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Figure 1: Our model adds multiple scattering from geometric optics to scalar diffraction theory and captures both multiple scattering and
diffraction effects in the light scattering by surfaces. Here, we apply two different surface microstructures to the same macroscopic geometry
(the Stanford dragon, https://graphics.stanford.edu/data/3Dscanrep/) and illustrate the effect of multiple scattering.

Abstract
Most models for bidirectional surface scattering by arbitrary explicitly defined microgeometry are either based on geometric
optics and include multiple scattering but no diffraction effects or based on wave optics and include diffraction but no multiple
scattering effects. The few exceptions to this tendency are based on rigorous solution of Maxwell’s equations and are computa-
tionally intractable for surface microgeometries that are tens or hundreds of microns wide. We set up a measurement equation
for combining results from single scattering scalar diffraction theory with multiple scattering geometric optics using Monte
Carlo integration. Since we consider an arbitrary surface microgeometry, our method enables us to compute expected bidirec-
tional scattering of the metasurfaces with increasingly smaller details seen more and more often in production. In addition,
we can take a measured microstructure as input and, for example, compute the difference in bidirectional scattering between
a desired surface and a produced surface. In effect, our model can account for both diffraction colors due to wavelength-sized
features in the microgeometry and brightening due to multiple scattering. We include scalar diffraction for refraction, and we
verify that our model is reasonable by comparing with the rigorous solution for a microsurface with half ellipsoids.

CCS Concepts
• Computing methodologies → Reflectance modeling;

1. Introduction

Scalar diffraction theory is frequently used in the modeling of

reflectance functions [Kaj85; HTSG91; Sta99; DWMG15; HP17;

WVJH17; YHW*18; KHZ*19]. This is especially the case when

it comes to rendering of scratched or brushed metallic surfaces or

glinty surfaces in general. Wave optics is important for these mate-

rial types because the surface microgeometry has features of a size

comparable to the wavelength of visible light. Another important

observation in recent work on the modeling of reflectance func-

tions is the necessity to account for multiple scattering between

microfacets [HHdD16; LJJ*18; XH18; CCM19]. This is important

to avoid loss of energy that is not due to absorption but simply due
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to the limitation of single scattering. While single scattering mod-

els can be renormalized to avoid loss of energy, this renormaliza-

tion leads to an inaccurate distribution of the scattered light because

multiple scattering was not accounted for. The wave optics models

from scalar diffraction theory are single scattering models and thus

suffer from the same issue.

One way to include both multiple scattering and diffrac-

tion effects is using a rigorous solution of Maxwell’s equa-

tions [MMRO13; AHB18]. Use of rigorous solvers is however

a computationally demanding problem that becomes intractable

when we consider a patch of microgeometry that can be tens or

hundreds of microns in size. We therefore aim at a more practical

solution, where we combine single scattering scalar diffraction the-

ory with multiple scattering from geometric optics. Although this is

an approximation, we find that this approach has the ability to cap-

ture the important visual effects: color variation due to diffraction

and brightening due to multiple scattering.

We consider explicitly defined microgeometry instead of the

popular normal distribution function maps [DWMG15; YHMR16;

YHW*18; KHZ*19]. This enables us to account for shadowing

and masking without the simplifications imposed by an analytic

geometric attenuation term like the often used Smith approxima-

tion [Smi67]. Information about surface microgeometry is more

and more commonly available. We can measure it with a pro-

filometer [DWMG15] or model it based on a desired surface struc-

ture [WDR11; MMRO13; LFD*17; AHB18; LFD*20]. It is even

an option to find an explicit microgeometry representative of a nor-

mal distribution function [RBSM19]. We thus find it advantageous

to base our model directly on the microgeometry. This means that

we can support a wide variety of different surface types including

optical functional surfaces with engineered microstructure.

The surface microstructures in Figure 1 are examples for which

both diffraction and multiple scattering effects are visually sig-

nificant. Without the combined model that we suggest, we would

have to choose between multiple scattering or diffraction or almost

intractable rigorous numerical evaluation of Maxwell’s equations.

We find that the combination of path tracing and scalar diffraction

theory, both well known and often employed tools in graphics, is

a very practical method for computing the scattering properties of

this kind of surface. We also find this approach an excellent tool for

analyzing the differences between scalar diffraction and geometric

optics approximations and for making decisions on the adequate-

ness of analytic models.

2. Related Work

Rendering of material appearance using light scattering models is a

multiscale problem. We use surface scattering models to cope with

the complexity of light-matter interaction at a more microscopic

scale. Early analytic models [TS67; Bli77] rely on single scatter-

ing geometric optics, V-groove geometry, and a distribution of mi-

crofacet orientations (random roughness). This significantly limits

the types of surfaces that one can faithfully model. An extensive

body of work provides extension of this outset and models more

advanced surface types and light scattering phenomena [FJM*20].

An important extension is the use of explicitly defined microge-

ometry based on Kirchhoff theory [Kaj85]. This approach includes

diffraction effects, but is challenged by the limitations of Kirchhoff

theory, which is valid only if shadowing, masking, and multiple

scattering are negligible.

We can deal with shadowing, masking, and multiple scattering

in a geometric optics setting by ray tracing a patch of microge-

ometry to compute a bidirectional reflectance distribution func-

tion (BRDF) [CMS87; WAT92] If we account for only shadow-

ing and masking, the effect of modifying the microgeometry can

be computed interactively using rasterization and shadow map-

ping [WDR11]. These are very flexible approaches in terms of

types of microgeometry that one can faithfully model, but they do

not account for the fact that geometric features have a size where

diffraction effects become important. We can include information

about the light waves in the ray tracing and perform wavefront

tracing [GMN94; SML*12]. This enables us to account for inter-

ference effects when an outgoing ray arrives in a solid angle bin,

but diffraction effects (bending of light around geometric edges)

are not accounted for by this method. Using the Wigner distribu-

tion function, ray tracing can be extended to include diffraction ef-

fects [OKG*10; CHB*12]. This method however relies on analytic

solutions for regular structures, which makes it hard to use it for an

arbitrary surface microstructure. Other work incorporate wave ef-

fects into reflectance based on geometric optics by accounting for

thin coatings on the microgeometry [BB17; GMG*20], for exam-

ple, but diffraction is not accounted for in these works.

