
SparseBTF: Sparse Representation Learning for
Bidirectional Texture Functions

Supplementary Material

1 Algorithms

Algorithms 1 and 2 describe the training and compression tasks, respectively. Algorithm 1 outputs
an ensemble of multi-dimensional dictionaries, while Algorithm 2 depicts the process of computing
the sparse coefficients together with the membership index for one data point.

Algorithm 1 Training an ensemble of 4-dimensional dictionaries.

Require: The training set {X (i)}Nl
i=1, sparsity τl, error threshold ϵ, and the number of dictionaries

K
Ensure: A 4-dimensional dictionary ensemble

{
U(1,k),U(2,k),U(3,k),U(4,k)

}K

k=1

1: Set
{
U(1,k),U(2,k),U(3,k),U(4,k)

}K

k=1
to random orthonormal matrices and initialize Mi,j ←

K−1,∀i,∀j
2: β = 0.01 ▷ Initialization of the inverse temperature
3: repeat
4: β = β × 2 ▷ Increase the inverse temperature
5: repeat
6: for i = 1, . . . , Nl do
7: Z(j,k) = 0,∀k, ∀j
8: for k = 1, . . . , K do

9: S(i,k) = X (i) ×1

(
U(1,k)

)T ×2

(
U(2,k)

)T ×3

(
U(3,k)

)T ×4

(
U(4,k)

)T
10: Nullify (Π4

j=1mj)− τl smallest elements in absolute value from S(i,k)

11: eik = ∥X (i) − S(i,k) ×1

(
U(1,k)

)T ×2

(
U(2,k)

)T ×3

(
U(3,k)

)T ×4

(
U(4,k)

)T ∥2F
12: ▷ Compute the error of representation
13: end for
14: for k = 1, . . . , K do

15: Mi,k =
(
ΣK

b=1e
β(eik−eib)

)−1

16: Z(j,k) = ΣNl
i=1Mi,kX (i)

[j]

(
U(4,k) ⊗ · · · ⊗U(j+1,k) ⊗U(j−1,k) ⊗ · · · ⊗U(1,k)

) (
S(i,k)

[j]

)T

,∀j ∈

{1, 2, 3, 4} ▷ X (i)
[j] is the unfolding of X (i) along the jth mode

17: end for
18: end for
19: for k = 1, . . . , K do

20: U(j,k) = Z(j,k)
((

Z(j,k)
)T

Z(j,k)
)−1

2
,∀j ∈ {1, 2, 3, 4}

21: end for
22: until Convergence of

{
U(1,k),U(2,k),U(3,k),U(4,k)

}K

k=1
23: until ∥M− ⌊M⌋∥2F < ϵ ▷ i.e. until M is binary or near binary



Algorithm 2 Computing non-zero coefficients and the membership index for a data point.

Require: A data point Y (i) in the testing set, sparsity τt, error threshold ϵ, and the dictionary
ensemble

Ensure: The coefficient tensor S, the dictionary membership index a
1: e ∈ RK ←∞ and z ∈ RK ← 1
2: for k = 1, . . . , K do

3: X (k) ← Y (i) ×1

(
U(1,k)

)T ×2

(
U(2,k)

)T ×3

(
U(3,k)

)T ×4

(
U(4,k)

)T
4: while zk ≤ τt and ek > ϵ do
5: Nullify (Π4

j=1mj)− zk smallest elements in absolute value from X (k)

6: ek ← ∥Y (i) −X (k) ×1 U
(1,k) ×2 U

(2,k) ×3 U
(3,k) ×4 U

(4,k)∥2F
7: zk = zk + 1
8: end while
9: end for
10: a← index of min(z)
11: if za = τt then
12: a← index of min(e)
13: end if
14: Y (i) ← X (a)

2 Angular interpolation

As discussed in the paper, we perform bilinear interpolation to find the reflectance value at new
angles. We can utilize the fast local access to each texel in the sparse coefficients space and apply
the interpolation between the four nearest neighbors as follows:

