
Chapter 4
Predicting the Appearance of Materials Using
Lorenz-Mie Theory

Jeppe Revall Frisvad, Niels Jørgen Christensen and Henrik Wann Jensen

Computer graphics systems today are able to produce highly realistic images. The
realism has reached a level where an observer has difficulties telling whether an
image is real or synthetic. The exception is when we try to compute a picture of a
scene that really exists and compare the result to a photograph of the real scene. In
this direct comparison, an observer quickly identifies the synthetic image. One of the
problems is to model all the small geometrical details correctly. This is a problem
that we will not consider. But even if we pick a simple experimental setup, where the
objects in the scene have few geometrical details, a graphics system will still have a
hard time predicting the result of taking a picture with a digital camera. The problem
here is to model the optical properties of the materials correctly. In this paper, we
show how Lorenz-Mie theory enables us to compute the optical properties of turbid
materials such that we can predict their appearance. To describe the entire process of
predicting the appearance of a material, we include a description of the mathematical
models used in realistic image synthesis.

4.1 Introduction

The appearance of an object is a result of light reaching the eye after interacting with
matter. One way to capture the appearance of an object is to take a picture of it. This
means that a digital camera is not only an inexpensive consumer product, it is also a
fairly advanced device for measuring light. As we know from spectroscopy, light can
tell us a great deal about the material that it is illuminating. The question is then: what
can we learn about a material by taking a picture of it using a digital camera? The

J. R. Frisvad (B) · N. J. Christensen
Technical University of Denmark
e-mail: jrf@imm.dtu.dk

H. W. Jensen
University of California, San Diego

This is the author’s version of the work. The original publication is available at
www.springerlink.com and it was published in
W. Hergert and T. Wriedt (eds.): The Mie Theory: Basics and Applications,
Springer Series in Optical Sciences 169, DOI: 10.1007/978-3-642-28738-1 4
© Springer-Verlag Berlin Heidelberg 2012

101
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immediate response is: not a lot. Unless we have a lot of pictures of similar materials
in the same lighting environment which we can use to make a statistical model (this
is image analysis). Or unless we have a physical model of the material and lighting
environment that we can use to predict the picture (this is computer graphics). The
purpose of this paper is to show how to construct a model which predicts the result
of taking a picture of a material in a controlled lighting environment. In short, we
describe how to predict the appearance of materials. Once we have an appearance
model that predicts the result of taking a picture of a material, we can take a picture
of a similar material and fit the parameters in the model such that the picture of this
similar material is obtained. In this way, we can use a picture of a material to estimate
the properties of the material (analysis by synthesis).

The advantage of using a camera instead of a spectrometer is that it is inexpensive
and that it does not require small samples to be prepared for analysis inside a larger
device. Taking a picture using a digital camera is a simple, non-invasive process. This
means that it is particularly useful for food quality control and medical diagnosis.

To construct an appearance model that predicts the result of taking a picture of a
material, we need (a) a model of the camera, (b) a geometrical model of the material
sample, (c) a model of the light sources, (d) a model for light propagation, and (e)
a model for light scattering. The problematic model is the one for light scattering
because the material properties are unknown. The macroscopic optical properties of
materials are so diverse that it is impossible to measure and tabulate the properties
of all materials directly. This is where Lorenz-Mie theory comes in handy. Lorenz-
Mie theory provides the link between the particle composition of a material and its
macroscopic optical properties. The particle composition of a material is a very flex-
ible starting point. There are many different ways to combine small particles into one
macroscopic bulk material. To limit the potentially large number of input parameters,
we use empirical models to describe the size distribution and optical properties of the
particles. When available, these empirical models enable us to construct material ap-
pearance models that depend on only few essential inputs. A list of ingredients, for
example, where the relative contents are specified in weight percent. The example
used in this chapter is cow’s milk with fat and protein contents of the milk (in weight
percent) as input parameters.

4.2 Realistic Image Synthesis

The development of models for computing realistic images is a branch of computer
graphics known as realistic image synthesis [1, 2]. This field of research provides the
link between physical models of light and materials and the process of computing an
image as if it were taken with a real digital camera or as if it were seen with the eyes
of a human observer. Light transport and scattering is modelled in realistic image
synthesis using the mathematical model developed for radiative transfer [3, 4]. The
process of generating an image using a computer is referred to as rendering. Thus
realistic image synthesis is also known as realistic rendering.
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The basics of realistic image synthesis have been described in many text books.
A useful reference which provides both detailed descriptions and source code is the
book by Pharr and Humphreys [5]. The following subsections provide brief descrip-
tions of the five models that we need.

4.2.1 Camera

Think about taking a picture. The first thing you do is to position the camera and
orient it toward the objects that you wish to photograph. To model this setup, we
need a camera position ppp, a viewing direction v, and an up-vector u. A digital cam-
era is built around a photoactive charge-coupled device chip (CCD chip) which has
a limited number of bins across its area. This means that output images from a dig-
ital camera have a specific resolution (image width W and height H) measured in
number of pixels. Each pixel corresponds to a small area of the CCD chip and it has
an associated vector which describes the amount of light (of different colours) that
reached this area during exposure. To capture an image is to expose the chip for a
short amount of time and record the vectors for all the pixels. We model the light
sensitive area of the CCD chip by a rectangle in the image plane, and we will call it
the film. The viewing direction v is normal to the image plane and the up direction of
the image plane is given by the up-vector u. To position the film in space, we centre
it around the camera position ppp and move it a distance d in the viewing direction.
The distance d depends on the lens system of the camera and is called the camera
constant. The size of the film (width by height, w × h) is usually specified by an
angle in the vertical direction called the field of view, fov, and an aspect ratio a such
that

w = ah

h = 2d tan(fov/2) .

Using the camera resolution (W ×H), we can divide the film into pixels. To compute
an image, we trace a number of rays from ppp through each pixel of the film.

4.2.2 Geometry of Objects

Representation of arbitrarily shaped objects is a difficult problem with many solu-
tions. The computer graphics community is with little doubt the most extensive user
of surface models. The mainstream approach is to use a large number of small trian-
gles. If we let some triangles have common edges with others, we obtain a triangle
mesh. If there are no holes in the mesh, it represents the surface of a volume which
could be an object in our scene.
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The triangle mesh poses some problems. Unless we want to make objects with
sharp edges, we need an awfully large number of triangles to make an object look
smooth. Even more triangles are needed if we want smooth reflections and refrac-
tions as well. This problem is usually solved by computing a normal for each vertex
in the triangle mesh as originally suggested by Phong [6]. Such a vertex normal is
an average of the normals associated with the neighbouring triangle faces. When we
want to find the surface normal where a ray intersects a triangle, we interpolate the
vertex normals across the triangle using trilinear interpolation. In this way, we have
a number of points (the vertices in the triangle mesh) which make out a discrete
representation of a smooth surface.

4.2.3 Light Sources

A light source is typically modelled by letting an object in the scene emit light
equally in all directions from every surface point. Another option is to have a spheri-
cal map around the scene which acts as a background source or environment lighting.
This is called an environment map and it is modelled as if it were infinitely far away.
It is particularly useful for outdoor sceneries, where one can use a model of the at-
mosphere to compute a realistic environment map [7, 8, 9].

Another important type of light source is laser. As has been discovered in biomed-
ical optics [10], shining a laser into a turbid material (skin, for example) tells us sur-
prisingly much about the material. To model a laser source, we use a circular disk
which emits light weighted by a Gaussian function diminishing with the distance to
the centre of the disk. Laser is also nearly collimated. This is modelled by letting the
source emit light only in the direction normal to the surface of the disk.

4.2.4 Light Propagation

Pictures most often capture light in the visible part of the electromagnetic spectrum.
Visible wavelengths are very short, ranging from 380nm to 780nm, and it was shown
by Sommerfeld and Runge [11] that plane electromagnetic waves propagating in a
non-absorbing, homogeneous dielectric are equivalent to rays of light for λ → 0,
where λ denotes the wavelength in vacuum. This means that rays of light are often
a good model of visible light. According to Fermat’s principle, rays of light follow
the path of least time [12, pp. 457–463]. We can use this principle to trace rays of
light through a digitally modelled scene. The main limitation is that wave phenomena
such as interference and diffraction will not be captured. The visual effects from such
phenomena must then be incorporated into the scattering properties of the materials
in the scene. Diffraction by particles is incorporated into the macroscopic scattering
properties of a material using Lorenz-Mie theory. This is covered in Section 4.2.5.
Interference and diffraction effects caused by microfacets in the surface of an object
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are incorporated into surface reflection models. We will not discuss microfacetted
surface reflection models.