Extension of the Kirchhoff model (or Harvey-Shack) to account

for shadowing and masking while retaining diffraction effects has

been proposed as well [HTSG91; Sta99; DWMG15; HP17]. How-

ever, to employ appropriate analytic functions for shadowing and

masking, these models revert to use of modified normal distribu-

tion functions instead of explicitly defined microgeometry. The an-

alytic functions used for shadowing and masking are the same in

these models based on scalar diffraction theory as in the models

based on single scattering geometric optics [WMLT07]. This is

clear in the work of Holzschuch and Pacanowski [HP17] where

these two single scattering solutions are combined with each model

addressing reflectance due to geometry at different scales. How-

ever, only models based on geometric optics [TS67; WMLT07]

have been extended to multiple scattering. This has been done us-

ing a Monte Carlo approach based on sampling of the normal dis-

tribution function [HHdD16] and using analytic solutions based on

an assumption of V-groove microgeometry [LJJ*18; XH18]. Re-

cently, the sampling of multiple scattering in normal distribution

functions was extended to the spatially varying BRDFs of glinty

surfaces [CCM19].

The accuracy of the Kirchhoff approximation is based on a

small-angle assumption and has limited accuracy for wide-angle

scattering and grazing angles of incidence. Various modifications

of the theory therefore exist to improve its accuracy [HKV07].

Rayleigh-Rice theory is another single scattering scalar diffrac-

tion approximation that can be used [LKYU12] and the general-

ized Harvey-Shack (GHS) theory was introduced to have a model

with good accuracy at arbitrary angles of incidence and scatter-

ing [KHC11]. In a sense, one could say that the GHS theory is

a wave optics approach to dealing with the missing shadowing

and masking in the Kirchhoff approximation. GHS theory is con-

© 2020 The Author(s)

Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



V. Falster et al. / Computing the Bidirectional Scattering of a Microstructure

sidered in the single scattering BRDF models by Holzschuch and

Pacanowski [HP17] and Yan et al. [YHW*18]. The term from wave

optics corresponding to the shadowing and masking from geomet-

ric optics is similar but not exactly the same [BNM15; WYH*18;

KHZ*19]. To the best of our knowledge, it is unknown to what

extent ray traced shadowing and masking in combination with the

original Kirchhoff approximation (as suggested by Sancer [San69])

compares with results obtained with GHS theory. In any case, GHS

is a single scattering theory and uses renormalization to ensure en-

ergy conservation [KHC11; HP17]. This means that the resulting

energy distribution will be increasingly incorrect as multiple scat-

tering effects increase in significance.

In the following, we use radiometry and Monte Carlo integra-

tion to combine multiple scattering based on geometric optics with

scalar diffraction theory aiming at a technique that can capture both

diffraction effects and brightening due to multiple scattering. To the

best of our knowledge, we are the first to present a technique for

computing a full BSDF from an arbitrary explicitly defined patch

of microgeometry that includes both these effects. Holzschuch and

Pacanowski [HP17] suggest a concept similar to ours as future

work, namely combination of their work with multiple scatter-

ing [HHdD16]. The theoretical framework that we present could

be used for such a combination if one is willing to accept the lim-

itations of normal distribution functions. One would then use the

scalar diffraction theory of Holzschuch and Pacanowski [HP17] for

single scattering and the method of Heitz et al. [HHdD16] for sec-

ondary bounces. Taking a first step, we decided to keep our theory

general and applicable to explicitly defined microgeometry.

3. Combining Geometric and Scalar Wave Optics

To combine a multiple scattering geometric optics approach with

wave optics, we need to set up a measurement equation for com-

puting a bidirectional scattering distribution function (BSDF) using

Monte Carlo integration. We separate the integral in this measure-

ment equation into a sum of two terms and use scalar diffraction

theory for one term and regular path tracing without single scat-

tering for the other term. These are two different approximations,

and we have to accept an error since light will be partially coherent

after the first bounce while geometric optics disregards coherence.

We can compute the amount of coherent and incoherent light af-

ter the first bounce and estimate the significance of this error, but

we intentionally do not use the result from scalar diffraction when

computing the secondary bounces. Since we keep the evaluation of

first and secondary bounces separate, use of different approxima-

tions for the two terms is valid.

3.1. Measurement Equation for the BSDF

The BSDF at a surface location xxx for directions of incidence and

observation �ωi and �ωo is defined by [BDW81]

fs(xxx,�ωi,�ωo) =
dLo(xxx,�ωo)

dE(xxx,�ωi)
, (1)

where Lo is outgoing radiance and E is irradiance. The differential

element of irradiance dE incident at xxx from a differential element

of solid angle around �ωi is

dE(xxx,�ωi) = Li(xxx,�ωi)|cosθi|dωi . (2)

Here, Li is incident radiance and θi is the angle of incidence (the

angle between�ωi and the surface normal�n). Using the definition of

radiance [Nic63], we have

Lo =
d2Φo

|cosθo|dAdωo
, (3)

where θo is the angle of reflection or transmission, while dA is

a differential element of surface area around xxx. To obtain Lo, we

measure the radiant flux Φo scattered by a small patch of area A
centered at xxx into a narrow solid angle Ωo centered around �ωo. As

a consequence of Eqs. (1) and (3), we can measure the BRDF using

fs(xxx,Ωi,Ωo)≈ Φo(A,Ωo)

|cosΘo|AΩo E(xxx,Ωi)
, (4)

where Θo is the angle between the surface normal at xxx and the direc-

tion in the centre of the Ωo solid angle. Using Eq. (3), the outgoing

radiant flux in Ωo is

Φo(A,Ωo) =
∫

A

∫
Ωo

Lo(xxxm,�ωo)|cosθo|dωo dA , (5)

while it follows from Eqs. (1) and (2) that

Lo(xxxm,�ωo) =
∫

2π
fm(xxxm,�ωi,�ωo)Li(xxxm,�ωi)|cosθi|dωi , (6)

but now fm is a microfacet BSDF and xxxm is a position within the

microgeometry of the patch of area A centered at xxx. Considering

Eq. (2), the irradiance is

E(xxx,Ωi) =
∫

Ωi

Li(xxx,�ωi)|cosθi|dωi . (7)

We can thus solve the measurement equation (4) by Monte Carlo

integration and store the resulting BSDF values in (Ωi,Ωo)-bins.