Ŷ (i)

x1,x2,x3,x4
=

τt∑
z=1

Ŝ(i)

lz1 ,l
z
2 ,l

z
3 ,l

z
4
U

(1,mi)
x1,lz1

U
(2,mi)
x2,lz2

(
β((1− α)U

(3,mi)
x3s ,l

z
3
U

(4,mi)
x4′s

,lz4
+ αU

(3,mi)
x3s ,l

z
3
U

(4,mi)
x4′t

,lz4
)+

(1− β)((1− α)U
(3,mi)
x3t ,l

z
3
U

(4,mi)
x4′s

,lz4
+ αU

(3,mi)
x3t ,l

z
3
U

(4,mi)
x4′t

,lz4
)
)
, (1)

where, s, t, and s′, t′, denote the index to the two nearest samples to the current incident light
and view directions, respectively. α is the distance between current viewing and sampled outgoing
angles, and β is the distance between current light direction and sampled incident light.

3 Model parameters and storage calculations

To enable comparison with Rainer et al. [RGJW20], we adjusted the storage cost of our method to
correspond to theirs, where 16, 32, 64, 128, and 256 latent variables were used. In the following,
we explain how the storage requirements are set for our method to fulfill this comparison. Once we
project the data points of each material onto our learned dictionary, we obtain a sparse representa-
tion of that material, noted as sparse coefficients. We require 1 byte for storing the membership ma-
trix M, 2 bytes for the number of non-zero values, 3 bytes for the non-zero locations, and 2 bytes for
the sparse coefficients per channel resulting in (2×τtY×1600+2×τtU×1600+2×τtV×1600)+(3×τtY×
1600+3×τtU×1600+3×τtV ×1600)+(1600×3+1600×3+1600×3) = 8000×(τtY +τtU +τtV )+14400
bytes for all channels. We also store our 4D dictionaries (8) as 16-bit floating point values for each
color channel with the storage cost of (10×10×8+10×10×8+151×151×8+151×151×8)×3×2 =
2198496 elements making the total cost equal to 8000 × (τtY + τtU + τtV ) + 2212896. Rainer et al.



[RGJW20] also uses (n × 400 × 400 × 2 + 38269 × 2) = 320000 × n + 76538 coefficients because
of the storage of n latent vectors together with the network weights as 16-bit float EXR images.
For the fair comparison, we do not include the storage cost of encoder as it is not used during the
rendering.

We set testing sparsities of τtY = 308, τtU = 32, and τtV = 32 for SparseBTF (16), τtY = 885,
τtU = 64, and τtV = 64 for SparseBTF (32), τtY = 2037, τtU = 128, and τtV = 128 for SparseBTF
(64), τtY = 4617, τtU = 256, and τtV = 256 for SparseBTF (128), and τtY = 9226, τtU = 512, and
τtV = 512 for SparseBTF (256) for Y, U, and V channels, respectively.

4 Results

4.1 Angular interpolation

In the paper, we demonstrate that interpolation can be performed in the coefficient space, inde-
pendently of the interpolation algorithm used. We test a variety of interpolation techniques, as
illustrated in Figure 1, including basic approaches such as nearest neighbor and bilinear, as well
as kernel density estimation [Sil86] using various kernel functions, including triangular, Epanech-
nikov, biweight, cubic, and Gaussian. The images are rendered using the NVIDIA OptiX frame-
work [PBD∗10] under the same light and view directions. Our experiments reveal that all interpola-
tion strategies can reconstruct plausible appearances for diffuse materials like Carpet11. For shiny
materials, however, nearest neighbor results in highlight aliasing due to the limited resolution of
the angular bins. The Gaussian kernel function [Pav90] with 3-by-3 nearest neighbors was found to
most effectively eliminate the highlight aliasing, even in an interactive session where the user could
look for challenging grazing angle configurations. The Gaussian kernel also seemed a good trade-off
between avoiding highlight aliasing while also limiting the amount of blur in the Lambertian com-
ponents. To generate the ground truth, we used the k-Nearest Neighbor algorithm for interpolation,
with the weights of the points adjusted by a power parameter to enable smooth interpolation at
the boundaries.

Ground truth Nearest neighbor Bilinear Triangular Epanechnikov Biweight Cubic Gaussian

L
ea
th
er
12

L
ea
th
er
11

C
ar
pe
t1
1

Figure 1: Comparison of renderings using different interpolation algorithms.



