
Eurographics Symposium on Rendering (2023)
T. Ritschel and A. Weidlich (Guest Editors)

SparseBTF: Sparse Representation Learning for Bidirectional
Texture Functions

Behnaz Kavoosighafi1 , Jeppe Revall Frisvad2 , Saghi Hajisharif1 , Jonas Unger1 , and Ehsan Miandji1

1Linköping University, Sweden
2Technical University of Denmark

Reference

SparseBTF

[RGJW20]

Figure 1: Our SparseBTF representing Fabric12 [WGK14]. Left: Illuminated by a high dynamic range environment map (Pixar Campus)
and rendered for 6 seconds with 158 frames per second (GeForce RTX 3080) using a progressive path tracer that we built upon the NVIDIA
OptiX framework [PBD*10] (v. 7.5). Right: Comparison of reconstructed images using our method and [RGJW20] with the same number of
coefficients. Incident azimuth and elevation angles: 0◦, 45◦. Observation azimuth and elevation angles: 0◦, 90◦.

Abstract
We propose a novel dictionary-based representation learning model for Bidirectional Texture Functions (BTFs) aiming at
compact storage, real-time rendering performance, and high image quality. Our model is trained once, using a small training
set, and then used to obtain a sparse tensor containing the model parameters. Our technique exploits redundancies in the data
across all dimensions simultaneously, as opposed to existing methods that use only angular information and ignore correlations
in the spatial domain. We show that our model admits efficient angular interpolation directly in the model space, rather than
the BTF space, leading to a notably higher rendering speed than in previous work. Additionally, the high quality-storage cost
tradeoff enabled by our method facilitates controlling the image quality, storage cost, and rendering speed using a single
parameter, the number of coefficients. Previous methods rely on a fixed number of latent variables for training and testing,
hence limiting the potential for achieving a favorable quality-storage cost tradeoff and scalability. Our experimental results
demonstrate that our method outperforms existing methods both quantitatively and qualitatively, as well as achieving a higher
compression ratio and rendering speed.

CCS Concepts
• Computing methodologies → Rendering; Reflectance modeling; Machine learning approaches;

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0002-1951-7515
https://orcid.org/0000-0002-0603-3669
https://orcid.org/0000-0002-0176-5852
https://orcid.org/0000-0002-7765-1747
https://orcid.org/0000-0002-4435-6784

B. Kavoosighafi et al. / SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions

1. Introduction

Accurate representation and simulation of material appearance are
key components in photo-realistic rendering. In the strive for re-
alism, many applications render images using captured appearance
of real world objects. However, accurately modeling the reflectance
properties of their materials, especially those with complex spatial
variation can be a challenge. To address this challenge, Dana et
al. [DvGNK99] proposed the Bidirectional Texture Function (BTF)
and captured the first BTF dataset (CUReT) from 60 materials with
205 different combinations of light and camera directions.

When using spherical coordinates for angular information and
2D parameterized surfaces for spatial information, a BTF is a 7-
dimensional function B(x,ωi,ωo,λ) of a 2D surface position x,
an incoming direction ωi, an outgoing direction ωo, and a wave-
length parameter λ. The BTF describes the appearance of a texture
for different light and view directions. Due to the inadequacy of
the angular information in the CUReT BTF dataset, research has
produced several BTF datasets with denser sampling over the di-
rections of incidence and observation [SSK03; KMBK03; HFV12;
WGK14; FKH*18]. Although BTFs enable good measurement and
representation of complex materials, they suffer from the fact that
densely sampled BTFs exhibit a very large memory footprint mak-
ing them difficult to use and, in many cases, even unsuitable for
practical rendering purposes.

Due to the large memory footprint, BTF data is most often trans-
formed into a representation space where the redundancies in the
data are exploited to reduce storage requirements. Decomposition-
based methods, using e.g. matrix or tensor factorization, are com-
monly used for this purpose. Principal Component Analysis (PCA)
can, for instance, decompose the data into the multiplication of a
basis matrix, holding the principal components as columns, and a
coefficient matrix, containing the principal values for each BTF as
columns [CD01; WGK14]. Regardless of the method, a data repre-
sentation is achieved by deriving, optimizing, or training a model
that represents the original data using a set of parameters, also
known as coefficients, where the number of parameters is much
smaller than the number of data elements.

For the practical use of a BTF data representation model, we
find that the representation should ideally fulfill four criteria (a–
d) that we describe in the following. (a) Low memory footprint.
The memory footprint often refers to the number of coefficients
needed to represent a BTF in a compact form. The storage cost
of the model itself is also a key factor. (b) Quality-storage cost
tradeoff. An efficient data representation model provides a trade-
off between quality and storage cost. As the number of coefficients
increases, we expect a steady reduction in the representation error.
(c) Fast local reconstruction. Fast access to single elements within
the 7D BTF function is a requirement for efficient offline and real-
time rendering. (d) One-time model training. It is important to train
a rich and robust model such that it can be directly utilized on many
unseen BTFs, even those that differ significantly from the training
set. Moreover, this property eliminates the need for storing multiple
models, i.e. one for each BTF.

We present a novel data-driven BTF representation enabling a
low memory footprint and real-time rendering performance while

maintaining the high visual quality and numerical accuracy re-
quired for physically-based photo-realistic rendering. Our main
contributions are in summary:

• A novel unsupervised data-driven model for BTF representation.
The model is trained once, using a small training set, and is
able to exploit redundancies in the data across all BTF dimen-
sions simultaneously, providing a distinct advantage over previ-
ous methods.

• Real-time BTF rendering, enabled by a sparse set of coefficients
for each BTF that admits interpolation directly in the coefficient
space.

• Significantly higher image quality, quality-storage cost tradeoff,
and rendering speed compared to the state-of-the-art methods.

In contrast to recent work on BTF representation [RJGW19;
KMX*21], our model is trained once utilizing a small training
set, with the capability to accurately represent a diverse range
of materials and appearances. Since the number of coefficients is
user-defined, and changing this parameter does not require a re-
training of the model, our method provides an intuitive trade-off
between quality and storage cost. This characteristic highlights a
high quality-storage cost tradeoff of SparseBTF. In Table 1, we
compare our method (SparseBTF) with state-of-the-art methods in
terms of fulfilling the four criteria (a–d). As exemplified in Fig-
ure 1, for an equal storage cost, our method represents the refer-
ence more faithfully when compared to the most recent method
featuring a one-time model training [RGJW20]. In addition, the
improved representation quality achieved by SparseBTF is ac-
complished while maintaining the real-time performance, in con-
trast to the baseline method that reports offline rendering perfor-
mance [RGJW20]. The code and data for this paper are available at
https://github.com/behnazkavoosi/SparseBTF.

2. Previous Work

Decomposition-based methods. Most decomposition-based meth-
ods on BTF modeling rely on matrix factorization and ten-
sor decomposition due to the multi-dimensional nature of BTF
data [MMS*05; FH09; HF13]. Koudelka et al. [KMBK03] ap-
ply a full matrix factorization to a matrix with Apparent BRDFs
(ABRDF) as columns to take the correlation between angular do-
mains into account. Müller et al. [MMK03] propose a per-cluster
factorization based on K-means, where PCA is computed for each
cluster rather than the entire matrix to reduce memory consump-
tion. Cula and Dana [CD01], on the other hand, use PCA to reduce
the dimensionality of the space of feature histograms obtained from
the statistical distribution of features in the angular images. Liu et
al. [LHZ*04] employ Singular Value Decomposition (SVD) to fac-
torize a BTF matrix to generate geometry maps and point appear-
ance functions, resulting in efficient synthesis and fast rendering
of BTFs on arbitrary surfaces. In a more recent work, Weinmann
et al. [WGK14] encode their measured BTFs using truncated PCA
in order to compress the data set. While these factorization-based
methods can achieve an acceptable reconstruction quality, they can-
not utilize the spatial coherence between ABRDFs, resulting in rel-
atively low compression ratios.

Tensor decomposition-based methods, on the other hand, attain

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://github.com/behnazkavoosi/SparseBTF

B. Kavoosighafi et al. / SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions

decomposition-based [RJGW19] [RGJW20] [KMX*21] SparseBTF
Low memory footprint ✓ ✓ ✓ ✓

Quality-storage cost tradeoff ✓ ✓
Fast local reconstruction ✓ ✓ ✓
One-time model training ✓ ✓

Table 1: Support of criteria for practical use and broad model applicability in graphics. Comparison of our method (SparseBTF) with state
of the art.

a more compact representation of BTFs compared to matrix factor-
ization approaches. In particular, an N-mode SVD can be applied
to the 7-dimensional BTF tensor directly to take advantage of cor-
relations among different modes of the tensor, i.e., spatial, angu-
lar, and temporal domains [VT04; WWS*05]. Tsai et al. [TS12;
Tsa15] introduced K-clustered tensor approximation to partition
high-dimensional data, e.g. BTF, into clusters to harness the intra-
and inter-cluster dependencies. Havran et al. [HFM10] parameter-
ize the BTF data as a set of multi-dimensional conditional proba-
bility density functions compressed by a multi-level vector quan-
tization algorithm. In other work [TFLS11], a decomposition of
the reflectance field in multivariate spherical radial basis functions
(SRBFs) along with a hierarchical BTF fitting model is proposed
to model the existing non-linearity in complex materials while pre-
serving the spatial dependencies. Wu et al. [WDR11] present a
sparse parametric model for BTFs, where a stagewise Lasso-based
fitting algorithm is used to decompose a BTF into a dictionary and
a set of sparse coefficients.