The reflected radiance equation (6) is recursive just like the ren-

dering equation. Let us split it into single and multiple scattering

contributions: Lo = L1
o +L+

o . The single scattering contribution ar-

rives directly from Ωi and is reflected directly into Ωo, whereas

the multiple scattering contribution involves at least one other po-

sition in the patch microgeometry. The two terms thus correspond

to direct and indirect illumination in conventional path tracing. In-

serting this split of the equation for outgoing radiance into Eq. (4)

and propagating the superscript, we have

fs(xxx,Ωi,Ωo)≈ Φ1
o(A,Ωo)+Φ+

o (A,Ωo)

|cosΘo|AΩo E(xxx,Ωi)
. (8)

In the following, we develop Monte Carlo estimators for evaluation

of these two terms. First, we discuss geometric optics path tracing

for the indirect illumination term (Sec. 3.2), and then scalar diffrac-

tion theory for the direct illumination term (Sec. 3.3).

3.2. Progressive Path Tracing

Let us set up an estimator for Eq. (4). This is easily modified to

compute only one of the terms in Eq. (8) when we do path trac-

ing. Sampling a direction of incidence �ωi,k uniformly in a bin

Ωi with k as sample index, the probability density function is

pdf(�ωi,k) = 1/Ωi. Assuming unit incident radiance (Li = 1), we
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have the irradiance estimator

EK(xxx,Ωi) =
1

K

K

∑
k=1

Li(xxx,�ωi,k)|cosθi,k|
pdf(�ωi,k)

=
1

K

K

∑
k=1

Ωi|�n ·�ωi,k| , (9)

where�n is the normal of the macroscopic surface.

The interaction of a light wave with geometric features sig-

nificantly smaller than the wavelength is insignificant (this is the

Rayleigh criterion of optical smoothness). At the micro scale, we

therefore assume that the surface is perfectly smooth and use the

BSDF of a perfectly specular material for fm. The expression for

this BSDF is available from Walter et al. [WMLT07]. It basically

tells us that we can evaluate Eq. (6) by path tracing with a Russian

roulette to select reflection or refraction at each path vertex within

the microgeometry. Fresnel reflectance Fr is used as the probabil-

ity of reflection and Ft = 1−Fr is the probability of transmission.

Each path is then fully deterministic and the integral over outgoing

directions in Eq. (5) becomes one if �ωo ∈ Ωo and otherwise zero.

We can now write up an estimator for Eq. (5) by uniformly sam-

pling positions xxxm, j in the microgeometry, where j is the sample

index and pdf(xxxm, j) = 1/A. Considering spectral radiance, where

Fresnel reflectance or transmittance (Fr or Ft ) cancels perfectly in

every Russian roulette, we have that the outgoing radiance is the

light source visibility of the sampled point Lo, j,k = V (xxxm, j,�ωi,k)
when the path exits the microgeometry in a direction �ωo, j,k. Then

Φo(A,Ωo) =
1

KN

K

∑
k=1

N

∑
j=1

Lo, j,k|cosθo, j,k|
pdf(xxxm, j)

[
�ωo, j,k ∈ Ωo

]
(10)

=
1

KN

K

∑
k=1

N

∑
j=1

V (xxxm, j,�ωi,k)|�m ·�ωo, j,k|A
[
�ωo, j,k ∈ Ωo

]
,

where �m is the microfacet normal at xxxm, j and [∗] is an Iverson

bracket, which is 1 if the condition ∗ is true and 0 otherwise. The

origin of a sampled path to be traced through the microgeometry

is xxxm, j + r�ωi,k, where r is the radius of the bounding sphere of the

microgeoemtry, and the initial direction of the path is −�ωi,k. We

would have to discard rays not reaching xxxm to account for the visi-

bility term (or sample the illuminated area only, see Sec. 5).

Suppose we set up a path tracer to use an orhographic camera

with resolution W ×H, and we let the camera observe the square

[−1,1]× [−1,1]. Conveniently, we can store the orthographic pro-

jection of a hemispherical function in the image produced by this

path tracer using each pixel as a projected solid angle bin. Orient-

ing the microgeometry so that the z-axis represents the normal�n of

the macro surface, the x- and y-coordinates of�ωo, j,k identify the Ωo
bin that a sampled path arrives in. We then have the interesting con-

struction that the area of one pixel Ap corresponds to the projected

solid angle of a bin:

Ap =
4

WH
≈ Ωo|cosΘo| . (11)

By insertion of these different results [Eqs. (9)–(11)] in Eq. (4), our

collective Monte Carlo estimator for the BSDF becomes

fs,N,K(xxx,Ωi,Ωo)

=
WH

N
∑K

k=1 ∑N
j=1 V (xxxm, j,�ωi,k)|�m ·�ωo, j,k|

[
�ωo, j,k ∈ Ωo

]

4∑K
k=1 Ωi|�n ·�ωi,k|

. (12)

Out of convenience, we can choose one area sample in the micro-

geometry per pixel and use progressive path tracing. We then have

N = WH and only K = 1 direction of incidence per Ωi bin per

progressive update. A simple check on the trace depth in the path

tracing is all we need to evaluate one or the other term in Eq. (8).

