
Proceedings

AMAPS2012

Algolog Multi-Agent Programming Seminar
2012

29 November 2012

DTU Informatics

Technical University of Denmark

Editors

Jørgen Villadsen

Andreas Schmidt Jensen

Algolog refers to the Algorithms and Logic section at DTU Informatics.

The focus of the seminar is on tools and techniques for programming multi-agent systems.

Key topics are multi-agent programming competitions and genuine multi-agent challenges
such as organization, communication and agreement as well as algorithms and logics for
multi-agent systems.

Contents

Engineering Multi-Agent Systems 3
Jørgen Villadsen

On the Multi-Agent Programming Contest 5
Kenneth Balsiger Andersen, Andreas Frøsig

An Application of Game Theory for Program Synthesis 15
Steen Vester

Belief Revision in the GOAL Agent Programming Language 23
Johannes Svante Spurkeland

Organization-Oriented Programming in Multi-Agent Systems 35
Andreas Schmidt Jensen

Intelligent Surveillance with Autonomous Underwater Vehicles 45
Thor Helms, John Bruntse Larsen, Jens Peter Träff

Study at KAIST, South Korea, Dual Degree MSc Program in Computer Science 47
Jørgen Villadsen

Engineering Multi-Agent Systems

Jørgen Villadsen
DTU Informatics

The focus of the Algolog Multi-Agent Programming Seminar (AMAPS) is similar to the aim and
scope of the following yearly events:

• International Workshop on Programming Multi-Agent Systems (ProMAS), previous held in

Melbourne, New York, Utrecht, Hakodate, Honolulu, Estoril, Budapest, Toronto, Taipei and
Valencia (2012).

• International Workshop on Computational Logic in Multi-Agent Systems (CLIMA), previously
held in London, Paphos, Copenhagen, Fort Lauderdale, Lisbon, London, Hakodate, Porto,
Dresden, Hamburg, Lisbon, Barcelona and Montpellier (2012).

Quote from the homepage:

“The purpose of the CLIMA workshops is to provide a forum for discussing techniques, based
on computational logic, for representing, programming and reasoning about agents and
multi-agent systems in a formal way.

Multi-Agent Systems are communities of problem-solving entities that can perceive and act
upon their environment to achieve their individual goals as well as joint goals. The work on
such systems integrates many technologies and concepts in artificial intelligence and other
areas of computing as well as other disciplines. Over recent years, the agent paradigm
gained popularity, due to its applicability to a full spectrum of domains, from search engines
to educational aids to electronic commerce and trade, e-procurement, recommendation
systems, simulation and routing, to cite only some.

Computational logic provides a well-defined, general, and rigorous framework for studying
syntax, semantics and procedures for various tasks by individual agents, as well as
interaction amongst agents in multi-agent systems, for implementations, environments,
tools, and standards, and for linking together specification and verification of properties of
individual agents and multi-agent systems.”

The following page shows a specialization in Multi-Agent Systems on the BSc in Software
Technology and the MSc in Computer Science and Engineering programs at DTU. The study plan
satisfies the requirements for the Efficient and Intelligent Software study line.

In August 2012 a Dagstuhl Seminar was held with the title: Engineering Multi-Agent Systems

Additional information: http://www.dagstuhl.de/12342

At Schloss Dagstuhl in Germany computer scientists meet to discuss current research topics.

3

BSc in Software Technology (180 ECTS) Other BSc programs are possible too

Software Engineering (45 ECTS)
 02121 Introduction to Software Technology 10
 02122 Software Technology Project 10
 02141 Computer Science Modelling 10
 02161 Software Engineering 1 5
 02162 Software Engineering 2 10 *

Algorithms and Logic Core (15 ECTS)
 02105 Algorithms and Data Structures 1 5
 02110 Algorithms and Data Structures 2 5
 02180 Introduction to Artificial Intelligence 5

Mandatory Units (60 ECTS)
 Mathematics / Physics / Chemistry / Programming / Embedded Systems

Other Units (60 ECTS)
 Theory of Science in Engineering / Bachelor Project / Study Abroad / Electives

MSc in Computer Science and Engineering (120 ECTS)

Prerequisites and Mandatory Units (30 ECTS)
 02156 Logical Systems and Logic Programming 5
 02157 Functional Programming 5
 02158 Concurrent Programming 5
 02257 Applied Functional Programming 5
 42490 Technology, Economics, Management and Organization 10

Multi-Agent Systems (57.5 ECTS)
 02220 Distributed Systems 7.5
 02224 Real-Time Systems 5
 02249 Computationally Hard Problems 7.5
 02281 Data Logic 5 *
 02282 Algorithms for Massive Data Sets 7.5 *
 02284 Knowledge-Based Systems 5
 02285 Artificial Intelligence and Multi-Agent Systems 7.5
 02286 Logic in Computer Science, Artificial Intelligence and Multi-Agent Systems 7.5
 02291 System Integration 5

Other Units (32.5 ECTS)
 Thesis / Electives

 * = Optional
Additional information: http://cse.imm.dtu.dk

4

On the Multi-Agent Programming Contest

Kenneth Balsiger Andersen and Andreas Frøsig

DTU Informatics

Abstract. The aim of the annual agent contest is to stimulate research
in the area of multi-agent systems, to identify key problems and to collect
suitable benchmarks.

We provide a brief description of the 2012 competition and the Python-
DTU system. We analyse the contest especially between our own system
and Federal University of Santa Catarina’s (UFSC) system as we had
some very intense battles. We have run a lot of tests between the two
systems in order to figure out what we could have done better.

1 Introduction

This paper describes some of our work with the Python-DTU team which par-
ticipated in the Multi-Agent Programming Contest 2012 [3], and in particular
how our system works and the results of an analysis we have made against the
winning team from Federal University of Santa Catarina (UFSC).

In 2012 the members of the Python-DTU team were associate professor
Jørgen Villadsen (DTU Informatics), Andreas Schmidt Jensen, Mikko Berggren
Ettienne, Steen Vester, Kenneth Balsiger Andersen and Andreas Frøsig. Given
that the scenario is very similar to that of last year, we decided to look into ways
of improving the system from last year [1]. We have explained some of the main
strategies of our team in this paper but we refer to [2] for more details.

In the tournament we got a very close second place against UFSC’s team.
For this reason we have made an analysis between the systems to see whether
it was coincidental or if their system was genuinely better than ours. We also
implemented some logic to neutralize a specific strategy of theirs to see what
would have happened if we had done this in the tournament.

The paper is organized as follows. In section 2 we provide an overview of
the contest. In section 3 we analyse the contest and describe some of the most
important algorithms and designs used in our multi-agent system. In section 4
we describe a number of tests of our system against the winners of the contest,
UFSC. Finally, we conclude our work by discussing possible improvements of
our system in section 5.

5

2 Multi-Agent Programming Contest 2012

In this section we will give the reader an overview of the contest. MAPC is a
contest, that have been running for several years and in 2011 and 2012 it deals
with the so called ”Agents on Mars”. If additional information is required we
refer to the official descriptions in [3].

2.1 Agents on Mars

The scenario in the contest is that mankind has populated Mars in the year
2033. In this world the citizens of Mars developed some autonomous intelligent
agents called All Terrain Planetary Vehicles (ATPV), which they used to search
for water wells. To strengthen the search for these wells, the World Emperor
has handed out various achievements for different missions, which has resulted
in sabotage amongst the different groups of settlers. The task of this contest is
to implement these autonomous agents such that they are intelligent enough to
collect more achievements than the other groups.

The contest is structured as a turn-based game, where the teams have a
time limit to decide what to do each turn. When the agents have decided which
actions to take, they have to send the plans to the server, which then calculate
whether the actions succeed or not.

The map is structured as a graph consisting of vertices and edges. where the
vertices are water wells and the weight of the edges is the energy cost to go from
one well to the another. We will use the terms vertex and edge for the rest of
this article.

Agent roles and actions The ATPVs described above are assigned different
sets of skills matching their roles, thus we are working with a heterogeneous
system.

In table 1 we have given an overview of the attributes and skill-sets of the
different roles.

A
t
t
a
c
k

B
u
y

G
o
t
o

I
n
s
p
e
c
t

P
a
r
r
y

P
r
o
b
e

R
e
c
h
a
r
g
e

S
k
i
p

S
u
r
v
e
y

E
n
er
gy

H
ea
lt
h

S
tr
en
gt
h

V
is
ib
il
it
y
ra
n
ge

Explorer × × × × × × 24 4 0 2
Repairer × × × × × × 16 6 0 1
Saboteur × × × × × × × 14 3 3 1
Sentinel × × × × × × 20 1 0 3
Inspector × × × × × × 16 6 0 1

Table 1. Table showing the skillsets and attributes of the different roles

6

In addition to the specifications above, an agent can get disabled if its current
health is equal to 0. A disabled agent is allowed to perform the following actions:
goto, repair, recharge and skip iff. their role allows it. Additionally the
recharge rate and effect of devices bought are lowered when an agent is disabled.

Achievements Each team will earn Achievement Points when they reach a
milestone. We have listed some examples of the different milestones below:

– Having zones with fixed values, e.g. 10 or 20
– Fixed numbers of probed vertices, e.g. 5 or 10
– Fixed numbers of surveyed edges, e.g. 10 or 20
– Fixed numbers of inspected vehicles, e.g. 5 or 10
– Fixed numbers of successful attacks, e.g. 5 or 10
– Fixed numbers of successful parries, e.g. 5 or 10

In the competition each step of each achievement is exponentially harder to reach
than the previous. The Achievement Points earned during the game can be used
to buy devices to improve the agents attributes.

3 System Analysis and Design

In this section we will describe how we want the agents to behave throughout
the simulations and a short analysis of the world and thus what is needed from
our agents.

3.1 Agent behaviour

Our resulting system is a decentralized solution with a focus on time perfor-
mance.

Instead of letting the agents find goals only based on their private knowledge
they use the distributed knowledge of the entire team. This adds some communi-
cation which in some cases is unnecessary but in most cases the extra knowledge
will produce better goals for the agents.

In each step each agent will find its preferred goals autonomously and assign
each of them a benefit based on its own desires (i.e. the type of agent), how
many steps are needed to reach the location and so on. In order to make sure
that multiple agents will not commit to the same goal they communicate in order
to find the most suitable agent for each goal. This is done using our auction-based
agreement algorithm which will be discussed in more detail in section 3.5.

The agents in this contest are situated in an inaccessible environment which
means that the world state can change without the agents noticing from step to
step, e.g. if the opponent’s agents move outside our agents’ visibility range. Hence
our agents should be very reactive to observable changes in the environment.

At times our agents are proactive. The most important one being the commu-
nication between a disabled agent and a repairer. They use their shared knowl-
edge in order to decide which of the agents should take the last step and who

7

should stay, so that they eventually are standing on the same vertex instead
of simply switching positions. This is implemented by considering the current
energy for each agent.

Some of our agents also attempt to be proactive by for example parrying if
an opponent saboteur is on the same vertex. Furthermore, repairers will repair
wounded agents since they are likely to be attacked again.

3.2 Getting achievements

In the beginning of a simulation every agent will work towards achieving as
many type specific goals as possible in a more or less disorganized fashion, e.g.
the inspector will inspect every opponent it sees. We do this to achieve as many
achievements as possible as fast as possible.