Decomposition-based methods require solving a computation-
ally demanding optimization problem for each BTF individually to
obtain a high-capacity model and its coefficients. Once the decom-
position is performed, reconstruction performance is typically ad-
equate for real-time rendering applications. Moreover, since both
the coefficients and the model has to be saved for each BTF,
decomposition-based methods impose a higher memory footprint.

Learning-based methods. Ruiters and Klein [RK09] use the
K-SVD algorithm [AEB06] to split a massive BTF tensor into
one dictionary and two sparse tensors. This lowers the memory
footprint while enhancing the reconstruction quality. Den Brok et
al. [dBWK15] harness the linear bases obtained from rank-512 ap-
proximations of BTFs to reduce the dimensionality of BTFs. How-
ever, the model requires a large training set to achieve an acceptable
reconstruction error. In a later study [dBWK18], minimization of a
relative error metric is utilized to compute a linear basis for BTF
representation, which allows for sparse and multiplexed data acqui-
sition. Tongbuasirilai et al. [TUGM22] propose sparse modeling of
Bidirectional Reflectance Distribution Functions (BRDFs) by train-
ing multi-dimensional dictionaries for a set of BRDFs. While we
draw inspiration from this model, it is important to acknowledge
that adapting this technique to BTFs is a non-trivial task due to the
high dimensionality and intricate nature of the data. Learning a set
of dictionaries capable of accurately representing the wide range of
variability found in BTFs poses a particularly difficult challenge as
compared to BRDF modeling. To overcome these challenges, we
develop novel approaches that efficiently capture the richness of
BTF data. Furthermore, SparseBTF achieves real-time rendering
of BTFs and real-time interpolation in the angular domain in the

coefficient space, which has not been explored in previous work on
BRDFs [TUGM22].

Recently, several studies have focused on neural material rep-
resentation models, with various architectures utilized to encode
material as a set of low-dimensional latent vectors [HGC*20;
SRRW21; ZZW*21; FWH*22]. Rainer et al. [RJGW19] propose a
per-material encoder-decoder architecture, where the auto-encoder
generates 8 latent coefficients per pixel from the input ABRDFs for
each BTF. The RGB color of each pixel corresponding to one par-
ticular set of the incident and observed directions is then recovered
using the stored latent vectors. However, since the network has to
be re-trained for each BTF, they later generalized this architecture
by adding a Multi-Layer Perceptron (MLP) to the auto-encoder to
encode various materials using a common latent space with 32 co-
efficients per spatial position [RGJW20]. While their model offers
a low memory footprint and supports one-time training, it does not
exploit correlations in the spatial domain since the model is trained
on ABRDFs. In Section 4, we demonstrate that SparseBTF exhibits
a substantially superior quality-storage cost tradeoff compared to
the methods proposed in [RJGW19] and [RGJW20].

In a recent study, Kuznetsov et al. [KMX*21] combine two MLP
networks for mipmapping and parallax mapping to represent a
multi-resolution BTF, referred to as MBTF. However, this approach
has been found to suffer from overfitting to a specific material, as
in earlier work [RJGW19], demanding re-training for every indi-
vidual BTF. The authors extend their work by incorporating opac-
ity and reflectance prediction modules to handle silhouette effects
on curved surfaces [KWM*22]. More recently, two changes in the
sampling strategy and activation layer of NeuMIP [KMX*21] were
proposed, leading to improvements in quality, storage cost, and per-
formance [QP22].

3. SparseBTF

In our SparseBTF method, we represent a BTF by a set of sparse
coefficients obtained using a learned 4D dictionary ensemble. We
first divide a BTF into a set of data points to enable efficient pro-
cessing of the data in the remaining steps (Section 3.1). The 4D
dictionary ensemble is then trained once using our proposed al-
gorithm (Section 3.2). Given the trained model and a BTF in the
test set, we obtain the sparse coefficients through a simple and fast
greedy algorithm (Section 3.3). A discussion of the reasons behind
the improvements of our method over the prior art (Table 1) is in-
cluded in Section 3.2.

Each individual point from a BTF data point is recovered us-
ing the sparse coefficients and the 4D dictionary ensemble (Sec-
tion 3.4). We also propose a method for interpolation in the angular

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

B. Kavoosighafi et al. / SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions

4D sparse
modeling

Real-time rendering

Angular interpolation

Inter-BTF interpolation

Training set

One-time 4D dictionary
ensemble training

UV
(1,1), UV

(2,1), UV
(3,1), UV

(4,1)

UV
(1,K), UV

(2,K), UV
(3,K), UV

(4,K)

UU
(1,K), UU

(2,K), UU
(3,K), UU

(4,K)

UU
(1,1), UU

(2,1), UU
(3,1), UU

(4,1)

UY
(1,1), UY

(2,1), UY
(3,1), UY

(4,1)

UY
(1,2), UY

(2,2), UY
(3,2), UY

(4,2)

UY
(1,K), UY

(2,K), UY
(3,K), UY

(4,K)

UY
(1,3), UY

(2,3), UY
(3,3), UY

(4,3)

UY
(1,4), UY

(2,4), UY
(3,4), UY

(4,4)

...

Testing set

...

Figure 2: Overview of the proposed framework, SparseBTF, for learning-based sparse representation of BTFs. A training set containing a
small number of BTFs is used for learning an ensemble of 4D dictionaries, which is performed only once. Given a set of BTFs in the test set
and the dictionary ensemble, we obtain 4D sparse coefficients. The coefficient set, defining the model space, admits Inter-BTF interpolation
directly using the coefficients since the model space defined by the coefficients and the dictionary ensemble is a smooth manifold. Moreover,
SparseBTF benefits from fast angular interpolation in the model space, as opposed to the BTF space, which enables real-time rendering. The
rendered images are illuminated by a high dynamic range environment map (Pixar Campus).

domain, i.e., for incident and view directions, directly in the co-
efficient space and without the need for multiple reconstructions.
Fast local reconstruction of a single BTF element, together with in-
terpolation in the coefficient space, enables SparseBTF to achieve
high frame rates on a single consumer-level GPU. Finally, we de-
scribe our method for interpolating between two or more BTFs in
Section 3.5. We show that, given a set of BTFs, SparseBTF admits
constructing a smooth manifold over this set, which enables the
synthesis of novel BTFs directly in the model space using sparse
coefficients. The full pipeline of our method is shown in Figure 2.

Notation. We use boldface lower-case letters for vectors (a), bold-
face upper-case for matrices (A), and calligraphic letters for ten-
sors (A). A finite set of objects is indexed by superscripts, e.g.
{A(i)}N

i=1, whereas individual elements of a, A and A are denoted
ai, Ai1,i2 and Ai1,...,in , respectively. The ℓp norm of a vector s, for
1 ≤ p ≤ ∞, is denoted by ∥s∥p, and we use ∥s∥F for the Frobe-
nius norm. The ℓ0 pseudo-norm of a vector, denoted ∥s∥0, defines
the number of non-zero elements in the vector. The n-mode prod-
uct of a tensor S and a matrix A is denoted S ×n A. This operation
involves multiplying each mode-n fiber in tensor S with matrix A.

3.1. BTF data points

A BTF is a seven-dimensional (7D) function B(x,ωi,ωo,λ) param-
eterized by a 2D surface position x, a direction of incidence light
ωi, a direction of observation ωo, both in 2D spherical coordinates,
and a wavelength parameter λ. By vectorizing angular dimensions
corresponding to incoming and outgoing directions, we obtain a 5D
parameterization. In this paper, we process each color channel (λ)
of a BTF individually. Since we consider RGB data, this leads to
a triplet of 4D functions for each BTF. For efficient processing in
training, testing, and rendering, we divide each BTF into a set of
data points. Data points can be obtained using a 1D to a 4D non-
overlapping sliding window over the discrete 4D BTF tensor.

To enable efficient BTF representations, we define 4D data
points that include all the angular information of the BTF as well
as a small spatial patch, e.g., 10 × 10 pixels. Our motivation for
this approach is that the spatial domain of a BTF often contains
high-frequency information, while the angular domain is relatively
smooth. As a result, the representation model can exploit corre-
lations in both the angular and spatial domains without the need
for a large number of parameters. Moreover, having all the angular
information within a data point facilitates efficient angular interpo-
lation in the coefficient space, see Section 3.4. Another advantage
of incorporating small spatial patches within a data point is that
BTFs are often used for modeling the appearance of textures, which
often exhibit repeated patterns in the spatial domain. By creating
small spatial patches, we can exploit such non-local spatial corre-
lations. This approach, known as patch-based processing, is well-
established in the fields of image processing and machine learning.

