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Transparent objects require acquisition modalities that are very different from the ones used for objects
with more diffuse reflectance properties. Digitizing a scene where objects must be acquired with differ-
ent modalities, requires scene reassembly after reconstruction of the object surfaces. This reassembly of
a scene that was picked apart for scanning seems unexplored. We contribute with a multimodal digiti-
zation pipeline for scenes that require this step of reassembly. Our pipeline includes measurement of
bidirectional reflectance distribution functions and high dynamic range imaging of the lighting environ-
ment. This enables pixelwise comparison of photographs of the real scene with renderings of the digital
version of the scene. Such quantitative evaluation is useful for verifying acquired material appearance
and reconstructed surface geometry, which is an important aspect of digital content creation. It is also
useful for identifying and improving issues in the different steps of the pipeline. In this work, we use it
to improve reconstruction, apply analysis by synthesis to estimate optical properties, and to develop our
method for scene reassembly. © 2017 Optical Society of America. One print or electronic copy may be made for personal use only.
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1. INTRODUCTION

Several research communities work on techniques for optical
acquisition of physical objects and their appearance parame-
ters [1–5]. Thus, we are now able to acquire nearly any type
of object and perform a computer graphics rendering of nearly
any type of scene. The range of applications is broad and in-
cludes movie production [2], cultural heritage preservation [3],
3D printing [4], and industrial inspection [5]. A gap left by these
multiple endeavors is a coherent scheme for acquiring a scene
consisting of several objects that have very different appearance
parameters, together with the reassembly of a digital replica
of such a scene. Our objective is to fill this gap for the combi-
nation of transparent and opaque objects, as many real world
scenarios exhibit this combination. An example is a living room,
like the one rendered in Fig. 1 (right). We propose a pipeline
for acquiring and reassembling digital scenes from this type

of heterogeneous real-world scenes. In addition, our pipeline
closes the loop by rendering calibrated images of the digital
scene that are commensurable with photographs of the original
physical scene (see Fig. 1, left). This allows for validation and
fine-tuning of appearance parameters. The quantitative evalua-
tion we get from pixelwise comparison of rendered images with
photographs is a great improvement with respect to validation
of the acquired digital representation of the physical objects.

When addressing the problem of acquiring a heterogeneous
scene, there is an infinite variety of scenes and object types to
choose from. So, to make our task feasible, we focus on scenes
that combine glassware and non-transparent materials, more
specifically, white tablecloth and cardboard with a checkerboard
pattern. We made these choices as glass requires a different
acquisition modality, the tablecloth bidirectional reflectance dis-
tribution function (BRDF) is spatially uniform but not neces-
sarily simple, and the cardboard has simple two-color varia-
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Fig. 1. To the left, we compare rendered images (top) with photographs (bottom). More views are available in Appendix A. The
scenes to the left were digitized using our pipeline and include both glass objects and non-transparent objects (tablecloth and back-
drop). To the right, we exemplify the use of our pipeline for virtual product placement using our digitized glass objects, with esti-
mated optical properties and artifact-reduced removal of markers.

Fig. 2. Overview of our digitization pipeline in four main stages: acquisition, reconstruction, reassembly, and rendering. A video
presentation of our pipeline is available in supplementary Visualization 1. Colored arrows show the path through the pipeline of
transparent objects (dotted blue) and non-transparent objects (dashed red).

tion. The latter is particularly useful for observing how light
refracts through the glass. The chosen case is also of partic-
ular interest, since glass is present in many intended applica-
tions of optical 3D acquisition. Considering the highly multi-
disciplinary nature of our work, we have released our dataset
(http://eco3d.compute.dtu.dk/pages/transparency). This facil-
itates further investigation by other researchers of the different
steps of our pipeline with the possibility of a quantitative feed-
back at the end of the process.

A. Related Work and Contributions
Researchers occasionally compare renderings with photographs
to provide a qualitative verification of a presented rendering
technique. The work by Phong [6], Goral et al. [7], and Takagi
et al. [8] are early examples of this trend. A procedure to bring
a rendered image close to a photograph was first presented by
Meyer et al. [9]. In this work, likeness of images was evalu-
ated perceptually by human observers. Pixelwise comparison of
photographs with rendered images is surprisingly uncommon.
The few examples we have found are by Rushmeier et al. [10],
Karner and Prantl [11], Pattanaik et al. [12], and Jones and Rein-
hart [13, 14]. These examples build on the rendering framework

described by Greenberg et al. [15]. Employing such a framework
for more complex scenes is a long and tedious process [16]. The
key issue is that a scene specification is expected as an input.

Several problems arise as a result of not having correspon-
dence between the physical and the digital scene. Misalignment
due to inaccurate scene and viewing geometry and inaccurate
orientation of the lighting environment are some of the essential
problems identified in previous work [17, 18]. One way to deal
with this problem is to calculate error for image patches when
evaluating results [13, 19, 20]. As opposed to this, our digitiza-
tion pipeline (Fig. 2) provides both reference photographs and
correspondingly calibrated scene and viewing geometry so that
pixelwise comparison becomes meaningful.

