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European options

Option: A contract based on some underlying asset [eg. a stock] that
gives you [the buyer/holder] the right but not the obligation to do
something sometime in the future which may cost me [the seller] some
money.

European Option: When “sometime in the future” is at a specific
Expiration time T and the “something” that you may do cost me some
money depending only on the price of the underlying asset at time T , i.e.

A contract based on some underlying asset [eg. a stock] that gives you
[the buyer] the right but not the obligation to do something at
expiration time T which may cost me [the seller] some money depending
on the price of the underlying asset at time T .

Good thing about European Options: We know the exact solution, i.e.
the fair price V (S , t) that the option should cost the buyer at any time t
as a function of the price S of the underlying asset at time t.
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Types of European options

The “something to do” distinguishes types of European options:

Three examples:

• A Call Option (C ) gives the holder the right to buy the underlying
asset S from the seller at expiration time T for a certain Strike price
K .

• A Put Option (P) gives the holder the right to sell the underlying
asset S to the seller at time T for the strike price K .

• A Bet Option (Digital Call Option/Cash or nothing option) (B)
gives the holder a lump sum B from the seller if at expiration time
the price of S is K or more.

The Put-Call-parity: V P(S , t) = V C (S , t)− S + Ke−r(T−t) means
that computing both call and put is somewhat of a waste of time.
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Black-Scholes Model for valuing Options

Suppose that we have a European option (whose value V (S , t) depends
only on S and t). No matter what type (call, put, bet or other),
the Black-Scoles model is the following partial differential equation:

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 for (S , t) ∈ Ω∞ (1)

Where

• Ω∞ = (0,∞)× (0,T ),
and V : (S , t) ∈ Ω̄∞ → R, V ∈ C2,1(Ω∞)

• σ is the volatility of the underlying asset

• T is the expiration time

• r is the interest rate

The type enters in the Terminal condition setting the value V (S ,T )
depending on things like

• K is the exercise price

• B is the bet amount
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Terminal and Boundary Conditions

• V (S ,T ) = κ(S) where κC/P/B(S) is given by:

κC (S) = max{S − K , 0} for the call option

κP(S) = max{K − S , 0} for the put option

κB(S) =

{
B for S − K ≥ 0
0 for S − K < 0

for the bet option

If S = 0 (bancruptcy) the value is the back-discounted payoff at time T :

• V (0, t) = κ(0)e−r(T−t) (Bancruptcy condition)

For numerical computations it is convenient to have a bounded
computational domain S ∈ (0,Smax). Boundary conditions can be
derived for S →∞ and then “moved” to Smax >> K :

• V (Smax, t) =

 V C (Smax, t) ' Smax − Ke−r(T−t) (call option)
V P(Smax, t) ' 0 (put option)
V B(Smax, t) ' Be−r(T−t) (bet option)
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Properties of the solution

The Black-Scholes PDE is a standard convection-diffusion equation and
can be transformed smoothly into the heat equation:

∂u

∂τ
=
∂2u

∂x2
for (x , τ) ∈ ω∞ = (−∞,∞)× (0,T ) (2)

which is wellposed with only a reasonable initial condition (smooth
transformation of the terminal condition from BS).

Note 1: The terminal conditions for the call, put and bet options have
singularities in the first, first and zero’th derivative respectively.
This means “numerical trouble”.

Note 2: Numerical solution of the heat equation version of BS gives the
same problems (singular initial condition) as the convection-diffusion
version plus additional problems since also the left boundary
condition must be approximated.
Hence numerical solution of the heat equation version is discouraged.
The heat version is only for theoretical purposes.
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Visualization of solution - Put-Call parity

Figure: Exact solution V P(S , t) for put (left) and call (right) option, with
T = 1, K = 1, σ = 0.2 and r = 0.04. Recall the put-call parity:
V P(S , t) = V C (S , t)− S + Ke−r(T−t).

From here on, we shall stick to the call and the bet options.
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Visualization of solution - Call and Bet

Figure: Exact solution V (S , t) for call (left) and bet (right) option, with
T = 1, K = 1, σ = 0.2, r = 0.04 and B = 0.3.