After extracting data points from one or multiple BTFs, we ap-
ply a log transformation to reduce the dynamic range of the mea-
surements. Subsequently, a color transformation is applied to con-
vert the RGB values (as existing BTF data sets are mostly in RGB
color space) to the YUV color space [RKAJ08; XSJT07; SWRK11;
KWK17]. In each BTF image, which represents spatial information
of a specific light and view direction, we apply a normalization
process by subtracting the mean and dividing by the standard de-
viation. The transformation to YUV color space decorrelates the
reflectance values, allowing them to be treated independently with-
out introducing artifacts. More importantly, as the luminance chan-
nel contains the majority of the signal’s information, it allows us
to use far fewer coefficients for the U and V channels. This reduc-
tion in model complexity and cost leads to an increase in rendering
performance, as the model becomes much more compact.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

B. Kavoosighafi et al. / SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions

3.2. Learning an ensemble of 4D dictionaries

High-dimensional visual data, such as BRDFs and BTFs, can
be represented using two main approaches. Either the high-
dimensional data points are converted to 1D or 2D signals to facil-
itate data processing using existing tools within linear algebra and
machine learning [NJR15; SESM22], or the data points are defined
in such a way that they only contain one or two dimensions from
the signal [RGJW20; KMX*21]. Unlike these two well-established
approaches, the key observation in designing the SparseBTF algo-
rithm is the simultaneous exploitation of correlations present in all
the dimensions of a 4D BTF.

Let {X (i)}Nl
i=1 be a set of Nl BTF data points with dimensions

X (i) ∈ Rm1×m2×m3×m4 where (m1,m2) represent the spatial patch
size, and (m3,m4) define the incoming and outgoing directions, re-
spectively. We assume that all the data points have the same dimen-
sionality and that each color channel can be processed indepen-
dently. Since SparseBTF is a learning-based approach, we define
a set of data points, {X (i)}Nl

i=1, as the training set, and our test-
ing data is denoted by {Y(i)}Nt

i=1. In our experiments, we used the
Bonn BTF data set [WGK14], which features an angular resolution
of 151×151. Choosing a spatial patch size of 10×10 leads to data
points of dimensionality m1×m2×m3×m4 = 10×10×151×151.
Importantly, the training phase of SparseBTF is a one-time process
that is performed on a small number of BTFs, as opposed to pre-
vious approaches [RJGW19; KMX*21], where a separate model
is trained for each individual BTF. Note that the notation utilized
henceforth is formally introduced in the Notation subsection of
Section 3.

Following the criteria listed in Section 1 and Table 1, we use a 4D
dictionary ensemble model to represent BTF data. The ensemble is
learned from a training set, but since the representation is based on
sparse tensor decompositions, our method benefits from the advan-
tages of both learning-based and decomposition-based approaches.
At its core, SparseBTF represents a data point X (i) as

X (i) = S(i)×1 U(1,k)×2 U(2,k)×3 U(3,k)×4 U(4,k), (1)

where the set {U(1,k),U(2,k),U(3,k),U(4,k)}K
k=1 describes an ensem-

ble of K dictionaries, each containing four basis matrices corre-
sponding to the four dimensions of a BTF data point. In particular,
we have U(1,k) ∈ Rm1×m1 , U(2,k) ∈ Rm2×m2 , U(3,k) ∈ Rm3×m3 , and
U(4,k) ∈ Rm4×m4 . Thus, each basis matrix U(n,k) learns a transfor-
mation from the nth dimension of the data point to the sparse model
space. The tensor S(i) ∈Rm1×m2×m3×m4 is sparse and contains the
set of coefficients for the data point X (i). The sparsity of a tensor
is typically measured using the ℓ0 norm.

A similar model, albeit with different model dimensionality, is
used in existing work for light field compression [MHU19] and
measured BRDF representation [TUGM22]. However, the direct
application of such previous approaches to the case of BTF repre-
sentation poses several challenges making it infeasible. First, BTF
data sets are orders of magnitude larger than measured BRDFs or
light fields, thus requiring a higher compression ratio while main-
taining the rendering quality. Second, BTF rendering requires fast
local reconstruction of a single element of the BTF given a spatial
location, and incoming and outgoing directions. Third, given the

Fabric10 Wallpaper06 Wood10
SparseBTF 2.1 2.8 1.1
[MHU19] 7.3 8.2 6.9

Table 2: Mean squared reconstruction error (×10−4) for three
BTFs from the data set presented in [WGK14]. The storage costs
for both methods are equal.

low angular resolution of existing acquisition systems and data sets,
efficient interpolation is crucial for rendering. Previous methods us-
ing a model similar to the one in Eq. (1) have not considered the
interpolation of elements within a data point in their sparse form.
Finally, in our initial experiments, we found that including color in-
formation in a data point leads to color artifacts because of the com-
plexity of BTF data along the spatial dimensions, which dominates
the learning algorithm. On the other hand, using the RGB color
space also introduces color artifacts since small errors in each chan-
nel accumulate into perceivable artifacts. We use the YUV space to
separate the luminance and chroma components. This allows us to
employ a varying number of model parameters for each channel
and reduce color artifacts.

We compared the reconstruction error of SparseBTF to the
method proposed by Miandji et al. [MHU19], which does not in-
clude any BTF-specific transformations or processing. Table 2 re-
veals that SparseBTF achieves an average fourfold reduction in er-
ror as compared to Miandji et al., highlighting the importance of
domain-specific data processing. The results show that the process-
ing plays a crucial role in reducing complexity and extracting the
most relevant features, facilitating the learning process and enhanc-
ing the overall efficiency of SparseBTF.

SparseBTF trains an ensemble of K ≪ Nl 4D dictionaries, given
a training sparsity parameter, τl , by optimizing the following ob-
jective function over a training set of BTF data points {X (i)}Nl

i=1

min
U(j,k),S(i,k),Mi,k

Nl

∑
i=1

K

∑
k=1

Mi,k

∥∥∥X (i)−S(i,k)×1 U(1,k)

×2 U(2,k)×3 U(3,k)×4 U(4,k)
∥∥∥2

F
(2a)

subject to(
U(j,k)

)T
U(j,k) = I, ∀k = 1, . . . ,K, ∀ j = 1, . . . ,4, (2b)∥∥∥S(i,k)

∥∥∥
0
≤ τl , (2c)

K

∑
k=1

Mi,k = 1, ∀i = 1, . . . ,Nl , (2d)

where (2b) guarantees the orthonormality of each dictionary and
(2c) enforces sparsity of the representation. The orthonormality of
each basis matrix is crucial for achieving fast and local reconstruc-
tions. More importantly, we exploit this property in deriving a sim-
ple approach for the interpolation of values within a BTF data point,
as well as interpolating distinct BTFs for novel BTF synthesis. It
is the orthogonality of each basis that admits a locally linear rep-
resentation in the model space, hence constituting a smooth mani-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

B. Kavoosighafi et al. / SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions

fold that can be explored by the manipulation of sparse coefficients.
Equation (2d) associates each data point to one 4D dictionary using
the membership matrix M ∈RNl×K . The matrix M is thus a binary
clustering matrix where only one component is nonzero for each
row. The entire training algorithm is available in the supplementary
material.

Since we process each YUV color channel independently, we
train three ensembles. Due to the sensitivity of the human visual
system to brightness variations, we train a dictionary with lower
sparsity for the Y channel, i.e., with a higher number of coefficients.
The chroma channels, i.e., UV, require fewer coefficients since they
carry less information compared to luminance.

3.3. Sparse representation of BTFs

As discussed in Section 3.2, the training algorithm clusters the set
of BTF data points in the training set so that each 4D dictionary
best approximates its corresponding cluster of data points. Once the
ensemble is learned on the training set, the test set {Y(i)}Nt

i=1, con-
taining Nt BTF data points, together with the ensemble are used to
compute the sparse coefficient tensors. This amounts to determin-
ing a dictionary in the ensemble for each data point that results in
the sparsest representation with the least representation error. Re-
call that each BTF data point is represented by one dictionary. We,
therefore, project each data point onto all 4D dictionaries in the en-
semble and pick the dictionary that produces the sparsest solution
with the smallest error. The projection is done by evaluating

Ŝ(i,k) = Y i ×1

(
U(1,k)

)T
×2

(
U(2,k)

)T
×3(

U(3,k)
)T

×4

(
U(4,k)

)T
, (3)

where Ŝ(i,k) is the sparse coefficient tensor of the ith data point us-
ing the kth dictionary. Let τt be the user-defined sparsity parameter
used for the test set, i.e., the testing sparsity. We nullify the small-
est absolute values in Ŝ(i,k) until the desired sparsity is achieved
or when the error becomes larger than a user-defined threshold.
Note that if the number of non-zero values is equal to τt for all
dictionaries, then the dictionary with the least error is picked. We
require τt ≥ τl to avoid underfitting to the model. Similar to the
training sparsity, the testing sparsity is set differently for luminance
and chroma channels to minimize the number of parameters while
maintaining the representation error. Apart from the sparse coeffi-
cient tensors, we require to store a membership vector m associat-
ing each data point in the testing set to its representative dictionary
and a vector z containing the number of non-zero coefficients for
each data point.