Pixelwise comparison of rendered images with photographs
is not only useful for quantifying the photorealism of a ren-
dering in terms of error measurements. We find it particularly
useful for improving the digitization pipeline. The fact that
our pipeline enables quantitative evaluation led us to more spe-
cific contributions in its different steps. These contributions are
mostly in the reassembly and are as follows. (a) A cross-modality
marker-based placement approach, enabling accurate placement
of objects scanned with one modality into scenes scanned with
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Fig. 3. Our workflow for scanning the geometry of non-transparent objects and collecting reference images (left), for scanning the
geometry of transparent objects (middle), and for measuring material reflectance properties (right).

another modality. (b) A soft object deformation technique deal-
ing with surface intersections after object placement, which is
critical for scenes containing transparent or translucent objects.
(c) A micropolygon labeling approach for assigning BRDFs to
acquired geometry. (d) A color calibration scheme enabling use
of spectral optical properties for calculating reflectance, trans-
mittance, and absorption. (e) Perspective unwrapping of mirror
probe images to improve precision when the environment is
not very distant. (f) Use of analysis by synthesis for fine-tuning
physics-based optical properties.

Digitization is most often unimodal and tailored toward ob-
jects with a specific type of surface reflectance behavior [1].
While unimodal techniques are becoming more versatile [21–23],
objects with a transparent material like glass still pose challeng-
ing problems. Their reflectance behavior is so different that they
require an entirely different modality, such as computed tomog-
raphy (CT) [24]. The transparent object must then be removed
from the scene to be scanned elsewhere. In the meantime, the
surrounding scene can be scanned with a more common tech-
nique. However, as the transparent object takes most of its
appearance from its surroundings, it must be repositioned in the
surrounding scene (physically and digitally) if we are to take
reference images for comparison with rendered images. The
purpose of our scene reassembly is to address this type of issue.

Our digitization technique is multimodal. Currently, such
techniques seem to exist only in the context of sensor fusion [25–
27]. Here, the goal is to optimize reconstruction by fusing data
from different sensor modalities with complementary charac-
teristics. Even so, the different modalities see the same object
and thus work for materials with a similar reflectance behav-
ior. The challenge is then mostly in registration of the scans.
In their final remarks and suggestions for future work, Wein-
mann and Klein [1] discuss possible ways of combining multiple
techniques tailored to different types of surface reflectance. Our
pipeline is a different way to take a step in this direction.

In summary, our work makes it possible to perform multi-
modal digitization and scene reassembly in such a way that
rendered images of the reassembled scene can be quantitatively
compared to photographs of the original. This enables us to
provide the first empirically founded investigation of the appear-
ance accuracy of objects digitized using a non-optical scanner.

2. DIGITIZATION PIPELINE

We divide our pipeline into four stages: (1) acquisition, (2) recon-
struction, (3) reassembly, and (4) rendering. Figure 2 provides
an overview. As illustrated, transparent objects (dotted blue
arrows) and non-transparent objects (dashed red arrows) take
different paths through the pipeline. The acquisition stage in-
cludes structured light scanning of non-transparent objects, CT
scanning of transparent objects, gonioreflectometric reflectance
measurements, and photographic capture of environment, color
chart, and scene reference images. Figure 3 provides details
of our workflow in these acquisition steps (except the simpler
captures of environment and color chart). The second stage in-
cludes reconstruction of surface meshes, material BRDFs, and
color space. The third stage is reassembly of the digital scene
consisting of geometric objects, material appearance properties,
and environment map. The fourth and final stage is rendering
and comparison with reference images.

Our acquisition stage requires an elaborate hardware setup.
We assemble the physical scene in a black light-proof enclosure.
This has five LED light tubes for scene lighting, which we cap-
ture by high dynamic range (HDR) imaging of a light probe. To
acquire non-transparent geometry inside this enclosure, we use
a structured light scanner consisting of a toe-in stereo camera
rig and a light projector mounted on a robotic arm [28, 29]. We
chose a converging camera configuration (toe-in) to increase the
overlap of the fields of view so that we get a denser point cloud
per stereo view. Together with an LED based illumination arc,
we also use this camera rig with exact control for measuring
isotropic BRDFs. For transparent objects, we use a CT scanner.
In the following subsections, we describe the individual steps
of the pipeline with focus on details required for reproducibility
and on non-standard techniques that we introduce.

A. Camera Calibration and Settings
The camera system is calibrated using a standard technique [30].
Our calibration board is an 11 by 12 black-and-white checker-
board. For the intrinsic calibration (Pass 1 of Fig. 3, left), we
include a large variety of views to estimate good lens distortion
coefficients. To facilitate stereo calibration, we also ensure that
both cameras have the calibration board fully in view. For extrin-
sic calibration (Pass 2 of Fig. 3, left), we balance good coverage
of the scene and good coverage of the calibration board. Since
we cannot change the camera system while collecting data, we
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chose a small aperture to ensure that background and projected
structured light patterns are always in focus from all views. The
full setup is in a dark room environment to eliminate external
light, so we use a long shutter time (600 ms) to obtain sufficient
exposure. A slight noise component is present in the images,
but this is considered negligible. Finally, we use the estimated
distortion coefficients to remove distortion from all images in
the dataset so that subsequent algorithms may assume a pinhole
camera model.