4.2 Reconstruction

We used following 18 BTFs for the training set: Carpet01, Carpet02, Fabric01, Fabric02, Felt01,
Felt02, Leather02, Leather03, Leather08, Leather10, Stone04, Stone06, Stone11, Wallpaper01, Wall-
paper02, Wallpaper11, Wood01, and Wood02. To further compare the representation error us-
ing SparseBTF and [RGJW20], we compute the mean square reconstruction error on the cropped
dataset with a resolution of 100×100. Figure 2 shows the log(MSE) of both methods with different
number of coefficients, ranging from 32 to 128 latent maps for each spatial dimension. The recon-
struction error for SparseBTF decreases consistently by reducing the number of coefficients, while
the improvement achieved by [RGJW20] is marginal. To further analyze the reconstruction quality,
in Figure 3, we evaluate SparseBTF (32) and [RGJW20] (32) in terms of PU2-PSNR [AMS08], an
image quality metric that computes Peak Signal-to-Noise Ratio (PSNR) in the perceptually uniform
space. After reconstruction, we measure PU2-PSNR over all angular images and report the maxi-
mum, minimum, median, 25th, and 75th percentile values. Our method acquires a higher average
PU2-PSNR in 6 materials showing the superior visual quality of angular images reconstructed by
SparseBTF.

To further evaluate the performance of SparseBTF, we conduct additional experiments on the
UBO2003 dataset [SSK03]. Table 1 compares SparseBTF and Sparse Tensor Decomposition [RK09]
in terms of the ratio of their mean squared reconstruction errors to that of PCA for the Pulli dataset.
We ensure that all methods have the same storage cost. The error ratio (σ) is defined as

σ =
e

ePCA

(2)

where ePCA represents the reconstruction MSE of PCA, while e represents the reconstruction MSE
of the method in question (SparseBTF and that of [RK09]). A smaller error ratio indicates better
performance as it signifies the lower error achieved by the method being evaluated compared to
PCA. The results suggest that SparseBTF provides superior reconstruction quality, making it a
favorable choice for compression tasks in BTF representations.

Figure 2: Logarithm of Mean Square Error comparison of reconstructed BTFs. SparseBTF (32), SparseBTF (64),
and SparseBTF (128) imply that our compression ratio is equal to [RGJW20] with 32, 64, and 128 latent coefficients,
respectively.

Figures 4–7 visualize the reconstructed angular images with two different combinations of light
and view directions. The error images are normalized by dividing by the maximum value and
then, multiplied by 2 for the ease of visualization. In addition, we apply gamma correction to the



Figure 3: PU2-PSNR comparison of reconstructed images using our method and [RGJW20] with similar storage
complexity. Each box contains 25 percentile (bottom of the box), 75 percentile (top of the box), maximum value
(top of the dashed line), minimum value (bottom of the dashed line) and median (line inside the box).

SparseBTF [RK09]
Reconstruction error ratio 0.27 0.65

Table 1: Comparison of reconstruction error ratio of SparseBTF and the method of [RK09] for the Pulli dataset.

reconstructed images, Iout = aI−γ
in , where a = 1.3 and γ = 1.8. Our reconstruction quality surpasses

that of Rainer et al. [RGJW20] in most cases. We investigate the impact of sparsity, i.e. the number
of non-zero coefficients, on reconstructed images produced by SparseBTF in Figure 8.



Ground truth SparseBTF Error image [RGJW20] Error image

C
a
rp
et
1
2

F
a
br
ic
1
2

F
el
t1
2

L
ea
th
er
1
2

S
to
n
e1
2

W
a
ll
pa
pe
r1
2

W
oo
d
1
2

Figure 4: Comparison of reconstructed BTFs using our method and [RGJW20]. Incident azimuth and elevation
angles: 0◦, 90◦. Observation azimuth and elevation angles: 0◦, 45◦.



Ground truth SparseBTF Error image [RGJW20] Error image

C
a
rp
et
1
2

F
a
br
ic
1
2

F
el
t1
2

L
ea
th
er
1
2

S
to
n
e1
2

W
a
ll
pa
pe
r1
2

W
oo
d
1
2

Figure 5: Comparison of reconstructed BTFs using our method and [RGJW20]. Incident azimuth and elevation
angles: 270◦, 66.5◦. Observation azimuth and elevation angles: 15◦, 79◦.