A unique aspect of SparseBTF is that the number of model
parameters for training, τl , is distinct from that of testing, τt .
This is the main reason for achieving a superior quality-storage
cost tradeoff as compared to previous work. Once the ensem-
ble is trained using τl , any testing BTF can be represented with
τt ∈ [τl ,m1m2m3m4] coefficients, where the maximum is the to-
tal number of elements in Ŝ(i,k). Moreover, SparseBTF provides
a steady increase in reconstruction quality with increasing τt , see
Table 3. This is in contrast to previous work [RJGW19; RGJW20;

KMX*21], where the number of model parameters cannot be con-
trolled during testing or reconstruction. Indeed, existing methods
may increase the number of parameters, e.g., by adding layers to
the encoder/decoder, as well as increasing the number of latent vari-
ables; however, this comes at the cost of re-training the model with
a possibly larger training set. Furthermore, depending on the num-
ber of parameters, distinct networks should be trained and stored.
Even when the number of parameters that are learned is increased,
the quality-storage cost tradeoff is still low since the number of
parameters is fixed during training and testing, and it may only be
optimal for a certain class of BTFs. For instance, using a large num-
ber of latent variables for smooth BTFs leads to overfitting, while
a small number of latent variables for high-frequency BTFs leads
to underfitting. Indeed, SparseBTF can benefit from training based
on different τl since the sparse representation step described above
can pick the most suitable dictionary. We leave this last point for
future work.

3.4. Real-time rendering using sparse coefficients

Once the sparse coefficient tensors Ŝ(i) for all the data points within
the test set and the membership vector m are obtained, the recon-
struction is performed by evaluating

Ŷ(i) = Ŝ(i)×1 U(1,mi)×2 U(2,mi)×3 U(3,mi)×4 U(4,mi), (4)

where mi ≤ K is the index of the chosen dictionary for the i-th data
points and Ŷ(i) ∈ Rm1×m2×m3×m4 is the reconstructed BTF data
point. With a slight abuse of notation, Ŝ(i) ∈ Rm1×m2×m3×m4 de-
notes the sparse coefficient corresponding to the dictionary mi. To
reduce the storage cost, we store the sparse coefficient tensor Ŝ(i) as
a set of nonzero values and their corresponding location within the
tensor, e.g. using an index tuple

(
lτt
1 , lτt

2 , lτt
3 , lτt

4
)
. Note that, without

loss of generality, here we assume that all the data points have τt
coefficients, i.e. a fixed sparsity parameter. This choice was made
to facilitate comparisons to previous work; i.e. by fixing the stor-
age cost with respect to the number of coefficients and comparing
the image quality. In practice, as described in Section 3.3, the num-
ber of coefficients may vary among data points by using an error
threshold parameter rather than a fixed sparsity parameter during
the computation of the sparse representation. We formulate the re-
construction of a single element within a data point Y(i) located at
(x1,x2,x3,x4), which we denote by Y(i)

x1,x2,x3,x4 , as follows

Ŷ(i)
x1,x2,x3,x4 =

τt

∑
z=1

Ŝ(i)
lz
1,l

z
2,l

z
3,l

z
4
U(1,mi)

x1,lz
1

U(2,mi)
x2,lz

2
U(3,mi)

x3,lz
3

U(4,mi)
x4,lz

4
, (5)

where lz
1 and lz

2 store the spatial locations and lz
3 and lz

4 denote the
angular locations of non-zero coefficients within Ŝ. The non-zero
values in Ŝ(i), together with their locations, the membership vec-
tor, and the 4D dictionary ensemble, are uploaded as textures to
the GPU. The ensemble is uploaded once, since it is fixed, while
the coefficients may need to be uploaded progressively if the scene
contains many BTFs.

Since BTF data sets are often coarse in the angular domain, we
perform interpolation in the angular domain to compute BTF val-
ues for novel light and view directions during rendering. First, the
k-Nearest Neighbors (kNN) algorithm is utilized to find the two

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

B. Kavoosighafi et al. / SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions

Carpet12 Fabric12 Felt12 Leather12 Stone12 Wallpaper12 Wood12
[RJGW19] (16) 1.5 0.8 1.5 14 1.5 1.1 0.9
[RGJW20] (16) 3.3 6.7 2.7 101 4.9 1.9 4.5
SparseBTF (16) 1.8 3.7 1.6 83 6.0 2.2 2.1
[RJGW19] (32) 0.9 0.5 1.0 11 1.1 0.9 0.8
[RGJW20] (32) 2.4 4.5 2.0 90 3.7 1.5 4.0
SparseBTF (32) 1.0 3.0 1.0 71 4.3 1.6 1.6
[RJGW19] (64) 0.5 0.4 0.7 11 0.9 0.7 0.7
[RGJW20] (64) 2.2 4.0 1.8 98 3.7 1.5 4.1
SparseBTF (64) 0.7 2.7 0.7 47 3.2 1.2 1.2
[RJGW19] (128) 0.5 0.4 0.6 10 0.9 0.7 0.7
[RGJW20] (128) 2.2 4.3 1.8 96 3.7 1.4 4.5
SparseBTF (128) 0.5 2.3 0.5 32 2.4 1.0 1.0

Table 3: Mean squared reconstruction error (×10−4) of BTFs in the test set with 100 × 100 texels. SparseBTF (16), SparseBTF (32),
SparseBTF (64), and SparseBTF (128) imply that our compression ratio is equal to [RGJW20] and [RJGW19] with 16, 32, 64, and 128
latent coefficients, respectively.

light/view configurations with solid angle bin centers that are clos-
est to the direction of incidence/observation. We then use Eq. 5 to
obtain the reflectance value at four different combinations of the
best and second-best bins for the two directions, and perform bilin-
ear interpolation to return the final appearance value. Because each
data point includes all the angular information, and the 4D dic-
tionaries are orthonormal, the interpolation with respect to the in-
coming and outgoing directions can be performed in the coefficient
space. Without loss of generality, we perform linear interpolation
of two viewing directions, denoted xs and xt , using

Ŷ(i)
x1,x2,x3,x4 =

τt

∑
z=1

Ŝ(i)
lz
1,l

z
2,l

z
3,l

z
4
U(1,mi)

x1,lz
1

U(2,mi)
x2,lz

2
U(3,mi)

x3,lz
3(

(1−α)U(4,mi)
xs,lz

4
+αU(4,mi)

xt ,lz
4

)
, (6)

Interpolation along light directions can be carried out in a similar
way. It is noteworthy that our method is not restricted to a partic-
ular interpolation technique. Alternative methods for interpolation
within the sparse space of coefficients, such as kernel density es-
timation utilizing various kernel functions [Sil86] can also be ap-
plied. Further details and illustrative examples can be found in the
supplementary material.

3.5. Inter-BTF interpolation

To interpolate between two or more distinct 4D BTFs in the coef-
ficient space, we adapt an existing method [TUGM22] to work for
our SparseBTF model. For brevity, we illustrate this using linear in-
terpolation in the angular and spatial domains. More sophisticated
BTF interpolation methods have been proposed, e.g., [RSK13;
GK18], and we see that the SparseBTF representation supports ex-
tensions to using more advanced filtering as part of future work. Let
B1 and B2 be two distinct BTFs that are represented using a com-
mon dictionary {U(1,k),U(2,k), U(3,k),U(4,k)}. Moreover, let B3 be

the result of the interpolation between B1 and B2. Then,

B3 = ((1−α)S1 +αS2)×1 U(1,1)

×2 U(2,1)×3 U(3,1)×4 U(4,1), (7)

where α is the interpolation parameter, S1 and S2 are the sparse
coefficients of B1 and B2, respectively. Indeed, B3 can be obtained
using bi-linear, cubic, barycentric, or other variants of interpolation
based on the number of BTFs to be interpolated and the smoothness
of the interpolation. Moreover, it is possible to interpolate between
two or more BTFs that use distinct dictionaries. Assume that B1
uses the kth dictionary and B2 uses the pth dictionary. For this case,
we have(

(1−α)S1 +αS̃2
)
×1 U(1,k)×2 U(2,k)×3 U(3,k)×4 U(4,k), (8)

where

S̃2 = S2 ×1 R(1,k)→(1,p)×2 R(2,k)→(2,p)

×3 R(3,k)→(3,p)×4 R(4,k)→(4,p), (9)

and R(n,k)→(n,p) defines a transformation matrix from the orthogo-
nal matrix U(n,k) to U(n,p).