To avoid any compression or manipulation of the images by
the camera software, in particular automatic color correction,
we read the raw sensor data directly. We use bilinear interpo-
lation to reconstruct RGB images from the raw Bayer pattern
images. By doing this, we obtain a consistent RGB color space.
Moreover, the raw sensor data is linear and correlates directly
with radiometric quantities, which allows for better BRDF and
environment map estimation in later stages of our pipeline.

We capture radiometrically relevant parts of our dataset in
HDR by stacking multiple exposures [31]. More specifically,
we stack 11 exposures at one-stop intervals ranging from 1 to
2048 ms. For the other parts of the dataset, we capture a single
image at an exposure time of 600 ms.

B. Surface Reconstruction from Structured Light
We use a standard Gray code structured light approach to gener-
ate raw point clouds for a scene [32, 33]. With camera parameters
from the calibration, we transform these point clouds into the
same world coordinate system.

To reconstruct one connected triangle mesh from the point
clouds, we merge them into a single point cloud and perform
screened Poisson reconstruction with trimming and an octree
depth of nine [34]. This technique requires point normals, so
before the merging we generate normals for each point cloud
as follows. We resample the point cloud down to 100,000 ver-
tices via Poisson disk sampling [35] and then compute normals
via planar fitting to a nearest neighborhood of 500 points (∼16
mm radius). We then reorient all the normals according to the
location of one of the cameras and transfer them back onto the
original point cloud. This procedure ensures smooth contin-
uous normals, necessary for a good performance of the mesh
reconstruction algorithm. As we rely on smoothing, we cannot
reconstruct features in the mesh with the same physical size
as the alignment error accumulated from structured light and
calibration. The aim of the chosen constants was to preserve
features by striking a balance between too noisy and too smooth.
The operability of the pipeline is however not sensitive to the
choice of these constants.

C. Material BRDF Reconstruction
We assume that all non-transparent materials in the scene are
opaque and isotropic, so we model their reflectance properties
by BRDFs. To acquire a BRDF, we combine traditional canonical
gonioreflectometric sampling [36] with a BRDF interpolation (re-
construction) technique [37]. We follow the workflow outlined
in Fig. 3 (right). A light arc illuminates material samples from 11
unique inclinations, evenly distributed from 7.5◦ up to 90◦ with
7.5◦ steps. We place a flat material sample at the center of the
circle partly traced by the light arc. Using the cameras mounted
on the robot, we then measure radiance reflected by the sample
across one octant of a sphere. The center of this sphere coincides
with that of the light arc, while its radius is slightly larger to
avoid collision between the robot and the arc. The robot moves
in steps of 7.5◦ and captures 11 HDR images of the sample per

step, one for each light direction. In total, this yields 2,783 HDR
images per material. We avoid tangential and zenith viewing
directions (90◦ and 0◦, respectively). In the former case, no re-
flected radiance should be visible, while in the latter the light
arc occludes the view of the sample.

The 2,783 observations are too few to faithfully represent the
BRDF of a material in a photorealistic rendering. We need an
interpolation scheme to fill the entire (90× 90× 180) Mitsubishi
Electric Research Laboratories (MERL) format BRDF look-up
table [38]. The reconstruction method by Nielsen et al. [37] is our
interpolation scheme. First, we use each of the 100 BRDFs in the
MERL-dataset [38] as sample points in a 90 · 90 · 180 = 1,458,000
dimensional space. The nonlinear mapping of Nielsen et al. [37]
is then applied to each of the samples. The mapped samples are
ordered as rows of a matrix X ∈ Rm×d where m is the number
of BRDF samples and d is the dimension of the space. The zero-
mean matrix is computed as X − x̄, with x̄ being the sample
mean. From this, the singular value decomposition X − x̄ =
UΣVT is used to compute the eigenvectors and eigenvalues of
the covariance matrix of X− x̄, which are given as the columns of
V and the diagonal elements of Σ, respectively. This is effectively
a principal component analysis (PCA), where the eigenvectors
are the principal components. A matrix composed of the scaled
principal components as columns are computed as Q = VΣ.

Now, the full BRDF can be reconstructed from this princi-
pal component space by projection. Let x′ ∈ Rn be n BRDF
observations measured for a given material. Then, let x̄′ ∈ Rn

be the mean values and Q′ ∈ Rn×k be the scaled eigenvectors
corresponding to the direction pairs of those n observations. A
vector c which spans the full space can be constructed by find-
ing the linear combinations of principal components that best
approximate the n observations. We do this by solving the linear
least-squares optimization problem given by

c = arg min
c
‖(x′ − x̄)′ −Q′c‖2 + η‖c‖2

= (Q′TQ′ + ηI)−1Q′T(x′ − x̄′).