3.3. Scalar Diffraction Theory

As scalar diffraction theory is a single scattering model, we can use

it for computing Φ1
o in Eq. (8). Modeling the incident field as a

scalar plane wave and using Beckmann’s version of the Kirchhoff

approximation [BS63], Kajiya [Kaj85] provided a formula for the

complex amplitude of the reflected wave

ψr(A) =− i ei k1r

4πr

∫
A
�m · [(kkk1 − kkk2)R− (kkk1 + kkk2)]e

i (kkk1−kkk2)·xxxm dA ,

(13)

where �m is the microfacet normal at the position xxxm in the micro-

geometry, r is the distance to the observer, and kkk1 = −k1�ωi and

kkk2 = k2�ωo are the wave vectors of the incident and the reflected

fields (with wave numbers k1 = 2πn1/λ and k2 = 2πn2/λ, where

n1 and n2 are refractive indices of the media the waves propagate

in). The factor R is a complex reflection coefficient given by the

Fresnel equations before taking the squared absolute value.

The Kirchhoff approximation is based on the assumptions that all

points in the microgeometry (xxxm) are visible and that a plane wave

of unit amplitude is incident in all points. Shadowing and mask-

ing effects are in other words neglected. By explicitly including the

amplitude of the incident wave in the derivation, Sancer [San69]

showed that we can account for shadowing and masking using ray

tracing. If we evaluate the integral by Monte Carlo integration, we

can use ray tracing to check for shadowing or masking and only

include a sample if visible from both light source and detector. In-

clusion of shadowing and masking in the Kirchhoff integral was

also explained in the very useful appendix to the paper by He et

al. [HTSG91]. The standard approach (as also outlined in this ap-

pendix) would now be to simplify Eq. (13) until analytic approxi-

mation becomes manageable.

The standard simplification of Eq. (13) is to assume that the sur-

face geometry has a large area and is slowly varying. We can then

collect the two terms in the integrand and consider the Fresnel term

independent of the microfacet normal �m. With this simplification,

we can pull the Fresnel term outside the integral and make it man-

ageable without computerization [Bec67]. A good description of

this simplification is provided by Ishimaru [Ish78]. As described

by Walter et al. [WYH*18], the resulting simplified integral has a

form that with variation of a few terms can describe several dif-

ferent commonly used models from scalar diffraction theory. We

can thus use Eq. (13) or one of the other models from previous

work [DWMG15; WVJH17; YHW*18; KHZ*19] for computing

the complex amplitude of the reflected wave.

In the case of transmission, Eq. (13) must be modified to specify

the complex amplitude of the transmitted wave. This modification

is available from Caron et al. [CLA02]:

ψt(A) =
i eik2r

4πr

∫
A
�m · [(kkkt + kkk2)T ]e

i (kkk1−kkk2)·xxxm dA , (14)
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where T is the complex transmission coefficient from the Fresnel

equations (expressions for R and T are available in the appendix of

Kajiya’s paper [Kaj85]) and

kkkt ·�m =−
√

k2
2 − k2

1 +(kkk1 ·�m)2 . (15)

To have reflectance and transmittance factors, we need the ratios

R and T of the reflected and transmitted wave amplitudes to the

incident wave amplitude.

The amplitudes of the scattered waves (ψr and ψt ) depend on the

distance to the observer, which is impractical when we are looking

for a bidirectional function. This is resolved by going to the far

field, where we collect the scattered energy in a small sensor per-

pendicular to �ωo at the distance r and take the limit of r going to

infinity [WYH*18]. This limit is taken in way so that r approaches

infinity in steps of a full period of oscillation. Incidentally, the same

result can be obtained in the reflection case through normaliza-

tion using the amplitude of the wave that would be reflected by

a perfectly smooth perfect conductor [BS63; Kaj85]. Using R = 1,

�m =�n, and�n · kkk1 =�n · kkk2 in Eq. (13), this amplitude is

ψr0(A) =
i ei k1r

4πr
(−2|�n · kkk1|)A . (16)

To modify Eq. (13) with Sancer’s ray traced shadowing and mask-

ing, we insert visibility terms V (xxx,�ω) that are 0 if the ray of origin

xxx and direction �ω intersects geometry, 1 if not. We then have

R(A) =
ψr(A)
ψr0(A)

=
1

2|�n · kkk1|A
∫

A
V (xxxm,�ωi)V (xxxm,�ωo)

�m · [(kkk1 − kkk2)R− (kkk1 + kkk2)]e
i (kkk1−kkk2)·xxxm dA , (17)

which we can evaluate by Monte Carlo integration using uniform

sampling of the microgeometry (pdf(xxxm) = 1/A) or sampling of

the visible area (see Sec. 5). Oscillatory functions of this kind can

be difficult to integrate using Monte Carlo. Aided by the computa-

tional power of modern graphics hardware, we deal with this issue

by using a very large number of samples.

Extending Beckmann’s normalization and Sancer’s ray traced

shadowing and masking to the transmission case, we use T = 1,

�m =�n, and kkk2 = kkkt in Eq. (14) to find ψt0 and obtain

T (A) =
ψt(A)
ψt0(A)

=
1

2|�n · kkkt |A
∫

A
V (xxxm,�ωi)V (xxxm,�ωo)

�m · [(kkkt + kkk2)T ]e
i (kkk1−kkk2)·xxxm dA . (18)

We now have separate far field expressions for R and T , but a

BSDF based on these would not be normalized due to the visibility

terms and the separate normalization. This is not an issue as we

work with in-surface scattering only and have no absorption. We

can thus normalize the resulting BSDF in a post process.