4. Results

In this section, we evaluate SparseBTF and compare it with the
work of Rainer et al. [RGJW20; RJGW19] as well as Neu-
MIP [KMX*21]. It is important to note that two of these meth-
ods [RJGW19; KMX*21] require re-training for each BTF, hence
overfitting the model to the data. Thus, a direct comparison be-
tween these two methods is not feasible. However, we have in-
cluded the results of [RJGW19] as a baseline in Table 3. Due to
the fact that NeuMIP [KMX*21] involves additional steps, such
as creating a level-of-detail pyramid and performing displacement
mapping, which are outside the scope of this paper, our compari-
son with NeuMIP is limited to their model without the neural offset

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

B. Kavoosighafi et al. / SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions

Figure 3: Logarithm of MSE of 14 reconstructed BTFs using our
method with different testing sparsities, i.e., the number of non-zero
coefficients.

module. Applying displacement mapping to SparseBTF is left for
future work.

Data set and parameters. For training the 4D dictionary en-
semble, we chose 18 BTFs out of 84 from the UBO2014 data
set [WGK14] as our training set. The training BTFs were se-
lected to cover the variation over the different BTF classes in the
UBO2014 data set as well as inter-class variations. We provide
more details regarding the materials included in the training set in
the supplementary material.

The UBO2014 data set has a spatial resolution of 400 × 400
and an angular resolution of 151 × 151, with 3 color channels
(RGB). To enable faster processing and to exploit angular corre-
lations, we create 4D data points from each BTF, consisting of
all the 151 × 151 angular samples with a spatial patch size of
10 × 10 pixels. Hence, every single BTF in UBO2014 is repre-
sented by 40 × 40 = 1600 data points. We trained 8 dictionaries
with training sparsities of τlY = 256, τlU = 32, and τlV = 32 for
the Y, U, and V color channels, respectively. To reduce memory
cost during training, we randomly sampled 10% of the training data
points. Hence the total number of data points used for training was
(1600 × 18 × 0.1) = 2880. The one-time training takes approxi-
mately 101 hours on a machine with 128 cores operating at 2.4GHz.
Improvement of the training time is possible, as pre-clustering has
been shown to significantly improve the training time by 10× with
the same number of dictionaries [MHU19]. The time required for
sparse representation of each BTF, as described in Section 3.3, is
about 1060 seconds.

To evaluate our method in comparison to [RGJW20], the 12th
BTF of each material class, namely Carpet12, Fabric12, Felt12,
Leather12, Stone12, Wallpaper12, Wood12, are chosen as the test
set. Additionally, we have set the sparsity parameter of our method
so that the storage cost of both methods exactly match. Throughout
this section, we use SparseBTF (16), SparseBTF (32), SparseBTF
(64), SparseBTF (128), and SparseBTF (256) to refer to the stor-

Compression ratio Absolute size
SparseBTF (16) 4218 4.94
SparseBTF (32) 2122 9.84
SparseBTF (64) 1065 19.60
SparseBTF (128) 506 41.24
SparseBTF (256) 260 80.31

Full BTF - 20875

Table 4: Compression ratio and absolute size (MB) of different
variations of SparseBTF. The absolute size includes the dictionary
and sparse coefficients.

Carpet12 Felt05 Stone05
SparseBTF (32) 1.0 2.0 0.6

PCA (64) 2.2 3.5 1.0

Table 5: Mean squared reconstruction error (×10−4) of three
BTFs in the test set with 100× 100 texels. Note that the compres-
sion ratio for SparseBTF is twice that of the PCA.

age cost of SparseBTF with respect to [RGJW20] with 16, 32, 64,
128, and 256 latent variables, respectively. The compression ratio
and the total storage cost for SparseBTF is outlined in Table 4.
Note that since we have to account for the location of nonzero co-
efficients, the membership vector, and the 4D dictionary ensem-
ble, the number of coefficients for SparseBTF is different from that
of [RGJW20]. We elaborate on the calculation of our sparsity pa-
rameter, τt , to best match the storage cost of the baseline method in
the supplementary document.

Full BTF Reconstruction. Since Rainer et al. [RGJW20] evalu-
ated their method with 100× 100 BTF texels, for a fair compari-
son, we also crop the BTFs for the results reported in Table 3. We
evaluated SparseBTF, in comparison to previous work, using a test
set with seven unseen BTFs (materials not in the training data).
Table 3 reports the reconstruction error in terms of mean squared
error (MSE) with respect to the number of coefficients. The aver-
age reconstruction error of SparseBTF reduces consistently with an
increasing number of coefficients. This is in contrast to the existing
methods [RGJW20; RJGW19], where the error does not decrease
considerably for 64 and 128 latent variables; in some cases, the er-
ror even increases as the number of coefficients is doubled. More-
over, it should be noted that the encoder of Rainer et al. [RGJW20]
is trained on 77 BTFs, whereas our training set includes only 18
BTFs. According to Table 3, SparseBTF performs significantly bet-
ter in the vast majority of test cases when compared to the method
of Rainer et al. [RGJW20]. Table 5 compares SparseBTF to PCA
for three BTFs from the UBO2014 dataset [WGK14]. SparseBTF
achieves lower MSE values, indicating better reconstruction accu-
racy than PCA. Note that the SparseBTF compression ratio is twice
that of the PCA, showcasing its higher compression efficiency.

Figure 3 confirms the flexibility of SparseBTF, showing a trade-
off between memory footprint and reconstruction quality can be
obtained through the user-defined sparsity parameter τt . The plot
includes seven more BTFs in addition to the test set used for Ta-
ble 3. As demonstrated, SparseBTF shows a consistent increase in

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

B. Kavoosighafi et al. / SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions

SparseBTF (16) SparseBTF (32) SparseBTF (64) SparseBTF (128) SparseBTF (256) Ground truth
C

ar
pe

t0
7

Figure 4: Demonstration of quality-storage cost tradeoff using our method with different testing sparsities, i.e., the number of non-zero
coefficients. Incident azimuth and elevation angles: 270◦, 66.5◦. Observation azimuth and elevation angles: 15◦, 79◦.

quality as the number of parameters is increased. Visual compar-
isons for the effect of sparsity on the image quality are illustrated
in Figure 4. To facilitate comparison, all false-color absolute error
images in the paper are normalized and scaled by a factor of 2.

Figure 5 shows the reconstructed images of a specific pair of
light and view angles produced by SparseBTF and [RGJW20],
along with error images. SparseBTF consistently outperforms
[RGJW20] in visual quality by preserving high-frequency details
while the baseline method tends to smooth images and fails to re-
cover fine texture details, see e.g., Fabric12 and Leather12. For dis-
play purposes, the images in figures 4, 5, and 6 are gamma-mapped
using Iout = aI−γ

in , where a = 1.3 and γ = 1.8.

Table 6 presents the average peak signal-to-noise ratio (PSNR)
values for three reconstructed BTFs using SparseBTF and the
method of Wu et al. [WDR11], which utilizes analytical dictio-
naries. For a fair comparison, we utilize the same data set used
therein, i.e. the UBO2003 data set [SSK03] with 81× 81 = 6561
angular images and a spatial resolution of 256 × 256. To estab-
lish a baseline, we processed all color channels together to obtain
a 5D representation of BTFs. The resulting 5D data points were
of size 8× 8× 81× 81× 3, where m1 = m2 = 8, m3 = m4 = 81,
m5 = 3; the last dimension, i.e. m5, denotes the number of color
channels. In line with the methodology of Wu et al. [WDR11], we
train one dictionary per material with τl = 128. Since τt ≥ τl , we set
τt = 965 for each data point. The results, as shown in Table 6, indi-
cate that SparseBTF significantly outperforms Wu et al. [WDR11]
in terms of both reconstruction quality and storage cost. The pro-
posed method by Wu et al. [WDR11] can be adopted for real-time
rendering, but we note that this may not be straightforward as the
residuals must be also compressed individually to obtain low rep-
resentation error.

Inter-BTFs blending. Our method is capable of interpolations be-
tween two or more BTFs in their sparse representation as explained
in Section 3.5. Figure 6 presents our interpolation results for three
BTF pairs, with an interpolation parameter ranging from 0.0 to 1.0
with steps of 0.1. Our interpolation results show smooth transitions
between BTFs, which is suitable for BTF synthesis using existing
data sets. For simplicity, we have shown only linear interpolation

Wool Corduroy Pulli
SparseBTF PSNR (dB) 20.97 21.15 21.90
[WDR11] PSNR (dB) 20.27 19.60 17.86
SparseBTF Size (MB) 4.71 4.71 4.71
[WDR11] Size (MB) 14.93 19.62 11.28

Table 6: Comparing SparseBTF and [WDR11] on [SSK03] data
set. The SparseBTF size includes the dictionary and sparse coeffi-
cients.

between two BTFs; however, our algorithm allows utilizing more
than two BTFs and different interpolation methods (e.g. spline or
cubic) as described in Section 3.5.