Note that by adding a penalty η to the norm of c, this effectively
becomes a Tikhonov regularized least squares. Now, the full,
mapped BRDF is reconstructed as x = Qc+ x̄. The inverse of the
nonlinear mapping applied to X is applied to x to get the actual,
unmapped BRDF of the material. The described approach is
applied to every single non-transparent material in the scene in
order to obtain models of their reflectance properties.

This approach assumes that the MERL database encompasses
the class of materials present in the scene. Effectively, this is a
practical compromise between dense, unbiased, canonical BRDF
sampling and fast, inferred BRDF sampling. This enables us to
obtain high confidence BRDFs in a matter of a few hours.

D. Surface Reconstruction from CT
In our dataset, we have three glass objects: a sphere, a teapot
(pot and lid) and a bowl (bowl and lid), for a total of five pieces.
All objects have spherical plastic markers glued onto their outer
surface. We CT scan each glass piece to obtain X-ray radiographs
and use the CT PRO 3D reconstruction software from Nikon
Metrology to obtain a volumetric image for each piece. The
resolution of the reconstructed volume is up to 10003 voxels. Due
to beam hardening, high density differences between materials
lead to streak artifacts [39], especially around our markers and
at the top and bottom of the objects (see Fig. 4). We account for
these artifacts in the volumetric segmentation.
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Fig. 4. CT scans of the bowl (top row) and the teapot (bottom
row) with markers glued onto them. In the left column, visu-
alized using a 1D transfer function. Note the different density
of the markers. In the right column, a slice scaled to display
streak artifacts.

From a CT scan, we generate two triangular meshes with
vertex normals: one for the glass object and one the plastic
markers. Figure 5 provides an overview of our procedure. We
start with the markers, which appear as elements of higher
density in the scan. We preprocess the scan by clamping all
the values under a certain threshold to zero and then create a
mesh using dual contouring [40]. Generating the glass mesh is
more cumbersome. We also use dual contouring in this case, but
because of the streak artifacts (Fig. 4) it is not possible to isolate
the glass mesh via a threshold. Instead, we use a lower threshold
that only removes noise, then estimate the marker positions, and
use these to remove the markers from the glass mesh.

To estimate marker positions, we determine a series of cen-
ter/radius pairs (ci, ri) by fitting a multi-sphere model to the
marker mesh vertices using a tuned random sample consensus
(RANSAC) algorithm [41]. We then carve a hole by excluding all
the triangles that are inside a sphere with center ci and radius
(1 + ε)ri, where ε is usually in the 0.5 to 0.75 range. We store
the marker positions ci so that we can use them to transform
from the local coordinate system of the glass object to the world
coordinate system (see Section F).

After removing the markers, the glass meshes still have alias-
ing artifacts. To deal with this issue, we first decimate the mesh
down to 1% of the original vertices via quadric edge collapse.
The holes are then easy to close by identifying the edge loops
surrounding each hole and filling these with triangles. We then
introduce a subdivision-decimation loop with alternating

√
3-

subdivision [42] and decimation to 33% of the original vertices.
We perform this subdivision-decimation operation four times to
obtain a cleaned mesh. The decimation removes unwanted high
frequency features from the mesh. Thus, we generate smooth
meshes at the cost of some geometric precision. We are again
trying to strike a balance between reconstruction error and too

Markers
After After After

reconstruction simplification cleaning

Fig. 5. Reconstruction from CT with stages illustrated us-
ing Phong shading (top row) and wireframe shading (bot-
tom row). After estimating the marker mesh (first column)
and fitting spheres to the markers, we reconstruct the object
mesh (second column). To eliminate noise, we first simplify
the mesh (third column) and then close the holes and apply
our subdivision-decimation loop to get the final object mesh
(fourth column).

Fig. 6. Labeling of the image to the left results in the label im-
age to the right. Each color in the label image represents a la-
bel that we assign a BRDF to. The black edges between labels
indicate areas where we apply a nearest neighbor method.

much smoothing. In Section 4, we compare our method with a
different cleaning procedure that better preserves geometry.

E. Scene Reassembly for Non-Transparent Objects
Two operations are necessary to prepare the background mesh
for rendering: labeling and deformation. In the labeling, our
objective is to identify BRDFs and label each face of the mesh
with a BRDF. Assuming a scene with a small number of known
BRDFs, we apply edge detection and watershed on the images
of the scene to segment BRDF boundaries. Shadows, specular
highlights, and different viewing angles of the scene complicate
fully automatic BRDF identification. Our approach gets us most
of the way, but we manually correct any residual misclassifica-
tion. Figure 6 shows a label image produced by our labeling
technique.

The label images can be used in multi-view projective tex-
turing of the background mesh. However, we would like to
precompute the view and label selection instead of doing it
millions and millions of times while rendering. To avoid uv-
unwrapping of the mesh for storing precomputed labels, we
take an approach inspired by micropolygon rendering [43]. We
project each vertex of a face onto the label images of the scene
and select the face BRDF according to the image label that most
of the face vertices were projected to. If a vertex projects to an
unknown label, we resolve it by a nearest neighbor search. Since
faces around material boundaries overlap multiple materials,
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No subdivision One subdivision Two subdivisions

Fig. 7. Subdividing the mesh dissolves unwanted boundary
sawtooth artifacts that originate from the BRDF labeling.

