Introduction O	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions

Isogeometric Analysis and Shape Optimization in Fluid Mechanics

Peter Nørtoft

DTU Compute

Joint work with Jens Gravesen, Allan R. Gersborg, Niels L. Pedersen,

Morten Willatzen, Anton Evgrafov, Dang Manh Nguyen, and Tor Dokken

Scientific Computing Section Seminar, September 17, 2013

Technical University of Denmark

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
•				
Goals and Outline				

The aim is to analyze and optimize flows using isogeometric analysis

Shape Optimization

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
•				
Goals and Outline				

The aim is to analyze and optimize flows using isogeometric analysis

Navier-Stokes Flow Model

Shape Optimization

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
•				
Goals and Outline				
The aim is t	o analyze and optim	ize flows using isoged	ometric analysis	

Navier-Stokes Flow Model

Navier-Stokes Flow Model

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Fluid Mechanics: Navie	er-Stokes Equations			

Flow problems are governed by a boundary value problem

Flow problems are governed by a boundary value problem

2D steady-state incompressible Navier-Stokes flow

$ ho(oldsymbol{u} \cdot abla)oldsymbol{u} + abla p - \mu abla^2 oldsymbol{u} = ho oldsymbol{f}$	in Ω
$ abla \cdot \boldsymbol{u} = 0$	in Ω
$oldsymbol{u}=oldsymbol{u}^*$	on Γ_D
$(\mu abla u_i - p \boldsymbol{e}_i) \cdot \boldsymbol{n} = 0$	on Γ_N

Challenge: solve this using isogeometric analysis

[Bazilevs et al., 2006b; Bazilevs & Hughes, 2008; Akkerman et al., 2010; ...]

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Numerical Method				

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Numerical Method				

$$\boldsymbol{X}(\xi,\eta) = \sum_{i=1}^{N^g} \bar{\boldsymbol{x}}_i \mathcal{R}_i^g(\xi,\eta)$$

$$\boldsymbol{\chi}_i = \sum_{i=1}^{N^g} \bar{\boldsymbol{x}}_i \mathcal{R}_i^g \quad \text{Bivariate NURBS}$$

$$\bar{\boldsymbol{x}}_i \quad \text{control point}$$

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Numerical Method				

$$\begin{aligned} \boldsymbol{X}(\xi,\eta) &= \sum_{i=1}^{N^g} \bar{\boldsymbol{x}}_i \mathcal{R}_i^g(\xi,\eta) \\ \boldsymbol{u}(\xi,\eta) &= \sum_{i=1}^{N^u} \bar{\boldsymbol{u}}_i \mathcal{P}_i^u(\xi,\eta) \\ p(\xi,\eta) &= \sum_{i=1}^{N^p} \bar{p}_i \mathcal{P}_i^p(\xi,\eta) \end{aligned}$$

 $\bar{u}_i, \bar{k}_i, \bar{k}_i$ Bivariate NURBS/B-splin $\bar{u}_i, \bar{p}_i, \bar{x}_i$ control point/variable

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Numerical Method				

$$\begin{split} \boldsymbol{X}(\xi,\eta) &= \sum_{i=1}^{N^g} \bar{\boldsymbol{x}}_i \mathcal{R}_i^g(\xi,\eta) \\ \boldsymbol{u}(\xi,\eta) &= \sum_{i=1}^{N^u} \bar{\boldsymbol{u}}_i \mathcal{P}_i^u(\xi,\eta) \\ p(\xi,\eta) &= \sum_{i=1}^{N^p} \bar{p}_i \mathcal{P}_i^p(\xi,\eta) \end{split} \qquad \begin{array}{c} \boldsymbol{\chi} \\ \boldsymbol{\mu} \\$$

Univariate B-spline:

- knot vector
- polynomial degree

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Numerical Method				

$$\begin{split} \boldsymbol{X}(\xi,\eta) &= \sum_{i=1}^{N^g} \bar{\boldsymbol{x}}_i \mathcal{R}_i^g(\xi,\eta) \\ \boldsymbol{u}(\xi,\eta) &= \sum_{i=1}^{N^u} \bar{\boldsymbol{u}}_i \mathcal{P}_i^u(\xi,\eta) \\ p(\xi,\eta) &= \sum_{i=1}^{N^p} \bar{p}_i \mathcal{P}_i^p(\xi,\eta) \\ \end{split} \qquad \begin{array}{c} \boldsymbol{\chi}_i & \boldsymbol{\chi}_i^{p} \\ \boldsymbol{\chi}_i^{p}, \boldsymbol{\chi}_i^{g} \\ \boldsymbol{\chi}_i^{p}, \boldsymbol{\chi}_i^{g} \\ \boldsymbol{\chi}_i^{p}, \boldsymbol{\chi}_i^{g} \\ \boldsymbol{\chi}_i^{p}, \boldsymbol{\chi}_i^{p} \\ \boldsymbol{\chi}_i^{$$

- knot vector
- polynomial degree

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Numerical Method				

$$\begin{split} \boldsymbol{X}(\xi,\eta) &= \sum_{i=1}^{N^g} \bar{\boldsymbol{x}}_i \mathcal{R}_i^g(\xi,\eta) \\ \boldsymbol{u}(\xi,\eta) &= \sum_{i=1}^{N^u} \bar{\boldsymbol{u}}_i \mathcal{P}_i^u(\xi,\eta) \\ p(\xi,\eta) &= \sum_{i=1}^{N^p} \bar{p}_i \mathcal{P}_i^p(\xi,\eta) \\ \end{split} \qquad \begin{array}{c} \boldsymbol{\chi}_i & \boldsymbol{\chi}_i^{p} \\ \boldsymbol{\chi}_i^{p}, \boldsymbol{\chi}_i^{g} \\ \boldsymbol{\chi}_i^{p}, \boldsymbol{\chi}_i^{g} \\ \boldsymbol{\chi}_i^{p}, \boldsymbol{\chi}_i^{g} \\ \boldsymbol{\chi}_i^{p}, \boldsymbol{\chi}_i^{p} \\ \boldsymbol{\chi}_i^{$$

- knot vector
- polynomial degree

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Numerical Method				

$$\begin{split} \boldsymbol{X}(\xi,\eta) &= \sum_{i=1}^{N^g} \bar{\boldsymbol{x}}_i \mathcal{R}_i^g(\xi,\eta) \\ \boldsymbol{u}(\xi,\eta) &= \sum_{i=1}^{N^u} \bar{\boldsymbol{u}}_i \mathcal{P}_i^u(\xi,\eta) \\ p(\xi,\eta) &= \sum_{i=1}^{N^p} \bar{p}_i \mathcal{P}_i^p(\xi,\eta) \\ \end{split} \qquad \begin{array}{c} \boldsymbol{\chi}_i & \boldsymbol{\chi}_i^{p} \\ \boldsymbol{\chi}_i^{p}, \boldsymbol{\chi}_i^{g} \\ \boldsymbol{\chi}_i^{p}, \boldsymbol{\chi}_i^{g} \\ \boldsymbol{\chi}_i^{p}, \boldsymbol{\chi}_i^{g} \\ \boldsymbol{\chi}_i^{p}, \boldsymbol{\chi}_i^{p} \\ \boldsymbol{\chi}_i^{$$

- knot vector
- polynomial degree

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Numerical Method				

- knot vector
- polynomial degree

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Numerical Method				

- knot vector
- polynomial degree

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Numerical Method				

Univariate B-spline: $\mathcal{N}_i(\xi_1)$, $\mathcal{M}_j(\xi_2)$

- knot vector
- polynomial degree

Bivariate Tensor Product B-spline:

- 2 knot vectors
- 2 polynomial degrees
- $\mathcal{P}_{i,j}(\xi_1,\xi_2) = \mathcal{N}_i(\xi_1)\mathcal{M}_j(\xi_2)$

