approaches, we combine them into a single-

pass rasterization-based technique.

Fig. 3 provides an overview of our rendering pipe-

line, which has the following steps. (1) We distribute

hair roots on a polygonal base mesh in a geometry

shader using the method outlined by Van Gelder and

Wilhelms [35]. However, we modify the distribution with

a 2D texture in order to control local density variations.

In addition, the geometry shader generates the pris-

matic shell geometry and associated meta-data, which

is stored in global buffers. (2) We use a compute shader

to generate the volumetric data set based on simplex

noise [21]. (3) We generate the camera-facing geome-

try for the explicit hair strands in a tessellation stage,

formed by a tessellation control shader and a tessella-

tion evaluation shader. The tessellation control shader

is executed once per hair strand root, and the tessella-

tion evaluation shader is executed once per hair strand

segment. Data relating to the hair strand geometry,

such as strand vertices and strand indices, are stored
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smoothed normals
base mesh

shell geometry virtual subdivision of layers

virtual subdivision in layers tessellated explicit hair strand
base mesh

shell geometry

base meshhair root

1 Generate strand roots and shell geometry 2 Generate the volumetric data set 3 Generate the explicit hair strand segments

4 Rasterization and shading of base mesh 5 Rasterization and shading of shell geometry 6 Rasterization and shading of explicit hair strands

7 Depth sort and and blend all fragments Global buffer

Increasing depth of fragments

Explicit fragment

Shell fragment

Base mesh fragment

Virtual fragments

Explicit fragment

Virtual fragments

Fig. 3 Overview of our shader pipeline. In steps 1–3, we generate explicit hair strand and shell geometry. In steps 4–6, the
generated geometry is rasterized and shaded (see also Fig. 4 and Section 3.1-3.2). In step 7, the shaded fragments are depth
sorted and blended in accordance with our blending algorithm (see also Fig. 5 and Section 3.3).

in global buffers. (4–6) We perform the actual render-

ing using three shader programs: one for the rasterized

base mesh, one for the rasterized shell geometry (im-

plicit fur), and one for the rasterized explicit fur. Fi-

nally, (7) we depth sort and blend the fragments.

3.1 Rendering of explicit hair strands

As described in Section 2, we use existing shading mod-

els to shade explicit hair strands. However, it is also im-

portant to consider self-shadowing [19]. We use a local,

approximate self-shadowing model based on an expo-

nentially increasing darkening of hair strands near the

base mesh [28,25]. In addition, we let the transparency

of the explicit hair strands increase exponentially to-

wards the hair strand tips, resulting in a softer and

more natural appearance of the fur.

3.2 Modeling and rendering of implicit hair strands

When rendering volumetric fur, we use the single scat-

tering ray marching algorithm by Kajiya and Kay [11].

The algorithm approximately solves the volume render-

ing equation [12] by considering light which has been

scattered towards the eye in a single scattering event.

In the ray marching, we account for attenuation both

from the light source to the scattering event and from

the scattering event to the eye.

We initialize ray marching in the shader for the ras-

terized shell geometry (step 5). The shell fragments act

as entry points to the volumetric shell (Fig. 4) and

enable us to render the fur data stored in the pris-

matic shell volume. The three fragment shaders all ac-

cess global buffers for shading calculations, and the pro-

cessed fragment information (depth, color, and type) is

output to another global buffer. This global buffer is
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entry point
(shell fragment)

exit point

shell geometry

base mesh

volumetric subelement

volumetric
layers

Point of entry to new volumetric subelement
Ray-marching step

Legend

subdivision of a volumetric layer

Fig. 4 The ray marching in step 5 of our shader pipeline.

shell fragment

explicit hair
fragments

explicit hair
fragments

explicit hair strand

shell geometry

base mesh

explicit hair fragment

shell fragment

increasing depth
OIT buffer

ray-marching step base mesh fragment

Fig. 5 The fragments generated by the three rasterization
steps of our pipeline, seen from the side.

accessed in the final step (7) during the depth sorting

and blending of the fragments (Fig. 5).

Generating the volumetric data set. To imitate the ap-

pearance of undercoat fur, we generate a 2D noise tex-

ture and apply it across all volumetric layers. We com-

bine this with an increasing randomization of uv-coor-

dinates as we approach the topmost layers of the shell

volume. The randomization provides a more soft and

fuzzy appearance. We also calculate tangent vectors

by increasingly randomizing the interpolated, smoothed

vertex normals towards the topmost volume layers.