Rays of light are traced in straight lines as long as they travel in a homogeneous
medium, since, in this case, the shortest path is also the path of least time. Having
settled on a ray theory of light, we trace light backwards from the camera position ppp
through a pixel into our scene to see if it intersects one of the triangles that the
objects are composed of. The number of triangles is large, so some kind of spatial
data structure is needed to find the triangles that are most likely to be intersected
[13, 14, 15, 16]. An efficient ray-triangle intersection algorithm has been developed
by Möller and Trumbore [17]. Only the closest intersected triangle is considered,
other intersected triangles are hidden behind it. Once a point of intersection is iden-
tified and a surface normal has been computed, the next step is to estimate the light
that reaches this point. Assuming a smooth surface, light reflects off the surface and
refracts into the material as described by Fresnel’s formulae for reflectance [18].
New rays are traced from the point of intersection in the directions of reflection and
refraction (as dictated by the laws of reflection and refraction). Light reflects and
refracts recursively until it reaches a light source. This is called ray tracing, and
this recursive version, where new rays are traced from the point of intersection, was
first described for graphics by Whitted [19]. If light refracts into a turbid material, it
scatters as described in Section 4.2.5.

What we trace along a ray is electromagnetic energy. The rays follow the direction
of the time-averaged Poynting vector as closely as possible.

4.2.5 Light Scattering

In the previous section, we found a way to trace energy through matter. This is all
we need to render materials with a continuous interior. However, if a material is
composed of millions of microscopic particles, it is infeasible to model the surface
of every particle. Therefore we introduce a model for macroscopic scattering. The
model used to describe light scattering is the radiative transfer equation [3]:

(ω ·∇)L(xxx,ω) =−σt(xxx)L(xxx,ω)+σs(xxx)
∫
4π

p(xxx,ω ′,ω)L(xxx,ω ′)dω
′+Le(xxx,ω) , (4.1)

where L(xxx,ω) is the radiance at xxx in the direction ω , the subscript e denotes emis-
sion, and σs, σa, and σt = σs +σa are the scattering, absorption, and extinction co-
efficients respectively. The phase function p specifies the normalised distribution of
the scattered light. Radiance is a radiometric quantity measured in energy flux per
solid angle per projected area. The equation splits the directional derivative (left-
hand side), that is, the change in radiance along a ray, into three terms (right-hand
side): The first term denotes the exponential attenuation, the second denotes the in-
scattering from all directions, and the third is an emission term.
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The radiometric quantity radiance is fundamental in radiative transfer. It is what
the radiative transfer equation (4.1) is concerned with and it is defined (radiometri-
cally) by

L =
d3Q

dt dω dA⊥
=

d2Φ

dω dAcosθ
,

where Q is energy, t is time, Φ = dQ/dt is energy flux, ω is solid angle, A⊥ is pro-
jected area, A is area, and θ is the angle between the normal to the area dA and the
considered direction. Radiance describes the flow of energy through a differential
area dA. The energy flows in a directional differential volume dω which is not nec-
essarily normal to the area. The purpose of radiance is thus to describe the energy
flow in a ray of light incident on a surface.

Since radiance is a quantity based on energy, we assume that it follows the flow
of energy through a medium. Thus we trace rays using Fermat’s principle. However,
we have to be careful and take into account that radiance denotes flux per solid angle
per projected area. When we follow a ray of light through a material, we have to take
into account that the radiance may change along the ray. Let us see how radiance
changes upon refraction.

Consider a ray of light in a medium with refractive index n1 = n′1 + in′′1 incident
on a surface patch dA of a medium with refractive index n2 = n′2+ in′′2 . Due to energy
conservation at the boundary, the following condition must hold:

Li cosθi dAdωi = Lr cosθr dAdωr +Lt cosθt dAdωt ,

where Li, Lr, and Lt are the incident, reflected, and transmitted radiances and likewise
θi, θr, and θt are the angles of incidence, reflection, and refraction. In spherical
coordinates, the solid angles are defined by

dωi = sinθi dθi dφi

dωr = sinθr dθr dφr

dωt = sinθt dθt dφt .

Using the law of reflection θi = θr and the fact that both the reflected and transmitted
rays lie in the plane of incidence φi = φr = φt , the boundary condition becomes

Li cosθi sinθi dθi = Lr cosθi sinθi dθi +Lt cosθt sinθt dθt .

To find the transmitted angle, we have to consider the direction of the transmitted
ray. This is given by the law of refraction. We find

sinθt =
n′1
n′2

sinθi

cosθt dθt =
n′1
n′2

cosθi dθi .
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With this result, the boundary condition is Li = Lr +
(

n′1
n′2

)2
Lt . Or, in terms of outgo-

ing radiance,

Lo = RLi +(1−R)
(

n′1
n′2

)2

Li , (4.2)

where R is the Fresnel reflectance.
These equations show that radiance is not constant along a ray of light. If we

move along a ray through a heterogeneous medium, the radiance should be modified.
Generalizing the result above to the interior of a medium, we approximately have
[20, 21]

L1

n′21
dA1 =

L2

n′22
dA2 ,

where the subscripts 1 and 2 denote two locations along a ray of light. This means
that the quantity L1/n′21 is (approximately) constant along the ray. If we store L1/n′21
before tracing a ray from one point in a medium, then the radiance at the destination
point is L2 = n′22 L1/n′21 . Now that we know how radiance behaves as we move along
a ray, we are ready to evaluate the radiative transfer equation (4.1) using ray tracing.

Rendering realistic images using the radiative transfer equation, was first pro-
posed by Kajiya and Von Herzen [22]. Most rendering algorithms use approximate
evaluation schemes to gain speed. Here we will only describe the general way of
evaluating the radiative transfer equation. The remainder of this section is a short
account of Monte Carlo path tracing, which is a sampling-based rendering algo-
rithm that works in general. More information is available in the book by Pharr and
Humphreys [5]. Unfortunately, Pharr and Humphreys stop their treatment at sin-
gle scattering. Evaluation of the general case has been described by Pattanaik and
Mudur [23].

The emission term in the radiative transfer equation is just an added constant. It
is not difficult to include it, but it makes the equations rather long. Therefore we
leave out the emission term in the following. The general approach is as follows. We
first parameterise the radiative transfer equation using the distance s′ that light has
traveled along a path into a medium. We have (for a non-emitter):

dL(s′)
ds′

+σt(s′)L(s′) = σs(s′)
∫
4π

p(s′,ω ′,ω)L(s′,ω ′)dω
′ , (4.3)

where ω denotes the tangential direction of the path at the distance s′ along the path.
The parameterised equation (4.3) is a linear, first-order, ordinary differential equa-

tion (where σt(s′) is a variable coefficient). One way to solve such an equation is by
means of an integration factor:

Tr(s′,s) = exp

− s∫
s′

σt(t)dt

 . (4.4)

With this factor, the equation (4.3) becomes



108 4 Predicting the Appearance of Materials

d
ds′
(
Tr(s′,s)L(s′)

)
= Tr(s′,s)σs(s′)

∫
4π

p(s′,ω ′,ω)L(s′,ω ′)dω
′ . (4.5)

Note that Tr(s,s) = 1. Then by integration along the ray from the surface s′ = 0 to
the considered location in the medium s′ = s, the equation (4.5) attains the form:

L(s) = Tr(0,s)L(0)+
s∫

0

Tr(s′,s)σs(s′)
∫
4π

p(s′,ω ′,ω)L(s′,ω ′)dω
′ ds′ . (4.6)

For convenience some of the different mathematical quantities encountered in
this derivation have been given appropriate names in radiative transfer theory [3].
The distance s (or s′) traveled along the ray inside the medium, is referred to as the
depth. The integral in Equation 4.4 is called the optical thickness and is denoted by
the symbol τ , that is,

τ(s′,s) =
s∫

s′

σt(t)dt .