Rendering. We implemented SparseBTF in a progressive path
tracer [Kaj86; PJH16] built upon the NVIDIA OptiX frame-
work [PBD*10] and CUDA textures. The framework calls the
shader for each ray intersection and uses Eq. (5) to reconstruct each
pixel locally in real-time resulting in 200 frames per second (fps)
on a GeForce RTX 3080 for SparseBTF (32). We observed that in-
terpolation in the coefficient space using Eq. (6) improves frame
rates by a factor of 4. Additionally, since SparseBTF provides local
and random access to each texel in the BTF, it enables real-time
adjustment of compression ratio for optimal speed and reconstruc-
tion quality. Our patch design to incorporate all angular informa-
tion is shown to be effective in mitigating any flickering artifacts
when the light or view direction changes. Moreover, the application
of a Gaussian kernel for interpolation further enhances the overall
visual fidelity by ensuring that no artifacts are perceptible to the
viewer. The real-time rendering of multiple materials is provided
in the supplementary video.

We used the Mitsuba renderer [Jak10; NVZJ19] to generate
the renderings in Figures 7 and 8 with resolutions of 400 × 400
and 960 × 540, respectively. Figure 7 presents the renderings of
SparseBTF and NeuMIP at the same storage cost, along with the
corresponding MSE and structural similarity (SSIM) values. It is
important to note that we trained NeuMIP without the neural off-
set module to ensure a fair comparison. As NeuMIP employs only

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

B. Kavoosighafi et al. / SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions

Ground truth SparseBTF Error image [RGJW20] Error image
C

ar
pe

t1
2

Fa
br

ic
12

Fe
lt1

2
Le

at
he

r1
2

St
on

e1
2

W
al

lp
ap

er
12

W
oo

d1
2

Figure 5: Comparison of reconstructed BTFs using SparseBTF (32) and [RGJW20] (32). Incident azimuth and elevation angles: 0◦, 90◦.
Observation azimuth and elevation angles: 15◦, 30◦.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

B. Kavoosighafi et al. / SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions

α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1

C
ar

pe
t1

1

C
ar

pe
t1

2

Fa
br

ic
05

Fa
br

ic
12

Le
at

he
r1

1

Le
at

he
r1

2

Figure 6: BTF interpolation results with different interpolation coefficients, α, ranging from 0 to 1 from left to right. Incident azimuth and
elevation angles: 270◦, 66.5◦. Observation azimuth and elevation angles: 15◦, 79◦.

Ground truth SparseBTF NeuMIP

C
ar

pe
t0

7
St

on
e0

5
W

oo
d0

5
Fe

lt0
5

Figure 7: Comparison of renderings using SparseBTF (64) and
NeuMIP [KMX*21]. Model, view and lighting directions were the
same for all these renderings.

400 different combinations of light and camera directions for train-
ing, the model may not be able to fully capture the intricate de-
tails of the BTFs leading to a blurry representation of the appear-
ance of the material when rendered from certain angles. In contrast,

SparseBTF can capture the complex reflectance behavior of mate-
rials using a common dictionary. Figure 8 illustrates a comparison
between the renderings produced by SparseBTF and the method
of Rainer et al. [RGJW20]. All images are rendered with 1024
samples per pixel, using the Pixar Campus environment map with
fixed camera positions. SparseBTF successfully recovers complex
and high-frequency texture patterns, showcasing the effectiveness
of our model.

5. Limitations and Future Work

One of the limitations of our model is the assumption of identical
angular resolution within the data points comprising the training
and the testing sets. If the data dimensionality changes, one has
to re-train the ensemble. Alternatively, we can train multiple 4D
dictionaries ensembles, one for each data set with a distinct angu-
lar resolution. By storing an index for each data set, we can choose
the appropriate ensemble during rendering, with minimal impact on
storage costs. In this direction, one can also define variable patch
sizes for the spatial dimension. Adaptively setting the patch size
based on the complexity of the spatial domain is expected to in-
crease the compression ratio and the representation quality. Com-
plex regions of the texture will require smaller patch sizes, and pos-
sibly a large number of coefficients, while for smooth regions we
can achieve acceptable quality with large patch sizes and a smaller
number of coefficients.

In this work, we have used a fixed sparsity value for training. Our
experimental results demonstrate that SparseBTF exhibits a favor-
able tradeoff between quality and storage cost, resulting in reduced
sensitivity to overfitting and underfitting. However, having a fixed
training sparsity for all the dictionaries may lead to some level of
overfitting or underfitting depending on the BTF. Since SparseBTF
utilizes an ensemble of 4D dictionaries, it is interesting to explore
the possibility of optimizing the training sparsity during the train-
ing by utilizing a validation set. Ideally, the training method should
learn an optimal sparsity value for each 4D dictionary in the ensem-
ble to minimize overfitting and underfitting. Moreover, tailoring the
representation model to different classes of BTFs in the training set

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

B. Kavoosighafi et al. / SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions

Ground truth SparseBTF [RGJW20]

Fa
br

ic
12

Le
at

he
r1

2
St

on
e1

2
W

al
lp

ap
er

12
W

oo
d1

2

Figure 8: Comparison of renderings using SparseBTF (32) and [RGJW20] (32). Model, view and lighting environment were the same for all
these renderings.

can reduce storage costs and increase the rendering speed and the
representation quality.

Due to their limited spatial resolution, BTFs need to be tiled
across surfaces. While this paper does not focus on exploring tiling
methods, we acknowledge that simply repeating the BTFs can re-
sult in visible block artifacts at certain angles. A promising direc-
tion for future work involves investigating texture tiling and blend-
ing techniques that can preserve complex correlations within the
data [LPF*07; LSD23]. These methods could address the issue of
tiling artifacts and improve the overall quality of BTF renderings.

Furthermore, future research can explore the effect of various
pre-clustering techniques on the quality of reconstruction and train-

ing speed. The empirical results of Miandji et al. [MHU19] demon-
strate that a sparsity-based pre-clustering algorithm not only ex-
pedites the training process but can also improve the quality of
the representation. Indeed, such pre-clustering algorithms require
a larger training set than what was utilized in our experiments.

6. Conclusion

In this paper, we presented SparseBTF, a novel learning-based
sparse model for efficient representation of BTFs, that enables com-
pact storage and real-time rendering. We achieve this by a 4D dic-
tionary ensemble that is trained once and can be used for a wide
range of BTFs in a test set. By projecting a BTF in the test set on the

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

B. Kavoosighafi et al. / SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions

most suitable dictionary in the ensemble, followed by sparsifying
the coefficients, we obtain a representation of the BTF with a low
memory footprint. We presented the demarcation of our method
from previous approaches. Specifically, while SparseBTF fulfills
the requirements of low memory footprint, high quality-storage
cost tradeoff, real-time rendering, and a one-time training process,
previous methods address only a subset of such criteria. Our re-
sults demonstrate a significantly higher image quality as compared
with previous work when we use the same storage cost. More im-
portantly, we achieve this while enabling real-time performance,
which is not supported by the state-of-the-art methods we compare
with. Finally, we propose a novel angular interpolation algorithm
for BTFs that can be directly performed in the coefficient space of
SparseBTF.

Acknowledgments

We would like to thank Gilles Rainer for his tremendous help with
the comparisons, as well as Alexandr Kuznetsov for sharing the
code for NeuMIP. This work is a part of PRIME, which is funded
by the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska Curie grant agreement No
956585.

References
[AEB06] AHARON, MICHAL, ELAD, MICHAEL, and BRUCKSTEIN, AL-

FRED M. “K-SVD: An algorithm for designing overcomplete dictionar-
ies for sparse representation”. IEEE Transactions on Signal Processing
54.11 (2006), 4311–4322. DOI: 10.1109/TSP.2006.881199 3.

[CD01] CULA, OANA G. and DANA, KRISTIN J. “Compact representation
of bidirectional texture functions”. Computer Vision and Pattern Recog-
nition (CVPR). IEEE, 2001. DOI: 10.1109/CVPR.2001.990645 2.

[dBWK15] Den BROK, DENNIS, WEINMANN, MICHAEL, and KLEIN,
REINHARD. “Linear models for material BTFs and possible applica-
tions”. Workshop on Material Appearance Modeling. Eurographics As-
sociation, 2015, 15–19. DOI: 10.2312/mam.20151198 3.

[dBWK18] Den BROK, DENNIS, WEINMANN, MICHAEL, and KLEIN,
REINHARD. “Rapid material capture through sparse and multiplexed
measurements”. Computers & Graphics 73 (2018), 26–36. DOI: 10.
1016/j.cag.2018.03.003 3.

[DvGNK99] DANA, KRISTIN J., van GINNEKEN, BRAM, NAYAR, SHREE
K., and KOENDERINK, JAN J. “Reflectance and texture of real-world
surfaces”. ACM Transactions on Graphics 18.1 (1999), 1–34. DOI: 10.
1145/300776.300778 2.