Position to volumetric subelement. To associate a po-

sition in 3D space with an element of volumetric data,

we virtually subdivide the prismatic voxels into finer

volumetric sub-elements. We first slice the voxels into a

number of layers defined by the perpendicular distance

to the top of the voxel in question. We then subdivide

each triangular layer into smaller triangles by repeat-

edly connecting edge centers (see Fig. 6, left).

Consider a layer of a given voxel (a triangle) defined

by the points p0, p1 and p2, and its corresponding

edges e0, e1 and e2 (see Fig. 6, right). In order to cal-

culate a local index of a given position p in this layer,

we define three local sub-indices i0, i1 and i2 by

ix =

⌊(
1− dist⊥(p, ex)

dist⊥(px, ex)

)
2d
⌋
, (1)

p0 p1

p2

i 0=
0

i 0=
1

i 0=
2

i 0=
3

i1=0i1=1i1=2i1=3

i2 =0
i2 =1

i2 =2
i2 =3p

0 1 4 9

2 5 10
3 6 11

7 12
8 13

14
15

e 1

e
0

e2

1 subdivision

2 subdivisions3 subdivisions

Fig. 6 Our indexing scheme for a volumetric layer.

f0 f1

f2 f3

First pass
counter

clockwise

Second pass
clockwise

f1 f2

32 bit 32 bit

Unique key value
64 bit

Unique key creation

Fig. 7 Creation of unique keys for edges in order to build a
neighbor data structure.

where x ∈ {0, 1, 2}, d is the number of subdivisions

along each edge and dist⊥(p, e) is the perpendicular

distance from a point p to an edge e. Given the three

local sub-indices, we now determine the local index i of

a point p in a given layer as follows:

i = i0(1 + i0) + (i1 − i2) , (2)

where the first term specifies the local index of the ele-

ments with i1 = i2 (highlighted in Fig. 6, right). Hence,
it can be interpreted as an offset to which we need to

add the (signed) difference between the remaining two

local indices, i1 − i2. This results in a local index i for

the subelement of a given layer to which p belongs. In

combination with the voxel index iv and the layer index

il, the global index ig is now given by

ig = (ivnl + il)4
d + i , (3)

where nl is the number of layers in each voxel.

Neighbor data structure. To march through the voxels,

we need the ability to go from one primitive in a triangle

mesh to its neighboring primitives. This requires that

we store the indices of the three neighboring faces with

the vertex data of each face in the mesh. We obtain the

indices of neighboring faces by first iterating through all

faces and building a map that associates each edge with

a face that it belongs to. An edge is uniquely identified

by two 32-bit vertex indices. Hence, we can create a

unique key for all edges by bit-shifting one of the two
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vertex indices, and combining them into a single 64-bit

integer. This is illustrated in Fig. 7. We then build the

neighbor data structure by iterating over all primitives

again, but now forming keys in reversed order. A lookup

with a reversed key into the map that associates edges

with faces provides the index of the neighboring face,

which we then store with the vertex data of each face.

Ray marching in a fragment shader. Each shell frag-

ment has access to the global index of the voxel to which

it belongs. We step into the voxels along the direction

of the eye ray. At each step, we try to find a local index

within the current voxel. If such a local index exists,

we combine it with the global index of the voxel in or-

der to identify the volumetric subelement closest to the

current step position. As we can identify the volumet-

ric subelement, we can also associate each step position

with an element of the volumetric data set. If the cal-

culation of an index within the layer of the current step

position fails, we are no longer within the bounds of the

current voxel. In this case, we find the edge of the cur-

rent layer that is closest to the current step position and

refer to it as the exit edge. Following this, we attempt

to find a local index within one of the three neighboring

voxels. The relevant neighbor is given by our neighbor

data structure in combination with the exit edge. This

enables us to ray march through multiple voxels.

We continue this process iteratively until we find a

valid index in a voxel, or until we exit the volumetric

shell. Each time we find an index, we associate the step

position with an element of the volumetric data set and

do the standard computations of ray marching [11]: ac-

cumulate attenuation, ray march toward external light

sources, evaluate the phase function, and calculate the

radiance towards the eye.