Approximations can be found with standard finite difference schemes on
standard laptop PC’s with maximal absolute errors of 0.0001 for put and
call and 0.001 for bet. Such errors are not visible to the naked eye.
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Visualization of Delta ∆ = ∂V
∂S - Call and Bet

Figure: Exact Delta ∂V
∂S

for call (left) and bet (right) option, with T = 1,
K = 1, σ = 0.2, r = 0.04 and B = 0.3.
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Visualization of Gamma Γ = ∂2V
∂S2 - Call and Bet

Figure: Exact Gamma ∂2V
∂S2 for call (left) and bet (right) option, with T = 1,

K = 1, σ = 0.2, r = 0.04 and B = 0.3.

Slide 11/36



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

3D visualization of error - FE, Call and Bet

Invisible errors on solution plots may be visualized on error plots:

Figure: Typical example of error function for call (left) and bet (right) option,
with T = 1, K = 1, σ = 0.2, r = 0.04 and B = 0.3 (StdCase), when solved
with a standard explicit Euler method (FE=BtCS).

Bet error ' 30 times Call error.
Call error resembles call Gamma in structure.
Bet error resembles bet Delta in structure.
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2D (t = 0) visualization of solution - CN, Bet

Invisible 3D-errors may be visible in 2D with coarse step sizes
(∆S = h ' 0.01,∆t = k ' 0.05) when “zooming in” on S = K :

Figure: Typical example of solution at t = 0 for all S (left) and in a small
S-interval around K (right) for bet option in StdCase, when solved with a
standard Crank Nicolson method (CN=CtCS).

Slide 13/36



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

FE-convergence of maximal error - Call and Bet

Figure: Maximal error for StdCase at time t = 0 for call (left) and bet (right)
option, when solved with a standard explicit Euler method (FE).

FE is conditionally convergent with order: e = O(DS2 + Dt).
Observed order: ecall = O(DS2), ebet = O(DS1).
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CN-convergence of maximal error - Call and Bet

Figure: Maximal error for StdCase at time t = 0 for call (left) and bet (right)
option, when solved with a standard implicit Crank Nicolson method (CN).

CN is unconditionally convergent with order: e = O(DS2 + Dt2).
Observed order in buble: ecall = O(DS2 + Dt2), ebet = O(DS1 + Dt?).
Observed order outside buble: ecall = O(DS2), ebet = O(DS1).
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Numerical issues

• Micro trading means a need for very precise and very fast numerical
solutions.

• Standard finite difference methods may deliver the required precision
but maybe not at an acceptable cost.

• Explicit and implicit Euler (O(∆S2) +O(∆t)) and Crank-Nicolson
(O(∆S2) +O(∆t2)) deliver only O(∆S2) for put and call and
O(∆S) for bet, and very slow if any convergence in ∆t within the
computational capacity.

• Hence “shortcuts” are needed i.e. more advanced methods.

Examples of shortcuts:

• Kα-optimization - Optimal location of S = K with respect to
element boundaries.

• Rannacher time stepping - Reduced time step size for the first few
steps.

• Mesh grading - Using smaller step sizes ∆S close to S = K where
the error is the biggest.
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Kα-optimization

The error for given stepsizes depends significantly on the location of K in
the element that it belongs to. Say

K = (sh + αh)h for sh ∈ N and 0 ≤ αh < 1.

We say: K is in αh-position in element number sh.
Given K , sh and αh are uniquely (but in a complex way) determined by h.
To control the error, we must first control and then optimize αh:
Force αh → α (α user provided). Now s̃h = K−αh

h is no longer integer.

Force sh → s = dK−αhh e which is integer and

s = dK − αh
h
e = dK − αhh

h
+

(αh − α)h

h
e = sh + dαh − αe.

But −1 < αh − α < 1⇒ 0 ≤ dαh − αe ≤ 1 so sh ≤ s ≤ sh + 1.
Hence K lies in the same or one later element, i.e. the same or slightly
smaller step size h̃ is induced:

K = (s + α)h̃ i.e. h̃ =
K

s + α
=

K

dK−αhh e+ α
.