After a certain number of steps the achievements will be so hard to get,
that the agents will proceed to the zone control part of our strategy where our
agents will do all they can to maximize our zone score each step. For example the
explorers keep probing our target area to make sure we control as many vertices
as possible.

3.3 Zone control

The zone control part of our strategy uses a very simple, but surprisingly ef-
fective, greedy algorithm. The algorithm works by choosing the vertex with the
highest potential value. The first vertex is the one with the highest value, the
rest of the vertices chosen by the algorithm are chosen by considering the po-
tential value calculated with part of the colourings algorithm which can be read
in detail in [3].

This algorithm will to some extent choose the optimal area or several areas
which are still fairly easy to maintain, even though our choices are limited by
our (partial) knowledge of the map and the missing parts of the area colouring
algorithm.

During the zone control part every type of agent has a specific job.

– Repairers and saboteurs do not directly participate in the zone control, in-
stead they are trying to defend and maintain the zone.

– Inspectors keep inspecting from their given expand node, because the oppo-
nents might have bought something which we need to make a counter move
against.

– Explorers will probe unprobed vertices within the target zone. When all
vertices are probed they are assigned a vertex by the zone control strategy.

– The sentinels will stay on a vertex assigned by the zone control strategy and
will parry if some of the opponent’s saboteurs move to the sentinels position.

8

3.4 Buying strategy

Only our saboteurs buy devices, and they buy exactly enough extra health so
that they will not get disabled by a single attack from an opponent saboteur that
has not upgraded his strength. Furthermore we buy enough strength to disable
any opponent saboteur in a single attack by buying strength for all our saboteurs
every time we inspect the opponent saboteurs and find that it has more health
than all other inspected saboteurs. This buying strategy is chosen in hope of
dominating the map which will make it possible to gain control of the zone we
want. The advantage is that we only try to out-buy in one specific field, thus
we are unlikely to use all our achievement points. As this is a quite aggressive
buying strategy we had to wait to step 150 to have enough achievement points
to execute it.

3.5 Making decisions

The agents need a consistent way of figuring out what to do. We do this by
letting every agent find the nearest goals according to their type. They do this
by using a modified best-first search (BFS) which returns a set of goals. To make
sure that every agent always has at least one goal the BFS returns as many goals
as we have agents. This is a very agent-centered procedure meaning the agents
simply commit to the goal with the highest benefit, instead of coordinating any
bigger schemes. However, since the goals are more or less dependent on each
other there is some implicit coordination. For example the repairers will often
follow the saboteurs as these search for opponents and thus more often will share
a vertex with an opponent saboteur and get disabled.

To decide which goal to pursue the agents use an auction algorithm. Every
agent can bid on the goals they want to commit to and will eventually be assigned
the one they are best suited for. This results in a good solution, which however
might not be optimal. For further details we refer to the paper about our system
from 2011 [1].

Even though our planner calculates a few turns ahead the agents recalculate
every turn. We do this to adapt to newly discovered obstacles and facts, such
as an opponent saboteur or the fact that the agent has been disabled. The
agents will not end up walking back and forth as their previous goal will now
be one step closer, thus the benefit of the goal has increased. If another goal
becomes more valuable it means that it is a better goal than the one the agent
was pursuing, thus changing the commitment makes sense, so we do not lose
anything on recalculating each turn.

4 Results

In this section we want to test our system against the winners of this years
competition namely the team UFSC from Brazil. The reason we want to test
is that the matches in the tournament were extremely close and we realized

9

that they had built a counter strategy to our buying strategy. The idea behind
the counter strategy was to make our team use as many achievement points as
possible, without using that many themselves. They did this by buying a lot of
health on a single saboteur so that all our saboteurs bought strength to be able
to handle this, they lured our strategy in one of the test matches. By doing this
we used four times as many achievement points and thus we got a lower step
score even though our zone score was better.

The plots below have been made by scanning through the log files created by
the server counting won battles in all simulations that were valid by following
the qualification rule of at most 5% missing actions. We extracted the data using
a Python script which plotted the data using Gnuplot.

4.1 Original

First we want to test the system we used in the tournament against theirs to see
whether it is genuinely inferior or it was up to chance.

In the overall test we can see that we are slightly behind with a score of 143
against theirs 148, so it was some pretty close battles. By watching the battles
it seemed as if we often got a zone separated from the main battle, meaning
that we could keep an undisturbed zone while constantly disturbing theirs. This
meant that we neutralized the score advantage they got from the achievement
points. For obvious reasons this does not work as well in small maps as in large
ones, so we want to compare the different simulations to each other.

To see why we are losing we look at the tests for each of the simulations
which can be seen in figure 1, 3 and 5.

According to these tests we win a little over half of the battles in the first
two simulations, but loose a lot in the last one. This could indicate that our
hypothesis according to the map size are accurate. It makes sense that with a
map of a certain size it is no longer possible for our agents to create an isolated
zone and thus we cannot even the total step score.

4.2 Optimized version

In an attempt to even the score for the small maps we have implemented some
extra logic in our agents such that they will only buy strength up to the second
best of the opponent’s saboteurs. We do this in order to minimize the difference
between the achievement points while still having at least as good saboteurs as
most of the opponent team’s saboteurs, namely their second best. It should be
noted that the tests below are not with the same version of the team that was
used in the contest.

With this improvement we are winning ∼75% of the battles with a score
of 172 against their 58, compared to before this is a great improvement which
shows that their counter strategy was working very well against our team.

Now we want to see if the change made us good enough to win on all the
simulations, so we compare the three different simulations on figure 2, 4 and 6.

10

As can be seen we are winning not only in the two first simulations but also
in the third, where they had the upper hand before. We can still see that we
win more in the two larger maps than the small one of simulation three. This
strengthens our belief that the extra zone we get in the two big maps helps quite
a bit.

5 Conclusion

All in all our system wins a little more than 50% of the simulations on the two
larger maps. This means that these two simulations were pretty much up to
chance at the competition whereas the third one had a much higher chance of
going to UFSC.

Our greatest weakness was that our uncompromising attempt to have the
strongest saboteurs could be countered by buying enough health on a single
saboteur to make us use most of our achievement points for improving all of our
saboteurs. Even though our saboteurs were better than the opponents and we
had a much more stable zone, the difference in achievement points evened out
the total step score.

The tests show that we win most simulations in the two larger maps and
it seems like the reason is that we often get a second area which neutralizes
the extra score UFSC gets from the difference in achievement points. On the
small map of simulation 3 this is not possible for our system and we lose quite
significantly in this case. After implementing some extra logic which neutralizes
their counter strategy we have seen that we actually win ∼75% of the battles
and more significantly we won on the small map as well which we did not before.
With this new and improved system they do win more on the small map than
on the larger ones, which is probably because we have an extra area in the two
larger ones.

References

1. Mikko Berggren Ettienne, Steen Vester, and Jørgen Villadsen. Implementing a
Multi-Agent System in Python with an Auction-Based Agreement Approach. In
Louise A. Dennis, Olivier Boissier, and Rafael H. Bordini (Eds.): ProMAS 2011,
LNCS 7217, 185-196, Springer 2012.

2. Jørgen Villadsen, Andreas Schmidt Jensen, Mikko Berggren Ettienne, Steen Vester,
Kenneth Balsiger Andersen, and Andreas Frøsig. Reimplementing a Multi-Agent
System in Python. In Mehdi Dastani, Brian Logan, Jomi F. Hübner (Eds.): ProMAS
2012, LNCS, Springer, to appear.

3. Tristan Behrens, Michael Köster, Federico Schlesinger, Jürgen Dix, and Jomi
Hübner. Multi-Agent Programming Contest — Scenario Description — 2012 Edi-
tion. Available online: http://www.multiagentcontest.org/, 2012.

11

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

V
ic

to
rio

us
 s

im
ul

at
io

ns

Valid simulations

Simulation 1 -baw

Python-DTU
UFSC

Fig. 1. Won matches on simulation 1 for our system with 300 vertices

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80

V
ic

to
rio

us
 s

im
ul

at
io

ns

Valid simulations

Simulation 1 -bawc

Python-DTU
UFSC

Fig. 2. Won matches on simulation 1 for our optimized system with 300 vertices

12

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

V
ic

to
rio

us
 s

im
ul

at
io

ns

Valid simulations

Simulation 2 -baw

Python-DTU
UFSC

Fig. 3. Won matches on simulation 2 for our system with 240 vertices

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80

V
ic

to
rio

us
 s

im
ul

at
io

ns

Valid simulations

Simulation 2 -bawc

Python-DTU
UFSC

Fig. 4. Won matches on simulation 2 for our optimized system with 240 vertices

13

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

V
ic

to
rio

us
 s

im
ul

at
io

ns

Valid simulations

Simulation 3 -baw

Python-DTU
UFSC

Fig. 5. Won matches on simulation 3 for our system with 200 vertices

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80

V
ic

to
rio

us
 s

im
ul

at
io

ns

Valid simulations

Simulation 3 -bawc

Python-DTU
UFSC

Fig. 6. Won matches on simulation 3 for our optimized system with 200 vertices

14

An Application of Game Theory in
Program Synthesis

Steen Vester

DTU Informatics

Abstract. In this article we motivate the use of infinite concurrent
games and the notion of Nash equilibria in program synthesis and present
some of the results obtained in the area. Games have traditionally been
used mostly in economics, but have recently received an increasing amount
of attention in computer science with applications in several areas in-
cluding logic, verification and multi-agent systems. Our motivation for
studying Nash equilibria is to let the players in a game represent pro-
grammable devices and let strategies represent programs. Nash equilibria
then correspond to systems where all devices are programmed optimally
in some sense. Modelling the interaction in distributed systems by means
of games with self-interested agents is in many cases more realistic than
traditional analysis where opponents are assumed to act in the worst
possible way instead of acting rationally and in their own interest.
Note that no new results are presented in this paper, it is merely a
short introduction to Nash equilibria in concurrent games as well as an
application of this topic in program synthesis.

1 Introduction

Concurrent games have been studied by a number of other authors, including
[1,3,4,5,6,7,8,9,15,18]. A concurrent game in our context is played on a finite
graph where the nodes represent the different states of the game and edges
represent transitions between game states. The game is played an infinite number
of rounds and in each round the players must concurrently and independently
choose an action. The choices of actions of all the players uniquely determines the
successor of the current game state. An example of a concurrent game can be seen
in Figure 1. This is a mobile phone game (also used in [3,18]), where two mobile
phonse fight for bandwidth in a network. They each have three transmitting
power levels (0,1 and 2) and each turn a phone can choose to increase, decrease
or keep its current power level. State tij corresponds to phone 1 using power
level i and phone 2 using power level j. The goal of the phones is to obtain as
much bandwidth as possible, but at the same time reduce energy consumption.

The infinite runs of games and interaction between players seems like a good
framework for modelling the interaction of reactive systems which should (theo-
retically) be able to run forever. This includes applications such as web servers,

15

operating systems, mobile phones, etc. A typical use of games in verification is
to design a two-player game, where one player corresponds to a programmable
system and the other player corresponds to the environment [2,8,9,10,14,17]. In
this case it often makes sense to search for strategies for the system player that
obtains some objective no matter how the environment acts. However, the re-
striction of assuming that other players will act in the worst possible way does
not necessarily make good sense in distributed systems or multi-agent systems
where goals are not necessarily opposite. In this case it seems to make more
sense to assume that other agents will act in their own interest. This is the main
motivation for studying Nash equilibria instead of winning strategies, since Nash
equilibria are strategy specifications where all players choose the optimal strat-
egy with respect to their own objectives, given that all other players stick to the
strategy specification.