Attenuation towards the eye is based on the den-

sity of the current and previously processed volumet-

ric subelements. We apply the Kajiya–Kay phase func-

tion [11], which determines the fraction of incoming

light scattered towards the eye at the current step. Fi-

nally, multiplication of the incoming light with density,

accumulated attenuation, and phase function results in

the radiance towards the eye from the current step.

3.3 Hybrid fur rendering

The explicit hair strands generate a vast number of

fragments (many per strand), whereas the shell vol-

ume generates just a few fragments where we start ray

marching into the underlying volume. One shell frag-

ment represents all undercoat hair strands intersected

by a given eye ray (Fig. 5). As a consequence, we can-

not treat the shell fragments as other fragments. If we

Fig. 8 Simplified blending (left) and blending with virtual
fragments (right).

did so, all fragments behind a shell fragment would ap-

pear occluded by all the undercoat hairs it represents.

Hence, the undercoat hairs would appear too dominant.

Based on these thoughts, a proper combination of the

two rendering schemes requires that the visualization

of the volumetric data set and the explicit hair strands

affect each other.

Virtual fragments. We achieve a physically plausible

combination of the two schemes by storing multiple vir-

tual fragments instead of only one per shell fragment.

When ray marching through the volume, we compute

the radiance towards the eye along the viewing ray.

Instead of only calculating a final radiance result, we

combine a small set of the ray marching steps into an

intermediate result and store this as a virtual fragment.

Additionally, each virtual fragment contains positional

information so that it can be depth sorted accurately

together with other non-virtual fragments (Fig. 3(7)).

This accurate depth sorting produces visually pleasing

results on close-up as demonstrated in Fig. 8. However,

due to the added virtual fragments, the total number

of fragments per pixel can easily exceed one hundred.

This larger set of fragments requires additional sorting

and more allocated memory, which becomes a limiting

factor in oblique views where rays take a longer path

through the shell volume.

Simplified blending. As a faster and less memory-in-

tensive alternative to virtual fragments, we extend the

fragment information to include the fragment type (in

addition to color and depth). The fragment informa-

tion describes whether a fragment stems from explicit

hair geometry, the shell geometry, or an opaque object.

We use this information in the per pixel post-processing

step of our implementation of order-independent trans-

parency (see Section 4), where we have access to all

fragment information for all pixels.

With the fragment type information, we can reduce

the alpha of a shell fragment based on the number of

unoccluded explicit hair strand fragments located di-

rectly behind it and their depth (Fig. 5). If no such
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explicit hair strand fragments exist, the shell fragment

keeps its original alpha value as determined by our vol-

ume rendering algorithm. For each explicit hair strand

fragment that we find, we subtract from the alpha:

αp = exp(−adpe) , (4)

where a is an attenuation parameter and dpe is the dis-

tance from the shell fragment to the hair strand frag-

ment. In this way, the explicit hair strands affect the

visual impact of the shell fragments. This is reasonable

as the attenuation accumulated during a ray marching

will increase for each intersection of the viewing ray

with an explicit hair strand. In addition, the effect is

local as αp decreases with increasing distance to the

shell geometry. While this simplified blending is clearly

an approximation, it enables us to avoid the memory

and performance hit of virtual fragments. When we ren-

der a full mesh, the fur is not up close, and the results

seem reasonable with this approximation, see Section 5.

Another aspect is that simplified blending is more user

friendly, as it provides direct control of the balance be-

tween the visual impact of each type of fur.

4 Implementation

Global buffer memory with custom layout is part of

the OpenGL 4.3 core specification. The Shader Stor-

age Buffer Object (SSBO) enables sharing of memory

between multiple shader programs. We utilize this fea-

ture by storing all data generated on the GPU in SS-

BOs. In this way, we avoid any overhead of copying

data between CPU and GPU, which is important in

our pipeline as we distribute rendering tasks into dif-

ferent shader programs (Fig. 3).
To blend fragments ordered by depth, we store all

generated fragments and use order-independent trans-

parency (OIT) [39]. This means that we do not need

a pre-sorting of scene geometry to have correct blend-

ing. Fragment information is stored in a pre-allocated

global buffer, which is sliced into smaller pieces of vary-

ing sizes. Each slice is a linked list storing information

such as fragment color and depth for all fragments of a

given pixel. As a result, we have access to all fragments

relating to each pixel of the final frame. We use the in-

formation in a per pixel post-processing step where all

fragments are depth sorted (back to front) and blended

with over-operations (see Section 3.3).