Fig. 8. Deformation of background mesh, where we push the
background vertices down to avoid mesh intersection.

we get sawtooth artifacts. We dissolve these by subdividing the
mesh until the rendered triangles are smaller than the surface
area observed in a pixel, see Fig. 7.

When applying physically based rendering, we observed
intersections between background scene and glass meshes. This
could be due to small errors in reconstruction and positioning,
or perhaps the harder glass objects press down the tablecloth
when placed for reference imaging. It causes significant visual
artifacts since the rendering exposes all surfaces of a transparent
object. To eliminate these artifacts, we accommodate the hard
object (glass) by deforming the soft object (tablecloth), see Fig. 8.
To deform the soft object, we need a “down” direction in which
to push the vertices. We first find contact vertices. These are
vertices in each mesh that are close to any vertex of the other
mesh. We consider vertices close if the distance between them
is less than 7% of the bounding box diagonal of the hard object.
Using least squares regression, we fit a contact plane to the
contact vertices of the soft object. We set the sign of the contact
plane normal so that the upper half-space contains the center of
the hard object bounding box. Projection of a contact vertex to
the normal of the contact plane then measures the height of the
vertex. For each soft object contact vertex x, we find the nearest
hard object contact vertices and push x down below the lowest
one of these.

F. Scene Reassembly for Transparent Objects

To reposition the glass objects in the scene, we rigidly trans-
form the meshes reconstructed from CT to the world coordinate
system of the background mesh. We obtain this transforma-
tion by matching markers in the stereo images with the marker
coordinates ci computed during reconstruction from CT (see
Section D).

To find the markers, we employ a size invariant circle Hough
transform [44]. This works well for our dataset, where the
markers show high contrast against their surroundings. We
match markers in the left and the right images via Sampson dis-
tance [45]. Using this technique, markers on the same epipolar
line lead to false positives, so we manually inspect the result. We
also manually discard detected markers that are visible through
the glass, as the refraction would lead to incorrect positioning.
Markers in both stereo images with no match are discarded. The
result is a set of matched markers in image coordinates as seen
in Fig. 9 (bottom left). We then triangulate the matched markers

Fig. 9. Repositioning a CT scanned object in the background
scene. We identify and match the markers in the stereo image
pairs and calculate their corresponding 3D points. Pairing
these with marker coordinates from the CT scans, we trans-
form the CT scanned piece of an object into the world coordi-
nate system.

Fig. 10. Color calibration: raw images (left) and color cor-
rected images (right). The camera sensor is particularly sen-
sitive to green.

from the stereo views and gather them in clusters of 3D points.
We remove outliers via their distance from the cluster centers,
and for each cluster we select the point with the lowest reprojec-
tion error. An example of the points and clustering is shown in
Fig. 9 (top middle).

We manually pair the 3D marker coordinates from the im-
ages with the marker coordinates ci from the CT scans. We
perform Procrustes analysis [46] on the two point sets, excluding
reflection, since we assume a rigid transformation applied to
each vertex of the mesh. The bowl and the teapot are composed
of multiple pieces. For these objects, we compute the trans-
formation individually for each piece. The result of the object
transformed into the scene is shown in Fig. 9 (top right). We
found that in order to have low error in the transformation the
chosen markers should sample the surface evenly and be visible
from most views.

G. Color Calibration
Images are only quantitatively comparable if they live in the
same color space. Thus, we must ensure that our radiometry-
dependent data, namely reference images, environment map,
and BRDFs, are in the same color space. We do this by imaging
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Fig. 11. Unwrapping of a spherical probe. We know the
sphere radius R from specification, the camera position c
through calibration, and the sphere center o by triangulation.
Radiance at pproj in our image then corresponds to the envi-
ronment map direction~l. The result for the robot enclosure is
in the lower left corner in latitude-longitude panoramic format
(here tone-mapped).

a color chart of precisely known colors. More specifically, we
use second degree root-polynomial color correction [47] based
on a 24 patch ColorChecker Classic from X-Rite. This provides
a matrix that transforms from camera RGB to XYZ, where we
assume illuminant D50 when specifying the XYZ values of the
colorchecker. With the assumption of illuminant D50, we can
transform colors to the CIE L*a*b* color space and then com-
pute color difference using the ∆E00 metric [48]. We use this to
refine our result by minimizing ∆E00 using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [49]. The result is in Fig. 10.
The average color difference is ∆E00 = 1.97 ± 1.21, which is
larger than 1 JND (just noticeable difference) [50], but we find it
acceptable.

Since we work with glass objects (and chrome, see Section H),
we need refractive indices to determine reflectance, transmit-
tance, and absorption properties. Refractive indices can be
found per wavelength in tables of research papers. To use such
spectral optical properties together with our trichromatic image
data, we integrate them to CIE RGB using the CIE RGB color
matching functions listed by Stockman and Sharpe [51]. It is
important to normalize these functions [52] and to use RGB
rather than XYZ [53]. This is because a refractive index is not a
color, but rather a quantity that in trichromatic representation
should resemble a sparse sampling of the spectrum. Thus, as
recommended by other authors [54], we choose CIE RGB as
our rendering color space. After transforming our image data
from camera RGB to XYZ, we therefore convert them to CIE
RGB [55]. As a final step, we apply Bradford chromatic adap-
tation [50], adapting to the originally assumed illuminant D50,
so that renderings and reference images get closer to real life
appearance.