2 Definitions

2.1 Concurrent Games

Definition 1 A Concurrent Game is a tuple G = (States, Agt, Act, Mov, Tab)
where

– States is a finite set of states
– Agt is a finite set of agents
– Act is a finite set of actions

– Mov: States×Agt → 2Act \ {∅} is the set of actions available to a given
player in a given state

– Tab: States×ActAgt → States is a transition function that specifies the next
state, given a state and an action of each player.

t00 t01 t02

t10 t11 t12

t20 t21 t22

Fig. 1. Mobile game. Self-loops and
actions are omitted.

A move (mA)A∈Agt consists of an action

for each player. It is said to be legal in the
state s if mA ∈ Mov(s,A) for all A ∈ Agt.
The legal plays PlayG of G are the infinite
sequences ρ = s0s1... ∈ Statesω such that
for all i there is a legal move mi such that
Tab(si,mi) = si+1. In the same way the
set of histories HistG is the set of finite se-
quences of states that respects the Mov and
Tab functions. We define the paths of G as
PathG = HistG ∪ PlayG . For a given path ρ
we write ρi for the ith state of the path (the
first state has index 0), ρ≤i for the prefix con-
taining the first i states of ρ and |ρ| for the
number of transitions in ρ when ρ is finite.
When ρ is finite we also write last(ρ) to de-
note the last state in ρ. For a path ρ the set of states occuring at least once

16

and the set of states occuring infinitely many times is denoted Occ(ρ) and Inf(ρ)
respectively.

We define a strategy σA : HistG → Act of player A as a function specifying a
legal move for each finite history. We call a subset P ⊆ Agt a coalition of players
and define a strategy σP = (σA)A∈P of a coalition P as a tuple of strategies,
one for each player in the coalition. A strategy for the coalition Agt is called a
strategy profile. We denote the set of strategy profiles ProfG . Given a strategy
(σA)P∈A for a coalition P we say that a (finite or infinite) path π = s0s1... is
compatible with the strategy if for all consecutive states si and si+1 there exists a
move (mA)A∈Agt such that Tab(si, (mA)A∈Agt) = si+1 and mA = σA(s0s1...si)

for all A ∈ P . The set of infinite plays compatible with (σA)A∈P from a state s
is called the outcomes from s and is denoted OutG((σA)A∈P , s). The set of finite
histories compatible with (σA)A∈P from a state s is denoted OutfG((σA)A∈P , s).
In particular, note that for a strategy profile, the set of outcomes from a given
state is a singleton.

2.2 Objectives and Preferences

In our setting there are a number of objectives that can be accomplished in a
concurrent game. An objective is simply a subset of all possible plays. We con-
sider particular kinds of qualitative objectives which have been analyzed in the
literature defined on sets T of states, namely reachability, safety and Büchi ob-
jectives defined as follows:

ΩReach(T) = {ρ ∈ PlayG|Occ(ρ) ∩ T �= ∅}
ΩSafe(T) = {ρ ∈ PlayG|Occ(ρ) ∩ T = ∅}
ΩBüchi(T) = {ρ ∈ PlayG|Inf(ρ) ∩ T �= ∅}

which corresponds to reaching a state in T , keeping the play away from T and
visiting a state in T infinitely many times respectively. We use the same frame-
work as in [3] where players can have a number of different objectives and the
payoff of a player given a play can depend on the combination of objectives that
are accomplished in a quite general way. In this framework there are given a
number of objectives (Ωi)1≤i≤n. The payoff vector of a given play ρ is defined as
vρ ∈ {0, 1}n such that vi = 1 iff ρ ∈ Ωi. Thus, the payoff vector specifies which
objectives are accomplished in a given play. We write v = �T where T ⊆ {1, ..., n}
to denote vi = 1 ⇔ i ∈ T . We simply denote �{1,...,n} by �. Each player A in
a concurrent game is given a total preorder �A⊆ {0, 1}n × {0, 1}n which intu-
itively means that v �A w if player A prefers the objectives accomplished in w
over the objectives accomplished in v. This preorder induces a preference rela-
tion �⊆ PlayG × PlayG over the possible plays defined by ρ � ρ′ ⇔ vρ � vρ′ .
Additionally we say that A strictly prefers vρ′ to vρ if vρ �A vρ′ and vρ′ ��A vρ.
In this case we write vρ <A vρ′ and ρ ≺A ρ′.

17

2.3 Nash Equilibria and Decision Problems

We have now defined the rules of the game and are ready to look at the solution
concept of a Nash equilibrium, which is a strategy profile in which no player
can improve by changing his strategy, given that all the other players keep their
strategies fixed. The idea is that a Nash equilibrium corresponds to a stable
state of the game since none of the players has interest in deviating unilaterally
from their current strategy and therefore is in some sense rational. Formally, we
define it as follows

Definition 2 Let G be a concurrent game with preference relations (�A)A∈Agt
and let s be a state. Let σ = (σA)A∈Agt be a strategy profile with Out(σ, s) = {π}.
Then σ is a Nash equilibrium from s if for every B ∈ Agt and every σ′B ∈ StratB

with Out(σ[σB �→ σ′B], s) = {π′} we have π �B π′.

The concept was first introduced in [11] in normal-form games and has been
analyzed quite extensively since then [12,13,16]. It was proven in [11] that a Nash
equilibrium always exists in mixed strategies (where players can choose actions
probabilistically), however a Nash equilibrium in pure strategies does not always
exist. Indeed consider the matching pennies game in Figure 2.

t0

t1 t2

(a, b), (b, a)(a, a), (b, b)

(∗, ∗) (∗, ∗)

Fig. 2. Matching pennies game

In this game player A wins if the two
players choose the same action and player B
wins if th two players choose different actions.
This is modelled by a reachability game start-
ing in t0 where A has reachability objective
{t1} and B has reachability objective {t2}.
There is no pure Nash equilibrium in this
game, since in any strategy profile the los-
ing player can deviate from his strategy and
improve. We will only focus on pure Nash
equilibria which will be called Nash equilib-
ria in the sequel. Our study of Nash Equi-
libria is motivated by the idea of modelling
distributed systems as games, where players
correspond to programmable devices (possi-
bly with different goals) and strategies cor-
respond to programs. Then a Nash equilibrium is in some sense an optimal
configuration of a system, since no device has any interest in deviating from
the chosen program. A nice property of pure Nash equilibria compared to Nash
equilibria in mixed strategies is that pure Nash equilibria will correspond to de-
terministic programs, whereas Nash equilibria in mixed strategies correspond to
randomized programs.

The computational problem of deciding existence of pure strategy Nash
equilibria in concurrent games are analyzed for different types of objectives in
[3,4,5,6,7,18] with the same setting used here. We will focus our attention on
the complexity results obtained on the following computational problems for
different types of objectives.

18

Definition 3 (Existence Problem) Given a game G and a state s does there
exist a symmetric Nash equilibrium in G from s?

Definition 4 (Constrained Existence Problem) Given a game G, a state s
and two vectors uA and wA for each player A, does there exist a symmetric Nash
equilibrium in G from s with some payoff (vA)A∈Agt such that uA � vA � wA

for all A ∈ Agt?

Note that since there can be multiple equilibria with different payoffs it is also
interesting to search for equilibria with particular payoffs or bounded payoffs.
This is the motivation for considering the constrained existence problem as well
as the existence problem. As we will see in the results section in many subclasses
of concurrent games the complexities of the two problems are the same.

3 Results

As illustrated by the matching pennies game there does not necessarily exist
a pure Nash equilibrium in a concurrent game. In finite normal-form games,
there always exists a Nash equilibrium in mixed strategies and therefore a nat-
ural question is to ask whether this also holds for concurrent games. However,
according to the following theorem this is not the case

Theorem 5 There exists concurrent games with no Nash equilibria in mixed
strategies.

Proof. (sketch) Consider the two-player game in Figure 3 illustrating the snow-
ball game [15,18].

s0s1 s2

(s, t), (g, w) (g, t)

(s, w)(∗, ∗) (∗, ∗)

Fig. 3. Concurrent game with no Nash equilibria in mixed strategies

In this game, player A hides behind a hill and wishes to go to his house. At
each time step he can either go (g) to the house or stay (s) in safety behind the
hill. Player B is waiting with a snowball and at each time step he can either
throw (t) or wait (w). If player A goes at the same time as player B throws,
player A gets hit and loses. If he goes and player B does not throw, he does not
get hit and wins. If player B throws and player A waits, then player A wins since

19

player B only has one snowball. Finally, if player A stays forever, then player B
wins. This is modelled as a concurrent game with Büchi objectives where player
A has the Büchi objective {s1} and player B has the Büchi objective {s0, s2}. It
can be shown that this game has no Nash equilibrium, even in mixed strategies.
It can be shown that player A can choose a strategy that ensures a win with
probability 1 − ε for any 0 < ε ≤ 1, but not with probability 1. This is called
limit-sure winning. Now, in any strategy profile where player A plays a strategy
which is sure to win with probability at least 1− ε he wins with this probability
or a higher probability (in case B uses a bad strategy). If he wins with a higher
probability, then B can deviate and improve such that A wins with probability
1− ε. Otherwise, player A can improve by choosing a strategy with a smaller ε.
Thus, there cannot be a Nash equilibrium.

��

We now turn our attention to the (constrained) existence problem for pure
Nash equilibria and present some of the main results that have been proved in
the literature. Our first result is an undecidability result

Theorem 6 The (constrained) existence problem is undecidable, even in the
case of 2 players.

Proof. See [7,18]. The proof is done by a reduction from the halting problem for
Minsky machines.

��

This result is bad news, however for many types of objectives we can obtain
a decidable (constrained) existence problem with a complexity that is not too
bad. Results on complexity from [3,4,5,6] are shown in Figure 4.

4 Conclusion

We have motivated the use of applying the concept of Nash equilibrium in con-
current games for program synthesis in distributed systems where devices can
have different objectives. In addition we have presented an undecidability result
as well as a list of complexity results for various classes of objectives. A number
of these cases have effective running times which makes it plausible that the
technique can be used in practice.

There are still many possible extensions and open problems in the area.
The game definitions can be altered to take into account thing like imperfect
information, quantitative objectives and timing to make them able to model even
more interesting situations. Trying to develop effective algorithms for finding
Nash equilibria in games with these extra features is an interesting extension to
the work presented in this paper.