5 Results

Subdivision shell with neighbors. We first compare our

ray marching method with a more conventional ray–

voxel intersection technique. Both approaches produce

the same results but with significant differences in per-

formance. Ray marching with ray–prism intersections

accelerated by a binary space partitioning (bsp) tree

requires the time t (3 + 0.4 d) for processing, where t is

the time required by our method and d is the number

of subdivisions. The bsp tree stores index and bound-

ing box for every subelement in the shell and a large

number of splitting planes. The memory consumption

of this acceleration structure thus grows exponentially

with d. Our method is faster, does not depend on d,

and requires no acceleration data structure.

Rendering a bended fur skin. In Fig. 1 (left), we show

a reference photo of a cylindrically shaped brown mink

fur skin shot in a light controlled environment. We cre-

ated a polygonal model to roughly match the shape of

the skin, and added fur rendered with our hybrid ren-

dering technique, see Fig. 1 (right). We applied tone

mapping and depth of field as a post-processing effect.

If we only render explicitly modeled hair strands, the

fur lacks depth and softness, as seen in Fig. 1 (mid-

dle). In comparison, our hybrid technique achieves an

increase in softness and a higher level of detail in the

fur. As a consequence, the qualitative appearance of

the hybrid fur is in our opinion closer to the qualitative

appearance of the real fur.

Since our rendering technique is deterministic and

performs a complete depth sorting of all fragments, our

results do not suffer from temporal instability as can

be observed in the supplementary video. The fur in the

video differs slightly in appearance from that of Fig. 1

as we did not apply the post-processing effects.

Rendering a fur hat. Fig. 9 shows implicit, explicit, and

hybrid fur applied to a polygonal hat model. As for the

fur skin shown in Fig. 1, the addition of implicitly ren-

dered undercoat hairs qualitatively enhances the sense

of depth in the rendered fur.

Fig. 10 is an example of how the fur hat can be in-

tegrated into a live action background image in a qual-

itatively realistic fashion. We applied depth of field and

tone mapping as a post-processing effect. In the bottom

row of Fig. 10, we show an environment map captured

in the location where the background image was shot.

We created the environment map by unwrapping an

HDR photograph of a mirror ball with HDR-Shop 3.0.

We also used HDR-Shop to sample 16 directional light

sources (similar to the approach described by Hiebert et

al. [10]), which we used to simulate the effect of environ-

ment lighting of the explicit hair strands. We applied

this environment lighting in all our results. We did not

use environment lighting for the shading of the implicit

fur, as this environment lighting has a relatively small

visual effect on the implicit fur.
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Fig. 9 Renderings of a brown mink fur hat illuminated by the HDR environment map shown in Fig. 10: a implicitly rendered
fur, b explicitly rendered fur, c hybrid rendered fur.

Fig. 10 Top: brown mink fur hat integrated into a live-action
background image. Bottom left : chrome ball image of an en-
vironment. Bottom right : unwrapped environment map with
extracted light sources indicated as colored dots.

Rendering a furry bunny. Fig. 11 shows explicit and

hybrid fur applied to the Stanford bunny (69,451 trian-

gles). This demonstrates that our technique also applies

to larger meshes.

Rendering performance. We used an NVIDIA Quadro

K6000 GPU with 12 GB memory for rendering. Ta-

ble 1 presents memory consumption and timings for

each step of our hybrid fur rendering pipeline. As we

used 4× supersampling, the online render time should

be multiplied by four. The rendering resolution is 3840×
2274, which we downsample to get a high-quality fur

image of resolution 1920 × 1137. These settings were

used for all the rendered images that we present. Their

total rendering time is thus well below 13 seconds for all

meshes. In previsualization, the user would rarely need

Cylinder Hat Bunny

Triangle count 3584 5632 69451

1. Mesh and textures, GB 0.37 0.33 0.37
2. Prism volume densities, GB 1.06 0.77 0.59
3. Strand geometry, GB 0.06 0.52 0.28
4. Shell fragments, GB 0.20 0.20 0.20
5. Base mesh fragments, GB 0.20 0.20 0.20
6. Explicit fragments, GB 2.60 2.60 2.60

