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Abstract
We present a practical method for temporal and stereoscopic filtering that generates stereo-consistent rendering. Existing
methods for stereoscopic rendering often reuse samples from one eye for the other or do averaging between the two eyes. These
approaches fail in the presence of ray tracing effects such as specular reflections and refractions. We derive a new blending
strategy that leverages variance to compute per pixel blending weights for both temporal and stereoscopic rendering. In the
temporal domain, our method works well in a low noise context and is robust in the presence of inconsistent motion vectors,
where existing methods such as temporal anti-aliasing (TAA) and deep learning super sampling (DLSS) produce artifacts. In the
stereoscopic domain, our method provides a new way to ensure consistency between the left and right eyes. The stereoscopic
version of our method can be used with our new temporal method or with existing methods such as DLSS and TAA. In all
combinations, it reduces the error and significantly increases the consistency between the eyes making it practical for real-time
settings such as virtual reality (VR).

CCS Concepts
• Computing methodologies → Rendering; Ray tracing; Antialiasing; Virtual reality;

1. Introduction

In interactive applications, we can rarely afford enough samples to
avoid aliasing or stochastic sampling noise. Filtering and reusing
samples between frames is therefore a common strategy to improve
image quality. This can happen over time, usually via a temporal
exponential moving average, to exploit coherence between consec-
utive frames. This filtering is crucial to achieve antialiased images
when supersampling is unavailable and to reduce flicker artifacts
in real-time applications. When rendering in stereo, we can also
exploit the similarities between the two rendered views. Besides
further reducing noise and aliasing, filtering between the images
in a stereo pair improves depth perception as it restores similari-
ties between the eyes that help the human visual system establish
correspondence between the eyes.

In temporal antialiasing (TAA), pixel samples are reprojected
to the next frame and checked for validity [AH95], and the re-
sult from the previous frame is linearly blended with that of the
current frame [YNS∗09]. Using a constant blending parameter (α)
between zero and one (usually α = 0.1), the weighting of sam-
ples from older frames decreases exponentially. In a straightfor-
ward way, we can adapt this to blending between the two images
in a stereo pair. Such stereoscopic blending would apply the same
process in both directions and blend with a stereoscopic blending
parameter β= 0.5 [MKJ20]. However, when these two methods are

combined, a constant β is not optimal. Due to the potentially dif-
fering temporal filter kernels between both eyes, an optimal choice
of β should consider the magnitude of variance in both frames and
adjust the blending parameter accordingly. We present a method for
better per-pixel adaptive selection of blending parameters.

In steady state conditions, the optimal blending parameter (α)
is such that each sample gets equal weight, which is one over the
history length in the temporal case [YNS∗09, YLS20]. Thus, even
in this limiting case of no interaction, a constant α is suboptimal.
When interactivity is introduced, the user can change the scene at
any point in time. Out of lack of a better choice, a constant α is then
often selected in combination with a validation process that dis-
cards history if significant change is detected. This leads to resam-
pling errors and temporal lag, so adaptive selection of the blending
parameter is important. Instead of switching between two constant
values for the blending parameter, we formulate the blending pa-
rameter as a trade-off between bias and variance and estimate it
using image statistics.

While adaptive schemes for selecting a temporal blending
parameter exist, they either do this based on various thresh-
olds [YNS∗09,Sal16] or do not take variance into account [SPD18].
To summarize our contribution, we present:

• a principled equation for computing per-pixel blending parame-
ters given estimates of bias and variance,
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• a practical algorithm for estimating variance and bias to compute
per-pixel blending parameters, and

• use of our algorithm to filter real-time renderings both in the
temporal and stereoscopic domains.

In the temporal domain, our method works well in low noise sce-
narios. Our stereoscopic blending on the other hand provides an
improvement for a wide range of noise levels, including stochastic
noise due to Monte Carlo rendering. For a more robust estimation
of variance and bias in the temporal domain in high-noise scenar-
ios, we refer to the work of Schied et al. [SPD18].