20

Reachability Objectives
Preorder Existence Constr. Existence

Disjunction, Maximize NP-c NP-c
Parity NP-h, in PSPACE NP-h, in PSPACE
Subset NP-c NP-c
Conjunction, Counting PSPACE-c PSPACE-c
Lexicographic PSPACE-c PSPACE-c
(Monotonic) Boolean Circuit PSPACE-c PSPACE-c

Safety Objectives
Preorder Existence Constr. Existence

Conjunction NP-c NP-c
Parity, Maximize PSPACE-c PSPACE-c
Subset, Disjunction PSPACE-c PSPACE-c
Counting, Lexicographic PSPACE-c PSPACE-c
(Monotonic) Boolean Circuit PSPACE-c PSPACE-c

Büchi Objectives
Preorder Existence Constr. Existence

Maximize∗, Disj., Subset P-c P-c
Conj., Lexicographic P-h, in NP NP-c
Counting NP-c NP-c
Monotonic Boolean Circuit NP-c NP-c
Parity coNP-h, in PNP

|| PNP
|| -c

Boolean Circuit PSPACE-c PSPACE-c

∗ Has been implemented in the tool Praline by Romain Brenguier.

Fig. 4. Complexity results of finding pure Nash equilibria in concurrent games with
reachability, safety and Büchi objectives for different types of preorders

21

References

1. R. Alur, T. A. Henzinger & O. Kupferman, Alternating-Time Temporal Logic,
Journal of the ACM, Vol. 49, No. 5, September 2002, pp. 672-713

2. L. de Alfaro, T. A. Henzinger & R. Majumdar, From Verification to Control: Dy-
namic Programs for Omega-Regular Objectives. LICS 2001: 279-290

3. P. Bouyer, R. Brenguier, N. Markey & M. Ummels, Concurrent Games with Or-
dered Objectives, Research report LSV-11-22, Version 2 - January 11, 2012

4. P. Bouyer, R. Brenguier, N. Markey & M. Ummels, Nash Equilibria in Concurrent
Games with Büchi Objectives, in FSTTCS’11, LIPIcs, Mumbai, India, 2011. Leibniz-
Zentrum für Informatik

5. P. Bouyer, R. Brenguier & N. Markey, Nash Equilibria for Reachability Objectives
in Multi-Player Timed Games, Research report LSV-10-12 - June 2010

6. P. Bouyer, R. Brenguier & N. Markey, Nash equilibria in concurrent games, Part
1: Qualitative Objectives, Preliminary Version

7. P. Bouyer, N. Markey & S. Vester, Nash Equilibria in Symmetric Game Structures,
To appear, 2012.

8. K. Chatterjee, L. de Alfaro & Thomas A. Henzinger, Qualitative concurrent parity
games. ACM Trans. Comput. Log. 12(4): 28 (2011)

9. V. Gripon & O. Serre, Qualitative Concurrent Stochastic Games with Imperfect In-
formation in Proceedings of 36th International Colloquium of Automata, Languages
and Programming, Springer, Lecture Notes in Computer Science, Rhodes, Greece,
pp. 200–211, July 2009.

10. R. Mazala, Infinite Games, E. Grädel et al. (Eds.): Automata, Logics, and Infinite
Games, LNCS 2500, pp. 23-38. Springer 2002

11. J. F. Nash Jr., Equilibrium points in n-person games. Proc. National Academy of
Sciences of the USA, 36(1):48-49, 1950.

12. M. J. Osborne & A. Rubinstein, A Course in Game Theory, MIT Press, 1994

13. C. Papadimitriou, The complexity of finding Nash equilibria, Chapter 2 in Al-
gorithmic Game Theory, edited by N. Nisam et al., Cambridge University Press,
2007

14. J.-F. Raskin, K. Chatterjee, L. Doyen & T. A. Henzinger, Algorithms for Omega-
Regular Games with Imperfect Information. Logical Methods in Computer Science
3(3) (2007)

15. O. Serre, Game Theory Techniques in Computer Science - Lecture Notes, MPRI
2011-2012, January 4, 2012

16. Y. Shoham & K. Leyton-Brown, Multiagent Systems - Algorithmic, Game-
Theoretic, and Logical Foundations, Cambridge University Press, 2009

17. W. Thomas, Infinite games and verification. In Proceedings of the International
Conference on Computer Aided Verification CAV’02, volume 2404 of Lecture Notes
in Computer Science, pages 58-64. Springer, 2002

18. S. Vester, Symmetric Nash Equilibria. Master thesis from Ecole Normale Su-
perieure de Cachan, 2012

22

Belief Revision in the GOAL Agent
Programming Language

Johannes S. Spurkeland

DTU Informatics

Abstract. In many cases agents in a multi-agent system may find them-
selves in a situation where inconsistencies arise. In order to properly deal
with these, a good belief revision procedure is required. This paper at-
tempts to illustrate the usefulness of such a procedure: a certain belief
revision algorithm is considered in order to deal with inconsistencies and
particularly the issue of inconsistencies and belief revision is examined
in relation to the GOAL Agent Programming Language.

1 Introduction

When designing artificial intelligence, it is desirable to mimic the human way
of reasoning as closely as possible to obtain a realistic intelligence albeit still
artificial. This includes the ability to not only construct a plan for solving a given
problem but also to be able to adapt the plan or discard it in favor of a new.
In these situations the environment the agents (entities of artificial intelligence
acting in the environment) act in should be considered dynamic and complicated
as is the world we know. This will lead to situations where an agent’s beliefs
may be inconsistent and need to be revised. Therefore an important issue in the
subject of modern artificial intelligence is that of belief revision.

This paper presents an algorithm for belief revision proposed in [9] and shows
some examples of situations where belief revision is desired in order to avoid
inconsistencies in an agent’s knowledge base. The agent programming language
GOAL will be introduced and belief revision will be discussed in this context.

2 Motivation

In many situations assumptions are made in order to optimize and simplify an
artificially intelligent system. This often leads to solutions which are elegant and
planning can be done without too many complications. However, such systems
tend to be more difficult to realize in the real world – simply because the as-
sumptions made are too restrictive to model the complex real world. E.g. human
thoughts are themselves inconsistent as considered in [11]. It also considers an
example of an expert system from [12] where the classical logical representation

23

of the experts’ statements leads to inconsistency when attempting to reason
with it. This is an example where it is not possible to uniquely define the cause
and effect in the real world. Another example is where other entities actually
have malicious intentions as e.g. when using multi-agent systems to model com-
puter security; agents may represent hackers or other attackers on the system
in question. One should also keep in mind that it might not always be possible
or it might be too overwhelming to foresee all consequences and outcomes the
environment provides – as in the real world which is constantly changing.

An example will now be proposed which is inspired by [3] and [4] where an
agent-based transport information system is considered in order to improve the
parking spot problem. In this paper cars are considered as autonomous entities
which drive their passengers around the city. Each car thus poses as an agent.
Such an agent may have the following trivial rules for how to behave in traffic
lights:

green(X) → go(X) (1)

red(X) → stop(X) (2)

Furthermore assume that the agent can reason that if the brakes malfunction
of a car it cannot stop:

failing(brakes,X) → ¬stop(X) (3)

Imagine now the situation where the light is perceived as green and a car in
the crossing lane sends to the agent that its brakes fail. I.e. the agent now also
believes the following:

green(me) (4)

red(other) (5)

failing(brakes, other) (6)

This situation will now lead to inconsistencies when the agent attempts to reason
with its beliefs. From (2) and (5) it is straight forward to deduce stop(other)
whereas from (3) and (6) ¬stop(other) is deduced. Furthermore adding rules
for the mutual exclusion of the go and stop predicates and having the rule
go(other) → stop(me) saying to stop if the other does not, the agent will also
be able to deduce that it both should go and should not go. The obvious choice
for the agent here is to discard the thought of going onwards and stop to let the
other car pass.

Assume now that the passenger of the car wants to go shopping and therefore
the agent needs to find an available parking lot. To represent that the agent wants
to get to the destination of the shop, it has the following:

dest(shop1) (7)

The agent currently does not know the whereabouts of the shop the passenger
wants to go to so it broadcasts a request for such information. The agent receives
a response:

dest(shop1) → goto(lot1) (8)

24

This basically tells the agent that if it wants to reach shop 1 it needs to get to
parking lot 1. This is straight forward; however, shortly after the agent receives
a second response from a third agent:

dest(shop1) → ¬goto(lot1) (9)

dest(shop1) → goto(lot2) (10)

The third agent has experienced that parking lot 1 is full which makes it
send the first rule. It then also sends the second rule as a plan for getting parked
desireably and thereby enabling the passenger to reach the destination shop.

Blissfully adding both responses to the belief base will, however, lead to
inconsistencies again. Obviously (7) can be used with (8) and (9) to obtain
goto(lot1) and ¬goto(lot1), respectively. Since the agent does not currently have
any more information about the two, it does not know which of them to trust.

For more examples refer to e.g. [8]. They are of a more theoretical nature but
may illustrate how one can deal with inconsistencies efficiently. The algorithm
used there will be considered in more details in next section.

3 Belief Revision Algorithm

The algorithm considered in this paper is the one proposed by [9] (and [8]). The
basic principle of the algorithm is to keep track of what beliefs the agent has
and how the agent may justify these beliefs. The idea is basically the same as
when humans reason – if two contradictory beliefs arise one of them is selected
and the other discarded.

The agent is defined as having beliefs consisting of ground literals, l or ¬l,
and rules. The rules take the form of universally quantified positive Horn clauses,
l1 ∧ l2 ∧ . . . ∧ ln → l and the agent is required to reason with a weak logic, W ,
which only has generalised modus ponens as inference rule which formally is as
follows where δ is a substitution function replacing all variables with constants:

δ(l1), . . . , δ(ln) l1 ∧ . . . ∧ ln → l

δ(l)
(GMP)

The approach is now to detect inconsistencies in the belief base. Notice this
is a simple rule, l∧¬l → ¬consistent(l). If an inconsistency is detected, the least
preferred belief is removed. Furthermore the rules from which the belief can be
derived are removed along with the beliefs which can only be derived from the
removed belief. This process of removing beliefs is referred to as contraction by
beliefs. This assumes two things. First of all that track is kept of how the beliefs
relate to one another and second that there is a measure of how prefered a belief
is.

To deal with the first problem, the notion of justifications is used. A jus-
tification is a pair, (A, s), of a belief A and a support list s. The support list
contains the rule used to derive A and all the premises used for firing the rule.
Thus the percepts or initial knowledge will have an empty support list. The

25

justifications for green(me) and ¬stop(other) from the example in section 2 are
then as follows:

(green(me), [])

(¬stop(other), [failing(brakes, other), failing(brakes,X) → ¬stop(X)])

Notice that a belief may have several justifications. If the light had been
green for the other and there was an exclusivity rule go(X) → ¬stop(X) then
¬stop(other) would also have the justification:

(¬stop(other), [go(other), go(X) → ¬stop(X)])

Having this data structure, the beliefs and justifications can be regarded as
a directed graph: incoming edges from the justifications of a belief and outgoing
edges to justifications containing the belief in its support list. Figure 1 shows
such a graph for the first part of the presented example. The elements at an odd
depth are justifications whereas elements of an even depth are beliefs. One may
also notice that the agent has the two contradictory nodes which mean either of
the two subgraphs holding one of the two nodes must be contracted.

((1), []) ((4), []) ((2), []) ((5), []) ((3), []) ((6), [])

(1) (4) (2) (5) (3) (6)

(go(me), [(4), (1)]) (stop(other), [(5), (2)]) (¬stop(other), [(6), (3)])

go(me) stop(other) ¬stop(other)

Fig. 1. Graph over the beliefs and justifications in the first part of the example from
section 2.