The integration factor itself Tr(s′,s) = e−τ(s′,s) is sometimes referred to as the beam
(or path) transmittance. Finally, the first term on the right hand side of the formal
solution (4.6) for the radiative transfer equation (4.1) is referred to as the direct trans-
mission term whereas the second term is called the diffusion term. Realistic rendering
is all about evaluating these terms in various kinds of ways.

To evaluate the equation (4.6) using Monte Carlo path tracing, we first take a look
at the direct transmission term Tr(0,s)L(0). For this term we need to estimate the
value of the optical thickness τ(0,s). If the medium is homogeneous, this optical
thickness is simply given by

τ(0,s) = σts . (4.7)

For heterogeneous media, we use sampling. The optical thickness is found quite
efficiently by the estimator:

N−1

∑
i=0

σt(ti)∆ t , (4.8)

where ∆ t is the step size (given as user input) and ti are locations along the ray found
using a single uniform random variable ξ ∈ [0,1]:

ti =
ξ + i

N
s . (4.9)

The number N of locations along the ray is found using the depth s which is the
distance to the next surface, that is, N = bs/∆ tc. Having estimated the optical thick-
ness τ(0,s), the beam transmittance Tr(0,s) is easily found and multiplied by the
amount of radiance L(0) to reveal the direct transmission term. The radiance L(0) is
the radiance which contributes to the ray at the surface of the medium.
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Evaluating the diffusion term is more involved. What we need is an estimator of
the form

1
N

N−1

∑
j=0

Tr(s′j,s)σs(s′j)J(s
′
j)

pdf(s′j)
, (4.10)

where the probability distribution function (pdf) preferably cancels out the transmit-
tance. The source function

J(s′) =
∫
4π

p(s′,ω ′,ω)L(s′,ω ′)dω
′ (4.11)

is evaluated using a distribution of samples over the entire unit sphere.
The following pdf is a good choice for the diffusion term estimator (4.10):

pdf(s′j) = σt(s′j)Tr(s′j,s) ,

since it has the simple complementary cumulative distribution function

ccdf(s′j) =
s∫

s′j

σt(t)Tr(t,s)dt = Tr(s,s)−Tr(s′j,s) = 1−Tr(s′j,s) .

Using the inverse transformation method [5, e.g.], we get the following equation for
sampling an interaction along the ray according to this pdf:

ξ j = 1−Tr(s′j,s) = 1− e−τ(s′j ,s) or ln(ξ j)+ τ(s′j,s) = 0 ,

where ξ j ∈ [0,1] is a uniform random variable for sample j. An interaction is either
scattering according to the source function (4.11) or absorption. The depth of the
sample is easily found for homogeneous media, where we have τ(s′j,s) = (s− s′j)σt ,
which gives

s′j = s+
ln(ξ j)

σt
. (4.12)

If s′j < 0, there is no interaction for sample j. For heterogeneous media we have to
step along the ray to find out where the optical thickness matches the event. Starting
at t1 in ti = s− i∆ t, we step along the ray by incrementing i, and if ln(ξ j)+τ(ti,s)> 0,
we stop and compute the location of the interaction as follows [23]:

s′j = s− (i−1)∆ t +
τ(ti−1,s)+ ln(ξ j)

σt(ti)
. (4.13)

Here it is assumed that σt(ti) is approximately constant in steps of size ∆ t along the
ray, such that σt(s′j) ≈ σt(ti). If we end up with ti ≤ 0 before the other criteria is
fulfilled, there is no interaction for sample j. The optical thicknesses needed in order
to find s′j are evaluated in the same way as when we evaluated τ(0,s) only with s− ti
in Equation 4.9 instead of s.
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Finally, the scattering coefficient σs(s′j) in the estimator (4.10) and the extinction
coefficient σt(s′j) in the probability distribution function (pdf) are canceled out by
means of a Russian roulette. At every interaction a Russian roulette is carried out
using the scattering albedo, which is defined by

α(s′j) = σs(s′j)/σt(s′j) ,

as the probability of a scattering event.
Using the sampling scheme described above, the estimator (4.10) becomes:

1
N

N−1

∑
j=0

J(s′j) =
1

NM

N−1

∑
j=0

M−1

∑
k=0

p(s′j,ω
′
k,ω)L(s′j,ω

′
k)

pdf(ω ′k)
(4.14)

for ξ < α(s′j) and 0 otherwise. For an isotropic phase function, sampling a uniform
distribution over the unit sphere leaves only L(s′j,ω

′
k) in the sum.

To summarise the algorithm, a ray is traced from an observer through a scene,
when it refracts into a turbid material, we do the following:

1. Trace a refracted ray. The radiance carried along the refracted ray is corrected
according to the boundary condition (Equation 4.2).

2. The tracing of the refracted ray gives the depth s to the next surface.
3. The radiance L(0) which contributes to the ray at the surface is found by tracing

new rays in the directions of reflection and refraction. If L(0) is not too small, we
evaluate the direct transmission term:

a. The optical thickness τ(0,s) is estimated using Equations 4.9 and 4.8 (or Equa-
tion 4.7 for homogeneous media).

b. The direct transmission term Tr(0,s)L(0) is found using the optical thickness
τ(0,s) (see Equation 4.4) and the radiance which contributes to the ray at the
surface L(0).

4. For every diffusion term sample j = 1, . . . ,N, a sample depth s′j is found using
Equation 4.13 (or Equation 4.12 for homogeneous media).

5. For the samples s′j > 0, a Russian roulette is done using the scattering albedo
α(s′j). For ξ < α(s′j), where ξ ∈ [0,1[ is a random variable, there is a scattering
event.

6. For every scattering event, the phase function p(s′j,ω
′
k,ω) is evaluated in M sam-

pled directions ω ′k with k = 1, . . . ,M. Likewise M new rays are traced at the posi-
tion s′j in the directions ω ′k to obtain the radiances L(s′j,ωk). Using Equation 4.14
this gives an estimate of the diffusion term.

7. Finally, the direct transmission term and the diffusion term are added to get the
radiance emergent at the surface L(s).

The numbers of samples chosen are often N = 1 and M = 1. Then we get a very noisy
sample image rather quickly. Another sample is then rendered and this is averaged
with the previous one. The next sample is weighted by one third and added to the
other two samples which are weighted by two thirds and so on. In this way the
image will improve itself over time. Even so, the Monte Carlo path tracing procedure
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spawns a formidable number of rays. It is very slow, but it converges to the intended
result in an unbiased manner. This is nice in a predictive rendering context, where
we want to predict the appearance of real-world materials.

4.3 Predicting Appearance

In order to predict the result of taking a picture with a digital camera, we need to
digitally model the 3D scenery that is going to be in the picture as explained in Sec-
tion 4.2.2. For example, in order to compute a realistic image of a glass of milk,
we need a geometric model of the glass and the milk inside it. The most practical
way of modelling such geometry is to use a computer aided design (CAD) system
(e.g. AutoCAD® or Pro/ENGINEER®) or a 3D modelling system (e.g. 3ds Max®,
Softimage®, or Blender™). A scene modelled using one of these systems can be ex-
ported to a text file and imported into a rendering system which implements a cam-
era model (see Section 4.2.1) and the models for light propagation and scattering
described in Sections 4.2.4 and 4.2.5. This could be our own rendering system or
another physically-based rendering system such as Maxwell Render™ or Indigo Ren-
derer. Once the geometry of the scene is in place, we need information about the
materials and the light sources in the scene. More specifically, we need the optical
properties of the materials and the emission profiles of the light sources.