The remaining challenge is to connect the ratios R and T with

our measurement equation. Let us use S to denote R or T de-

pending on whether the detector is observing reflected or transmit-

ted light. Due to Poynting’s theorem, the energy transfer in elec-

tromagnetic waves is given by the absolute square of the complex

amplitude [BW99, §8.4]. We thus have |S |2 = dΦo/dΦi. This car-

ries a connection to our measurement equation (8) because we by

definition have E = dΦi/dA. Then

fs(xxx,Ωi,Ωo)≈ |S (A,Ωi,Ωo)|2
|cosΘo|Ωo

+ f +s,N,K(xxx,Ωi,Ωo) , (19)

where we compute the first term using scalar diffraction theory and

the second term using path tracing (see Appendix A). It should be

noted that the first term implicitly involves integration of Eqs. (17)

and (18) over the solid angle bins Ωi and Ωo.

4. Coherence and Energy Conservation

Evaluation of Eq. (19) results in a full anisotropic BxDF (where

x is R, T, or S), which we tabulate for use in rendering. For each

bin of incident directions Ωi, we uniformly sample a direction of

incidence �ωi and compute the outgoing reflected field in two steps.

In the first step, we compute single scattering by evaluating the

first term of Eq. (19) using a uniformly sampled direction of ob-

servation �ωo for each orthogonally projected Ωo bin. In the second

step, we compute multiple scattering (second term of Eq. (19)) by

path tracing the microgeometry but including only paths with trace

depth larger than 1. We bucket the exiting rays in the orthogonally

projected Ωo bins that they arrive in.

To enable concurrent progressive updates of the two terms, we

represent them differently: the estimate of S as a complex num-

ber and f +s,N,K as a real number. The complex number of each bin

estimates a phasor (time-invariant representation of phase and am-

plitude) of the scattered wave in the far field. The real number rep-

resents radiant energy that we approximate as being incoherent due

to multiple scattering. The primary difference between the two rep-

resentations is that the scalar may immediately represent the re-

flected radiance, whereas the phasor must allow superposition of

both phase and amplitude. Superpositioning of wave amplitudes is

only valid as long as the incident light can be treated as coher-

ent [GMN94; BW99]. Light is spatially coherent when all phasors

on a wavefront are synchronized constituents in a wavetrain with

distinct fringes in-between, where fringes are the edges between

the wave amplitudes. Coherence is not a binary construct, it is di-

rectly related to the fringe intensity falloff [Hen06].

The coherence area is the extent of surface area in which we

can reasonably assume that the incident light is spatially coherent.

The cross sectional area of the microgeometry that we use for com-

puting a bidirectional scattering function should thus be smaller

than the coherence area but still large enough to capture the impor-

tant features in the microstructure. Depending on the spatial dimen-

sions of the considered microgeometry, this may result in a conflict.

To account for the fringe intensity falloff, and following previous

work [WVJH17; YHW*18], we use a spatial Gaussian filter with

standard deviation σ in order to consider microgeometries larger

than the coherence area. We use this kernel together with the vis-

ibility terms as a factor under the integrals in Eqs. (17) and (18).

This underlines the need for normalization in a postprocess.

The size of the coherence area can be estimated using the

van Cittert–Zernike theorem. This relates the degree of coher-

ence at a fixed point and a variable point illuminated by a quasi-

monochromatic incoherent light source to the amplitude of a

diffraction pattern centered at the fixed point [BW99]. We can use
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(a) σ = 1.0 μm (b) σ = 3.0 μm

Figure 2: Log-transformed false color BRDF slices (color scale in
Figure 5) for normal incidence with two different standard devia-
tions for the Gaussian limiting the coherence area.

(a) σ = 10.0 μm (b) σ = 20.0 μm (c) σ = 200.0 μm

Figure 3: Subset of spectral BRDF slices for normal incidence with
different standard deviations of the Gaussian limiting the coherence
area. Based on a planar surface patch illustrated in Figure 4.

it to obtain the coherence length: the maximum spatial distance be-

tween two phasors in the incident plane wave considered to have

a correlated phase. As an example, sunlight has a worst case co-

herence length of δc = 50 μm [Hec17], which we can use to set

σ = δc/6 [WVJH17]. In general, the coherence length depends on

the solid angle subtended by the light source and the ratio between

the wavelength and the width of the emission spectrum.

In cases where significant features in the microstructure lie out-

side the coherence area, the simulation can be split into multiple

passes. Alternatively, we can use path tracing only and neglect the

wave effects. As seen in Figure 2, the overall distribution of energy

due to significant features changes with the coherence area. This is

an important point if we consider a so-called metasurface with mi-
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Figure 4: Height map (left) of a planar surface displaced by a low-
frequency noise (Sq = 281.8 nm) and the effect of filtering the sur-
face by a Gaussian with σ = 10 μm (right)

cro features at different orders of magnitude. Figure 3 demonstrates

the effect of an overestimated coherence area. The microgeometry

is a plane displaced by noise with amplitude and frequency so that

we would not expect diffraction effects (Figure 4). However, if too

large a coherence area is assumed, we see a significant change in

the spectral composition of the BRDF (see Figures 3b and 3c). This

is due to diffraction effects where there should be none. The coher-

ence length (δc) is thus an important parameter.

Coherent light reflected (or transmitted) in the perfectly specular

direction retains its coherence. We can compute this light using the

path tracing approach (Sec. 3.2) or by taking the absolute square

of the integrands in Eqs. (17) and (18) (each individual term in

the Monte Carlo integration) when computing S . The remaining

light accounted for by the scalar diffraction theory is incoherent

diffracted light [CLA02]. We can use this information to separate a

computed BSDF into coherent and incoherent light, which can be

valuable information in a coherence-aware renderer. The part of the

incoherent diffracted light that is masked by the microgeometry is

not accounted for in the multiple scattering part of our method. We

can compute the magnitude of this part of the BSDF using

flost(xxx,Ωi,Ωo)≈
|Smsk|2 − Φ1

msk(A,Ωo)
AE(xxx,Ωi)

|cosΘo|Ωo
, (20)

where the subscript msk is short for masked and means that

V (xxxm,�ωo) is replaced by 1−V (xxxm,�ωo). If we had used the path

tracing approach on its own (without the scalar diffraction theory),

none of this incoherent diffracted light would have been included.