In [7] the successors of a belief (justifications with the belief in the support
list) are denoted dependencies. The algorithm is then simply considered to have
a list of justifications and dependencies for each belief and recursively traverses
the elements of these two lists to remove beliefs which are justifying or justified
only by the belief selected for contraction. More specifically algorithm 1 provides
pseudo code for the contraction algorithm similar to that from [7]. The contrac-
tion algorithm assumes that an inconsistency has been detected and the least
preferred belief is given as input. The w(x) function takes a support list as input
and returns the least preferred belief of that list. It is also worth noting that
the belief base needs to be in the quiescent setting in order for the algorithm to
work properly. This is due to that if more beliefs can be inferred, the belief for
contraction might be inferred again by other beliefs than the ones removed by
the algorithm.

26

Algorithm 1 Contraction by belief A

for all j = (B, s) ∈ dependencies(A) do
remove(j)

end for
for all j = (A, s) ∈ justifications(A) do

if s = [] then
remove(j)

else
contract(w(s))

end if
end for
remove(A)

It may be desireable for the algorithm to also contract beliefs which no longer
have justifications because they have been removed in the contraction process
cf. [7]. Even though keeping the beliefs in the belief base might not currently
lead to inconsistencies, something is intuitively wrong with keeping beliefs which
are derived from what has been labeled wrong or untrustworthy information.

The problem of measuring how preferred a belief is does not have a trivial
solution. In fact the problem is passed on to the designer of the multi-agent
system in question. The requirement from the perspective of the algorithm is
that there is an ordering relation such that for any two beliefs it is decidable
which one is more preferable to the other.

Consider again the example from section 2. Intuitively percepts of the agent
should be of highest preference since the agent ought to trust what it itself
sees. However, in the example this would lead to the contraction of the belief
¬stop(other) which will mean the agent will decide to move forward and crash
with the other car. Instead here the belief received from the other agent should
actually have a higher preference than the percepts. This is, however, in general
not desireable as other agents might not be trustworthy. This is even though
the other agents might have good intentions. Consider e.g. the plan exchange
between the agents in the example. Here the first agent sends a plan for getting
to the closest parking lot not knowing it is full. If the agent chose to follow
this plan and on the way perceived a sign showing the number of free spots in
the parking lot, this percept should be of higher preference than following the
plan through. This illustrates the care which needs to be taken in the process of
deciding upon non-preferred beliefs.

4 GOAL

GOAL is a language for programming rational agents and as such is a target
of interest in relation to belief revision. This section will examine GOAL and
how it conforms with belief revision of inconsistent information. First the basic
concepts of GOAL are explained and afterwards belief revision is considered in

27

GOAL. This paper will not explain how to set up and use GOAL – instead the
reader is referred to [6].

4.1 The Basics

The basic structure of a GOAL multi-agent system consists of an environment
and the agents which interact within this environment. For details how this
works see [5].

Agents may consist of the following components:

1. Knowledge
2. Beliefs
3. Goals
4. Module sections
5. Action specification

Knowledge is what is known to be true. It should be considered axioms and as
such should not be allowed to be inconsistent. Beliefs, however, represent what
the agent thinks is true and may be both false and ambiguous – i.e. different
rules may lead to inconsistent beliefs. The representation of knowledge, beliefs
and goals are all in a Prolog based manner by standard (see [5] for more details).
Below is shown the light signal rules of the example – knowledge can be declared
using the knowledge keyword instead.

beliefs {
% Green and red light rules.
go(X) :- green(X).
stop(X) :- red(X).

}

The action specification follows a STRIPS-style specification (see e.g. [10,
ch. 10]) and actions are defined using a name, parameters, preconditions and
postconditions. Imagine that the car agent has a drive action which takes a
destination as parameter and requires that it is desired to get there along with
that it can go onwards. The me predicate is a built-in predicate and the action
specification may now look as follows:

actionspec {
/* Action for the car agent to drive towards Dest provided it is desired and

that it can go onwards. */
drive(Dest) {

pre { dest(Dest), me(Me), go(Me) }
post { true }

}
}

The post condition may seem to be somewhat odd – driving somewhere ought
to change the agent’s state. This is due to thinking of the drive action as a dura-
tive action. In [5] it is distinguished between two types of actions: instantaneous
and durative. Durative actions take time to perform whereas instant actions
will finish immediately and thereby affect the system immediately. Therefore
the approach seems to be to let the outcome of durative actions be a conse-
quence of their effect on the environment. That way durative actions can also
be interrupted and their effect might not (entirely) come through.

28

The environment is specified by means of an Environment Interface Standard
– for more information about this standard [5] refers to e.g. [2]. The agent has a
percept base which contains the percepts of the current reasoning cycle. These
can be accessed by using the predicate percept .

The module sections define the agent’s behaviour. There are two modules
by standard: the event module and the main module. The purpose of the main
module is to define how the agent should decide what actions to perform whereas
the purpose of the event module is to handle events such as percepts and incom-
ing messages so that the belief base is always up-to-date when deciding upon
actions cf. [5]. Therefore the event module is always the first to run in an agent’s
reasoning cycle. To add the logic for actually making the agent believe the light
perceptions, the following event module may be used where insert and delete
are two built-in functions for adding and deleting beliefs, respectively:

event module {
program {

% Green and red light percepts - on.
forall bel(percept(green(X)), not(green(X))) do insert(green(X)).
forall bel(percept(red(X)), not(red(X))) do insert(red(X)).

% Green and red light percepts - off.
forall bel(green(X), percept(not(green(X)))) do delete(green(X)).
forall bel(red(X), percept(not(red(X)))) do delete(red(X)).

}
}

The bel predicate is a built-in predicate to indicate that the agent believes
the argument(s) of the predicate.

Assume that the drive action takes an extra argument which defines the mode
the car should drive in. Assuming that when low on gas it drives economically
and if busy it drives fast, the following main module may define the choice of
actions:

main module {
program {

% Drive economically if low on gas.
if bel(low(gas), dest(X)) then drive(dest(X), eco).

% Drive fast if busy.
if bel(busy, dest(X)) then drive(dest(X), fast).

% Drive comfortably otherwise.
if bel(dest(X)) then drive(dest(X), comfort).

% If no driving options the car simply idles.
if true then skip.

}
}

Notice that the precondition that the drive action must have a destination
is actually obsolete now since this is ensured when deciding upon action in the
main module. The main module may evaluate actions in different kinds of orders.
The default is linear which means that e.g. the economical option is chosen over
the others if applicable. The skip action is not built-in but may be defined by
simply having true as pre- and postconditions.

Messaging between agents works by means of a mailbox system using send
and received predicates. It is similar to how percepts are handled with the

29

main difference that the mailbox is not emptied every reasoning cycle. GOAL
supports three moods of messages: indicative, declarative and interrogative.
These three moods basically represents a statement, a request and a question
and are denoted using an operator in front of the message (see [5]). Handling the
message that the other agent’s brakes fail can be done by adding the following:

% Add the belief received from another agent that its brakes fail.
if bel(received(A, failing(brakes, A))) then insert(failing(brakes, A))

+ delete(received(A, failing(brakes, A))).

Messages are required to be a conjunction of positive literals which is a rather
crucial point. This means that agents cannot share rules or plans. It is simply
not possible to send or receive the rules (8), (9) and (10) from second part of
the example. This also means that the only rules an agent will ever have are the
ones it starts with coded into it. This means that the graph of algorithm 1 will
be less complex during runtime.

Another lack of expressiveness in GOAL is that of representing inconsisten-
cies. This will be examined further in the next section.

4.2 Inconsistencies

While having the tools for implementing the algorithm dealing with inconsisten-
cies, a rather crucial point is to be noted. Since the knowledge representation
language of the belief base in GOAL is Prolog the rules will all take the form of
positive Horn clauses with a positive consequent. This means only positive lit-
erals can be concluded using the rules in the belief base. Furthermore the action
specifications ensure that if a negative literal is added then it is not actually
added to the belief base. Instead if the positive literal is in the belief base it
is removed and otherwise nothing happens. This is due to the closed world as-
sumption. This is means that an agent will never be able to represent both the
positive and the negative of a literal in its belief base. I.e. GOAL simply does
not allow for representing inconsistencies.

In order to allow for the representation of inconsistencies, the notion of strong
negation is introduced. In [1] this kind of negation does not rely on the closed
world assumption. It explicitly says that the negation of a formula succeeds
whereas negation as failure says that the formula does not succeed but also that
it does not explicitly fail either. In other words, negation as failure can be read
as “it is not currently believed that”.

The basic principle is now to consider the strong negation, ¬, of a predicate
as a positive literal. I.e. for literal, p, p′ can be regarded as a positive literal
with the meaning ¬p. In terms of Prolog this means querying p will succeed if p
holds, fail if ¬p holds and be inconsistent if both holds. In [1] it is furthermore
considered possible to return the value unknown to such queries if neither p nor
¬p can be proven in the current Prolog program. Another interesting observation
they made is that the closed world assumption can be defined for any literal in
the following way (where not denotes negation as failure):

¬p(X1, . . . , Xn) ← not(p(X1, . . . , Xn))

30

In the terms of GOAL this means that it is fairly straight forward to introduce
the notion of strong negation by using a neg predicate. There is no explicit
problem in having both the belief and its negation in the belief base – it is
required in the event module to check whether or not the belief base is still
consistent by querying whether or not neg(X), X follows from the belief base
and act accordingly. It may be necessary to introduce a pos predicate denoting
positive literals as GOAL does not allow for the query bel(X).

4.3 Belief Revision

This section will consider how to implement the belief revision algorithm de-
scribed in section 3 in GOAL.

Because the event module is the first thing which is executed in an agent’s
reasoning cycle and because it is desired to have an up-to-date belief base when
performing belief revision, the belief revision algorithm should be implemented
as the last procedure in the event module.

That GOAL relies on Prolog as representation language (in most cases) con-
forms well with the weak logic defined for use with the belief revision algorithm
in [9] since prolog programs consists of Horn clauses and literals.

The question is now exactly how to associate and represent the justification
and dependency lists. One idea is to simply let them be beliefs of the agent. This
way one just has to make sure to add a justification when adding a belief. The
rules for adding percepts to the agent from section 4.1 may be extended to also
construct a justification:

% Add beliefs and justifications from red light percepts.
forall bel(percept(red(X)), not(red(X))) do insert(red(X))

+ insert(just(red(X),[],p)).

Similarly the justification can be deleted when the percept is no longer valid
using the delete predicate. While the case is rather trivial when dealing with
percepts (as they do not have any justifications) a similar approach may be
taken for the actions and when adding beliefs from messages of other agents.
Care needs to be taken though when considering actions since the motivation
for taking actions are specified in the main module whereas the postconditions
(i.e. effect) of the actions are specified in the action specification. It should be
the conjunction of the motivation for taking an action and the preconditions of
the action which support each of the added beliefs. There are several ways for
obtaining this conjunction. A simple one is to simply let the action take them
as parameters. Provided the action is instantaneous and adds the belief where
the agent is at, the action specification could look like this:

actionspec {
% Action for the car agent to drive which also adds justifications.

drive(Dest, Pre) {
pre { dest(Dest), me(Me), go(Me), append(Pre, [dest(Dest), go(Me),

action(drive)], S) }
post { at(Dest), just(at(Dest), S) }

}
}

31

The idea is to send the preconditions from the main module as a list in an
argument to the action and then append that list to a list of preconditions of the
action to obtain s. The action predicate then corresponds to the rule used for
deriving the belief. In this case it is a plan which has been executed. Since actions
and main modules cannot be altered dynamically, another predicate might be
added as precondition say not contracted(action(drive)). If an action or partic-
ular instance of an action is then contracted using the belief revision algorithm,
e.g. the belief contracted(action(drive)) may simply be added to invalidate any
future run of that action. If the agent finds reason to believe in the action again,
it may simply remove the belief again.