To acquire the optical properties of a material, one option is to measure them.
Another option is to compute them from the particle contents of the material. The
second option is made possible by the Lorenz-Mie theory, and it provides us with
a very flexible way of modelling how the appearance of a material changes when
we change its contents. Nevertheless, the Lorenz-Mie theory has only reluctantly
been adopted in graphics. In the two papers [24, 25] where the theory was first con-
sidered for graphics applications, it was found to be either too complicated [24]
or too restricted [25] to be useful. The problematic restrictions are that the mate-
rial should consist of nearly spherical particles embedded in a non-absorbing host
medium. This significantly limits the number of materials that can be modelled by
the original version of the theory. Even so, the original theory has proven useful for
modelling the appearance of some special materials: Callet [26] used the theory to
model pigmented materials (such as paints, plastics, inks, and cosmetics which con-
sist of pigmented particles in a transparent solvent). Jackèl and Walter [8] used it
to model the atmosphere and rainbows. Nishita and Dobashi [27] used the theory
to model various other materials consisting of particles in air (clouds, smoke/gas,
fog/haze, snow, and sand). Most recently, we have seen a development towards gen-
eralisation of the Lorenz-Mie theory such that it becomes useful for a wider range of
materials. Such new developments were adapted for graphics by Frisvad et al. [28].
In the following section, we describe the link between material contents and macro-
scopic optical properties of the material as provided by the Lorenz-Mie theory.
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4.3.1 Computing Optical Properties

The input parameters for the radiative transfer equation (4.1) are the phase function
p(xxx,ω ′,ω), the scattering coefficient σs(xxx), and the extinction coefficient σt(xxx) (or
the absorption coefficient since σt = σa +σs). Together with the index of refraction
nbulk(xxx), these parameters constitute the optical properties of a material. In the fol-
lowing, we will omit the dependency on the position xxx in the material. Then we just
have to remember that this dependency should be inserted if the material is hetero-
geneous.

The phase function and the scattering coefficient are collectively referred to as
the scattering properties of the material. The direction of the incoming light ω ′ is
called the forward direction while ω is the direction of the scattered light. The plane
spanned by these two vectors is called the scattering plane and the angle between
them θ is called the scattering angle.

Scattering under the surface of a material is typically caused by particles. For sim-
plicity, let us assume that the particles are small, randomly distributed throughout the
material, not too densely packed, and approximately spherical. A particle is consid-
ered small when it is not directly visible to the human eye from the distance that it is
observed. If every particle were visible, we would have to model the surface of each
individual particle. If the particles were not randomly distributed, we would again
need to make a very precise model taking into account the ordered placement of
the particles in the material. When we assume that the particles are not too densely
packed, we assume that the distance between them is considerably larger than the
wavelength of the light. Under this assumption, we say that the particles scatter light
independently of each other. The assumption about approximately spherical parti-
cles ensures that scattering is symmetric around the forward direction and that the
two polarisation components do not affect each other. In other words, we only need
two scattering components to describe the scattering of a spherical particle: S1(θ)
for the polarisation component with the electric vector perpendicular to the scatter-
ing plane and S2(θ) for the polarisation component with the electric vector parallel
to the scattering plane. For unpolarised light, these two scattering components define
the phase function of a single particle by

pr(θ) =
|S1(θ)|2 + |S2(θ)|2

2|k|2Cs
, (4.15)

where Cs is the scattering cross section of the particle, k = 2πnmed/λ is the wave
number, and nmed is the refractive index of the host medium. If the host medium is
absorbing, nmed is a complex number. The scattering components (S1 and S2) and the
scattering cross section of a particle change depending on the radius r of the particle.
To indicate this, we let pr denote the phase function of a single particle of radius r.

The scattering cross section Cs of a particle is the area that would receive the same
amount of energy as the particle scatters if we subtend it normal to the incident light.
If we multiply the scattering cross section of a particle with the number density of
this type of particle in the material, we get the amount of light that will be scattered
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away from a ray of light per unit distance as it propagates through the material, that
is, we get the scattering coefficient σs. Since the particles may have many sizes with
different cross sections and scattering components, the scattering coefficient is an
integral over particle radii r:

σs =

rmax∫
rmin

Cs(r)N(r)dr . (4.16)

The number density in this expression is N(r)dr while N(r) itself is a number density
distribution. It is a distribution because it denotes the number of particles of radius
r in the range of particle sizes dr. The justification for this simple combination of
scattering cross sections into the macroscopic scattering coefficient is the assumption
about independent scattering of the particles.

To keep the phase function normalised, the expression for the macroscopic phase
function, often called the ensemble phase function, is:

p(θ) =

rmax∫
rmin

(
|S1(θ)|2 + |S2(θ)|2

)
N(r)dr

2|k|2σs
=

1
σs

rmax∫
rmin

Cs(r)pr(θ)N(r)dr .

As the equation shows, another way to find the ensemble phase function is as a
scattering cross section weighted average of the single particle phase functions pr
(defined by Equation 4.15).

Now we have an idea about how to find the scattering due to one type of parti-
cle in a medium. To deal with several different types of particles, we let A denote
the set of homogeneous substances appearing as particles in the host medium. Then
pi, σs,i, and σt,i denote the phase function and the scattering and extinction coef-
ficients for every individual particle inclusion i ∈ A. Once the phase function has
been determined for each individual particle inclusion, the ensemble phase function
is computed using a scattering coefficient weighted average:

p(θ) =
1
σs

∑
i∈A

σs,i pi(θ) . (4.17)

Considering the number of single particle phase functions required to approximate
the ensemble phase function p(θ), it is only practical to either tabulate the phase
function or to use the ensemble asymmetry parameter g (see below) with one of
the standard phase functions, e.g. the Henyey-Greenstein phase function which is
defined by [29]

p(θ) =
1

4π

1−g2

(1+g2−2gcosθ)3/2 .

A more exact option is to use a multi-lobed phase function where the Henyey-
Greenstein function replaces pi(θ) in Equation 4.17. The asymmetry parameter is
defined by the integral over all solid angles of the cosine weighted phase function:
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g =
∫
4π

p(θ)cosθ dω .

If the asymmetry parameter is computed for single particles and individual parti-
cle inclusions, we can compute the ensemble asymmetry parameter as a weighted
average using the same weights as for the ensemble phase function.

Because we assume that particles scatter light independently, not only scatter-
ing cross sections are additive (see Equation 4.16), but also scattering coefficients
(and extinction coefficients) are additive. Finding the bulk scattering coefficient is
straightforward:

σs = ∑
i∈A

σs,i .

Note that volume fractions are not included in this formula, because they are a part
of the number density distributions.

In a transparent medium, the extinction coefficient is defined by an equivalent
sum, but in an absorbing medium an important correction must be made. Since the
host medium is a part of the extinction process, a non-absorbing particle will reduce
the extinction of the bulk medium. This means that the extinction cross sections
can be negative [30]. The extinction cross section resulting from the Lorenz-Mie
theory is, in other words, relative to the absorption of the host medium and the nec-
essary correction is to include the host medium absorption σa,med in the sum. For
this purpose, we compute the bulk extinction coefficient for particles in an absorbing
medium by

σt = σa,med +∑
i∈A

σt,i ,

and the bulk absorption coefficient is given by the simple relation σa =σt−σs. These
bulk coefficients are never negative.

To compute the refractive index of the bulk medium nbulk, we follow van de
Hulst’s [31] derivation of a formula for the effective index of refraction, but we re-
move the assumptions of non-absorbing media and particles of only one radius. This
gives the following approximate relation for the real part of the bulk refractive index:

Re(nbulk(λ )) = Re(nmed(λ ))+λ ∑
i∈A

rmax∫
rmin

Im
(

Si,r,λ (0)
k2

)
Ni(r)dr ,

where Si,r,λ (0) = S1(0) = S2(0) is the amplitude in the forward direction of the wave
of wavelength λ scattered by a type i particle of radius r, Ni(r) is the number density
distribution, and k is the wave number. The imaginary part is found by its relation to
the bulk absorption coefficient:

Im(nbulk(λ )) = σa(λ )
λ

4π
. (4.18)
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4.3.2 Lorenz-Mie Theory

Lorenz [32] and Mie [33] showed that when the scattering components are expanded
using spherical functions they are defined, for a homogeneous plane wave, by [32,
33, 31, 34]

S1(θ) =
∞

∑
n=1

2n+1
n(n+1)

(anπn(cosθ)+bnτn(cosθ)) (4.19)

S2(θ) =
∞

∑
n=1

2n+1
n(n+1)

(anτn(cosθ)+bnπn(cosθ)) , (4.20)

where the functions πn and τn are related to the Legendre polynomials Pn as follows:

πn(cosθ) =
P1

n (cosθ)

sinθ
=

dPn(cosθ)

d(cosθ)

τn(cosθ) =
dP1

n (cosθ)

dθ
= cosθπn(cosθ)− sin2

θ
dπn(cosθ)

d(cosθ)
.