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Numerical Method				

$$\begin{split} \boldsymbol{X}(\xi,\eta) &= \sum_{i=1}^{N^g} \bar{\boldsymbol{x}}_i \mathcal{R}_i^g(\xi,\eta) \\ \boldsymbol{u}(\xi,\eta) &= \sum_{i=1}^{N^u} \bar{\boldsymbol{u}}_i \mathcal{P}_i^u(\xi,\eta) \\ \boldsymbol{p}(\xi,\eta) &= \sum_{i=1}^{N^p} \bar{p}_i \mathcal{P}_i^p(\xi,\eta) \\ \boldsymbol{p}(\xi,\eta) &= \sum_{i=1}^{N^p} \bar{p}_i \mathcal{P}_i^p(\xi,\eta) \\ \end{split}$$

Bivariate Tensor Product B-spline:

- 2 knot vectors
- 2 polynomial degrees $\mathcal{P}_{i,j}(\xi_1, \xi_2) = \mathcal{N}_i(\xi_1)\mathcal{M}_j(\xi_2)$

Parameter domain $[0,1]^2$

Physical domain Ω

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Numerical Method				

Parameter domain [0,1]

Physical domain Ω

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Error Convergence				

$$egin{array}{rcl} f_1 &=& f_1(x,y) \ f_2 &=& f_2(x,y) \ m{u}|_{\Gamma} &=& m{0} \end{array}$$

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Error Convergence				

$$f_1 = f_1(x,y)$$

$$f_2 = f_2(x,y)$$

$$u|_{\Gamma} = 0$$

$$\begin{array}{rcl} u_1^{\star} &=& -U \sin(\pi \tilde{r}^2) y \\ u_2^{\star} &=& U/4 \sin(\pi \tilde{r}^2) x \\ p^{\star} &=& 4/\pi^2 + \cos(\pi \tilde{r}) \\ \tilde{r} &=& \sqrt{(x/2)^2 + y^2} \end{array}$$

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Error Convergence				

$$f_1 = f_1(x,y)$$

$$f_2 = f_2(x,y)$$

$$u|_{\mathbf{D}} = \mathbf{0}$$

$$\begin{array}{rcl} u_1^{\star} &=& -U \sin(\pi \tilde{r}^2) y \\ u_2^{\star} &=& U/4 \sin(\pi \tilde{r}^2) x \\ p^{\star} &=& 4/\pi^2 + \cos(\pi \tilde{r}) \\ \tilde{r} &=& \sqrt{(x/2)^2 + y^2} \end{array}$$

Re = 200

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Error Convergence				

$$f_1 = f_1(x,y)$$

$$f_2 = f_2(x,y)$$

$$u|_{\Gamma} = 0$$

$$\begin{array}{rcl} u_1^{\star} &=& -U \sin(\pi \tilde{r}^2) y \\ u_2^{\star} &=& U/4 \sin(\pi \tilde{r}^2) x \\ p^{\star} &=& 4/\pi^2 + \cos(\pi \tilde{r}) \\ \tilde{r} &=& \sqrt{(x/2)^2 + y^2} \end{array}$$

Re = 200

 $\epsilon_u^2 \quad = \quad \iint\limits_{\Omega} \|\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y}) \! - \! \boldsymbol{u}^\star(\boldsymbol{x}, \boldsymbol{y})\|^2 \, \mathrm{d} \boldsymbol{x} \, \mathrm{d} \boldsymbol{y}$