Hence we compute with a slightly smaller step size than requested.
Slide 17/36



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

Error as function of α - CN, Call

We compute with a fine mesh with step sizes h ' 0.03, k ' 0.001 and α
in [0, 1) with ∆α = 0.025:

Figure: Maximal error with CN for call in StdCase at time t = 0 as function of
α ∈ [0, 1[. Left with, right without α = 0.

Kα = 0.275 is the optimal α.
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Is Kα stable for different interest rates? - CN, Call

Now we consider stability of Kα (the optimal α) for changing interest
rates (r) for the fine mesh.

Figure: Maximal error with CN for call in StdCase at time t = 0 as function of
r ∈ [−0.1, 0.1] and α ∈ [0, 1[. Left with, right without α = 0.

Full stability with r : Kα = 0.275 for r > 0. Kα = 0.725 for r < 0.
Slide 19/36
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Kα and its stability wrt r - CN, Bet

We compute with the fine mesh and α in [0, 1) with ∆α = 0.025 and
r ∈ [−0.1, 0.1]:

Figure: Maximal error with CN for bet in StdCase at time t = 0 as function of
α ∈ [0, 1[ (left) and r ∈ [−0.1, 0.1] and α ∈ [0, 1[ (right).

Full stability with r : Kα = 0.500 is the optimal α for r ≥ 0.
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Is Kα stable for different volatilities? - CN, Call

Now we consider stability of Kα with respect to volatility (σ) between
0.1 and 0.4 in the standard case for the fine mesh.

Figure: Maximal error with CN for call in StdCase at time t = 0 as function of
σ ∈ [0.1, 0.4] and α ∈ [0, 1[. Left with, right without α = 0.

Full stability with σ: Kα = 0.275 is the optimal α.
Slide 21/36



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

Is Kα stable for different volatilities? - CN, Bet

We consider stability of Kα with respect to volatility (σ) between 0.1 and
0.4 in the standard case for the fine mesh.

Figure: Maximal error with CN for bet in StdCase at time t = 0 as function of
σ ∈ [0.1, 0.4] and α ∈ [0, 1[.

Full stability with σ: Kα = 0.500 is the optimal α.

Slide 22/36



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

Conclusion on Kα-optimization

• By optimizing the position of the strike price relative to the element
end points the error may be reduced substancially (more than 300
times in the worst cases).

• The optimal position depends on the option type but not on the
various parameters and is

• Kα = 0.275 for call and put options with r > 0.
α ∈ [0.2, 0.8] give errors less than the double of the minimal.

• Kα = 0.500 for bet options with r > 0.
α ∈ [0.4, 0.6] give errors less than the double of the minimal.

• The price of adjusting the S-stepsize to fit the optimal α is
negligible O(1) and the adjustment is done a priori to the solution,
and hence can be built into any existing code.

Having the strike price midway between nodal points was considered by
Tavella et al (2999) and Pooley et al (2003) in [2, 4]. Finding the
optimal α is novel.
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Rannacher time stepping

Rannacher (1984) considered in [3] a start up process for the Crank
Nicolson method with non smooth initial value condition:
The first few timesteps in CN is replaced by a number of smaller implicit
Euler (BE=FtCS) steps to take advantage of the L-stability of BE (no
oscillations).
Giles et al (2006) showed in [1] that replacing the first CN timestep by 4
BE quarter-steps works better than replacing the first two CN timesteps
by 4 BE half-steps. Hence we consider the 4 quarter-step version.
We compare 4 methods

• CN

• CN with Rannacher time stepping

• CN with Kα-optimization

• CN with Kα-optimization and Rannacher time stepping

All with parameters T = 2, K = 1, B = 0.3, r = 0.05, γ = 0, σ = 0.2
and Smax = 5. We consider stepsizes ∆S = h ∈ [0.002, 0.1] and
∆t = k = 5h.
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Comparing the Methods - CN, Call

Figure: Maximal error with 4 versions of CN for call at time t = 0 as function
of h. Fine meshes (h ∈ [0.002, 0.009]) to the left and coarse meshes
(h ∈ [0.01, 0.1]) to the right.