2. Related Work

Image reconstruction from Monte Carlo sampling needs to address
issues of noise as well as aliasing. When rendering for virtual real-
ity (VR) headsets, we have to render two images which are mostly
identical. Reusing samples between the pair of images can reduce
rendering work load with little loss of quality [MNV∗21]. An-
other option is to blend samples between the two views in order
to lower noise levels in the case of stochastic Monte Carlo render-
ing [MKKJ19]. We show how to choose per-pixel blending param-
eters that minimize error when blending between the two views. By
blending the two images, we achieve lower error and better stereo
coherence even under noise. This improves depth perception.

Real-time render engines usually cope with undersampling of
stochastic effects such as screen space ambient occlusion or Monte
Carlo ray tracing with a combination of denoising and antialias-
ing. Both typically make use of temporal information by blending
between the newly generated and the previous reprojected frame.
Even though temporal antialiasing can deal with noisy inputs to
some degree, the high variance in Monte Carlo rendering leads
to flickering artifacts [YLS20]. Solutions such as spatiotemporal
variance-guided filtering (SVGF) [SKW∗17] rely on a spatiotem-
poral filters to reconstruct global illumination and use conventional
TAA techniques for geometric features [VKI∗18]. Even neural net-
work implementations of TAA, such as NVIDIA’s deep learning
super sampling (DLSS), still suffer from image degradation un-
der noise and are usually paired up with a denoiser to pre-filter
very noisy inputs [NVI20]. While neural networks show promise in
combining the two tasks of antialiasing and denoising, even kernel
predicting networks exhibit biases such as energy loss [TLP∗22].
We introduce a principled way of choosing the temporal blending
parameter under theoretical assumptions and show applications to
TAA and stereoscopic filtering.

TAA implementations usually blend the sample history with
each new frame using a constant blending parameter. For perfect
convergence, all samples should be weighted with the same weight
so variance reduction is limited with a fixed blending parame-
ter. Some implementations keep track of sample counts N to al-
low for faster convergence of low sample count regions by setting
α = 1

N [WMB19, KIM∗19]. In regions with high sample counts,
low values of α can compromise image quality due to temporal lag
and resampling errors. The parameter α is thus usually clamped to
a minimum value and history is validated using G-Buffer informa-
tion [NSL∗07] and variance clamping [Sal16]. When history val-
idation fails, previous samples are ignored which is equivalent to

setting α = 1. Other ways to steer α include heuristics based on
motion speed [YNS∗09], estimation of the temporal gradient in a
pixel [SPD18] or, in the absence of motion vectors, by alignment
quality [HTD21]. We treat α as a parameter that should be opti-
mized to balance bias and variance so that error is minimized.

3. Theory

An optimal blending between two frames is dependent on local
variance and the difference between the underlying means, that is,
bias. We model the pixels of each of the two frames as indepen-
dent random variables X ,Y . These combine linearly with blending
parameter α using

lerp(X ,Y,α) = (1−α)X +αY = X +α(Y −X) .

The blended result has less variance but is potentially biased since
the two random variables might have different underlying means
E[X ] ̸= E[Y ]. The choice of α is thus inherently a trade-off be-
tween variance and bias and depends on whether we want to es-
timate E[X ] or E[Y ]. Since rendering with conventional methods
like ray tracing and rasterization rely on point sampling, we can
model the rendered radiance values as random variables with ad-
ditive noise, where the noise represents aliasing and, if applicable,
Monte Carlo noise. Variance is then the error that arises from un-
dersampling the image and sources of bias are geometry visible in
one image but not in the other, view-dependent shading, or errors
introduced from resampling.

Suppose X ,Y are radiance estimates X = E[X ] + nX and Y =
E[Y ] + nY with nX ,nY being zero-mean noise vectors such that
Var({X ,Y}) = σ

2
{X ,Y} = E[n2

{X ,Y}]. We want to estimate E[Y ] with
a blend of the two random variables to obtain lerp(X ,Y,α)≈ E[Y ]
with minimal error. The optimal choice for the blending parameter
α with respect to the expected mean squared error is

argmin
α

f (α) = argmin
α

(E[(lerp(X ,Y,α)−E[Y ])2]) . (1)

Substituting X and Y with their respective mean and noise, another
way to write the objective function is

f (α) = E[(lerp(nX ,nY ,α)+(1−α)(E[X ]−E[Y ]))2] . (2)