[FH09] FILIP, JIŘÍ and HAINDL, MICHAL. “Bidirectional texture func-
tion modeling: a state of the art survey”. IEEE Transactions on Pattern
Analysis and Machine Intelligence 31.11 (2009), 1921–1940. DOI: 10.
1109/TPAMI.2008.246 2.

[FKH*18] FILIP, JIŘÍ, KOLAFOVÁ, MARTINA, HAVLÍČEK, MICHAL,
VÁVRA, RADOMÍR, HAINDL, MICHAL, and RUSHMEIER, HOLLY.
“Evaluating physical and rendered material appearance”. The Visual
Computer 34.6–8 (June 2018), 805–816. ISSN: 0178-2789. DOI: 10.
1007/s00371-018-1545-3 2.

[FWH*22] FAN, JIAHUI, WANG, BEIBEI, HASAN, MILOS, YANG, JIAN,
and YAN, LING-QI. “Neural layered BRDFs”. SIGGRAPH 2022 Con-
ference Papers. ACM, 2022, 4:1–4:8. DOI: 10 . 1145 / 3528233 .
3530732 3.

[GK18] GOLLA, TIM and KLEIN, REINHARD. “Interactive Interpolation
of Metallic Effect Car Paints”. Vision, Modeling and Visualization. Ed.
by BECK, FABIAN, DACHSBACHER, CARSTEN, and SADLO, FILIP. The
Eurographics Association, 2018. ISBN: 978-3-03868-072-7. DOI: 10.
2312/vmv.20181248 7.

[HF13] HAINDL, MICHAL and FILIP, JIŘÍ. Visual Texture: Accurate
Material Appearance Measurement, Representation and Modeling.
Springer, 2013. DOI: 10.1007/978-1-4471-4902-6 2.

[HFM10] HAVRAN, VLASTIMIL, FILIP, JIŘÍ, and MYSZKOWSKI,
KAROL. “Bidirectional texture function compression based on multi-
level vector quantization”. Computer Graphics Forum 29.1 (2010), 175–
190. DOI: 10.1111/j.1467-8659.2009.01585.x 3.

[HFV12] HAINDL, MICHAL, FILIP, JIŘÍ, and VÁVRA, RADOMÍR. “Dig-
ital material appearance: the curse of tera-bytes”. ERCIM News 90
(2012), 49–50 2.

[HGC*20] HU, BINGYANG, GUO, JIE, CHEN, YANJUN, LI, MENGTIAN,
and GUO, YANWEN. “DeepBRDF: a deep representation for manipulat-
ing measured BRDF”. Computer Graphics Forum 39.2 (2020), 157–166.
DOI: 10.1111/cgf.13920 3.

[Jak10] JAKOB, WENZEL. Mitsuba renderer. 2010. URL: http://www.
mitsuba-renderer.org 9.

[Kaj86] KAJIYA, JAMES T. “The rendering equation”. Computer Graph-
ics (SIGGRAPH ’86) 20.4 (1986), 143–150. DOI: 10.1145/15922.
15902 9.

[KMBK03] KOUDELKA, MELISSA L, MAGDA, SEBASTIAN, BEL-
HUMEUR, PETER N., and KRIEGMAN, DAVID J. “Acquisition, compres-
sion, and synthesis of bidirectional texture functions”. 3rd International
Workshop on Texture Analysis and Synthesis (Texture 2003). 2003, 59–
64 2.

[KMX*21] KUZNETSOV, ALEXANDR, MULLIA, KRISHNA, XU, ZEXI-
ANG, HAŠAN, MILOŠ, and RAMAMOORTHI, RAVI. “NeuMIP: multi-
resolution neural materials”. ACM Transactions on Graphics 40.4 (July
2021), 175:1–175:13. DOI: 10.1145/3450626.3459795 2, 3, 5–7,
11.

[KWK17] KRUMPEN, STEFAN, WEINMANN, MICHAEL, and KLEIN,
REINHARD. “OctreeBTFs – A compact, seamless and distortion-free re-
flectance representation”. Computers & Graphics 68 (2017), 21–31. DOI:
10.1016/j.cag.2017.08.001 4.

[KWM*22] KUZNETSOV, ALEXANDR, WANG, XUEZHENG, MULLIA,
KRISHNA, LUAN, FUJUN, XU, ZEXIANG, HASAN, MILOS, and RA-
MAMOORTHI, RAVI. “Rendering neural materials on curved surfaces”.
SIGGRAPH 2022 Conference Papers. ACM, 2022, 9:1–9:9. DOI: 10.
1145/3528233.3530721 3.

[LHZ*04] LIU, XINGUO, HU, YAOHUA, ZHANG, JINGDAN, TONG, XIN,
GUO, BAINING, and SHUM, HEUNG-YEUNG. “Synthesis and rendering
of bidirectional texture functions on arbitrary surfaces”. IEEE Transac-
tions on Visualization and Computer Graphics 10.3 (2004), 278–289.
DOI: 10.1109/TVCG.2004.1272727 2.

[LPF*07] LEUNG, MAN-KANG, PANG, WAI-MAN, FU, CHI-WING,
WONG, TIEN-TSIN, and HENG, PHENG-ANN. “Tileable BTF”.
IEEE transactions on visualization and computer graphics 13 (Sept.
2007), 953–65. DOI: 10.1109/TVCG.2007.1034 12.

[LSD23] LUTZ, NICOLAS, SAUVAGE, BASILE, and DISCHLER, JEAN-
MICHEL. “Preserving the Autocovariance of Texture Tilings Using Im-
portance Sampling”. Computer Graphics Forum (2023). ISSN: 1467-
8659. DOI: 10.1111/cgf.14766 12.

[MHU19] MIANDJI, EHSAN, HAJISHARIF, SAGHI, and UNGER, JONAS.
“A unified framework for compression and compressed sensing of light
fields and light field videos”. ACM Transactions on Graphics 38.3 (May
2019), 23:1–23:18. DOI: 10.1145/3269980 5, 8, 12.

[MMK03] MÜLLER, GERO, MESETH, JAN, and KLEIN, REINHARD.
“Compression and real-time rendering of measured BTFs using local
PCA”. Vision, Modeling and Visualisation 2003. Akademische Verlags-
gesellschaft Aka GmbH, 2003, 271–280 2.

[MMS*05] MÜLLER, GERO, MESETH, JAN, SATTLER, MIRKO, SAR-
LETTE, RALF, and KLEIN, REINHARD. “Acquisition, synthesis, and ren-
dering of bidirectional texture functions”. Computer Graphics Forum
24.1 (2005), 83–109. DOI: 10 . 1111 / j . 1467 - 8659 . 2005 .
00830.x 2.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1109/TSP.2006.881199
https://doi.org/10.1109/CVPR.2001.990645
https://doi.org/10.2312/mam.20151198
https://doi.org/10.1016/j.cag.2018.03.003
https://doi.org/10.1016/j.cag.2018.03.003
https://doi.org/10.1145/300776.300778
https://doi.org/10.1145/300776.300778
https://doi.org/10.1109/TPAMI.2008.246
https://doi.org/10.1109/TPAMI.2008.246
https://doi.org/10.1007/s00371-018-1545-3
https://doi.org/10.1007/s00371-018-1545-3
https://doi.org/10.1145/3528233.3530732
https://doi.org/10.1145/3528233.3530732
https://doi.org/10.2312/vmv.20181248
https://doi.org/10.2312/vmv.20181248
https://doi.org/10.1007/978-1-4471-4902-6
https://doi.org/10.1111/j.1467-8659.2009.01585.x
https://doi.org/10.1111/cgf.13920
http://www.mitsuba-renderer.org
http://www.mitsuba-renderer.org
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/3450626.3459795
https://doi.org/10.1016/j.cag.2017.08.001
https://doi.org/10.1145/3528233.3530721
https://doi.org/10.1145/3528233.3530721
https://doi.org/10.1109/TVCG.2004.1272727
https://doi.org/10.1109/TVCG.2007.1034
https://doi.org/10.1111/cgf.14766
https://doi.org/10.1145/3269980
https://doi.org/10.1111/j.1467-8659.2005.00830.x
https://doi.org/10.1111/j.1467-8659.2005.00830.x

B. Kavoosighafi et al. / SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions

[NJR15] NIELSEN, JANNIK BOLL, JENSEN, HENRIK WANN, and RA-
MAMOORTHI, RAVI. “On optimal, minimal BRDF sampling for re-
flectance acquisition”. ACM Transactions on Graphics 34.6 (Oct. 2015),
186:1–186:11. DOI: 10.1145/2816795.2818085 5.

[NVZJ19] NIMIER-DAVID, MERLIN, VICINI, DELIO, ZELTNER, TIZIAN,
and JAKOB, WENZEL. “Mitsuba 2: A Retargetable Forward and Inverse
Renderer”. ACM Transactions on Graphics 38.6 (Dec. 2019), 203:1–
203:17. DOI: 10.1145/3355089.3356498 9.