H. Environment Lighting
To capture the lighting observed in the reference images, we use
a method similar to the mirror probe technique [56]. However,
we use a pinhole camera model for probe image unwrapping
instead of the standard orthographic model. Our pipeline en-
ables this as we have a calibrated camera and know its position
relative to the photographed mirror probe. With the pinhole

model, we obtain a more precise estimate of the environment
lighting. The environment map is generated from HDR images
and stored in latitude-longitude panoramic format [50]. We use
a polished grade G100 chrome bearing ball as mirror probe.

An environment map represents an infinite area light and
maps a direction to a texture element (a texel). To do unwrap-
ping, we map each texel direction~l to the corresponding pixel
position pproj in a light probe image. Given the configuration
illustrated in Fig. 11, we have

~v =
c− o
‖c− o‖ , ~n =

~v +~l
‖~v +~l‖

, p = o + R~n, pproj = M [pT 1]T ,

where camera matrix M and camera position c are available from
our calibration. The radius of the sphere R is available from the
bearing ball specification, and we find the center of the sphere
o by manually annotating the sphere and then triangulating
it. We assume that the distance to the actual light along ~l is
equal to the distance between camera and sphere ‖c− o‖. This
assumption works well in practice, leading to an error smaller
than the uncertainty of o caused by the triangulation. With
the original orthographic camera model, we can reconstruct
the lighting for all directions except one (−~v). In our model,
we cannot reconstruct the lighting for a set of directions (~n ·
~v ≤ R/‖c − o‖), so we set them to black. Since we do our
unwrapping in world space, we can combine contributions from
multiple camera views with no need to align them afterwards.

The environment map is color corrected according to Sec-
tion G, which enables us to correct for the angularly dependent
reflectance of chrome. The correction is to divide by Fresnel
reflectance, which we compute during unwrapping. As input
for Fresnel’s equations, we use the angle β between c− p and~n
and the complex refractive index of chrome [57] converted from
spectrum to CIE RGB. The result is shown in the inset of Fig. 11.

I. Rendering

We render images using progressive unidirectional path trac-
ing [58, 59] implemented in OptiX [60]. The captured HDR en-
vironment map is the sole light source in our scene [56]. When
rendering non-specular materials, we importance sample the
environment map to get direct illumination and use sampling of
a cosine-weighted hemisphere to get indirect illumination. From
our labeling, we have one BRDF attached to each triangle in our
scene. For non-transparent objects, we use our measured BRDFs
tabulated in the MERL format [38]. To terminate paths proba-
bilistically, we use Russian roulette based on the bihemispherical
reflectance of each measured BRDF. This reflectance is calculated
in a preprocessing step using Monte Carlo integration. We deal
with transparent objects in the usual way, setting reflectance and
transmittance according to Fresnel’s equations of reflection and
Bouguer’s law of exponential attenuation. Given their small
surface, we were unable to estimate a BRDF for the markers.
Instead, we render them as glass with all refracted rays being
absorbed.

3. ANALYSIS BY SYNTHESIS

The ability to render images comparable to photographs en-
ables us to use our pipeline for improving parameter estimates
through analysis by synthesis. As an example, we need a scaling
factor for our HDR environment map as it measures relative ra-
diance [31]. We estimate this factor by taking ratios of references
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Fig. 12. Analysis by synthesis to estimate absorption of the
glass bowl. We run renderings in low resolution and change
the absorption in each color channel one at the time. In the
case of the bowl, the blue channel is the most sensitive one.

Fig. 13. Scene with checkerboard backdrop, lighting, glass
teapot, and stand with table cloth observed by two cameras
mounted on a 6-axis industrial robot arm.

and renderings with the background scene alone. Another ex-
ample is estimating real and imaginary parts of glass refractive
indices. As analysis by synthesis is fundamentally ill-posed [61],
we take our outset in physics-based initial guesses such as Schott
K5 crown glass (sphere and teapot) and soda lime glass (bowl).
Spectral refractive indices for these glasses were obtained from
an online database (http://refractiveindex.info) and converted
to CIE RGB. All parameters were estimated using different views
than the ones in our comparisons of renderings with references.

As an example of our analysis by synthesis, we plot the evo-
lution of the root-mean-squared error (RMSE) for different ren-
derings of the glass bowl in Fig. 12. For each rendering, we vary
a trichromatic component of the absorption coefficient (which
directly relates to the imaginary part of the refractive index). We
identify a distinct minimum in the error for each channel, with
a slightly larger uncertainty in the red channel. The minimum
values in this figure were used in our renderings of the glass
bowl. We apply the same analysis to the teapot and the sphere.