Since we assume X ,Y independent (so that E[nX nY ] = 0) and re-
calling that the noise vectors have zero mean (so that E[nX ] =
E[nY ] = 0), we get

f (α) = (1−α)2(E[X ]−E[Y ])2+σ
2
X +α

2(σ2
X +σ

2
Y )−2ασ

2
X . (3)

Note that this equation has a term dependent on bias and one de-
pendent on the variance of the underlying distribution. Minimiz-
ing the sum of the two terms will balance bias and variance. Since
Bias2 = (E[X ]−E[Y ])2 and variances are positive, the function is
a parabola with a minimum at

α
′ = 1− σ

2
Y

Bias2 +σ2
X +σ2

Y
= 1− σ

2
Y

E[(X −Y )2]
. (4)

This formula for the blending parameter is our key theoretical con-
tribution. In later sections, we will put it to work in different sce-
narios with different techniques for estimating bias and variance.
First, as a sanity check, we make sure that our formula produces
the expected blending parameters in special cases.
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3.1. Temporal Domain

While the validity of this theoretical optimum is straightforward
when blending once, temporal filtering applies the blending in se-
quence with each new frame and therefore additional considera-
tions apply. To illustrate how this α

′ relates to commonly used
blending strategies, we can look at a special case in which Bias2 =
0. Given a temporally filtered and reprojected estimate X̃t−1 of
frame t − 1 and a single sample estimate Xt of frame t with no
camera movement and no changes in the scene, both variables
have the same underlying distribution (E[X ],σ). Variance of the
exponentially filtered variable X̃t−1 is dependent on its effective
sample count Nt−1. The effective sample count of an estimate
is the reciprocal of the variance reduction factor N−1

t such that
Var(X̃t) =

Var(X)
Nt

. For a blended random variable, it is

N(lerp(X ,Y,α)) =
N(X)N(Y )

α2N(X)+(1−α)2N(Y )
. (5)

A similar equation was derived by Yang et al. [YNS∗09]. Our ver-
sion is an extended form to include the number of samples of both
the random variables as parameters.

Since we know that it is ideal in this case to give each sample
equal weight, α

′ should reflect this. By plugging in the quantities
for variance and mean into Eq. 4, we get

α
′ = 1− Var(Xt)

(E[X̃t−1]−E[Xt ])2 +Var(X̃t−1)+Var(Xt)

= 1− σ
2

0+ σ2

Nt−1
+σ2

=
1

Nt−1 +1
=

1
Nt

, (6)

which is equivalent to progressive rendering with equal weights for
each sample and ensures convergence to the true mean.

For the case that Bias2 ̸= 0, successive filtering with α
′ does not

guarantee minimal error since the optimum we find only applies to
a single step of filtering. However, we argue that such a global opti-
mum is not practical for two reasons: first, to be useful for real-time
rendering, we can only look at a limited number of past frames and
have no access to future camera positions and scene changes to pre-
dict which samples to keep and which to discard. Secondly, such a
global optimum could trade additional temporal lag in one frame
for lower variance in another frame leading to inconsistent quality
across multiple frames. Furthermore, we can show that, when re-
stricted to only holding a single past frame, no pixel’s error can be
improved without increasing the error of another, previous pixel’s
error. This is because in such a setup the error of any pixel can only
be reduced by changing a blending parameter of a past frame since
the current frame is already at an optimum. However, exchanging
this past α value for a pixel in any of the previous frames moves it
away from the optimum and increases the error of that pixel. There-
fore, we consider our approach suitable for the temporal domain.

3.2. Relationship Between Bias and Gradient

Some heuristics to steer the blending parameter rely on temporal
image gradients [SPD18]. The blending parameter is limited in pro-
portion to the relative change δ

E[X ]
in each frame. Here, we show

the relationship between gradient δ and Bias in our solution for α.

