

Real-Time Indirect Illumination

Jeppe Revall Frisvad PhD student Informatics and Mathematical Modelling Technical University of Denmark Agenda

Agenda

- Introduction
- Related work
- Concept
- Method
- Demo
- Conclusion

Introduction

Why is illumination important?

To obtain realism in synthetic images

To simulate reality

 Illumination is crucial for shading in most rendering processes Introduction

How do we simulate light?

We employ the well known rendering equation

$$L_o(x, \omega) = L_e(x, \omega) + \int_{\Omega} f_r(x, \omega', \omega) L_i(x, \omega') \cos \theta \, \mathrm{d}\omega'$$

consisting of an *emission* term and a recursive *reflection* term

What is indirect illumination?

- Light reflects (or bounces) off surfaces
- Light that has bounced more than once before reaching the eye is *indirect illumination*
- Single-bounce indirect illumination is light that has bounced twice before reaching the eye

Introduction

 To allow for more realism in interactive rendering applications

- Application examples:
 - Feature animation pre-view
 - Computer games
 - Reality simulation of emergency scenarios

Related work

Light mapping
 Static global illumination

- Refined global illumination solutions
 Restrictions on scene changes
- Spherical harmonics transfer functions
 Low-frequency lighting environment

Concept

Single-bounce indirect illumination

Explaining by example

- Case study:
 - Cornell box with tall box and sphere
- Here in a standard
 OpenGL rendering

The image plane

- Direct illumination
 - With shadows found using shadow mapping or shadow volumes

$$L_{o,1}(x,\omega) = L_{e,1}(x,\omega) + \sum_{j=1}^{N_1} f_r(x,\omega'_j,\omega) \frac{\Phi_{s,j} \cos \theta_j \cos \theta'_j}{\pi r_j^2} V_j(x)$$

direct radiance

positions

normals

June 2005

Single-bounce

Indirect illumination

 With specular reflections using *environment mapping* and diffuse reflections using *direct radiance mapping*

 $L_{r, \mathsf{importon}}(\pmb{x}, \pmb{\omega}) pprox$

$$\sum_{j=1}^{M} f_r(\boldsymbol{x}, \boldsymbol{\omega}_j', \boldsymbol{\omega}) L_{o, \text{photon}, j}(\boldsymbol{x}, \boldsymbol{\omega}_j') \cos \theta_j \Delta \omega_j'$$

Resulting image

- Direct and single-bounce indirect illumination
 - Adding up the terms

$$L_o(x, \omega) = L_{o,1}(x, \omega) + L_{r,importon}(x, \omega)$$

Getting additional bounces

- Including DRM in the environment map for specular reflections
 - Light paths: LD?D?S_{rt}*E
- Including environment mapping in the direct radiance map
 - Light paths: $LS_{rt}^*DDS_{rt}^*E + LD?S_{rt}^*E$
- Including DRM in the Direct Radiance Map
 Light paths: L(S_{rt}*D)+DS_{rt}*E + LD?S_{rt}*E

Multi-bounce results

- Including DRM in the environment map for specular reflections
- Including environment mapping in the direct radiance map
- Including DRM in the Direct Radiance Map

Subsurface scattering expansion

 Including subsurface scattered radiance and positions in the direct radiance map

June 2005

Computing solid angles in DRM

June 2005

Direct Radiance Mapping

June 2005

radiosity

DRM

photon mapping

June 2005

Cornell Reference

Direct Radiance Mapping

June 2005

Demo

Demo

Conclusion

- Conceptual limitions
 - No indirect shadows
 - No caustics
- Problems due to limited processing power
 - Too low frame rate for games
 - A direct radiance map is needed for each light source
 - Objects are assumed to be perfectly diffuse or perfectly specular
 - Few samples result in color bleeding artifacts

Conclusion

Conclusion

 Direct Radiance Mapping (DRM) is a fast approximate method for real-time indirect illumination

DRM is independent of scene changes

Much is achieved with simple means

Thank you for your attention

Questions/comments