Given an initial guess for a parameter, we can employ stan-
dard optimization algorithms, defining the RMSE between the
reference and the rendering as a cost function to minimize. To
reduce rendering times, the evaluation of the cost function can
be calculated on a downsampled image or limited to a specific
patch of the images. Various general optimization algorithms
exist for minimizing expensive cost functions [62].

Fig. 14. Markers rendered in blue and added to the reference
image to validate marker positions by looking at pixel offsets.

Fig. 15. Pixelwise error for three rendering-reference pairs.
Error is the `2-norm of 32-bit per channel RGB images, visual-
ized using a base 10 logarithmic scale.

4. RESULTS

Our scenes consist of a backdrop, a stand, and a glass object
(with markers) placed on the stand. The backdrop is a 30 by 20
white-and-gray checkerboard print on 120 cm by 80 cm semi-
matte cardboard and the stand is a tabletop with a white cloth.
An example scene is depicted in Fig. 13. We implemented our
reconstruction and reassembly procedures as a modular soft-
ware pipeline and computed all rendered images using our path
tracer. As illustrated in Fig. 2 and mentioned in Section G, we
color correct both rendered images and reference images to have
a meaningful perceptual comparison. Figure 14 compares mark-
ers in a reference image with rendered markers to validate our
marker positioning. For the teapot, the average distance be-
tween the markers from stereo and the transformed markers
from CT is 0.43 mm.

Figure 15 presents pixelwise comparisons of reference images
and rendered images. The error images allow us to spot subtle
differences not easily noticed in a perceptual comparison, such
as the slight misalignments in geometry and highlights. As
reference photographs were not captured in HDR, we clamp
the renderings correspondingly. This means that areas of strong
light intensity, such as highlights and intense caustics, appear
black in the error images.

http://refractiveindex.info
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Fig. 16. Qualitative (top) and quantitative (bottom) step-by-step evaluation of our reassembly techniques. The log error images
have the same format as in Fig. 15 and the reference photograph is in the rightmost column (g). In each column, we provide root-
mean-squared error and structural similarity index (RMSE / SSIM). Both measures attain their best score in our final result (f).

Fig. 17. Zoom-in of Figs. 16 (b) and (c) to emphasize the effect
of our background deformation.

Orthographic Perspective Reference

Fig. 18. Zoom-in of Fig. 16 (c) and (d) to emphasize the effect
of our perspective unwrapping of the environment map.

Figure 16 exemplifies the impact on error images of some of
our contributions. In Fig. 16 (a), we only reposition the glass
object in the background scene and apply color correction (Sec-
tions F and G). This means that we use Lambertian materials
(with bihemispherical reflectances from the measured BRDFs),
an orthographic unwrapping model of the environment map,
and no chrome reflectance correction or analysis by synthesis
optimization. We compare to the reference image in Fig. 16 (g),
with error images as in Fig. 15. Figure 16 (b) shows the impact
of using measured BRDFs (Section C), resulting in a more accu-
rate representation of the folds of the cloth in the background
scene (top image) and an overall reduction of the error (bottom
image). In Fig. 16 (c), we add deformation of the background
mesh (Section E), which ensures that the background mesh does
not poke through the glass surface (see a close-up in Fig. 17).
Additionally, we can see how this improves the error on the lid
of the bowl, because of refraction of light in the glass. The next
step, Fig. 16 (d), shows the impact of our modified environment
map unwrapping (Section H) against the standard orthographic
unwrapping rotated according to our camera parameters. A
close-up is available in Fig. 18. Our modified unwrapping pro-
vides a better shape and alignment of highlights and caustics.
Partially due to the assumption of infinitely distant environment
light, some alignment artifacts persist. In Fig 16 (e), we show the

Fig. 19. Trade-off in mesh reconstruction. If we smooth more,
we get less distortion in the refractions, but less precision in
the mesh geometry. From left to right: Rendering with smooth-
ing, reference image, rendering without smoothing.

effect of correcting for chrome reflectance in our environment
map reconstruction. Quantitatively, this changes the distribution
of the error (bottom image). On the cloth, the exposure increases,
exposing the caustics misalignment. On the backdrop, the error
reduces. Interestingly, the structural similarity index (SSIM) im-
proves while the RMSE worsens. Finally, in Fig. 16 (f), we use
analysis by synthesis to adjust glass absorption. This improves
the glass appearance, but it also leads to slight color changes
in other parts of the scene due to indirect light paths. Because
of this global influence, the analysis by synthesis introduces
slightly too much absorption to compensate for the slightly too
bright tablecloth.

As an example of how our pipeline can be used to validate
existing algorithms, we investigate the case of glass object recon-
struction. In Fig. 19, we compare two different reconstruction
methods with focus on two parts of the teapot scene. Smooth re-
construction refers to the procedure described in Section D. The
other procedure is to simply decimate the reconstructed mesh to
2.5% of the original vertices and apply Taubin smoothing [63].
This removes the high frequencies of the noise but much noise
is still present in the midranges leading to wobbly refractions.
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Rendering Reference Log error (as in 15)

Fig. 20. Material transitions: error lines along checker edges
and along the boundary between tablecloth and backdrop.