Rendering Denoising TAA Stereo Blending

DisplayPrevious FramesPipeline Stage optional

Reference:

Figure 1: A typical real-time rendering setup. Temporal antialias-
ing is applied as a post process to avoid aliasing artifacts and flick-
ering. For stochastic effects such as soft shadows, indirect illumi-
nation or specular/glossy reflections, denoising can be employed to
spatiotemporally filter out noise. However, some residual noise can
still make it into the output image and degrade depth perception
and image quality. We add an optional stereo blending stage that
reduces error and improves stereo vision in the presence of (resid-
ual) noise and aliasing.

Under a constant α, temporal filtering boils down to a moving ex-
ponential average and Bias in a signal of length L is

Bias2 =
(
E[X̃t−1]−E[Xt ]

)2

=

(
E[Xt ]−

L

∑
i=1

(1−α)i−1
αE[Xt−i]

)2

. (7)

If we now assume a constant rate of change for luminance, then
E[Xt−i] =E[Xt ]− iδ, and we get power series that converge to poly-
logarithm functions of orders 0 and −1 for L →∞:

α

1−α

∞
∑
i=1

(1−α)i(E[Xt ]− iδ) = E[Xt ]−
δ

α
. (8)

By insertion in Eq. 7, this leads to

Bias2 =

(
δ

α

)2

. (9)

Thus, in this case, we have Bias2 proportional to δ
2. In high sam-

ple count scenarios, bias becomes the dominating factor in α as
Var(X̃t−1) approaches zero. Enforcing a lower limit based on the
image gradient therefore helps prevent bias artifacts like ghosting,
temporal lag, and blur but does not necessarily minimize error.

4. Application

Because of the general nature of our formula for the blending pa-
rameter (Eq. 4), it is potentially useful in many situations where
temporal or stereoscopic blending is applied. We focus on real-
time rendering and rendering pipelines that follow the structure de-
picted in Figure 1. Temporal Antialiasing and denoisers integrate
into a typical real-time rendering pipeline very similarly in that
they take the rendered images and auxiliary data, usually motion
vectors, depth and a G-Buffer, and then output a temporally inte-
grated image which is carried over to the next frame. We focus
on the post-processing stages of the pipeline and demonstrate the
usefulness of our blending parameter for improving stereo vision
by combining samples between eyes to better image coherence and
reduce residual noise. We also use it to improve validation in a con-
ventional temporal antialiasing context.

© 2023 The Authors.
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Stereo Difference Stereo Input

16spp

10kspp

Figure 2: When presented with a stereo image, depth is perceived
by the human visual system by matching the two shown images. We
use a reprojected stereo difference as proxy for depth perception.
Image regions that differ in the stereo difference are either occluded
in one eye or indicate a difference between true and perceived depth
such as in the glossy reflection on the floor. At low to moderate
sample counts, noise left in the image inhibits depth perception.

4.1. Stereoscopic Filtering

When rendering stochastic effects, residual noise can make it into
the final image even when using denoisers. While this residual
noise is most of the time low enough not to be perceivable, it can in-
hibit stereo vision. The correspondences and discrepancies between
the images give the human vision system information to perceive
depth. Consequently, presenting the eyes with two images with in-
dependent noise, regions that should look similar – do not – and
regions that should not look similar – do – leading to poor depth
perception. As a proxy for the quality of stereo vision, we com-
pute the reprojected squared radiance difference between the two
eyes. Figure 2 shows how this is a measure of stereo coherence and
therefore depth perception.

An additional benefit from filtering the two images is lowering
the rendering work in ray tracing since combining rendering results
between eyes has the potential to decrease necessary sample counts
and therefore improve performance on top of improving quality. In
the stereoscopic context, we call the blending parameter β to distin-
guish it from the temporal parameter which is applied cumulatively
whereas stereo blending is only applied before displaying the final
result to the eye and not reused.

