Lighting Effects for Mobile Games
“Shadows for Sprites” and “Fog from Above”

Jeppe Revall Frisvad, Niels Jørgen Christensen, and Peter Falster

Presenter: Jeppe Revall Frisvad

In the Old Days
- Jim Blinn

- Clouds and Dusty Surfaces (SIGGRAPH 1982)
In the Old Days

- Jim Blinn
 - Clouds and Dusty Surfaces (SIGGRAPH 1982)
- Ideas which are as relevant as ever, why is that?

Mobile Devices

- We want small handheld devices ... with games and neat graphics
- Small handheld device means
 - Limited battery life
 - Limited processing power
 - Limited memory and storage capacity

Common Mobile Games Characteristics

- Two-dimensional
- Tile-based
- Viewed from above
- Recently: 3D ...

Mobile Games Characteristics

- Two-dimensional
- Tile-based
- Viewed from above
- Recently: 3D ... but we quickly lose track of things
Tile-Based 2D Games Viewed from Above

■ This type of game will always suit a small screen

3D Lighting Effects for 2D tile-based games

■ Speaking in favour of
 - Everything is rendered in a plane
 - Sprites are few and reappearing
 - Alpha-blending is available

■ Speaking against
 - No 3D information
 - Little memory available
 - Calculations have limited support

Shadows for sprites

■ Examples of sprites:

■ Height information with little memory consumption:
Shadow Curve Projection 1

- Shadow curves: (a) and (b)
- Sprite center: \(C \)
- Light position: \(L = (x_L, y_L, h_L) \)
- Direction to light \(d_L = (x_L, y_L) - C \)

Choosing a Shadow Curve

- Give each curve a direction in the xy-plane: \(d_{(a)} \) and \(d_{(b)} \)
- Choose (a) if \(d_{(a)} \) makes the larger angle with \(d_L \)
- Choose (b) if \(d_{(b)} \) makes the larger angle with \(d_L \)

Shadow Curve Projection

- Here curve (b) is chosen

Projecting the Curve 1/3

- Find points on the chosen curve:
 \[P_{0,i} = (x_{0,i}, y_{0,i}, h_{0,i}) \quad , \quad i = 0,...,n-1 \]
Projecting the Curve 2/3

- Find a straight line from L through each curve point: $P_i = (x_i, y_i, h_i) = L + t_i (P_{0,i} - L)$

Projecting the Curve 3/3

- t_i is found where $h_i = 0$: $0 = h_L + t_i (h_{0,i} - h_L) \iff t_i = h_L / (h_L - h_{0,i})$

Rendering the Shadow

- Remove height values from $P_{0,i}$ and P_i
- Draw a triangle strip: $P_{0,0}, P_{0,1}, P_1, ..., P_{0,n-1}, P_n$
Fog from Above

- Choose a low-resolution height field

\[
\begin{array}{cccc}
0.52 & 0.54 & 0.55 & 0.55 \\
0.52 & 0.50 & 0.51 & 0.50 \\
0.47 & 0.46 & 0.42 & 0.38 \\
0.41 & 0.48 & 0.51 & 0.44 \\
\end{array}
\]

- Place the height field in your game

- Find vertex positions \(Q_{ij} \) for the field

\[
\begin{array}{cccc}
Q_{00} & Q_{01} & Q_{10} & Q_{11} \\
Q_{00} & Q_{01} & Q_{10} & Q_{11} \\
Q_{10} & Q_{11} & Q_{20} & Q_{21} \\
Q_{10} & Q_{11} & Q_{20} & Q_{21} \\
\end{array}
\]

- Find vertex normals \(n_{ij} \) for the field

(use positions of neighbouring vertices)
Direct Light Transmission

Direct transmission: $\alpha \in (0,1]$

$\alpha_1 < \alpha_2$

$\alpha_{ij} = \exp(-\sigma_{th_{ij}}/|\cos \theta_{ij}|)$

$\tau = \sigma_i n_1$

Alpha Blending for the Fog

Choosing simplified fog shades:
1. $(R,G,B)_{ij} = h_{ij}$ (fog in a dark place)
2. $(R,G,B)_{ij} = 1$ (fog in a bright place)

Choosing a blending function
1. $L_{blend} = L_{src} + \alpha_{src}L_{dst}$
2. $L_{blend} = (1 - \alpha_{src})L_{src} + \alpha_{src}L_{dst}$

Adapting the Calculations for a Phone

OpenGL ES Common Lite profile
- Fixed point arithmetics (GLfixed S15.16)

$\exp(-x)$ look-up table (and $\cos(x)$ look-up table).

$\exp(-x)$: 20 entries for $x \in [0,1)$,
10 for $x \in [1,2)$, 5 for $x \in [2,3)$,
line through $(3,e^{-3})$ and $(10,0)$ for $x \in [3,10]$,
0 for $x > 10$
Performance

- 400 MHz Pentium3 laptop.
- Resolution: 250×250
- Fog grid size: 16×16

<table>
<thead>
<tr>
<th></th>
<th>no shadow</th>
<th>one strip</th>
<th>two strips</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o. fog</td>
<td>50.5</td>
<td>47.8</td>
<td>47.5</td>
</tr>
<tr>
<td>w. fog</td>
<td>30.1</td>
<td>29.0</td>
<td>28.9</td>
</tr>
</tbody>
</table>

Conclusion

- 3D lighting effects for 2D environments
- Characteristics of described methods
 - Inexpensive calculations
 - Low memory costs
- Let’s have more lighting effects in mobile games
 ... and tile-based 2D games in general

Thank you for your attention