In secondary bounces, we accept such an omission of wave effects,

but we include the wave effects in the first bounce.

5. Sampling the Illuminated Microgeometry

As an optimization for both path tracing and scalar diffraction the-

ory, we can sample the illuminated area only instead of uniformly

sampling the full microgeometry (pdf(xxxm) = 1/A). This requires

a change of variables in the integrals over surface area. Instead of

sampling the area of the microgeometry A directly, we would like

to sample the orthographic projection of the microgeometry into

the reference plane and trace a ray toward this point from outside

the microgeometry to the first point xxxm that it meets. Let us refer

to this orthographic projection of the microgeometry as A′. This is

usually a square or a disk. We can use sampling of this illuminated

area by considering that

dA′ = |�m ·�n|V (xxxm,�ωi)dA . (21)

With uniform sampling of A′, we then have pdf(xxxm) = 1/A′ and the

Monte Carlo estimator in Eq. (12) becomes

fs,N,K(xxx,Ωi,Ωo) =
WH

N
A′

A

∑K
k=1 ∑N

j=1
|�m·�ωo, j,k|
|�m·�n|

[
�ωo, j,k ∈ Ωo

]

4∑K
k=1 Ωi|�n ·�ωi,k|

.

(22)

We have a similar exchange of the visibility term V (xxxm,�ωi) for

1/|�m ·�n| and integration over A′ instead of A in Eqs. (17) and (18).

6. Results

In the following, we exemplify the use of our model and highlight

the main differences in BxDFs computed for explicit microgeome-
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try when including indirect illumination or not and when including

wave effects or not. The models being compared are:

GS Geometric optics with Single scattering.

GM Geometric optics with Multiple scattering.

WS Wave optics with Single scattering.

WM Wave optics with Multiple scattering (our model).

Our model is concerned only with the scattering in the surface of

a medium, so we assume non-absorbing BxDFs and normalize all

BxDFs to one. This means that energy loss in the single scattering-

only models (GS and WS) becomes an incorrect distribution of the

scattered light.

To visualize slices for a given direction of incidence�ωi of the di-

rectional BxDF functions, we use orthogonal projections of the de-

pendency on �ωo (hemispheres) onto the disk spanned by the direc-

tion cosines sinθo cosφo and sinθo sinφo (the first two coordinates

of �ωo, we only need two as the vector is of unit length). We trans-

form spectral results to RGB space using normalized CIE RGB

color matching functions. To ease visual comparison, we display

spectral BxDF slices without scaling. We also integrate the spec-

tral BxDF values to a scalar and show false color slices of these

integrated values in logarithmic scale (Figure 5).

Implementation details. We implemented our BxDF generator

on the GPU using OptiX [PBD*10] following the recipe in Ap-

pendix A. For the single scattering part, we computed one complex

phasor per spectral sample for each ray. For the multiple scattering

part, we assumed a wavelength-independent index of refraction and

traced a single real scalar. Precomputation time and memory us-

age depend heavily on the choice of resolution. For an anisotropic

BxDF, we discretize the hemisphere on 75 polar and 300 azimuthal

angles (a total of 22,500 bins). We sample the visible spectrum uni-

formly using eigth samples, which we transform into RGB for ren-

dering. Each 2D slice of the BSDF is generated using five million

samples, which we found enough even for the highly-oscillating in-

tegral in Equations (17) and (18). Each slice takes a few seconds to

compute on a NVIDIA GTX 1080 TI graphics card. By exploiting

reciprocity, the complete RGB anisotropic BRDF/BTDF is about 3

GB, which we do not compress.

For rendering, our model is similar to other methods that employ

precomputed or measured anisotropic BRDFs. We define the mi-

crogeometry coordinates system in which the BSDF is computed,

and transform the BSDF to the shading local coordinates for eval-

uation. While in our results we do not apply any importance sam-

pling, this could be implemented trivially by sampling the tabulated

BSDF as a discrete distribution. All renderings were computed us-

ing a path tracer implemented in OptiX. We used 35 thousand sam-

ples per pixel or more. Rendering with a BRDF took two to three

hours for a resolution of 2048×2048. With a BSDF and 5 million

samples per pixel, the rendering time was 23 to 24 hours.

Random surface. We first investigate the energy loss in single

scattering on a slowly varying random surface of about 20 by

20 μm2 with a root mean square height of Sq = 132 nm (Fig-

ure 6). The height variation was generated using sparse convolution

noise [FW07; LFD*20], which we also use when adding ground

noise to a modeled microgeometry. We use S∗q to denote the am-

plitude of ground noise added to a nonplanar surface, as it is then

-10 100-2.5-5.0-7.5 2.5 5.0 7.5

Figure 5: Log scale used for our integrated BRDF slices in false
colors. Numbers are n in 2n, so the scale is from 10−3 to 103.
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(a) Height map (b) GM

(c) WS (d) WM (Ours)

Figure 6: False color BRDF slices for a slowly varying microsur-
face (Sq = 132 nm, a) modeled using a noise function [FW07].
Slices are at normal incidence (θi = 0) for geometric optics with
multiple scattering (GM, b), scalar diffraction without multiple
scattering (WS, c), and our model combining scalar diffraction and
geometric optics-based multiple scattering (WM, d).

no longer the actual root mean square height of the microgeometry.

Results at normal incidence for the slowly varying microsurface

are in Figure 6. We observe that the energy distribution is similar

between geometric and wave optics, with a small difference in the

sharpness of the peak values. However, note that even for a surface

with relatively low multiple scattering, our model (WM) is able to

predict light that is ignored by single scattering wave optics alone

(WS). We have experimented with similar surfaces of low curvature

and without milli-scale features, and have found that our results

align well with results in previous work [DWMG15; YHW*18]. In

the next two paragraphs, we demonstrate the ability of our model

to estimate the distribution of radiant energy from mixed-scale mi-

crogeometry (metasurfaces).