Their numeric evaluation can be found in standard references on Lorenz-Mie the-
ory [35, 36].

It remains to give expressions for the Lorenz-Mie coefficients an and bn. Suppose
the refractive index of the particle is np. Then the coefficients are given, in the far
field, by [32, 33, 31, 34]

an =
nmedψ ′n(y)ψn(x)−npψn(y)ψ ′n(x)
nmedψ ′n(y)ζn(x)−npψn(y)ζ ′n(x)

(4.21)

bn =
npψ ′n(y)ψn(x)−nmedψn(y)ψ ′n(x)
npψ ′n(y)ζn(x)−nmedψn(y)ζ ′n(x)

, (4.22)

where the primes ′ denote derivative. The spherical functions ψn(z) and ζn(z) are
known as Riccati-Bessel functions. They are related to the spherical Bessel functions
jn(z) and yn(z) as follows:

ψn(z) = z jn(z)

ζn(z) = z( jn(z)− iyn(z)) .

The argument z is an arbitrary complex number, the arguments x and y used for the
Lorenz-Mie coefficients are related to particle and host media as follows:

x =
2πrnmed

λ
and y =

2πrnp

λ
,

where λ is the wavelength in vacuum and r is the radius of the spherical particle.
When computers came around, it turned out to be quite difficult to find a numer-

ically stable way of evaluating the spherical functions ψn and ζn for complex argu-
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ments. Eventually, the numerical difficulties were solved for complex y [37, 35, 38].
This is sufficient for the traditional Lorenz-Mie theory with a non-absorbing host
medium. When people started considering spheres in an absorbing host, starting
with Mundy et al. [39], it became necessary to find a robust way of evaluating the
Lorenz-Mie coefficients for complex x as well. This is considerably more difficult.
The following describes a robust evaluation scheme proposed by Frisvad et al. [28].

In the case of an absorbing host medium, nmed has an imaginary part and then the
parameter x is complex. The consequence is that most numerical evaluation schemes
become unstable because the Riccati-Bessel functions enter the exponential domain
and run out of bounds.

To avoid the ill-conditioning of the Riccati-Bessel functions ψn and ζn, the
Lorenz-Mie coefficients (4.21–4.22) are rewritten in a form involving only ratios
between them [37]

an =
ψn(x)
ζn(x)

nmedAn(y)−npAn(x)
nmedAn(y)−npBn(x)

(4.23)

bn =
ψn(x)
ζn(x)

npAn(y)−nmedAn(x)
npAn(y)−nmedBn(x)

. (4.24)

Here An(z) and Bn(z) denote the logarithmic derivatives of ψn(z) and ζn(z) respec-
tively:

An(z) =
ψ ′n(z)
ψn(z)

and Bn(z) =
ζ ′n(z)
ζn(z)

.

The ratio An is only numerically stable with downward recurrence. Therefore the
following formula is employed for its evaluation [37]

An(z) =
n+1

z
−
(

n+1
z

+An+1(z)
)−1

. (4.25)

This formula is also valid for the ratio Bn, but then it is unfortunately unstable for
both upward and downward recurrence [40]. Instead, we use a different formula for
Bn which has been developed by Mackowski et al. [41] in the field of multilayered
particles embedded in a non-absorbing medium. It is numerically stable with upward
recurrence for any complex argument [41]:

Bn(z) = An(z)+
i

ψn(z)ζn(z)
(4.26)

ψn(z)ζn(z) = ψn−1(z)ζn−1(z)
(

n
z
−An−1(z)

)(
n
z
−Bn−1(z)

)
. (4.27)

It remains to give a recurrence relation for the ratio ψn(z)/ζn(z) in Equations 4.23
and 4.24. Recent developments in the context of multilayered particles, provide a
recurrence relation that works well for small Im(z) [42, 43]:
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ψn(z)
ζn(z)

=
ψn−1(z)
ζn−1(z)

Bn(z)+n/z
An(z)+n/z

. (4.28)

The restriction to small Im(z) is not a problem in graphics applications, as a larger
Im(z) means that the host medium is highly absorbing, and then we would not be
able to see the effect of particle scattering anyway.

The amplitude functions (4.19–4.20) are defined by an infinite sum, and in or-
der to get a decent approximation, we must find an appropriate number of terms M
to sum. This is also necessary for initialisation of the downward recurrence (4.25)
which computes An(x) and An(y). A formula determining M, which has both an em-
pirical [38, 41] and a theoretical [40] justification, is

M =
⌈
|x|+ p|x|1/3 +1

⌉
,

where p = 4.3 gives a maximum error of 10−8. It is possible to calculate an ap-
proximate initial value for the downward recurrence (4.25), but, as explained by
Dave [35], the recurrence is not sensitive to the initial value, and therefore we can
arbitrarily choose AM(z) = 0.

Once A0(z), . . . ,AM(z) have been computed for both z = x and z = y, we are able
to find the ratios Bn(x) and ψn(x)/ζn(x) as well as the Lorenz-Mie coefficients, an
and bn, step by step. Note that there is no need to store Bn(x) and ψn(x)/ζn(x) since
they are computed using upward recurrences (4.26–4.28). These recurrences should
be initialised by

B0(z) = i

ψ0(z)ζ0(z) = 1
2

(
1− ei2z

)
ψ0(z)/ζ0(z) = 1

2

(
1− e−i2z

)
.

Recall that there is a direct relationship between wavelength λ and the size pa-
rameters x and y. This tells us that the Lorenz-Mie coefficients are spectrally depen-
dent and should preferably be sampled at different wavelengths. They also depend
on the particle radius r and are valid for spherical particles of arbitrary size as long
as they do not exhibit diffuse reflection (which is only possible if the particle size
greatly exceeds the wavelength and, even so, the surface of the particle might still be
smooth) [31]. Furthermore, the equations provided in this section reveal that the com-
plex refractive index of each particle inclusion, as well as that of the host medium,
are needed as input parameters for computing the optical properties of a scattering
material.

This robust way of computing the Lorenz-Mie coefficients enables us to compute
the scattering amplitudes S1 and S2 (using Equations 4.19 and 4.20). With these,
we are able to find the extinction and scattering cross sections as well as the phase
function of the particle. These are all well defined quantities for particles in a non-
absorbing medium. For a particle in an absorbing medium, the scattering cross sec-
tion is a problematic quantity because the resulting formula depends on the distance
to the observer.
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When particles are embedded in an absorbing host, the extinction cross section
Ct is the only well defined observable quantity [30]. It is computed using an optical
theorem first presented by van de Hulst [44, 31]. The original theorem by van de
Hulst is valid for particles of arbitrary shape and size, but it only applies to a non-
absorbing host medium. To account for an absorbing host, we use a slightly modified
equation presented by Bohren and Gilra [30]:

Ct = 4πRe
(

S(0)
k2

)
, (4.29)

where S(0) = S1(0) = S2(0) is the amplitude in the forward direction of the scattered
wave and k = 2πnmed/λ is the wave number. Since the host medium was assumed
by van de Hulst to be non-absorbing, nmed and therefore also k were assumed real
and moved outside the Re operator (which takes the real part of a complex number).
This is not allowed if the host medium is absorbing as the result would be a mean-
ingless complex extinction coefficient. Correction by discarding the imaginary part
of the result would not be a good approximation (except when particle absorption
is considerably stronger than that of the host medium [30]). Inserting the expression
for S(0) in this optical theorem (4.29), we get

Ct =
λ 2

2π

∞

∑
n=1

(2n+1)Re
(

an +bn

n2
med

)
.