The case of durative actions is actually particularly simple and yet difficult
to handle at the same time. It is simple in the sense that its effect comes in forms
of percepts of changes in the environment and that is already handled. However,
all percepts create a justification with an empty support list – i.e. there is no
way of telling whether the percept is from a change in the environment due to an
action the agent has performed or simply due to the environment itself (or even
other agents interacting in the environment). In other words, durative actions
cannot be contracted. This might seem fine in the sense that the agent will most
likely not believe anything new immediately and as a direct consequence of the
durative actions.

When having added the datatypes for the justifications the idea is to check for
inconsistencies as the last thing in the event module. Then if two contradictory
beliefs are found, the least preferred of the two is marked for contraction. The
actual contraction may then be performed in several ways. One is to have three
blocks. In the first all the positive beliefs marked for contraction are contracted
and in the second all the negative. These two blocks follow the contraction
algorithm 1 with the exception of the recursive call. This is what the third block
is for. The recursive call is emulated by marking all the least preferred elements of
the support lists to contract and in the third block the first of the recursive calls
are then performed on these. Again the recursive call is emulated by marking
beliefs for contraction. Now, however, the sequentiality of the program will make
it have passed the three blocks for contraction. The idea is now to not let the
agent perform any actions before there are no beliefs marked for contraction.
Then the agent will do nothing and the next reasoning cycle will start. This
time it will go directly to the third cycle and continue emulating recursive calls
by doing this until no more beliefs are marked for contraction and the agent is
allowed to do actions again. Below is code to illustrate this – the positive and
negative blocks have been left out since they are similar to the recursive block.

% Detect inconsistencies
#define poscontract(X) bel(p(neg(X),Pn), p(X,Pp), Pn > Pp).
#define negcontract(X) bel(p(neg(X),Pn), p(X,Pp), Pn < Pp).

% Recursive contraction
listall C <- contract(X) do {

forall just(Y, S), member(Z, C), member(Z,S) do delete(just(Y, S)).
forall just(Y, []), member(Y, C) do delete(just(Y, _)).
forall member(Y, C), just(Y, S) bel(w(just(Y,S), Z)) do insert(contract(Z)).
forall member(Y, C) do delete(Y).

}

32

While it may work, this approach is not optimal. If the performance of an
agent is important, it is not good to have it idling for several cycles because it
is revising its thoughts. This is even though the number of recursive calls most
likely is not that high because of the simplified graph due to static rules as
mentioned in section 4.1. More optimally would be to have a Prolog procedure
which can make use of recursion in its definition and then simply call this on the
beliefs for contraction. One might e.g. import such a procedure in the knowledge
section such that it will mark all the beliefs for contraction recursively and in
the next cycle actually do the removal of them. This way only one extra cycle is
wasted when having to contract beliefs.

Up until now the implementation of the preference relations has not been
discussed. In the above code it is assumed that a preference of a belief is added
as a predicate cf. justification. Furthermore it is assumed that when a support
list of a justification being added is not empty, a predicate w is added having the
justification and a minimum preferred belief. This simplifies the least preferred
belief queries; however, one should keep in mind that these predicates all should
be deleted when also deleting the corresponding belief.

Finally a remark on the quiescent setting requirement. In [7] the algorithm
was considered with regards to implementation in Jason. There was a drawback
that the quiescent setting could not be guaranteed. Here again an action may
not be activated in a long time but it may still lead to inconsistencies. Therefore
it cannot be completely guaranteed here either. However, when querying the
belief base for inconsistencies (which is done every reasoning cycle) the Prolog
engine will attempt to evaluate all the rules in the belief base in order to search
for a proof. This means that the quiescent setting is for the belief base but not
for the action rules.

5 Conclusion

It has been argued why belief revision is an important issue. A particular al-
gorithm for belief revision has been considered. It has the advantages of being
efficient and straight forward to implement; however, it has the disadvantages
that it is only defined for a weak logic of the agent and that it requires the
non-trivial question of a preference ordering. Issues of such an ordering has been
pointed out. Furthermore issues with deleting information which albeit inconsis-
tent may still be important in many cases has been pointed out.

GOAL has been examined in relation to belief revision. It has the strengths
of using logic programming which means that it is very easy to learn for people
with a background in logic programming and it provides elegant logical solu-
tions. Furthermore the restrictions of logic programming conform well with the
restrictions of the weak logic of the belief revision algorithm. However, it has
been identified that at current state the GOAL language is actually more re-
strictive than required for the algorithm which results in that inconsistencies
cannot be represented at all. The introduction of strong negation has been con-

33

sidered in order to mitigate this problem. Another less critical issue with GOAL
is that it does not provide the means for plan sharing.

References

1. Chitta Baral and Michael Gelfond. Logic Programming and Knowledge Represen-
tation. The Journal of Logic Programming, 19: 73-148, Elsevier 1994.

2. Tristan M. Behrens, Koen V. Hindriks and Jürgen Dix. Towards an environment
interface standard for agent platforms. Annals of Mathematics and Artificial In-
telligence, 61: 261-295, Springer 2011.

3. Nesrine Bessghaier, Mahdi Zargayouna, and Flavien Balbo. An Agent-Based Com-
munity to Manage Urban Parking. In Yves Demazeau et al. (Eds.): Advances on
PAAMS, AISC 155, 17-22, Springer 2012.

4. Nesrine Bessghaier, Mahdi Zargayouna, and Flavien Balbo. Management of Urban
Parking: An Agent-Based Approach. In Allan Ramsay and Gennady Agre (Eds.):
AIMSA 2012, LNCS 7557, 276-285, Springer 2012.

5. Koen V. Hindriks. Programming Rational Agents in GOAL, May 2011.

6. Koen V. Hindriks and Wouter Pasman. GOAL User Manual, July 2012.

7. Andreas S. Jensen and Jørgen Villadsen. Plan-Belief Revision in Jason. Technical
University of Denmark, 2012.

8. Hai H. Nguyen. A Belief Revision System. B.Sc. thesis, University of Nottingham,
2009.

9. Hai H. Nguyen. Belief Revision in a Fact-Rule Agents Belief Base. In Anne
H̊akansson et al. (Eds.): KES-AMSTA 2009, LNAI 5559, 120-130, Springer 2009.

10. Stuart Russell and Peter Norvig. Artificial Intelligence – A Modern Approach.
Pearson Education, third edition, 2010.

11. Johannes S. Spurkeland. Using Paraconsistent Logics in Knowledge-Based Sys-
tems. B.Sc. thesis, Technical University of Denmark, 2010.

12. Jørgen Villadsen. Paraconsistent Knowledge Bases and Many-Valued Logic. In
Hele-Mai Haav and Ahto Kalja (Eds.): BalticDB&IS 2002, 2: 77-90, Institute of
Cybernetics at Tallinn Technical University, 2002.

34

Organization-Oriented Programming in
Multi-Agent Systems

Andreas Schmidt Jensen

DTU Informatics

Abstract. We discuss some of the limitations of traditional agent-centered
multi-agent systems, and how these may be overcome by imposing a or-
ganizational structure upon the agents of the system. We discuss the
issues that arise in such situation and focus on the conflicts that occur
in the agent when it has to decide between committing to own desires
and organizational obligations. We present a new approach based on
qualitative decision theory which is able to resolve these conflicts.

1 Introduction

Agents taking part in a multi-agent system are usually seen as intelligent enti-
ties that autonomously are able to bring about (from their own perspectives)
desirable states. In a fixed setting with a controlled number of agents and glob-
ally desirable states, the designer is most likely able to implement the agents
such that their own desirable states coincide with the globally desirable states.
Different programming tools exists for implementing autonomous agents in such
setting, e.g. Jason [2] and GOAL [10].

In open societies agents often come from different sources and their desires
cannot as such be assumed to coincide with the global desires. A suggestion is to
impose an organization upon the agents which is able to influence the actions of
the agent towards the desires of the organization. A number of formalisms and
programming tools have been developed for this purpose [1,4,5,6,7,11,12].

When agents are constrained by an organization, their own goals may conflict
with those of the organization. Previous work towards resolving such conflicts
have often resulted in a solution in which desires and obligations are ordered a
priori, where an agent either preferes desires over obligations or obligations over
desires. This results in agents that are always selfish or always social. We argue
in this paper that such distinction can be too hard; even a selfish agent would in
some cases be required to prefer certain obligations over its desires. We consider
an approach on how to resolve such conflicts which is based on work in the area
of qualitative decision theory by Boutilier [3], where the expected consequences
of bringing about a state is considered. We show that this results in agents that
are not always either social or selfish, but are instead able to decide based on
the consequences.

35

The paper is organized as follows: In section 2 we discuss organization-
oriented multi-agent systems and the issues that arise when such systems and its
agents are implemented. We discuss in section 2.1 the issues that arise when an
agent enacts a role and has to choose between desires and obligations. In section
3 we present a new approach on how to solve such conflicts without having to
put the agents into the categories “selfish” or “social”. Finally we conclude our
work and discuss future directions in section 4.

2 Multi-Agent Organizations

Within the area of multi-agent systems much work is done towards making the
organization of such systems explicit [7,9,11,13]. In an agent-centered multi-agent
system (ACMAS) the agent is in focus whereas in an organization-centered multi-
agent system (OCMAS) the concern is the organization; i.e. the structure of the
multi-agent system. Naturally all multi-agent systems have a structure, but it
is most often implicitly defined by the agents and their relations. By explicitly
defining the organization it is possible to focus on what the agents should do
without at the same time deciding how they should do so. In other words, the
organization makes it possible to create the structure of the system without
specifying details about the implementation. In [9] the following assumption are
made about ACMAS:

– Agents are free to communicate with any other agent.
– All of the agent’s services are available to every other agent.
– The agent itself is responsible for constraining its accessibility from other

agents.
– The agent should itself define its relation and contracts with other agents.
– Agents are supposed to be autonomous and no constraints are put on the

way they interact.

These assumptions suggest that agents have a lot of freedom to follow their
own desires and intentions. They are not necessarily selfish, but on the other
hand no constraints are put upon them to ensure coherence between desires and
intentions of different agents. This makes it very difficult to ensure that agents
coming from different societies can cooperate in achieving common goals. It is
therefore suggested to impose an organization upon the agents, which provides
structure by partitioning the agents and a direction by specification of expecta-
tions.

The main principles of OCMAS are as follows [9]:

Principle 1: The organizational level describes the “what” and not the “how”.

Principle 2: The organization provides only descriptions of expected behavior.
There are no agent description and therefore no mental issues at the orga-
nizational level.

Principle 3: An organization provides a way for partitioning a system, each
partition constitutes a context of interaction for agents.