Since, we do not have access to reference values of bias and vari-
ance, we need to estimate the blending parameter β. We estimate
the numerator and the denominator of Eq. 4 separately. The numer-
ator is the variance of the view Y we are trying to improve, and we
estimate it by computing first and second raw moments in a 3× 3
neighborhood N as done in variance clipping [Sal16]:

σ
2
Y ≈ 1

|N |

(
∑

i∈N
Y 2

i −
(

∑
i∈N

Yi

)2
)
. (10)

For the denominator, we use the same 3×3 neighborhood to com-
pute a mean squared difference between the reprojected sample

Render

Accumulate 
(blend)

Compute 
alpha

Reproject 
(resample)

Accumulate 
(blend)

Frame tFrame t - 1

Output 
(history)

Output 
(history) Reproject 

(resample)

Post 
processing

Colour 
samples

Motion 
vectors

Frame t + 1

Figure 3: Temporal antialising is implemented in three compo-
nents. Reprojection, Validation and Accumulation. Neural network
implementations of TAA such as DLSS and XeSS substitute the val-
idation and accumulation step with a neural network while denois-
ers are usually put in front of TAA so that they can denoise specular
and diffuse components separately. Slight adjustment of a similar
figure by Yang et al. [YLS20]

from the other view Y and each of the samples under the kernel:

E[(X −Y )2]≈ 1
|N | ∑

i∈N
(Y −Xi)

2 . (11)

This very simple scheme is enough to use our per-pixel adaptive
blending parameter for stereo filtering.

4.2. Blending Weights in Temporal Antialiasing

A conventional TAA algorithm has three steps: reprojection, val-
idation and accumulation (see Figure 3). A sample history in the
form of a temporally filtered mean X̃t−1 is carried from frame to
frame and, in each frame reprojected to the current frame. The re-
projected frame is then validated and blended with the new frame
Xt (see also Sec. 3.1). The blending parameter α is chosen during
validation and determines, for each pixel, how much of the sample
history we reuse for the current frame. In neighborhood clamping
and variance clamping [Sal16], the sample history is either kept
and blended with a constant mixing parameter (α = c, where usu-
ally c = 0.1) or discarded entirely (α = 1).

This either-or approach in which history is either kept or entirely
discarded easily leads to image artifacts such as ghosting or flick-
ering and can therefore benefit from the more continuous approach
offered by our Eq. 4. Since the α obtained with our method nat-
urally captures disocclusions, resampling blur and temporal lag at
the same time, we can apply it without any heuristics based on G-
buffer data or based on velocity. To compute α, we use the same es-
timates as in stereoscopic filtering but replace the reprojected other
eye’s view with the temporal accumulation image which is repro-
jected into each new frame.

5. Results

We implemented our stereoscopic and temporal filtering into a
real-time ray tracing framework based on the GPU ray tracing ex-
tensions in Vulkan [KHBW20]. Vulkan also enables combination

© 2023 The Authors.
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Figure 4: The three test scenes used for testing TAA performance.
First scene is a static view of a fence with its moving shadow. Sec-
ond scene is a sequence of VR poses in a classroom scene. Third
scene is a smooth camera movement through a Minecraft map. The
closeups show quality comparisons of our adjusted temporal an-
tialiasing to conventional TAA with neighborhood clamping as well
as DLSS. Our method specifically improves moving shadows and
fine geometry that is far away.

of our implementation with DLSS (https://developer.nvidia.com/-
rtx/dlss). Performance is measured in headless so without present-
ing an image to a window or head-mounted display. Image quality
measurements are done in linear RGB space. All performance re-
sults were measured on an RTX 3090 GPU.

5.1. Validation in Temporal Antialiasing

We compare our method (ours) to a standard neighborhood clamp-
ing TAA (taa) as well as DLSS 3.1 at 100% render resolution with
frame generation turned off (dlss). We leave out any history rec-
tification in taa and ours since it worsens objective error mea-
surements and improving rectification is orthogonal to this paper.
We measure frame times and MSE for the three scenes shown in
Figure 4 (top). The first scene fence has a static camera with a
fence casting a shadow from a moving sun. The scene highlights a
problematic situation for standard TAA and DLSS as the moving
shadow is challenging to antialias because of false motion vectors
and many jagged edges. The second scene classroom is a sequence
of prerecorded VR poses, that is, positions and orientations of a VR

headset in a classroom scene. We use real tracking data of a VR
headset because the noisy nature of the resulting camera views can
be challenging for temporal integration algorithms. Thirdly, we use
a smooth camera path through a Minecraft map rungholt which
contains some distant details as well as textures that require good
antialiasing. The render resolutions are 1024 × 1024 for fence,
1440× 1600× 2 for classroom, which is a standard VR headset
resolution, and 1920×1080 for rungholt.