Reflective metasurfaces. Manufacturing processes used for meta-

surfaces often lead to surfaces that cannot be represented by height

maps. Unfortunately, most recent scattering models assume that a

given microsurface can be described as a height field [DWMG15;

HP17; WVJH17; YHW*18; KHZ*19]. Since we work with ex-

plicit geometry, our work does not suffer this limitation. We demon-

strate this with the OVERHANG microgeometry shown in Figure 1
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Figure 7: The surface by Havran et al. [HFM16] with the OVER-

HANG microgeometry (Fig. 1, right). For comparison, we show
geometric optics with single scattering (GS, top-left) and multi-
ple scattering (GM, top-right), single scattering wave optics (WS,
bottom-left), and our method (WM, bottom-right). Insets are BRDF
slices (left, θi = 50◦) and close-ups (right).

(right). In this case, the microsurface acts as a light trap for many

incident directions. Ignoring secondary scattering events, scalar

diffraction theory (WS) exhibits a significant error in its distribu-

tion: the prominent backscattering due to the particular shape of the

microgeometry is missing. This is seen in the insets of Figure 7,

where we show a BRDF slice for light incident at θi = 50◦ for

each model (GS, GM, WS and our WM). As also seen in Figure 7,

which compares the appearance rendered by each model using the

scene for perceptual evaluation of BRDFs suggested by Havran et

al. [HFM16], the effect on the final appearance is significant. We

further study this microgeometry by adding ground noise [FW07;

LFD*20] to the base geometry. The results are in Figures 8 and

9 and show that our model is able to deal with features at both

nanoscale (where diffraction dominates) and microscale (where

shadowing/masking and multiple scattering dominate).

In Figure 10, results for the OVERHANG microsurface highlight

the importance of shadowing and masking in scalar diffraction the-

ory. If we use scalar diffraction theory for the single scattering

term and omit shadowing and masking (as in e.g. [YHW*18], WS),

we experience unexpected changes in the spectral distribution as a

function of the angle of incidence θi. The single scattering part of

our model (first term of Eq. (19), f 1
s ) avoids this problem as we use

ray tracing to account for shadowing and masking.

We now move on to the HEMISPHERES microsurface in Figure 1

(left). This type of surface exemplifies the microstructure designs

that one can use to control the scattering of light. We created two

Figure 8: BRDF lobes for the OVERHANG microsurface (Figure 1,
right) with ground noise added and values integrated over the spec-
trum. Plotted for the plane of incidence (φo = 0, the center row
of a BRDF slice) with θi = 55°. Since all BRDF slices are nor-
malized, the single-scattering models (GS and WS) exaggerate the
peaks while missing out on other features in the curves.

different versions of the HEMISPHERES microgeometry: smooth

and rough. The smooth one has no added ground noise, whereas

the rough one has ground noise with S∗q = 13.57 nm.

In Figure 11, we demonstrate a clear shortcoming of any model

based on single scattering in the context of a surface with hemi-

spheres in the microgeometry. For light incident from above, many

rays will be reflected downwards. These would not be accounted

for in a single scattering approach leading to a significant loss of

energy (around 10%). The result is that, in the case of the wave

optics model (WS), none of the major features of the surface at mi-

croscale are represented in the simulated BSDF, as one can also see

in Figures 11b and 11e. Adding noise to the hemisphere microstruc-

ture, we can investigate the effect of increased roughness. Despite

the fact that added noise results in more features in the WS result,

the energy loss due to masking and shadowing is still dominant on

the energy distribution. In contrast, our model (WM) includes the

sharp coloured features from the WS result and avoids the energy

loss through use of multiple scattering.

Refractive metasurface. We now demonstrate our model for a di-

electric surface. To the best of our knowledge, no prior work in

graphics has demonstrated BSDFs based on scalar diffraction the-

ory. We build a dielectric RIDGED metasurface (Figure 12, top).

that creates an apparent double refraction, and acts as a diffraction

grating which creates visible colored patterns. Figure 13 shows a

dielectric disk with RIDGED microgeometry and index of refraction

based on BK7 glass [Sch17]. The disk is slanted above the ground

floor while intersecting it at the bottom. This figure clearly shows

the visible color shift on transmission predicted by scalar diffrac-

tion theory (bottom), as well as the importance of multiple scatter-

ing for energy conservation, especially in the case of our WM.

Comparison against a rigorous solution. In shaping of beams,

a diffraction grating with so-called elliptic axicons is of particular

interest [TJF03]. This is a surface with elongated half ellipsoids

arranged in a regular pattern. We use this kind of microgeometry
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(a) GM (b) WS (c) WM (Ours)

(d) log2 GM (e) log2 WS (f) log2 WM (Ours)

(g) GM (h) WS (i) WM (Ours)

(j) log2 GM (k) log2 WS (l) log2 WM (Ours)

Figure 9: BRDF slices for the OVERHANG microsurface with
added ground noise of different amplitudes: (a–f) S∗q = 1.283 nm,
and (g–l) S∗q = 13.82 nm. The surface is illuminated at θi = 55°.
We display spectral BRDF slices transformed to RGB (a–c and g–
i) and integrated across the spectrum (d–f and j–l). The importance
of multiple scattering is obvious for this surface (compare the mid-
dle column with the other two). The need for wave optics effects is
discernible around the specular peak.

as an example for comparison of our method with a rigorous wave

solver. Specifically, we computed the BSDF of the surface illus-

trated in Figure 12 (bottom) using a finite difference time domain

(FDTD) solver by Lumerical. Comparison of our results with the

rigorous solution are in Figure 14. While the rigorous solver is in

most cases most accurate, it has too low resolution in its simulation

volume to capture the specific shaping of the beam that is the key

characteristic of an elliptic axicon diffraction grating. We clearly

capture this effect as illustrated in Figure 15. As we seem to be the

first in graphics to use scalar diffraction theory for transmission, we

find it comforting that the transmission outward through the elliptic

axicon surface matches the rigorous solution rather well. We also

find it interesting that the characteristic caustic is only captured if

secondary bounces are included in the model.