Total memory, GB 4.49 4.62 4.24

1. Process base mesh, ms 0.2 1.7 1.4
2. Prism volume densities, ms 2405 1740 1327
3. Generate expl. strands, ms 1.1 8.0 4.3
4. Rasterize shell volume, ms 635 519 755
5. Rasterize base mesh, ms 87.6 139 147
6. Rasterize explicit fur, ms 428 1270 795
7. OIT post-processing, ms 255 812 447

Preprocess time (1–3), ms 2406 1750 1333
Online render time (4–7), ms 1407 2740 2143
Total render time, ms 3813 4490 3476

Table 1 Memory consumption and timings for each step of
our pipeline when rendering a single frame of one of the im-
ages in this paper with resolution 3840 × 2274.

a high-resolution image. We therefore also generated an

image of lower resolution: 512×512 after downsampling

from 1024 × 1024. At this resolution, a single frame of

the cylinder mesh can be computed in a total of 489 ms

(not including preprocessing).

Using virtual fragments (as in Fig. 8), the number

of fragments generated in step 4 increases from one to x

per pixel on average. The OIT post-processing time in-

creases with x, and the limit is x = 30 in our examples,

as the memory consumption of step 4 then becomes

7.8 GB. Further increasing x requires a better GPU or

a trade-off such as lowering the resolution or comput-

ing densities on the fly. Quality-wise virtual fragments

carry a great potential, but they also require the user to

carefully consider the available GPU resources. A sim-

ilar memory and performance hit applies if we increase

the number of explicit hair strands. Using explicit fur

only, we could trade the 635 ms spent on ray march-
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Fig. 11 Comparison of explicit fur and hybrid fur. Magnified nose and back of the furry Stanford bunny seen in full in the
leftmost column: a, b explicitly rendered fur; c, d hybrid rendered fur.

ing in Fig. 1 for 82.432 undercoat hair strands. This is

however far from the 3.8 million hair strands in the un-

dercoat of the real mink fur. The use of volumetric fur is

thus important as here each scattering event represents

the net effect of scattering by many hair strands.

6 Discussion and conclusion

We combine geometrically modeled guard hairs with

volumetrically modeled undercoat hairs. The result is a

new fur rendering technique for accurate modeling and

rendering of the two layers present in nearly all ani-

mal furs. With this hybrid technique, we are able to

render images that in our opinion are a good approxi-

mation of the qualitative appearance of real animal fur.

The explicit representation of the guard hairs enables

us to imitate the visually distinguishable single strands

of hair. At the same time, the volumetric component

of our solution enables us to imitate the very dense

undercoat. We thus overcome the problems related to

an explicit representation of dense furs as well as the

problems related to visualization of distinguishable hair

strands with implicit approaches.

Our implementation requires less than a second to

render previews and less than a quarter of a minute to

generate fur and render it in high quality. Thus, we be-

lieve that our technique retains an aspect of interactiv-

ity that makes it suitable for virtual clothing or fashion

CAD systems. As we can regenerate the fur from an

arbitrary mesh and also render it in only seconds, our

technique fully supports fur animation. This includes

the ability to animate both undercoat and guard hairs.

There are many ways to improve our results. First

of all, we believe that virtual fragments have an inter-

esting potential as they lead to more accurate evalua-

tion of the volume rendering equation. Other important

ways to improve our work is by more accurate self-

shadowing, more physically accurate hair reflectance

and phase function, and inclusion of multiple scattering.

This could further improve the qualitative similarities

of reference photos and rendered images.

Our prismatic shell volume with dynamic resolution

has many potential applications beyond fur rendering.

We especially believe that it is useful in multiscale mod-

eling of bark, dust, dirt, fibers, or other phenomena that

stick to surfaces or grow on surfaces.

In conclusion, we presented a hybrid fur rendering

technique that forms a solid foundation for improv-

ing the quality of rendered fur in applications that re-

quire an aspect of interactivity. In particular, we believe

that our technique is an important step toward more

widespread use of fur in virtual clothing, fashion CAD,

and digital prototyping.
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