Image quality. The following table shows resulting RMSE and
SSIM scores for the complete image sequences. The column called
1spp is a one sample per pixel baseline. Arrows indicate whether a
better value is lower (↓) or higher (↑).

scene 1spp dlss taa ours

fence
RMSE ↓ 0.015 0.009 0.009 0.006
SSIM ↑ 0.990 0.991 0.988 0.997

classroom
RMSE ↓ 0.074 0.060 0.048 0.037
SSIM ↑ 0.960 0.983 0.985 0.987

rungholt
RMSE ↓ 0.050 0.033 0.032 0.029
SSIM ↑ 0.921 0.964 0.967 0.970

Our method performs well across the board. Figure 4 highlights
some situations in which our method performs well. The difference
is most visible in the fence scene where the other methods exhibit
ghosting and/or aliasing. Our method improves on this and keeps
historical samples partially but attenuates their contribution which
leads to some antialiasing and error reduction even in changing re-
gions unlike the result of a complete acceptance/rejection of the
history. The moving shadows in the classroom scene also benefit
slightly from our method although DLSS leads to a visually more
pleasing albeit less correct result. The rungholt scene shows a sec-
ond situation in which other methods fail. The far away ship con-
tains fine geometry that leads to samples being rejected inconsis-
tently by DLSS and neighborhood clamping. This leads to jittering
motion (see supplemental video) and excessive blur. Our method
fixes these artifacts mostly and exhibits no jittering motion.

Performance. All three methods are light-weight post-processing
passes that need less than 1 ms of execution time at typical render-
ing resolutions. In the following, we present overhead in millisec-
onds as well as 95% confidence intervals (±) for the three meth-
ods. The 720p, 1080p and 4k resolutions are common render res-
olutions for traditional displays and CV1(1080 × 1200 × 2), Rift
S(1280× 1440× 2) and Quest 1(1440× 1600× 2) are resolutions
of common head mounted displays:

Resolution dlss taa ours

720p 0.26(±0.00) 0.12(±0.04) 0.10(±0.00)
1080p 0.41(±0.05) 0.25(±0.06) 0.22(±0.00)

4k 1.22(±0.16) 0.96(±0.16) 0.90(±0.10)
CV1 0.64(±0.10) 0.30(±0.06) 0.28(±0.04)
Rift S 0.77(±0.11) 0.43(±0.08) 0.44(±0.12)

Quest 1 0.85(±0.09) 0.54(±0.12) 0.49(±0.06)

DLSS has the highest overhead although this is without any up-
scaling, which would improve overall performance significantly
but also hurt image quality. Since ours requires no additional data

© 2023 The Authors.
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Figure 5: Quality comparison between a reference (ref), a 16spp
rendered image and two strategies for stereo blending the 16spp
image. The bottom row shows the reprojected stereo difference ex-
plained in Figure 2. A fixed β parameter leads to double vision
and false sense of depth in specular materials as well as misplaced
highlights on glossy materials. The introduced bias also worsens
error. These situations would have to be fixed by bespoke heuristics
based on auxiliary data. Our adaptive β parameter deals with all
these situations in a single equation that leads to lower error while
leaving depth perception intact.

compared to taa, performance is equivalent with any measured dif-
ferences coming down to minor implementation differences.

5.2. Stereoscopic Filtering

Our stereoscopic filtering pass is an additional post-processing after
temporal filtering. The implementation of this is almost identical to
the temporal antialiasing filter. Just like the temporal version, inputs
are depth and colour buffers and the reprojection and filtering is
done at once. The difference is that the input images are the left
and right eye or vice versa instead of the new colour image and the
accumulation image. We add an additional depth check to reject
reprojected samples from disoccluded regions.

Image quality. The improvement in image quality can be seen in
Figure 5. Stereoscopic filtering helps lower overall error without
introducing significant bias. In terms of stereo difference, the im-
provement is significant

Performance. The overhead of stereo blending is dependent on
the rendering resolution and listed in the following table. We mea-
sure overhead in milliseconds for some common VR headset res-
olutions. Just like TAA, the overhead is small compared to other
render tasks in a render pipeline.