(a) WS (θi = 0°) (b) WS (θi = 10°) (c) WS (θi = 20°)

(d) f 1
r (θi = 0°) (e) f 1

r (θi = 10°) (f) f 1
r (θi = 20°)

Figure 10: Close-ups of the specular peak to the right in Fig-
ure 9(h–i) for three different angles of incidence (θi). Scalar diffrac-
tion models (WS) exhibit problems in the spectral composition
when not accounting for shadowing and masking. We use ray trac-
ing to account for shadowing and masking in our single scattering
component ( f 1

r ), and we therefore do not experience this problem.

7. Conclusion

We have presented a model for computing the bidirectional scatter-

ing properties of a surface with a known microstructure. Our model

is not limited to height maps. The microstructure can be chosen

arbitrarily. We combine multiple scattering from geometric optics

with single scattering from scalar diffraction theory to obtain im-

proved energy distribution in the computed bidirectional functions.

We presented a practical technique for the computation of a BSDF

using path tracing for the geometric optics part and Monte Carlo

integration for the wave optics part. As opposed to previous work,

our single scattering contribution from wave optics is based on the

Kirchhoff approximation but includes ray traced shadowing and

masking. This approach was the key for us to avoid a height field

assumption and to include the transmission mode. Our results show

a clear advantage in terms of estimating a plausible energy distribu-

tion in reflected and transmitted light while we can also faithfully

capture diffraction colors and brightening due to multiple scattering

in the surface microgeometry.

Limitations and future work. The main limitation of our work is

that we neglect diffractive interference in near-field multiple scat-

tering. As a part of this limitation, the incoherent diffracted light

that does not escape the microgeometry is not included in our mul-

tiple scattering. Whether this is a reasonable assumption can be as-

sessed using the measure we provide for evaluating the magnitude

of the problem (Eq. 20). Our current implementation is based on

brute-force Monte Carlo integration for computing the full BSDF.

This is likely suboptimal for the oscillatory integrals from scalar

diffraction theory and could be improved by leveraging integration

in the Fourier domain. Finally, since we precompute the BSDF, it

is not trivial to support spatially varying BSDFs. Finding a suitable
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(a) GMS (b) WSS (c) WMS

(d) log2 GMS (e) log2 WSS (f) log2 WMS

(g) GMS (h) WSS (i) WMS

(j) log2 GMS (k) log2 WSS (l) log2 WMS

Figure 11: BRDF slices for the HEMISPHERES microsurface at
θi = 55° with no added noise (a–f) and with added ground noise
of S∗q = 13.57 nm (g–l). We display BRDF slices in true color (a–c
and g–i) and in false color with logarithmic scale (d–f and j–l).

Figure 12: Top: RIDGED microgeometry used to generate the sur-
face BSDF of the dielectric in Figure 13. Bottom: AXICON micro-
geometry with regularly arranged elongated half ellipsoids of radii
0.4, 0.45, and 0.3 μm, used for the comparison of our theory with a
rigorous wave solver in Figures 14 and 15.

Figure 13: A planar dielectric disk with RIDGED microgeometry
(Figure 12, top). For comparison, we show geometric optics in the
top row with single scattering (GS, top-left) and multiple scattering
(GM, top-right), single scattering wave optics (WS, bottom-left),
and our method (WM, top-right). Insets are BRDF and BTDF slices
(left and right, respectively) at normal incidence.

Figure 14: Reference BSDF slices (top row) for the AXICON sur-
face in Figure 12 (index of refraction is 2) computed using Lumeri-
cal FDTD for normally incident light of 850 nm linearly polarized
in the vertical direction. Results are displayed using a logarithmic
color scale from 10−7 to 10−2.5. As expected, we do not have a
perfect match, but our results (middle row) are significantly closer
than a geometric optics approach (bottom row). From left to right:
outward transmission, inward reflection, inward transmission, and
outward reflection. Some deviation is due to the fact that we assume
unpolarized light. We may conjecture that the inward reflection is
off because we do not account for diffraction in secondary bounces.
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Figure 15: The outward transmission BSDF slices from Figure 14
plotted in linear scale from 0 to 4 ·10−4. Our method (middle) com-
pared with the rigorous FDTD solution (left). Reflection inside the
ellipsoids followed by transmission outwards captures the charac-
teristic beam shape transmitted by elliptic axicons. A close-up of
this shape (right) as captured by the secondary light bounces from
geometric optics. Our method finds this shape as we can easily use
a higher resolution than an FDTD solver.

analytical model or basis function representation for our computed

BSDFs would allow their use on spatially varying surfaces.
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Appendix A: Algorithmic description of our method.

Initialization

- Find the radius r of the bounding sphere of the microgeometry.

- Allocate a complex number and a real number for each

(Δλ,Ωi,Ωo) bin and set them to zero.

Main computation (repeat until the desired spectrum and the de-

sired resolution of Ωi bins have been covered).

- Sample a wavelength λ and a direction of incidence �ωi and find

the associated spectral bin and Ωi bin.

- Compute a BSDF slice for the sampled λ and �ωi using progres-

sive updates (see below) until the result is satisfactory.

Progressive update of a BSDF slice for given λ and �ωi

- For each Ωo bin, sample a point xxxi in the projected visible area

A′ modulated by the coherence area Gaussian. Evaluate R or T
and update the complex number of the Ωo bin accordingly.

- Allocate an accumulation buffer with a scalar value initialized to

zero for each Ωo bin. This is for bucketing of path tracing results.

- Repeat W ×H times: Sample a point xxxi in the projected visible

area A′. Trace a path from xxxi + r�ωi in the direction −�ωi. When

the path exits the microgeometry with direction �ωo, find the cor-

responding Ωo bin and bucket a term from the sum of Eq. (12)

in the accumulation buffer.

- Combine direct and indirect illumination using Eq. (19) and nor-

malize the BSDF slice.
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