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Error Convergence				

Discretizations with higher regularity perform better

1 1

1

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Error Convergence				

Discretizations with higher regularity perform better

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000			
Error Convergence				

Discretizations with higher regularity perform better

- $\stackrel{a}{\blacktriangleright} \quad u4_{1}^{1}4_{1}^{1}v4_{1}^{1}4_{1}^{1}p4_{0}^{1}4_{0}^{1} \quad (1) \\ \stackrel{b}{\checkmark} \quad u4_{0}^{2}4_{0}^{2}v4_{0}^{2}4_{0}^{2}p4_{0}^{1}4_{0}^{1} \quad (2)$
 - $\begin{array}{c} u4_{1}^{1}4_{1}^{1} v4_{1}^{1}4_{1}^{1} p3_{0}^{1}3_{0}^{1} \\ u4_{0}^{2}4_{0}^{2} v4_{0}^{2}4_{0}^{2} p3_{0}^{1}3_{0}^{1} \end{array}$
 - $\begin{array}{ccc} u4_{0}^{2}4_{0}^{2} v4_{0}^{2}4_{0}^{2} p3_{0}^{1}3_{0}^{1} & (2) \\ u4_{1}^{1}4_{1}^{1} v4_{1}^{1}4_{1}^{1} p2_{0}^{1}2_{0}^{1} & (1) \\ u4_{0}^{2}4_{0}^{2} v4_{0}^{2}4_{0}^{2} p2_{0}^{1}2_{0}^{1} & (2) \end{array}$

Introduction O	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
Design of Minimal	Drag Body			
We desig	n a body with	minimal drag		

[Pironneau, 1973; 1974; Mohammadi & Pironneau, 2010]

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000	•0	000	00
Design of Minimal	Drag Body			
We desig	gn a body with	minimal drag		

Aim

Design boundary γ of body with area A_0 travelling at constant speed U to minimize the drag D

Introduction O	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
Design of Minima	l Drag Body			
We desig	gn a body with	minimal drag		

Aim

Design boundary γ of body with area A_0 travelling at constant speed U to minimize the drag D

Optimization Problem

$\min_{\gamma(oldsymbol{ar{x}}_b)}$	c =	$D + \epsilon R$	drag objective
s. t.	$Area \geq$	A_0	area constraint
linear design constraints	$oldsymbol{L}_{-}(oldsymbol{ar{x}}_{b}) \leq$	$oldsymbol{L}(oldsymbol{ar{x}}_b) \leq oldsymbol{L}$	$L_+(ar{m{x}}_b)$
governing equations	MU =	F	

$$D = \int_{\boldsymbol{\gamma}} \left(-p\boldsymbol{I} + \mu \left(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T \right) \right) \boldsymbol{n} \, \mathrm{ds} \cdot \boldsymbol{e}_u$$

[Pironneau, 1973; 1974; Mohammadi & Pironneau, 2010]

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
		•O		
Design of Minimal	Drag Body			
	1 1 1 1 1 1 1	and the second second second		

We design a body with minimal drag

Aim

Design boundary γ of body with area A_0 travelling at constant speed U to minimize the drag D

Optimization Problem

$\min_{\gamma(oldsymbol{ar{x}}_b)}$	c = D +	ϵR objective
s. t.	$Area \geq A_0$	area constraint
linear design constraints	$oldsymbol{L}_{-}(oldsymbol{ar{x}}_{b}) \leq oldsymbol{L}(oldsymbol{ar{x}}_{b})$	$(b) \leq oldsymbol{L}_+(oldsymbol{ar{x}}_b)$
governing equations	MU = F	

$$D = \int_{\boldsymbol{\gamma}} \left(-p\boldsymbol{I} + \mu \left(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T \right) \right) \boldsymbol{n} \, \mathrm{ds} \cdot \boldsymbol{e}_u$$

[Pironneau, 1973; 1974; Mohammadi & Pironneau, 2010]

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
		•0		
Design of Minimal	Drag Body			
14/ 1	1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·		

We design a body with minimal drag

Aim

Design boundary γ of body with area A_0 travelling at constant speed U to minimize the drag D

Optimization Problem

c = D +	ϵR objective
$Area \geq A_0$	area constraint
$oldsymbol{L}_{-}(oldsymbol{ar{x}}_b) \leq oldsymbol{L}(oldsymbol{ar{x}}_b)$	$(b) \leq oldsymbol{L}_+(oldsymbol{ar{x}}_b)$
MU = F	
	c = D + Area $\geq A_0$ $oldsymbol{L}(oldsymbol{ar{x}}_b) \leq oldsymbol{L}(oldsymbol{ar{x}}_b)$ $oldsymbol{M}oldsymbol{U} = oldsymbol{F}$

$$D = \int_{\boldsymbol{\gamma}} \left(-p\boldsymbol{I} + \mu \left(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T \right) \right) \boldsymbol{n} \, \mathrm{ds} \cdot \boldsymbol{e}_u$$