36

Organizational
structure

Reasoning about
organization

Entering
the organization

Enacting
roles

Leaving
the organization

Fig. 1. The relevant stages in organization-oriented programming and the focus of this
paper.

Using these principles it is possible to design an organizational model by
which agents, if participating in the organization, will be influenced towards
achieving the goals of the organization. An agent participates in an organization
by choosing to enact one or more of the roles of the organization. The purpose of
joining an organization is two-fold: the agent is able to fulfill some of the goals
of the organization, and interaction and cooperation with other participants
enables the agent to fulfill some of its own goals. In order for the agent to fulfill
the purpose of a role, the expected behavior must be defined, i.e. constraints
must be put on the role-enacting agent in order for the organization to ensure
that progress is made towards fulfilling its goals.

In [13] three phases of organizational participation from the agent’s point of
view are considered; entering, enacting roles and leaving. The agent should be
able to decide whether it benefits from entering the organization, which roles
can it enact and finally whether it has fulfilled its purpose in the organization
and should leave. When looking at a broader picture, a few more phases come
to mind. First of all the organizational structure must be defined by formalizing
the notion of roles, groups, interaction, obligations. Several formalisms have been
proposed for this, e.g. Moise and S-Moise+ [11,12] in which the organization is
defined via a structural, functional and deontic specification. Second of all we
should be able to reason about the characteristics of the organization. The logic
of agent organizations [8] is a logical formalism for (1) defining the structural
requirements and (2) being able to analyse the organization to verify that it
is well-defined and efficient. The five overall phases and their dependencies are
depicted in figure 1.

In the following we turn to the fourth phase, enacting roles, and focus on the
conflicts that arise when an agent has to choose between its own desires and the
obligations imposed by the organization via the role(s).

2.1 Conflicting influences

Whenever an agent has more than one desire, it needs to be able to decide which
desire(s) it intends to commit to. This is even more the case when the agent
enters an organization since its behavior is further constrained by obligations
towards the organization. In this paper we call obligations and desires “decision
influences”. Having these should influence how the agent chooses to act. Should
it commit to bringing about the state in the obligation or rather its own desires?
Several approaches are proposed on how to solve this problem [1,4,5,6].

For instance, the BOID architecture [4] impose a strict ordering between
beliefs, obligations, intentions and desires, and different agent types emerge from

37

such orderings, such as a social agent, which prefers obligations before desires,
or a selfish agent which prefers desires before obligations.

We believe this ordering is too strong; if an agent is social it will always
choose obligations over desires, and vice versa for selfish agents. This might not
always be appropriate. For instance, a selfish agent might desire not to go to
work, but if the consequence of not fulfilling the obligation of going to work is
severe (i.e. getting fired), even a selfish agent should consider this consequence
before deciding not to go to work. We consider a different approach which allows
the agent to take into account the consequences of bringing about a state.

For instance, if it rains the agent can decide whether it should bring an
umbrella. Not bringing an umbrella has the expected consequence that the agent
will get wet. Choosing to bring an umbrella has the expected consequence that
it will not get wet. Of course, the agent has certain beliefs, which also should
have impact on the decision. If it believes the rain will stop very soon, it might
choose not to bring an umbrella.

3 Modelling Influence and Consequence

We base our work on the Logic for Qualitative Decision Theory by Boutilier [3]
by extending the notion of preference to allow multiple modalities in order to
represent individual preferences. An agent has the ultimate desire of achieving
the goals to which it is committed. This can be modelled by a possible worlds-
model in which the agent has achieved its goal when it is in a world where those
goals holds. The most preferred world in an ideal setting is the world in which all
of the agents goals are achieved. However, such world is often unreachable, for a
number of reasons: the agent could have contradicting goals, other agents could
prevent the agent from achieving all of its goals, an organization could impose
obligations which contradicts the agents goals and so on. We need to be able to
order the worlds in a preference relation in order to choose the most preferred
world in a sub-ideal situation.

The consequence of bringing about a state (achieving a goal) should however
also be taken into account. If the consequence of achieving a personally desirable
goal is to be fired from your workplace, even though the desire was more preferred
than the obligations from work, it might not be reasonable to pursue.

We work with models of form:

M = 〈W,Ag,≤1
P , . . . ,≤n

P ,≤N , π〉

where W is the non-empty set of worlds, Ag is the set of agents, ≤i
P is the

transitive, connected preference ordering for each agent1, ≤N is the transitive,
connected normality ordering, and π is the valuation function. The normality
ordering is used to model how likely each world is, e.g. it is normally cold when
it is snowing.

1 We adopt the notion by Boutilier and others that we prefer minimal models, so
v ≤i

P w denotes that according to agent i, v is at least as preferred as w.

38

The semantics are given as follows:

M,w |= p ⇐⇒ p ∈ π(w)

M,w |= ¬ϕ ⇐⇒ M,w �|= ϕ

M,w |= ϕ ∧ ψ ⇐⇒ M,w |= ϕ ∧M,w |= ψ

M,w |= �i
P ϕ ⇐⇒ ∀v ∈ W, v ≤i

P w,M, v |= ϕ

M,w |= ←�i
P ϕ ⇐⇒ ∀v ∈ W,w <i

P v,M, v |= ϕ

M,w |= �N ϕ ⇐⇒ ∀v ∈ W, v ≤N w,M, v |= ϕ

M,w |= ←�N ϕ ⇐⇒ ∀v ∈ W,w <N v,M, v |= ϕ

We can define the other operators (∨,→,�,
←
�) as usual. Finally we can talk

about a formula being true in all worlds or some worlds:
↔
�i

P ϕ ≡ �i
P ϕ ∧ ←�i

P ϕ

and
↔
�i

P ϕ ≡ �i
P ϕ ∨ ←�i

P ϕ, respectively (similarly for normality). The follow
axiom captures their interaction

PN
↔
�i

PA ≡ ↔�NA for any i,

A full axiomatization of QDT-logic can be found in [3], where the following
abbreviations are also defined:

I(B | A) ≡ ↔�i
P¬A ∨↔�i

P (A ∧�i
P (A → B)) (Conditional preference)

A ≤i
P B ≡ ↔�i

P (B → �i
PA) (Relative preference)

T (B | A) ≡ ¬I(¬B | A) (Conditional tolerance)

A ⇒ B ≡ ↔�N¬A ∨↔�N (A ∧�N (A → B)) (Normative conditional)

The abbreviations state that B is ideally true if A holds, A is at least as pre-
ferred as B, B is tolerable given A and that B normally is the case when A is,
respectively. We furthermore define the following abbreviations to be used in the
process of making a decision:

P �≤i
P Q ≡ ¬(P ≤i

P Q) (Not as preferred)

P <i
P Q ≡ (P ≤i

P Q ∧Q �≤i
P P) (Strictly preferred)

P ≈i
P Q ≡ (P ≤i

P Q ∧Q ≤i
P P)

∨ (P �≤i
P Q ∧Q �≤i

P P) (Equally preferred)

A ≤i
T (C) B ≡ (T (A | C) ∧ ¬T (B | C)) ∨

((T (A | C) ↔ T (B | C)) ∧
(A ≤i

P B ∨A ≈i
P B)) (Relative tolerance)

Thus A is at least as tolerable as B w.r.t C when either A is tolerable given C
and B is not, or both A and B are tolerable given C (or both are not), and A is
at least as preferred as B, or they are equally preferable. This means that even
if neither are tolerable, they are still comparable.

39

3.1 Making a decision

We now show how the extended QDT-logic can be used to decide between con-
flicting desires and obligations. We define a model for use in an organizational
setting as follows:

MC = 〈M,D,O,C, P,B 〉,
where

– M is an extended QDT-model as defined above,
– D is for each agent the set of desires,
– O is the set of obligations,
– C is for each agent the set of controllable propositions2,
– B is the belief base for each agent.

We define the set of potential consequences C ′(i) for an agent i such that if
ϕ ∈ C(i) then ϕ,¬ϕ ∈ C ′(i).

Definition 1 (Expected consequences). Given an agent i, its belief base
B(i) as a conjunction of literals, the set of potential consequences C ′(i) and a
literal A. The expected consequences of bringing about state A, denoted ECi(A),
is given by:

ECi(A) =
∧

CA for all CA ∈ {CA | (B(i) ∧A ⇒ CA) where CA ∈ C ′(i)}
i.e. the conjunction of all literals CA that are normally consequences of bringing
about A given the current belief base. If there are no expected consequences, then
ECi(A) = �.

Consider an agent i, and a normality ordering in which we have that

A ∧ α ⇒ B, A ∧ ¬α ⇒ C, D ∧ ¬α ⇒ E,

and belief base B(i) = {α}. Then we have that ECi(A) = {B} and ECi(D) = ∅.
If B(i) = {¬α}, then ECi(A) = {C} and ECi(D) = {E}.

An agent can make a decision by selecting from the set of potentially conflict-
ing influences, D(i)∪O, the most preferred influences having the most tolerable
consequences.

Definition 2 (Decision). Given an agent i, the set of influences I(i) = D(i)∪
O and the expected consequences ECi(A) for all A ∈ I(i), we can get the set
of best influences (the decision) the agent should choose from, denoted by the
function Dec : Ag → 2I(i) as follows:

Dec(i) = {A | A ∈ I(i), and
for all B ∈ I(i), B �= A, either
A <i

P B, or
A ≈i

P B and EC(A) ≤i
T (A∨B) EC(B)}

2 A controllable proposition is, roughly, a proposition which the agent is able to in-
fluence, directly or indirectly, by an action. E.g. snow is not controllable, whereas
work is.

40

SW

SW

SW SW

(a) Alice’s preferences

SW

SW

SW

SW

(b) Expectation

Fig. 2. The preference and normality induced by world expectations and the agent’s
preferences. We abbreviate snow with S, and work with W. A negated proposition is
denoted with an overline, e.g. S.

Given a model M, an agent i can then choose an arbitrary literal from Dec(i),
since all of these are equally preferred and with equally tolerable consequences.

If there are no expected consequences of bringing about a certain state, i.e.
if EC(ϕ) = ∅, then we consider the state tolerable, since we do not expect
any consequences. Therefore for all other consequences, γ, we have to consider
� ≤i

T (C) γ and γ ≤i
T (C) �. Note that T (� | ϕ) is true iff ϕ is true in any world3.

Furthermore, � ≤i
P ϕ is always true, and ϕ ≤i

P � is true iff ϕ is true in all
worlds. Thus it is possible to make a decision even if some obligations or desires
have no known consequences.

3.2 Case study

We consider Alice, who normally goes to work, but during a snow storm, she
normally stays at home. In her ideal world, it does not snow, but if it snows, she
preferrably stays at home. This induces structures for preference and normality
such as the ones shown in figure 2(a) and 2(b). The preference model satisfies
I(¬snow | �) and I(¬work | snow) and the normality model satisfies � ⇒ work
and snow ⇒ ¬work.

Alice furthermore has an obligation to go to work and a desire to stay at
home. We show how to decide what Alice should do in different situations.

Thus we have a model where the possible worlds, and their valuations and
orderings are given in figure 2. Furthermore, we have that D(a) = {¬work} and
C = O = {work}.

We consider the situations when it does not snow and when it snows. In
both situations we need to consider the relative preference between all literals in
D(a)∪O = {¬work, work} and how relatively tolerable their consequences are.