Resolution Stereo Blending
1080×1200×2 (CV1) 0.31(±0.12)
1280×1440×2 (Rift S) 0.38(±0.09)

1440×1600×2 (Quest 1) 0.48(±0.11)

Comparison to reference blending. By computing ground truth
values for bias and variance, we can obtain per-pixel reference val-
ues for β. For a selected number of samples per pixel, we pre-

reference reference β 16spp estimated β

Figure 6: Comparison of our estimate of β versus reference β for a
16spp image. The reference β was computed using reference values
for reprojection bias and variances of the two stereo views.

compute reference values for the first and second raw moments
(E({X ,Y}) and E({X2,Y 2})) of the radiance as well as stereo dis-
parity vectors for reprojection. With these we can find the reference
bias and variances needed for Eq. 4. We compare the reference val-
ues to our estimated β value in Figure 6. We observe that on average
β is higher in our estimate which is likely because the resampling
step blurs reprojected samples and therefore lowers its variance.

5.3. Combined Results

In practice, temporal filtering and stereoscopic would and should be
combined to get the best results for real-time rendering (see Figure
1). While our temporal filter is superior in non-noisy scenes, cor-
rect estimation of α is challenging in scenes with noisy effects from
path tracing, for example. We therefore show combined results for
video sequences rendered with our stereoscopic filtering on top of
our temporal filtering as well as in combination with DLSS, where
DLSS takes the place of a TAA implementation. We apply no de-
noising and let DLSS or our temporal filter handle the noise. We
use two scenes with stochastic effects as test. One is a CornellBox
with specular spheres and the other is the Stanford Dragon on top
of a glossy plane. The error measurements are summarized in the
following table.

scene none ours ours
stereo

dlss dlss
stereo

Spheres
RMSE ↓ 0.071 0.023 0.016 0.017 0.016
SSIM ↑ 0.591 0.910 0.958 0.978 0.982

Dragon
RMSE ↓ 0.046 0.018 0.017 0.020 0.021
SSIM ↑ 0.749 0.960 0.980 0.985 0.988

Figure 7 shows some closeups including average frame times for
each sequence. Stereo blending does best in freshly disoccluded re-
gions that were already visible earlier in the other eye. In addition
to better error when combined with our temporal filter, we high-
light the fact that stereo blending improves depth perception in all
scenarios. The presented stereo differences show how stereo vision
is improved and closer to the reference across the board. We also
attach a video that demonstrates the effect on stereo vision using
the dragon scene.

6. Discussion and Conclusion

We proposed a principled way to determine temporal and stereo
blending parameters and demonstrated its effectiveness in real-time

© 2023 The Authors.
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Figure 7: Results for our combined stereoscopic and temporal blending. Stereoscopic blending improves error when used in combination
with our temporal filter. In combination with DLSS, error reduction is low, but stereo coherence is greatly improved. The full sequence is
attached as a video in the additional materials.

rendering. The temporal parameter is easily integrated in currently
available TAA solutions while stereo blending only requires an ad-
ditional lightweight post-processing step. The key equation (Eq. 4)
is applicable to a wide range of scenarios where two estimates are
combined to retrieve a better estimate and we present two practical

examples of how to integrate it into an existing real-time rendering
pipeline with little overhead.

Limitations and future work. The characteristics of human depth
perception when presented with noisy, Monte Carlo rendered im-
ages seem mostly unknown and strategies for improving it would
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benefit from knowledge about its underlying mechanisms. We pre-
sented a proxy for stereo vision in the form of reprojected stereo
differences, this approach is however limited when specular re-
flections are involved. Similarly, our method is unable to im-
prove stereo vision when no stereo discrepancy vectors are avail-
able, but recent work has made some advancements in these situ-
ations [ZLY∗21, HTD21]. In theory, our temporal filtering method
could be used for denoising of highly noisy signals such as those
obtained with path tracing. In practice, however, our estimates of
bias and variance were too noisy. We leave the research to find bet-
ter estimates for future work. Since all denoisers have to do the
same compromise between bias and variance that we describe here,
future research should benefit from the ability of our method to pro-
vide reference values for the temporal blending parameters.
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