[PBD*10] PARKER, STEVEN G., BIGLER, JAMES, DIETRICH, AN-
DREAS, et al. “OptiX: a general purpose ray tracing engine”. ACM Trans-
actions on Graphics 29.4 (July 2010), 66:1–66:13. DOI: 10.1145/
1833349.1778803 1, 9.

[PJH16] PHARR, MATT, JAKOB, WENZEL, and HUMPHREYS, GREG.
Physically Based Rendering: From Theory to Implementation. third.
Morgan Kaufmann/Elsevier, 2016 9.

[QP22] QUARTESAN, LUCA and PEREIRA SANTOS, CARLOS. “Neu-
ral Bidirectional Texture Function Compression and Rendering”. SIG-
GRAPH Asia 2022 Posters. ACM, 2022, 10:1–10:2. DOI: 10.1145/
3550082.3564188 3.

[RGJW20] RAINER, GILLES, GHOSH, ABHIJEET, JAKOB, WENZEL, and
WEYRICH, TIM. “Unified neural encoding of BTFs”. Computer Graph-
ics Forum 39.2 (July 2020), 167–178. DOI: 10.1111/cgf.13921 1–
3, 5–12.

[RJGW19] RAINER, GILLES, JAKOB, WENZEL, GHOSH, ABHIJEET, and
WEYRICH, TIM. “Neural BTF compression and interpolation”. Com-
puter Graphics Forum 38.2 (Mar. 2019). DOI: 10 . 1111 / cgf .
13633 2, 3, 5–8.

[RK09] RUITERS, ROLAND and KLEIN, REINHARD. “BTF compression
via sparse tensor decomposition”. EGSR ’09. Eurographics Association,
2009, 1181–1188. DOI: 10.1111/j.1467-8659.2009.01495.
x 3.

[RKAJ08] REINHARD, ERIK, KHAN, ERUM ARIF, AKYUZ, AHMET
OGUZ, and JOHNSON, GARRETT. Color Imaging: Fundamentals and
Applications. first. A K Peters/CRC Press, 2008 4.

[RSK13] RUITERS, ROLAND, SCHWARTZ, CHRISTOPHER, and KLEIN,
REINHARD. “Example-based Interpolation and Synthesis of Bidi-
rectional Texture Functions”. Computer Graphics Forum 32.2pt3
(2013), 361–370. DOI: 10.1111/cgf.12056 7.

[SESM22] SUHAIL, MOHAMMED, ESTEVES, CARLOS, SIGAL, LEONID,
and MAKADIA, AMEESH. “Generalizable patch-based neural render-
ing”. European Conference on Computer Vision (ECCV). Springer,
2022. DOI: 10.1007/978-3-031-19824-3_10 5.

[Sil86] SILVERMAN, B. W. Density Estimation for Statistical and
Data Analysis. Chapman & Hall, 1986. DOI: 10 . 1201 /
9781315140919 7.

[SRRW21] SZTRAJMAN, ALEJANDRO, RAINER, GILLES, RITSCHEL,
TOBIAS, and WEYRICH, TIM. “Neural BRDF representation and im-
portance sampling”. Computer Graphics Forum 40.6 (2021), 332–346.
DOI: 10.1111/cgf.14335 3.

[SSK03] SATTLER, MIRKO, SARLETTE, RALF, and KLEIN, REINHARD.
“Efficient and realistic visualization of cloth”. Eurographics Workshop
on Rendering (EGWR ’03). Eurographics Association, 2003, 167–177.
ISBN: 3905673037. DOI: 10.2312/EGWR/EGWR03/167-177 2, 9.

[SWRK11] SCHWARTZ, CHRISTOPHER, WEINMANN, MICHAEL,
RUITERS, ROLAND, and KLEIN, REINHARD. “Integrated high-quality
acquisition of geometry and appearance for cultural heritage”. VAST:
International Symposium on Virtual Reality, Archaeology and In-
telligent Cultural Heritage. Eurographics Association, 2011. DOI:
10.2312/VAST/VAST11/025-032 4.

[TFLS11] TSAI, YU-TING, FANG, KUEI-LI, LIN, WEN-CHIEH, and
SHIH, ZEN-CHUNG. “Modeling bidirectional texture functions with
multivariate spherical radial basis functions”. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 33.7 (2011), 1356–1369. DOI:
10.1109/TPAMI.2010.211 3.

[TS12] TSAI, YU-TING and SHIH, ZEN-CHUNG. “K-clustered tensor ap-
proximation: a sparse multilinear model for real-time rendering”. ACM
Transactions on Graphics 31.3 (June 2012), 19:1–19:17. DOI: 10 .
1145/2167076.2167077 3.

[Tsa15] TSAI, YU-TING. “Multiway K-clustered tensor approximation:
toward high-performance photorealistic data-driven rendering”. ACM
Transactions on Graphics 34.5 (Nov. 2015), 157:1–157:15. DOI: 10.
1145/2753756 3.

[TUGM22] TONGBUASIRILAI, TANABOON, UNGER, JONAS, GUILLE-
MOT, CHRISTINE, and MIANDJI, EHSAN. “A sparse non-parametric
BRDF model”. ACM Transactions on Graphics 41.5 (Oct. 2022), 181:1–
181:18. DOI: 10.1145/3533427 3, 5, 7.

[VT04] VASILESCU, M. ALEX O. and TERZOPOULOS, DEMETRI. “Ten-
sorTextures: multilinear image-based rendering”. ACM Transactions on
Graphics 23.3 (Aug. 2004), 336–342. DOI: 10.1145/1015706.
1015725 3.

[WDR11] WU, HONGZHI, DORSEY, JULIE, and RUSHMEIER, HOLLY.
“A sparse parametric mixture model for BTF compression, editing and
rendering”. Computer Graphics Forum 30.2 (2011), 465–473. DOI: 10.
1111/j.1467-8659.2011.01890.x 3, 9.

[WGK14] WEINMANN, MICHAEL, GALL, JUERGEN, and KLEIN, REIN-
HARD. “Material classification based on training data synthesized using
a BTF database”. Computer Vision – ECCV 2014. Springer, 2014, 156–
171. DOI: 10.1007/978-3-319-10578-9_11 1, 2, 5, 8.

[WWS*05] WANG, HONGCHENG, WU, QING, SHI, LIN, YU, YIZHOU,
and AHUJA, NARENDRA. “Out-of-core tensor approximation of multi-
dimensional matrices of visual data”. ACM Transactions on Graphics
24.3 (July 2005), 527–535. DOI: 10.1145/1073204.1073224 3.

[XSJT07] XU, LEILEI, SUN, HANQIU, JIA, JIAYA, and TAO, CHENJUN.
“Dynamic texture synthesis in the YUV color-space”. Entertainment
Computing – ICEC 2007. Springer, 2007, 243–248. DOI: 10.1007/
978-3-540-74873-1_29 4.

[ZZW*21] ZHENG, CHUANKUN, ZHENG, RUZHANG, WANG, RUI,
ZHAO, SHUANG, and BAO, HUJUN. “A compact representation of mea-
sured BRDFs using neural processes”. ACM Transactions on Graphics
41.2 (Nov. 2021), 14:1–14:15. DOI: 10.1145/3490385 3.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1145/2816795.2818085
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1145/1833349.1778803
https://doi.org/10.1145/1833349.1778803
https://doi.org/10.1145/3550082.3564188
https://doi.org/10.1145/3550082.3564188
https://doi.org/10.1111/cgf.13921
https://doi.org/10.1111/cgf.13633
https://doi.org/10.1111/cgf.13633
https://doi.org/10.1111/j.1467-8659.2009.01495.x
https://doi.org/10.1111/j.1467-8659.2009.01495.x
https://doi.org/10.1111/cgf.12056
https://doi.org/10.1007/978-3-031-19824-3_10
https://doi.org/10.1201/9781315140919
https://doi.org/10.1201/9781315140919
https://doi.org/10.1111/cgf.14335
https://doi.org/10.2312/EGWR/EGWR03/167-177
https://doi.org/10.2312/VAST/VAST11/025-032
https://doi.org/10.1109/TPAMI.2010.211
https://doi.org/10.1145/2167076.2167077
https://doi.org/10.1145/2167076.2167077
https://doi.org/10.1145/2753756
https://doi.org/10.1145/2753756
https://doi.org/10.1145/3533427
https://doi.org/10.1145/1015706.1015725
https://doi.org/10.1145/1015706.1015725
https://doi.org/10.1111/j.1467-8659.2011.01890.x
https://doi.org/10.1111/j.1467-8659.2011.01890.x
https://doi.org/10.1007/978-3-319-10578-9_11
https://doi.org/10.1145/1073204.1073224
https://doi.org/10.1007/978-3-540-74873-1_29
https://doi.org/10.1007/978-3-540-74873-1_29
https://doi.org/10.1145/3490385