[Pironneau, 1973; 1974; Mohammadi & Pironneau, 2010]

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
		00		
Design of Minimal Dra	ng Body			

The optimal shape is longer and more slender for higher speeds

Flow before optimization (U=1)

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
		00		
Design of Minimal Dra	g Body			

The optimal shape is longer and more slender for higher speeds

Optimal shapes for different speeds

Flow before optimization (U=1)

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
		00		
Design of Minimal Dra	g Body			

The optimal shape is longer and more slender for higher speeds

Optimal shapes for different speeds

Flow before optimization (U=1)

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
		00		
Design of Minimal Dra	g Body			

Optimal shapes for different speeds

Flow before optimization (U=1)

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
		00		
Design of Minimal Dra	g Body			

Optimal shapes for different speeds

Flow before optimization (U=1)

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions	
		00			
Design of Minimal Drag Body					

Optimal shapes for different speeds

Flow before optimization (U=1)

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
		00		
Design of Minimal Dra	g Body			

Optimal shapes for different speeds

Flow before optimization (U=1)

Flow after optimization (U=100)

Note: low Reynolds numbers

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions	
			00		
Introduction and Governing Equations					

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions	
			000		
Introduction and Governing Equations					

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions	
			000		
Introduction and Governing Equations					

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions	
			•00		
Introduction and Governing Equations					

- p pressure
- *u* velocity
- ho density

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions	
			000		
Introduction and Coverning Equations					

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions		
			000			
Introduction and Coverning Equations						

Flow	Pipe Geometry Acoustics
$\begin{array}{c} \hline \rightarrow \\ \rightarrow \\ \hline \rightarrow \\ \hline \end{array}$	
$\begin{array}{ll}p & {\rm pressure}\\ {\boldsymbol u} & {\rm velocity}\\ \rho & {\rm density}\end{array}$	$\rho \frac{\partial \boldsymbol{u}}{\partial t} + \rho(\boldsymbol{u} \cdot \nabla)\boldsymbol{u} + \nabla p - \mu \nabla^2 \boldsymbol{u} = 0$ $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$
$p = p_0 + p'$ $u = u_0 + u'$ $ ho = ho_0 + ho'$	Background Flow: p_0 , u_0 , ρ_0 Acoustic Disturbance: p' , u' , ρ'

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions	
			000		
Introduction and Coverning Equations					

$\overbrace{\rightarrow}^{\text{Flow}} \xrightarrow{\rightarrow} \xrightarrow{\rightarrow}$	Pipe Geometry Acoustics \leftrightarrow \rightarrow \leftrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow
$\begin{array}{ll} p & {\rm pressure} \\ {\boldsymbol u} & {\rm velocity} \\ \rho & {\rm density} \end{array}$	$\rho \frac{\partial \boldsymbol{u}}{\partial t} + \rho(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla p - \mu \nabla^2 \boldsymbol{u} = 0$ $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$
$p = p_0 + p'$ $u = u_0 + u'$ $ ho = ho_0 + ho'$	1 Background Flow: p_0 , u_0 , ρ_0 \downarrow 2 Acoustic Disturbance: p' , u' , ρ'

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions			
			000				
Introduction and Governing Equations							

Introduction o	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
Results: Flow-Aco	ustic Coupling			
We examine	how the flow affects	the sound in different	nt ducts	

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions			
			000				
Results: Flow-Acoustic Counting							

We examine how the flow affects the sound in different ducts

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions			
	0000	00	000	00			
Results: Flow-Acoustic Coupling							

Acoustic Pressure \tilde{p} $_{\rm [Pa]}$

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions			
			000				
Results: Flow-Acoustic Counting							