A form has not been found for the scattering cross section Cs which is indepen-
dent of the distance to the observer, but we still have to approximate Cs to evaluate
the radiative transfer equation (4.1). We use a far-field approximation which has been
reported to be consistent with measured data [45, 46]. The chosen formula is iden-
tical to the scattering cross section for transparent media except for two correction
terms: an exponential term and a geometrical term γ . The formula is

Cs =
λ 2e−4πr Im(nmed)/λ

2πγ|nmed|2
∞

∑
n=1

(2n+1)
(
|an|2 + |bn|2

)
, (4.30)

where r in the exponential term is the uncertain part of the equation because it ought
to be the distance to where the scattered wave is observed. This distance is unknown,
and consequently it has been projected to the particle surface, such that r denotes the
particle radius.

The geometrical term γ accounts for the fact that the incident wave changes over
the surface of the particle as a consequence of the absorbing host medium. It is
defined by [39]

γ =
2(1+(α−1)eα)

α2 , (4.31)

where α = 4πr Im(nmed)/λ and γ→ 1 for α→ 0. Note that α is 0 when the medium
is transparent and close to 0 for small particles in a weakly absorbing medium. To
avoid numerical errors, one should use γ = 1 for α < 10−6.
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The precision of the far field approximation (4.30,4.31) has recently been re-
viewed [47] and compared to experimental data [45, 46]. The conclusion is that it
(as expected) does not give entirely accurate results, but it does give physically plau-
sible results. It is also concluded that significant errors can result if the absorption
of the host medium is ignored (this is especially true when the size parameter x is
large).

In the same way that it is possible to formulate expressions for the scattering and
extinction cross sections of a spherical particle using Lorenz-Mie theory, it is also
possible to derive the following formula for the asymmetry parameter of a single
spherical particle [31]:

g =
∑

∞
n=1

{
n(n+2)

n+1 Re(ana∗n+1 +bnb∗n+1)+
2n+1

n(n+1)Re(anb∗n)
}

1
2 ∑

∞
n=1(2n+1)(|an|2 + |bn|2)

,

where the asterisks ∗ denote the complex conjugate.
This concludes the robust scheme for computing the scattering properties of a

sphere in a host medium. When using the Lorenz-Mie theory to compute macro-
scopic scattering properties of a medium (as described in Section 4.3.1), some in-
formation about the particle shapes and sizes is needed. We will look at this in Sec-
tions 4.3.3 and 4.3.4.

4.3.3 Number Density Distributions

Particle size distribution is the common term for distributions that we can use to
find the number densities of particles of different sizes. One type of size distribution,
which is often encountered in the literature, is the volume frequency distribution
r3N(r). Such distributions typically follow a log-normal distribution. Log-normal
distributions are often described by a mean particle size µ and a coefficient of varia-
tion cv = σ/µ , where σ is the standard deviation.

If we find that the volume frequency of some type of particle in a medium follows
the log-normal distribution with mean value µ and standard deviation σ , the volume
frequency distribution is given by

r3N(r) =
1

rβ
√

2π
e−

1
2

(
lnr−α

β

)2

, (4.32)

where r is the particle radius and

α = ln µ− 1
2

ln
(

σ2

µ2 +1
)

and β =

√
ln
(

σ2

µ2 +1
)

.

This type of distribution is commonly observed for small particles. Distributions of
larger particles tend to follow a power law. If the particle number density of some
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type of particle in a medium follows a power law, the distribution is given by

N(r) = N∗r−α ,

where α is usually determined empirically and N∗ is a constant which is determined
by the relationship between number density and the volume fraction of the medium
occupied by the considered type of particle (Equation 4.33).

Measured data are sometimes available which specify the volume fraction vi,
i ∈ A, of each particle inclusion that is present in the bulk medium. In any case,
volume fractions are a reasonable choice of input parameters. The number density
distribution N(r) specifies the number of particles per unit volume with radii in the
interval [r,r+dr]. This means that the volume fraction occupied by a particle inclu-
sion, which consists of spherical particles, is

v =
4π

3

rmax∫
rmin

r3N(r)dr . (4.33)

Suppose we measure the particle size distributions for some sample of material. Then
we would have empirical functions or tabulated data that fit the volume fractions of
the particles in the original sample. Most probably the original volume fractions
are not the volume fractions we desire in our medium. Equation 4.33 is important
because it explains how we find the original volume fraction voriginal,i of particle
type i. If the volume fraction vi is desired rather than voriginal,i, the measured number
density distribution should be scaled by vi/voriginal,i.

4.3.4 Non-Spherical Particles

Particles are not always spherical. There exist a number of theories for the scattering
of other perfect mathematical shapes like cylinders, hexagonal columns and plates,
etc. They are useful because some materials actually do consist of particles approxi-
mately of these shapes. Halos are, for example, the result of scattering by hexagonal
ice crystals in the atmosphere. Instead of the mathematical approach, let us use a
more practical approach for non-spherical particles.

With the theory we have already developed, we are able to approximate non-
spherical particles by an appropriate collection of spherical particles. It is not obvi-
ous what set of spheres we should choose to model a non-spherical particle in the
best way. Many different concepts have been tried: equal-volume spheres, equal-area
spheres, etc. The best approach we are aware of is that of Grenfell and Warren [48].
They use volume-to-area equivalent spheres. As opposed to equal-volume and equal-
area spheres, the volume-to-area equivalent spheres have proven to be quite exact.
They have been tested for cylinders [48], hexagonal columns and plates [49], and
hollow columns and plates [50]. In most cases the error is less than 5%. At least this
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is true for scattering and extinction coefficients. The approximation is, as could be
expected, less accurate with respect to the phase function.

To represent a particle of volume V and surface area A by a collection of spheres,
the radius of the equivalent spheres is found simply using the volume to surface area
ratio of a sphere [48]:

req = 3
V
A

.

Since the number of equivalent spheres is not equal to the number of non-spherical
particles, the number density must be adjusted accordingly [48]:

Neq

N
=

3V
4πr3

eq
.

The equivalent radius req and the equivalent number density Neq are then used for
computing the optical properties of the material with Lorenz-Mie theory for com-
puting the cross sections of the equivalent spheres. This is a simple and practical
approach which gives rather good results. It has been used with the theory presented
here to develop an appearance model for natural ice which contains both cylindri-
cally and spheroidally shaped particles [28, 51]. In the milk case study (Section 4.4),
the volume-to-area equivalent size distribution is reported directly in the literature,
so the radius and number density adjustments are not necessary.

4.3.5 Scattering of a Gaussian Beam

In wave optics, a generalised version of the Lorenz-Mie theory [52, 53] would be
needed to model the scattering by a particle of a shaped beam such as laser. However,
we are using the scattering by particles in a geometrical optics context. The scattering
of a ray, which traces an infinitely thin part of the wavefront, is adequately modelled
by the scattering of a plane wave. Thus we do not employ the generalised Lorenz-Mie
theory, but model a Gaussian beam (a laser source) as described in Section 4.2.3.

When we render an image using the algorithm described in Section 4.2.5, the
laser source poses a problem. Rays are traced from the observer and new directions
are sampled at every scattering event. Since the laser source is small and collimated,
the chance of a ray hitting the laser source from the right direction is almost non-
existing. To solve this problem, we use bidirectional path tracing [54]. As described
in Section 4.2, rays are traced from the observer through each pixel in the image
into the scene. To account for a laser source, we also sample a position on the laser
source and trace a ray from this position to the first scattering event in a medium. For
every ray from the observer that reaches this medium, we compute the contribution
from the scattered laser light. Every time all pixels have been sampled once by rays
from the observer, a new sample ray is traced from the laser source. This is how we
accommodate a laser source in the path tracing algorithm. In the following, we will
use the theory to predict the appearance of milk.
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Table 4.1 The coefficients for the empirical formula (4.34) by Quan and Fry [57].

n1 = 1.779 ·10−4 n4 =−2.02 ·10−6 n7 =−0.00423
n2 =−1.05 ·10−6 n5 = 15.868 n8 =−4382
n3 = 1.6 ·10−8 n6 = 0.01155 n9 = 1.1455 ·106

4.4 Milk as a Case Study

Milk consists roughly of an emulsion of milkfat globules; a colloidal suspension of
protein particles; and lactose, soluble proteins, minerals, vitamins, acids, enzymes,
and other components dissolved in water [55]. About 80% of the protein in milk
is casein protein. Most of this casein, about 95% [56], exists in colloidal particles
known as casein micelles. From an optical point of view, milk can then be treated
as two different types of nearly spherical particles, namely fat globules and casein
micelles, suspended in a host medium with almost the same optical properties as pure
water. The absorption spectrum of the host medium needs to be adjusted because of
dissolved vitamin B2 (riboflavin) which exhibits absorption in the visible range of
the spectrum. In fact riboflavin is also fluorescent, but we will not take that into
account. What we use is, in other words, a simplified model of milk, but it should be
sufficient for considering the appearance of milk.