Rendering Reference Log error (as in 15)

Fig. 21. Effect of separating markers from glass (refracted
light close to marker) and of not accounting for subsurface
scattering (dark areas close to caustics).

Our method in Section D reduces far more noise, but this is at
the cost of greater changes to the overall shape. We note that
a refractive object with a simple geometry is very hard to re-
construct automatically if fidelity and almost no noise are both
required.

5. DISCUSSION

Since our pipeline enables us to compare renderings with pho-
tographs, we can identify problems in acquisition, reconstruc-
tion, and rendering that would otherwise have been hard to
find. Camera calibration issues, for example, reveal themselves
as error lines along edges (visible in Fig. 20). Color calibration
issues reveal themselves as color shift. Such issues led us to
more careful camera calibration procedures and the choice of
root-polynomial color correction. Qualitative comparisons re-
vealed artifacts in surface reconstruction, mesh intersections
calling for deformation, misplacement of highlights, color shift
due to chrome reflectance, and missing absorption in renderings
(Figs. 16–19). Quantitative comparisons confirmed improvement
due to perspective unwrapping of light probe images and led to
analysis by synthesis.

The comparison with reference photographs before and after
deformation (Fig. 17) to some extent validates our soft object
deformation technique. Further validation would be desirable,
but it is difficult to come up with a different experiment. Some
kind of soft, durable memory foam with a scannable surface
would be required as the soft object would otherwise change
shape again once the hard object is removed. Our validation
only supports that the cloth appearance (as observed through
glass) is represented more faithfully after deformation.

We found analysis by synthesis useful for estimating parame-
ters with an outset in physics-based initial guesses. The results in
Fig. 12 show that we can estimate optical properties for a given
material and use them in a different setting (right part of Fig. 1).
The precision of the estimation varies with the impact of the
property on the overall error, and the estimated parameters may
compensate for unrelated errors. In this regard, specific scene
configurations could be used to favor estimation of a particular
parameter.

The most important limitation of our method is that we de-

scribe materials as large patches of isotropic BRDFs. In our
renderings, this assumptions works well for the checkerboard
backdrop but not for the cloth, where we both have subsurface
scattering effects and probably anisotropy due to the weave
structure of the cloth. Fig. 21 reveals that the rendered image
is too dark in areas surrounding caustics. As seen in the light
refracted through the sphere in the vicinity of the marker, our
processing of the glass object to separate glass from markers
causes some imprecision in the geometry. We believe this mainly
influences the shape of the caustic. The bleeding of the caustic
to areas that are much darker in the rendered images looks like
backscattering from the table beneath the cloth. We refer to this
as a kind of subsurface scattering.

Another limitation is seen at the transition between non-
connected elements. It is visible in the renderings at the bound-
ary between the cloth and the backdrop (see Fig. 20). The prob-
lem derives from the fact that the cloth and the backdrop were
too close to each other during dataset acquisition. This resulted
in the Poisson mesh reconstruction interpreting them as a contin-
uous object instead of two separate ones. The problems around
markers (Fig. 21) are also due to transition of materials. The
marker removal and whole closing in the glass surface recon-
struction interrupts the original shape of the surface. Further-
more, the markers are glued onto the glass surface, and the
glue is not considered in the reconstruction and renderings. The
marker glue problem is magnified by the glass refraction.

6. CONCLUSION

We have proposed a pipeline for multimodal scene digitization.
Our work addresses the entire process from acquisition of the
original objects, through reassembly of the digital scene, to accu-
rate modeling of camera and environment. While the pipeline
required several non-trivial steps, the benefits are correspond-
ingly great since we can perform pixelwise comparisons between
rendered images and photographs of the corresponding physi-
cal scene. This means that we have the means to quantitatively
assess the accuracy of an acquired model based on comparison
with empirical evidence. We believe this kind of quantitative
assessment has not previously been possible for transparent
objects. In applications like cultural heritage preservation and
industrial inspection, where the accuracy of a digitization is
important, such comparison with empirical evidence is crucial.

To the best of our knowledge, our work is also the first work
to quantify the photorealism of a heterogeneous scene requiring
multimodal acquisition.

Our dataset is publicly available so that others can test new
techniques for the different steps of the pipeline with quantita-
tive feedback based on photorealistic rendering. The fact that
one can use off-the-shelf rendering techniques for improving
the different steps of a multimodal digitization pipeline is per-
haps the most important benefit of our work. An application
of the full pipeline is the virtual product placement in Fig. 1.
Another important application is the estimation of radiometric
properties through analysis by synthesis. The ability to accu-
rately estimate optical properties through computation rather
than measurement, which might require specialized equipment,
is likely to greatly simplify the digitization of radiometrically
complex objects. In this paper, we estimated absorption and
refractive indices of transparent objects, but analysis by synthe-
sis could be equally useful for other materials with non-trivial
BRDFs. This is another key benefit of our work that we believe
is well worth exploring in the future.
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Fig. 22. Comparison of renderings and photographs as in
Fig. 1 (left), but with more views.
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