Acoustic Pressure \tilde{p} $_{\rm [Pa]}$

Measure of Flow-Acoustic Coupling

$$\langle \delta \tilde{p} \rangle = \frac{\int \int_{\Omega} |\tilde{p}(\boldsymbol{x}) - \tilde{p}(-\boldsymbol{x})| \, \mathrm{d}A}{\int \int_{\Omega} |\tilde{p}(\boldsymbol{x})| \, \mathrm{d}A}$$

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions			
	0000	00	000	00			
Results: Flow-Acoustic Coupling							

Acoustic Pressure \tilde{p} [Pa]

Sound Frequency Sensitivity

$\langle \delta ilde{p} angle = rac{\int \int_{\Omega} | ilde{p}(oldsymbol{x}) - ilde{p}(-oldsymbol{x})| \, \mathrm{d}A}{\int \int_{\Omega} | ilde{p}(oldsymbol{x})| \, \mathrm{d}A}$

Measure of Flow-Acoustic Coupling

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions	
			000		
Results: Flow-Acousti	c Coupling				

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
				•0
Outlook				

Flow Discretizations using Locally Refinable B-splines

Introduction O	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions ●○
Outlook				
Ongoing	work			

Flow Discretizations using Locally Refinable B-splines

Global Refinement

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
				•0
Outlook				

Flow Discretizations using Locally Refinable B-splines

Local Refinement

		_						
		₽	Щ					

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
				•0
Outlook				

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
				•0
Outlook				

Flow Discretizations using Locally Refinable B-splines

Local Refinement

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
	0000	00	000	00
Outlook				
Ongoing	work			

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
				•0
Outlook				

Flow Discretizations using Locally Refinable B-splines

Local Refinement

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
				0
Outlook				
<u> </u>				

Flow Discretizations using Locally Refinable B-splines

Local Refinement

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
				0
Outlook				
<u> </u>				

Flow Discretizations using Locally Refinable B-splines

Local Refinement

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
				•0
Outlook				
Ongoing	work			

Introduction O	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions ●○
Outlook				
Ongoing	work			

Introduction O	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions ●○
Outlook				
Ongoing	work			

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
				•0
Outlook				
Ongoing	work			

Introduction O	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions ●○
Outlook				
Ongoing	work			

Introduction O	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions ●○
Outlook				
Ongoing	work			

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
				•0
Outlook				

Optimization of Parametrizations for Isogeometric Analysis

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
				••
Outlook				

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
				••
Outlook				

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
				••
Outlook				

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions
				••
Outlook				

Introduction O	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions ○●
Summary				
Summarv				

Isogeometric Analysis of Flows

Isogeometric Shape Optimization of Flows

Isogeometric Analysis of Flow Acoustics

Introduction O	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions ○●
Summary				
Summary				

• IGA = FEM (high regularity) + CAD (exact geometry)

Isogeometric Analysis of Flows

Isogeometric Shape Optimization of Flows

Isogeometric Analysis of Flow Acoustics

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions ○●
Summary				
Summarv				

• IGA = FEM (high regularity) + CAD (exact geometry)

Isogeometric Analysis of Flows

• Facilitates High-regularity discretizations of flow variables

Isogeometric Shape Optimization of Flows

Isogeometric Analysis of Flow Acoustics

İ

Introduction O	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions ○●
Summary				
Summarv				

• IGA = FEM (high regularity) + CAD (exact geometry)

Isogeometric Analysis of Flows

• Facilitates High-regularity discretizations of flow variables

Isogeometric Shape Optimization of Flows

Unites design and analysis models through B-splines

Isogeometric Analysis of Flow Acoustics

İ

Introduction O	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions ○●
Summary				
Summarv				

• IGA = FEM (high regularity) + CAD (exact geometry)

Isogeometric Analysis of Flows

• Facilitates High-regularity discretizations of flow variables

Isogeometric Shape Optimization of Flows

• Unites design and analysis models through B-splines

Isogeometric Analysis of Flow Acoustics

• Identifies geometric enhancement of flow-acoustic coupling

Introduction	Navier-Stokes Flow	Shape Optimization	Flow Acoustics	Conclusions

The 3 minute version: http://www.dr.dk/da

Thank You For Your Attention!