4.4.1 Particle Composition

The host medium is water in which many different components are dissolved. For
the real part of the refractive index of the milk host, we use the refractive index for
pure fresh water (S = 0‰ in Equation 4.34).

Quan and Fry [57] have developed an empirical formula for computing the real
part of the refractive index of pure water or brine as a function of salinity S, temper-
ature T , and wavelength λ . It is as follows [57]:

n′water(λ ,T,S) = 1.31405+(n1 +n2T +n3T 2)S+n4T 2

+
n5 +n6S+n7T

λ
+

n8

λ 2 +
n9

λ 3 . (4.34)

The coefficients are listed in Table 4.1. This formula describes the dependency of
n′water on salinity in the range 0‰ < S < 35‰, temperature in the range 0°C < T <
30°C, and wavelength in the range 400nm < λ < 700nm. Moreover Huibers [58]
has reported that the same formula is valid over a broader spectrum of wavelengths
(200nm < λ < 1100nm) than originally assumed.

To find the imaginary part of the refractive index of the milk host, we make a
correction for the imaginary part of the refractive index of pure water. The dissolved
component exhibiting the most significant absorption in the visible range is vita-
min B2 (riboflavin). Spectral data for the absorption of vitamin B2 are available in
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Table 4.2 Imaginary part of the refractive index for pure water [61], riboflavin [59] (0.17mg pr.
100g solution), milk host n′′milk, and milk fat n′′fat.

λ [nm] n′′water n′′riboflavin n′′milk n′′fat

375 3.393 ·10−10 2.927 ·10−7 2.93 ·10−7 4.0 ·10−6

400 2.110 ·10−10 2.603 ·10−7 2.60 ·10−7 6.4 ·10−6

25 1.617 3.363 3.36 8.6
50 3.302 4.096 4.10 1.1 ·10−5

75 4.309 3.323 3.33 1.1
500 8.117 ·10−10 1.076 ·10−7 1.08 ·10−7 1.0 ·10−5

25 1.742 ·10−9 5.470 ·10−8 5.64 ·10−8 4.7 ·10−6

50 2.473 5.772 6.02 4.6
75 3.532 7.554 7.91 4.7

600 1.062 ·10−8 6.889 ·10−8 7.95 ·10−8 4.9 ·10−6

25 1.410 7.169 8.58 5.0
50 1.759 7.563 9.32 5.0
75 2.406 4.967 7.37 5.1

700 3.476 ·10−8 7.937 ·10−8 1.14 ·10−7 5.2 ·10−6

25 8.591 4.683 1.33 5.2
50 1.474 ·10−7 7.287 2.20 5.2

775 1.486 ·10−7 8.626 ·10−8 2.35 ·10−7 5.2 ·10−6

The milk host spectrum is n′′water +n′′riboflavin. The milk fat spectrum is from Michalski et al. [62].

the PhotochemCAD application1 [59]. The absorption coefficient is not measured di-
rectly, instead the absorbance D is measured. The absorption coefficient is calculated
from the absorbance using a molar absorption coefficient ε for some wavelength.
A molar absorption coefficient of riboflavin is ε(266.5nm) = 3.3 · 106 M−1m−1

[60]. The following formula finds the remaining molar absorption coefficients for
riboflavin using the absorbance data:

ε(λ ) =
ε(266.5nm)

D(266.5nm)
ln(10)D(λ ) .

The natural content in milk of riboflavin is 0.17mg per 100g milk [56]. Using the
molar mass of riboflavin which is 376.3682g/mol, we find that the natural concen-
tration of riboflavin in milk is

c =
0.17mg

376.3682g/mol

/ 100g
1.03g/mL

= 4.65 ·10−6 mol/L .

By multiplication of the molar absorption coefficient with this concentration, we
obtain the absorption coefficient of riboflavin which is converted to the imaginary
part of a refractive index (Equation 4.18) and added to the imaginary part of the
refractive index for pure water to obtain the imaginary part for the milk host, n′′milk.
See Table 4.2.

1 http://omlc.ogi.edu/spectra/PhotochemCAD/abs html/riboflavin.html
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The Fat Inclusion

Walstra and Jenness [63] have found experimentally that the real part of the refractive
index of milk fat approximately follows the function

n′fat(λ ,T ) =

√
(b(T )+2)λ 2−0.03
(b(T )−1)λ 2−0.03

, (4.35)

where wavelength is measured in µm and b is found using a measurement of the
refractive index at the temperature T . We use measurements by Michalski et al. [62]
since they also present the wavelength dependent imaginary part of the refractive
index. They find n′fat(0.589 µm,20°C) = 1.461 which gives b(20°C) = 3.73. This
corresponds well to the b(40°C) = 3.77 reported by Walstra and Jenness [63]. Table
4.2 includes the imaginary part of the refractive index for milk fat n′′fat as we read it
from the curve reported by Michalski et al. [62].

The volume frequency of the fat globules follows a log-normal distribution [64]
(cf. Equation 4.32). The mean of the volume-to-area equivalent sphere radii req,fat of
the fat globules change depending on the volume fraction of the globules in the milk.
By a least-squares, two-piece fit to measured data reported by Olson et al. [65], we
have found a functional expression describing this relationship:

r43,fat =

{
−0.2528w2

f +1.419w f for w f < 2.0
1.456w0.36

f otherwise
,

where r43,fat is measured in µm. The relationship between r43,fat and req,fat is [64]

req,fat = r43,fat/(c2
v,fat +1) .

The radius r43,fat is used since it can be estimated empirically with good accu-
racy [64]. The coefficient of variation cv,fat is usually between 0.4 and 1.2 in normal
milk. Reasonable limits for the range of fat globule radii are rmin,fat = 0.005 µm and
rmax,fat = 10 µm.

The Protein Inclusion

The refractive index of casein micelles is not readily available in the literature. For
comparison to goat’s milk it has been determined to be the following for cow’s milk
[66]:

ncasein = 1.503 .

This value is assumed to be constant in the visible range and absorption of the casein
micelles is neglected.

Structure and size distribution of casein micelles is still being disputed in the lit-
erature. Recent research on the matter is discussed by Gebhardt et al. [67]. Most
investigations are based on either light scattering or electron microscopy. Light scat-



J. R. Frisvad et al. 125

Table 4.3 A summary of the microscopic properties of cow’s milk.

Property Milk host Fat globules Casein micelles

n′ Equation 4.34 Equation 4.35 1.503
n′′ Table 4.2 Table 4.2 0.00
r [0.005 µm,10 µm] [0nm,150nm]
N(r) Equation 4.32 Equation 4.32

Table 4.4 Densities for computing of milk fat and casein volume fractions using weight percents.

ρfat ρprotein ρmilk

0.915g/mL 1.11g/mL 1.03g/mL

Measured by Walstra and Jenness [63] at 20°C.

tering approaches find micelles of large average size while electron microscopy re-
port a large number of very small casein particles in addition to the larger micelles.
Sometimes these very small particles are excluded from the reported size distribu-
tion since they are regarded to represent non-micellar casein or single sub-micelles.
No matter what we call these very small particles, they scatter light as do the larger
aggregates and therefore should be included in the size distribution employed for the
Lorenz-Mie calculations.

A size distribution based on electron microscopy, which includes the single sub-
micelles in the distribution, was reported by Schmidt et al. [68]. They found the mean
req,casein = 43nm and showed that a log-normal distribution (4.32) of r/(rmax,casein−
r) is a good fit of the measured volume frequency distribution. The limits for the
casein micelle radii are rmin,casein = 0nm and rmax,casein = 150nm.

The microscopic properties of milk are summarised in Table 4.3.