1. KB = {¬snow}
Since there are no known consequences, both situations are equally tolerable,

3 Since T (� | ϕ) ≡ ↔
�i

Pϕ ∧ ↔
�i

P (¬ϕ ∨�i
P (ϕ ∧ �).

41

so we only need to consider the relative preference. Clearly, the two situations
are equally preferable (both work and ¬work are at the bottom of figure
2(a)), so we get Dec(a) = {¬work, work}.

2. KB = {snow}
Again there are no known consequences, but since it snows, we only consider
Alice’s preferred snow-worlds. Then ¬work is more preferred than work.
Thus we get Dec(a) = {¬work}.
The first situation is not that interesting, because it does not help the agent

make a decision between obligations and desires. However, since there are no
known consequences of bringing about either state, this is the best we can do.

We now change the model by specifying that if it does not snow and Alice
does not come to work, she can expect to get fired, formally ¬work ∧¬snow ⇒
fired. Furthermore, ideally Alice does not get fired, I(¬fired | �). This induces a
different kind of partial structure for normality and preference, shown in figure 3.
We can then return to the situation where it does not snow, and now show that
the consequence of not going to work when it does not snow normally results in
getting fired.

FSW FSW FSW FSW

FSW

FSW

FSW FSW

(a) Alice’s preferences

FSW FSW FSW FSW

FSW

FSW

FSW

FSW

(b) Expectation

Fig. 3. The preference and normality induced by world expectations and the agent’s
preferences, when the consequence of getting fired is considered. We abbreviate snow
and work as before, and fired with F.

3. KB = {¬snow}
We have that EC(work) = � and EC(¬work) = fired. We can then calculate
� ≤i

T (work∨¬work) fired and fired ≤i
T (¬work∨work) �. From the model, we can

see that ¬T (fired | work ∨ ¬work). From this we can conclude that while
work and ¬work are equally preferable, the consequence of working is more
tolerable than that of not working. Therefore Dec(a) = {work}.

Furthermore if KB = {snow} the agent still chooses ¬work, since fired is not
a consequence of this. Note that at this point we have not labeled the agent as

42

“social” or “selfish” – the agents preference and the expected consequences are
taking into account, and this leads to the results above. It chooses an obligation
over a desire when the expected consequence of doing otherwise is intolerable.
If the agent has the desire of leaving early, and this does not have the expected
consequence of getting fired, the agent might very well choose to leave early,
thereby choosing a desire over an obligation.

4 Conclusion

We have discussed agent-centered and organization-centered multi-agent sys-
tems. Certain characteristics of agent-centered multi-agent systems make it hard
to ensure coherence between an agent’s own desires and the global desires of the
system. We have discussed how to solve this issue via some of the main princi-
ples of organization-centered multi-agent systems, which suggests constraining
the agents using roles, groups and obligations.

We have argued that conflicts are prone to arise when agents enact roles in
an organization, since their own desires may conflict the obligations of the role(s)
they are enacting. We have proposed a way of solving such conflicts that uses
qualitative decision theory rather than labeling the agents “selfish” or “social”
in advance. This solution works by taking the consequence of bringing about a
state into consideration, thus letting the agent take its preferences into account,
without choosing something that results in an intolerable state. We have argued
that this indeed lets the agents reach a decision without strictly preferring desires
over obligations or vice versa.

Future work

We are currently working on building a prototype in Prolog, which given a
world-model, and a preference and normality ordering, is able to decide which
influence(s) to commit to. The idea is to integrate this prototype into the GOAL
agent programming language to be able to let agents resolve conflicts in more
advanced scenarios.

References

1. Natasha Alechina, Mehdi Dastani, and Brian Logan. Programming Norm-Aware
Agents. In Proceedings of the 11th International Conference on Autonomous Agents
and Multiagent Systems - Volume 2, AAMAS ’12, pages 1057–1064, Richland, SC,
2012. International Foundation for Autonomous Agents and Multiagent Systems.

2. Rafael H. Bordini, Michael Wooldridge, and Jomi Fred Hübner. Programming
Multi-Agent Systems in AgentSpeak using Jason (Wiley Series in Agent Technol-
ogy). John Wiley & Sons, 2007.

3. Craig Boutilier. Toward a Logic for Qualitative Decision Theory. In In Proceedings
of the KR’94, pages 75–86. Morgan Kaufmann, 1994.

43

4. Jan Broersen, Mehdi Dastani, Joris Hulstijn, Zisheng Huang, and Leendert van der
Torre. The BOID Architecture – Conflicts Between Beliefs, Obligations, Intentions
and Desires . In Proceedings of the Fifth International Conference on Autonomous
Agents, pages 9–16. ACM Press, 2001.

5. F. Dignum, D. Morley, E. A. Sonenberg, and L. Cavedon. Towards Socially So-
phisticated BDI Agents. In Proceedings of the Fourth International Conference on
MultiAgent Systems (ICMAS-2000), ICMAS ’00, pages 111–118, Washington, DC,
USA, 2000. IEEE Computer Society.

6. Frank Dignum, David Kinny, and Liz Sonenberg. From Desires, Obligations and
Norms to Goals. COGNITIVE SCIENCE QUARTERLY, 2:2002, 2002.

7. Virginia Dignum. A model for organizational interaction: based on agents, founded
in logic. PhD thesis, Universiteit Utrecht, 2004.

8. Virginia Dignum and Frank Dignum. A logic of agent organizations. Logic Journal
of the IGPL 20, 1:283–316, 2012.

9. Jacques Ferber, Olivier Gutknecht, and Fabien Michel. From Agents to Organiza-
tions: An Organizational View of Multi-agent Systems. In LNCS 2935: Procs. of
AOSE03, pages 214–230. Springer Verlag, 2003.

10. Koen V. Hindriks. Programming Rational Agents in GOAL. Multi-Agent Pro-
gramming: Languages, Tools and Applications, 2:119–157, 2009.

11. Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. A Model for the
Structural, Functional, and Deontic Specification of Organizations in Multiagent
Systems. In Proceedings of the 16th Brazilian Symposium on Artificial Intelligence:
Advances in Artificial Intelligence, SBIA ’02, pages 118–128, London, UK, 2002.
Springer-Verlag.

12. Jomi Fred Hübner, Jaime Simo Sichman, and Olivier Boissier. S-moise+: A mid-
dleware for developing organised multi-agent systems. In COIN I, volume 3913 of
LNAI, pages 64–78. Springer, 2006.

13. M. Birna Riemsdijk, Koen Hindriks, and Catholijn Jonker. Programming
Organization-Aware Agents. In Proceedings of the 10th International Workshop
on Engineering Societies in the Agents World X, ESAW ’09, pages 98–112, Berlin,
Heidelberg, 2009. Springer-Verlag.

44

Intelligent Surveillance with Autonomous Underwater Vehicles

Thor Helms, John Bruntse Larsen & Jens Peter Träff
DTU Informatics

Reason for this project

Nowadays aquatic monitoring tasks are primarily carried out by large ships, sailing for long spans
of time, and relying heavily on approximation for analysis. By using multiple Automated
Underwater Vehicles (AUVs), the reliability of the observations can be increased significantly thus
rendering more precise analysis possible providing an improved basis for making decisions.

One example could be the determination of fish-quota through scanning of ICES (International
Council for the Exploration of the Sea) squares in the ocean. The methods used today are prone to
error and requires a fully crewed vehicle at sea for several days/weeks. By making clever use of
information from multiple AUVs, both the measurement-errors as well as the required manpower
can be reduced.

Résumé of our project

We have analyzed some of the technical requirements for an AUV with respect to the software,
and investigated the existing research in these areas. We have looked at various features within
the Guidance-Navigation-Control (GNC) model, and our conclusion is to suggest using the GNC
scheme in an event based system, such as Robot Operating System (ROS). Within each part of the
GNC scheme, advanced features, such as automated learning, sensor fusion and artificial
intelligence, can be used.

Future work

As AUVs can be lost at any point during their mission, multiple AUVs working together can have no
leader deciding all the actions. In our opinion, this makes AUVs an interesting research platform
for applied multi-agent systems and swarm-theory.

Future projects building on this would have the potential of entering the so-called Grøn Dyst
conference at DTU, as we did in the spring of 2012.

The following page shows the posters for the AUV project.

Additional information: http://www.groendyst.dtu.dk/English.aspx

DTU’s Grøn Dyst (Green Battle) is a student conference which sets focus on sustainability, climate
technology, and the environment.

45

46

Study at KAIST, South Korea, Dual Degree MSc Program in Computer Science

Jørgen Villadsen
DTU Informatics

The dual degree program between DTU and KAIST (Korean Advanced Institute of Science and
Technology) supports the exchange of students and enables students to receive MSc degrees of
both universities:

• The students will have a supervisor at DTU as well as at KAIST and must choose courses at
the host university that only overlap slightly with courses taken at the home university.

• Two consecutive semesters must be taken at the host university, either the second and
third semester (thesis written at the home university) or the third and fourth semester
(thesis written at the host university).

• The host university will arrange for accommodation but the students are responsible for
their own travel and living expenses during the exchange (the home as well as the host
university will try to provide financial support).

• After successful completion the students receive the MSc in Computer Science of KAIST
and the MSc in Computer Science and Engineering of DTU with a special designation of the
dual degree program.

Students on the MSc in Computer Science and Engineering program must apply for the dual
degree program not later than in their first semester!

“I considered the dual degree agreement between DTU Informatics and KAIST Computer Science as an
opportunity to experience studying in Asia and getting a diploma from both DTU and KAIST. However
I did not expect to become as involved in the research at KAIST as I eventually did.

At DTU I primarily studied logic and efficient algorithms, both theoretically and in applications. As a
dual degree student at KAIST I decided to join the Semantic Web Research Center (SWRC) and
participate in the research there. The focus in SWRC is web applications with PHP/SQL-languages and
Java and I have been busy with co-authoring papers and implementing web applications, which is
significantly different from what I did at DTU. On the other hand it has also given me ideas for how
the research at SWRC could be relevant to my studies at DTU. Discussions with the other members
have been inspiring and we help each other through the daily obstacles at SWRC. It is a small team
and there are high ambitions for our research.

It has been a great challenge to juggle between research at SWRC and doing course work; something
I still struggle with. It can feel pressuring to have such little free time but for me the dual degree
program at KAIST has so far been a unique experience that I would not want to live without.”

John Bruntse Larsen (KAIST-DTU student)

Additional information: http://www.imm.dtu.dk/English/Teaching/MSc/KAIST_DTU.aspx

47

Available Proceedings:

Algolog Multi-Agent Programming Seminar 2011

2 December 2011 – 40 Pages

Algolog Multi-Agent Programming Seminar 2012

29 November 2012 – 48 Pages

Algorithms and Logic Section
DTU Informatics

http://www.imm.dtu.dk/algolog

http://www.imm.dtu.dk/algolog

	Engineering Multi-Agent Systems

	On the Multi-Agent Programming Contest

	An Application of Game Theory in
Program Synthesis

	Belief Revision in the GOAL Agent
Programming Language
	Organization-Oriented Programming in
Multi-Agent Systems
	Intelligent Surveillance with Autonomous Underwater Vehicles
	Study at KAIST, South Korea, Dual Degree MSc Program in Computer Science