Ground truth SparseBTF Error image [RGJW20] Error image

C
a
rp
et
1
2

F
a
br
ic
1
2

F
el
t1
2

L
ea
th
er
1
2

S
to
n
e1
2

W
a
ll
pa
pe
r1
2

W
oo
d
1
2

Figure 6: Comparison of reconstructed BTFs using our method and [RGJW20]. Incident azimuth and elevation
angles: 127.5◦, 22.5◦. Observation azimuth and elevation angles: 120◦, 52.5◦.



Ground truth SparseBTF Error image [RGJW20] Error image

C
a
rp
et
1
2

F
a
br
ic
1
2

F
el
t1
2

L
ea
th
er
1
2

S
to
n
e1
2

W
a
ll
pa
pe
r1
2

W
oo
d
1
2

Figure 7: Comparison of reconstructed BTFs using our method and [RGJW20]. Incident azimuth and elevation
angles: 195◦, 60◦. Observation azimuth and elevation angles: 105◦, 30◦.



SparseBTF (16) SparseBTF (32) SparseBTF (64) SparseBTF (128) SparseBTF (256) Ground truth

C
a
rp
et
1
1

F
a
br
ic
0
5

F
el
t0
5

L
ea
th
er
1
1

Figure 8



SparseBTF (16) SparseBTF (32) SparseBTF (64) SparseBTF (128) SparseBTF (256) Ground truth

S
to
n
e0
5

W
a
ll
pa
pe
r0
4

W
oo
d
0
5

Figure 8: Comparison of reconstructed BTFs using our method with different testing sparsities, i.e., the number of
non-zero coefficients. Incident azimuth and elevation angles: 270◦, 66.5◦. Observation azimuth and elevation angles:
15◦, 79◦.



References

[AMS08] Aydın T. O., Mantiuk R., Seidel H.: Extending quality metrics to full luminance
range images. In Human Vision and Electronic Imaging XIII (2008), vol. 6806 of
Proceedings of SPIE, SPIE. doi:https://doi.org/10.1117/12.765095.

[Pav90] Pavicic M. J.: Convenient anti-aliasing filters that minimize “bumpy” sampling. In
Graphics Gems, Glassner A. S., (Ed.). Academic Press, 1990, ch. III.1, pp. 144–146.

[PBD∗10] Parker S. G., Bigler J., Dietrich A., Friedrich H., Hoberock J., Luebke
D., McAllister D., McGuire M., Morley K., Robison A., Stich M.: OptiX:
A general purpose ray tracing engine. ACM Trans. Graph. 29, 4 (jul 2010). doi:https:
//doi.org/10.1145/1833349.1778803.

[RGJW20] Rainer G., Ghosh A., Jakob W., Weyrich T.: Unified neural encoding of BTFs.
Computer Graphics Forum 39, 2 (jun 2020), 167–178.

[RK09] Ruiters R., Klein R.: BTF compression via sparse tensor decomposition. EGSR ’09,
Eurographics Association, pp. 1181—-1188. doi:10.1111/j.1467-8659.2009.01495.
x.

[Sil86] Silverman B. W.: Density Estimation for Statistics and Data Analysis. Chapman &
Hall, 1986. doi:https://doi.org/10.1201/9781315140919.

[SSK03] Sattler M., Sarlette R., Klein R.: Efficient and realistic visualization of cloth. In
Eurographics Workshop on Rendering (EGWR ’03) (2003), Eurographics Association,
pp. 167–177. doi:10.2312/EGWR/EGWR03/167-177.

https://doi.org/https://doi.org/10.1117/12.765095
https://doi.org/https://doi.org/10.1145/1833349.1778803
https://doi.org/https://doi.org/10.1145/1833349.1778803
https://doi.org/10.1111/j.1467-8659.2009.01495.x
https://doi.org/10.1111/j.1467-8659.2009.01495.x
https://doi.org/https://doi.org/10.1201/9781315140919
https://doi.org/10.2312/EGWR/EGWR03/167-177

	Algorithms
	Angular interpolation
	Model parameters and storage calculations
	Results
	Angular interpolation
	Reconstruction