4.4.2 Appearance Model

To model the concentration of fat and protein we use wt.-% (g per 100g milk), since
this value is used on content declarations on the side of milk cartons. In the remainder
of this chapter we let w f and wp denote the wt.-% of fat and protein respectively. To
translate wt.-% into volume fractions, we use the densities given by Walstra and
Jenness [63]. They are summarised in Table 4.4. Casein micelles make up about
80% ·95% = 76% of the protein volume fraction (see above). This means that

vfat =
w f /ρfat

100g/ρmilk
and vcasein = 0.76

wp/ρprotein

100g/ρmilk
.



126 4 Predicting the Appearance of Materials

Fig. 4.1 Rendered images of the components in milk (top row) as well as mixed concentrations
(bottom row). From top left to bottom right the glasses contain: pure water, water and vitamin B2,
water and protein, water and fat, skimmed milk, regular milk, and whole milk.

This simple translation from fat and protein contents to volume fractions of the par-
ticle inclusions in the milk means that we have an appearance model with the fol-
lowing parameters:

• Fat content w f
• Protein content wp .

These two parameters are all we need to model most types of milk.

4.4.3 Results

The protein content of the milk we buy in a grocery store is usually around wp =
3.4wt.-% while the content of fat is what we use to distinguish between different
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Fig. 4.2 A simple experimental setup
where we can take a picture of a laser
pointer shining light into a cup of milk.

milk products: skimmed milk, w f = 0.1wt.-%; low fat milk, w f = 1.5wt.-%; whole
milk w f = 3.5wt.-%. This information, and the appearance model described above,
enables us to visualise different types of milk. We are also able to show the visual
significance of each component in the milk. This is a particular strength of the ap-
proach that we take. Knowing the visual significance of the different ingredients in a
material is important if we would like to design the appearance of the material or if
we would like to interpret the appearance of the material. Figure 4.1 shows the visual
significance of different components in milk as well as the predicted appearance of
different milk products. Starting leftmost in the top row, the first glass contains pure
water, the second includes the absorption of vitamin B2 and is the host medium of the
particles in the milk, the third glass contains casein micelles in water, the fourth con-
tains fat globules in water, and the three glasses in the bottom row contain skimmed
milk, low fat milk, and whole milk, respectively. The contents of these glasses have
all been rendered using the appearance model described in this section. Spectral op-
tical properties (sampled at every 25nm) were computed as described in Section 4.3
for all the milk materials. For rendering, we computed RGB representations of the
optical properties by weighted averages using the RGB colour matching functions
of a standard human observer [69]. We used homogeneous scattering properties for
the milk and the approximative Henyey-Greenstein phase function with an ensemble
asymmetry parameter.

The results provided in Figure 4.1 (bottom row) compare only qualitatively to
pictures of real milk. Our eyes are the instruments in such a comparison. To find out
if our model correctly predicts the appearance of real milk, some sort of quantitative
comparison is necessary. We can do a quantitative comparison by constructing a
simple experimental setup which we can easily model and render. The setup we
choose is photographed in Figure 4.2. It consists of a digital camera on a tripod
pointing at the surface of milk in a cup, and some arbitrary device for hanging up a
laser pointer over the cup. The experiment is to take a picture of the milk while the
laser pointer shines light into it directly from above. The room should be darkened as
much as possible, but it is usually not possible nor practical to black it out completely.
For this reason, a picture was first taken with the laser pointer turned off and one
was then taken with the laser pointer turned on. Subtracting the first picture from
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Laser in skimmed milk − photo
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Laser in skimmed milk − computed

Fig. 4.3 Photographed laser in skimmed milk (w f = 0.1wt.-%, wp = 3.4wt.-%), simulated laser in
skimmed milk, and comparison of the diffusion curves, that is, the middle lines through the images.

the second removes the background illumination to reveal the scattering of the laser
in the milk alone. To avoid scattering of light in the cup itself, the white cup in
Figure 4.2 was replaced by a black, opaque cup when the pictures were taken. In
addition, the digital camera was and should be configured to process the picture as
little as possible.

To model the experimental setup digitally, all we need is a correctly sized cylinder
of milk, a laser source placed directly above it, and a camera placed at the right
distance from the milk surface. The laser pointer we used had a diameter of 3mm,
power of Φ = 1mW, and wavelength of λ = 650nm. This means that all the laser
light should go into the red colour band. The horizontal line in the image through
the laser spot centre is referred to as the diffuse reflectance curve. We only use the
diffuse reflectance curve of the red colour band in our quantitative comparison. This
line is perpendicular to the direction toward the camera, so only the distance to the
camera is important not the angle. For this reason, we place both camera and laser
pointer directly above the milk in our digital scene. To save computations, we only
render pixels from the laser spot centre to the right border of the film (half the diffuse
reflectance curve), and then we revolve this result around the centre to get a full
synthesized image of the laser spot.

The photographed milk, the rendered milk, and the quantitative comparison are
provided in Figure 4.3. There are a few differences between theory and experiment
that we should discuss. The real camera is overexposed by the reflected laser light
while the synthetic camera is not (the top of the blue curve has been cut off). The
reason is the background illumination which was subtracted. In this experiment, the
background illumination was just enough to overexpose the laser spot in the pho-
tograph. Another difference is that the photographed laser spot is not symmetric. It
is more elliptically shaped. The reason for this deviation in the rendered image is
that the laser source was modelled as a circular disc (see Sec. 4.2.3), and this is not
the shape of the light emitted by a standard laser pointer. Finally, the central part of
the photographed laser spot is not only red. The most likely explanation is that light
penetrates the colour filters in the CCD chip when it is overexposed. This means that
some of the red light spills into the other colour bands in the overexposed area of the
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Laser in whole milk − photo
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Fig. 4.4 Photographed laser in whole milk (w f = 3.5wt.-%, wp = 3.4wt.-%), simulated laser in
whole milk, and comparison of the diffusion curves, that is, the middle lines through the images.

image. Apart from these explainable differences, there is surprisingly good quanti-
tative agreement between theory and experiment (the diffuse reflectance curves are
close to each other).

From a qualitative perspective, the rotational symmetry of the simulated image
is a giveaway which makes it easy for the human eye to spot the synthetic image
in comparison to the real one. This might not be as easy if we had not revolved a
single line in the image around the centre to save computations. Although it is not
physically accurate, the red light spilling into the other colour bands where the light
is intense in the photograph convinces the eye that the photograph is more real. This
is because the human eye is able to perceive a more intense red colour than what the
camera can capture (and what a standard computer screen can display). The added
intensity from the other colour bands therefore seems more realistic than a flat red
colour. As a final example, to illustrate that the appearance model is reliable for
different types of milk, Figure 4.4 compares photographed and simulated laser in
whole milk.

4.5 Conclusion

The milk example demonstrates that we are able to show the visual significance
of the different components in a material by computing synthetic images. It also
demonstrates that we are able to predict the appearance for various ratios between
the contents. This makes a number of interesting applications possible:

• If you want to design materials with a specific appearance, the appearance model
can help you choose the right components to obtain the desired appearance.

• If you want to detect whether a component is present in a material or not, the
appearance model can help you visualise the material as it would look with and
without the component.
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In other words, synthesised images with a connection to the contents and the physical
conditions of a material enable us to learn a lot about the reasons for the appearance
of materials.

Considering the input parameters that brought us to the simulated diffuse re-
flectance curves in Figures 4.3 and 4.4, the presented method is definitely useful
for analysis by synthesis. If we simulate a large number of diffuse reflectance curves
for milks with different particle inclusions, we can construct numerical methods for
analysing the properties of these inclusions from photographed diffuse reflectance
curves. The slope of the diffuse reflectance curve, for example, reveals a lot about
the fat content of the milk (as is obvious from the figures). Further investigation can
lead to more precise models for determining the fat content of milk from a digital
photograph.

The Lorenz-Mie theory provides the link from the particle composition of a ma-
terial to the macroscopic scattering properties that we can use with radiative transfer
theory to compute a realistic image. In this way, a century after its formulation, the
Lorenz-Mie theory is the key component when we want to predict the appearance of
materials using a physical model.
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