Clearly CN with Kα-opt. and CN with Kα-opt. and Rannacher time
stepping are the most interesting, and are considered alone next:
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Comparing the two best methods - CN, Call

Figure: Maximal error with 2 versions of CN for call at time t = 0 as function
of h. Fine meshes (h ∈ [0.002, 0.009]) to the left and coarse meshes
(h ∈ [0.01, 0.1]) to the right.

CN with Kα-optimization is best for coarse meshes.
CN with Kα-opt. and Rannacher time stepping is best for fine meshes.
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Comparing the Methods - CN, Bet

Figure: Maximal error with 4 versions of CN for bet at time t = 0 as function
of h. Fine meshes (h ∈ [0.002, 0.009]) to the left and coarse meshes
(h ∈ [0.01, 0.1]) to the right.

CN with Kα-optimization and Rannacher time stepping is best for both
coarse and fine meshes but most for fine meshes.
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Conclusions on Kalpha and Rannacher time stepping

• “Vanilla” CN is the worst of the 4 methods considered for all
stepsizes.

• CN with Rannacher time stepping improves (but only slightly) over
vanilla CN.

• CN with Kα-optimization is better than the previous two, except for
fine meshes for the call option where CN with Rannacher time
stepping is better.

• CN with Kα-optimization and Rannacher time stepping is better
than the previous three, except for coarse meshes for the call option
where CN with Kα-optimization is better.

CN with Kα-optimization and Rannacher time stepping (CNRK) is the
overall winner.
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Mesh grading

Most of the error is located close to S = K . Tangman et al suggests in
[6] the following grading function:

S(x) = K +
1

b
sinh(c1(1− x) + c2x) with

{
c1 = arc sinh(−bK )
c2 = arc sinh(b(Smax − K ))

.

Figure: Grading function S(x)Slide 29/36
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Comparing the methods - CNRK with grading, Call

Figure: Maximal error with 6 versions (b = 0, 2, 5, 10, 15, 20, 40) of CN with
mesh grading for call at time t = 0 as function of h. Fine meshes
(h ∈ [0.002, 0.01]) to the left and coarse meshes (h ∈ [0.01, 0.1]) to the right.
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Conclusions on V for CNRK with grading - Call

• CNRK with mesh grading with grading parameter b ' 10 is
significantly better than CNRK and CNRK with mesh grading with
other grading parameter values.

So the overall winner as the best Crank-Nicolson method is
Crank-Nicolson with Kα-optimization, Rannacher time stepping and
mesh grading with a grading parameter b ' 10.

Now consider how well we recover the greeks:
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Recovering Delta= ∂V
∂S - CNRK with grading, Call

Figure: Maximal error in Delta with 6 versions (b = 0, 2, 5, 10, 15, 20, 40) of
CN with mesh grading for call at time t = 0 as function of h. Fine meshes
(h ∈ [0.002, 0.01]) to the left and coarse meshes (h ∈ [0.01, 0.1]) to the right.
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Recovering Gamma= ∂2V
∂S2 - CNRK with grading,

Call

Figure: Maximal error in Delta with 6 versions (b = 0, 2, 5, 10, 15, 20, 40) of
CN with mesh grading for call at time t = 0 as function of h. Fine meshes
(h ∈ [0.002, 0.01]) to the left and coarse meshes (h ∈ [0.01, 0.1]) to the right.
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Conclusions on V , ∆(V ) and Γ(V ) for CNRK with
grading - Call

• CNRK with mesh grading with the optimal grading parameter b is
significantly better than CNRK with mesh grading with grading
parameter values far from the optimal value (including CNRK
corresponding to b = 0).

• The optimal mesh grading parameter is
b ' 10 for recovering the solution V .
b ' 5 for recovering the Delta ∂V

∂S .

b ' 2 for recovering the Gamma ∂2V
∂S2 .

So the overall winner as the best Crank-Nicolson method is
Crank-Nicolson with Kα-optimization, Rannacher time stepping and
mesh grading with a grading parameter depending on the what is
recovered.
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Future works

• Analytical proof for Kα-optimization.

• Compare the methods with respect to their orders of convergence.

• Compare CN with Kα-optimization, Rannacher time stepping and
grading on the Greeks for the bet option.
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