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Image Problems
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Forward problem
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Discretization yields a LARGE system of linear equations: Ax = b.
Two important aspects related to this system:
e Use the right boundary conditions. 9

e The matrix A is very ill conditioned — |Do not solve Az = b !
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A Systematic View of Regularization =

We must apply regularization in order to deal with the ill conditioning of the
problem and suppress the influence of the noise in the data.

Tikhonov regularization:

min {||Az — bz + \* || L 3}

The choice of smoothing norm, together with the choice of A, forces x to be

effectively dominated by components in a low-dimensional subspace, determined
by the GSVD of (A, L) — or the SVD of Aif L = 1.

Regularization by projection:

min |Ax — b||2 subject to z € Wy
T

where VW, is a k-dimensional subspace.

This works well if “most of” x°*2<t lies in a low-dimensional subspace; hence
W, must be spanned by desirable basis vectors. Think of Truncated SVD:
Wy = span{vy, va, ..., vk}, v; = right singular vectors.
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The Projection Method

A more practical formulation of regularization by projection.

HE

We are given the matrix Wy = (wy,...,w) € R™** such that Wy, = R(Wj).

We can write the requirement as x = W} y, leading to the formulation

Example:

DCT basis
—

4

Operations
often do not
require Wy

explicitly.

28 = Wy )

y(k) = argmin, ||[(A W)y — b||2.

u Projected problem
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Some Thought on the Basis Vectors

i

The DCT basis — and similar bases that define fast transforms:
e computationally convenient (fast) to work with, but
e may not be well suited for the particular problem.

The SVD basis — or GSVD basis if L # | — gives an “optimal”
basis for representation of the matrix A, but ...

e |t is computationally expensive (slow), and

e it does not involve information about the right-
hand side b.

Is there a basis that is computationally attractive and also

Involves information about both A and b, and thus the given
problem?

— Krylov subspaces!
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Krylov Subspaces

Given a square matrix M and a vector v, the associated Krylov subspace

is defined by
Ki(M,v) = span{v, Mv, M?v,..., M* 1y}, k=1,2,...

with dim(Ky (M, v)) [ k. ﬂ'

Krylov subspaces have many important
applications in scientific computing;:

Ko (M,v) = span{v, Mv}

e solving large systems of linear equations,
e computing eigenvalues,
e solving algebraic Riccati equations, and

e determining controllability in a control system.

They are also important tools for regularization of large-scale discretizations
of inverse problems, which is the topic of this talk.
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More about the Krylov Subspace

The Krylov subspace, defined as
Ki = span{ATb, ATAATH (AT A)2ATD, ... (AT A1 AT,
always adapts itself to the problem at hand! But the “naive” basis,
pi = (ATA)Y 1A /||[(AT A) 1 AT Y|, i=1,2,...
are NOT useful: p;, — v1 as 1 — 0.

Can use modified Gram-Schmidt:

wy < A'Db; wy = wi/[|wil]2
wy — AT Awy; Wy — Wo — Wi Wy Wy ; wa — wa/||wa]|2
ws — AT Aws; w3 < w3 — Wi ws wi;

W3 4 W3 — Wi w3 wo; ws < ws/||ws]|2
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The Krylov Subspace — Example

Normalized basis vectors p; (blue) and orthonormal basis w; (red).
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Same example as before: Krylov subspace solutions
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Regularizing lterations

Can we compute z(®) without forming and storing the Krylov basis in W;?

Apply CG to the normal equations for the least squares problem
min |[|[Az — bl|2 & AT Az = ATy .

This stable stable and efficient implementation of this algorithm is called CGLS,
and it produces a sequence of iterates z(*) which solve

min [|[Axz — b||2 subject to r e Ky .

This use of CGLS to compute regularized solutions in the Krylov subspace Ky
is referred to as regularizing iterations.

Iterative methods are based on multiplications with A and A? (blurring).

How come repeated blurings can lead to reconstruction?

— CGLS constructs a polynomial approximation to AT = (AT A)~1AT.
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The CGLS Algorithm

10

—_—

2(0) = starting vector (e.g., zero)
(0 — b 420

— Initialization

d0) — AT (0)

for k=1,2,...
i = | ATr=D 2/ Ad%D) |
(k) = g(k=1) 4 5, d(k—1)
rk) = p(k=1) _ 5, Adk71)
B = AT B3/ ATr* T3
dF) = ATy 1 3, q(F—1)

end f

Mult. with AT  Mult. with A
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The CGLS Polynomials

CGLS implicitly constructs a polynomial P, such that
®) = P (AT A)ATD |

But how is P constructed? Consider the residual

r = - A2 = (I-APL(ATA)AT) b
2
Ir ™15 = [I(7 - BPu(x)z) U]
= Z 1 — 0 Py(o ))2 (ul b)* =
=1
To minimize residual norm ||*)||,: |
0.8f
— make Qg(0?) small where (ulb)? is large 06/
0.4}
— force Qg (0?) to have roots 0-5» N N
near o; that corresp. to large (ul'b)?. 02t . . 05
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Semi-Convergence

During the first iterations, the Krylov subspace IC; captures the

“important” information in the noisy right-hand side b.

e In this phase, the CGLS iterate z(¥) approaches the exact solution.

At later stages, the Krylov subspace K starts to capture undesired

noise components in b.
e Now the CGLS iterate (®) diverges from the exact solution and

approach the undesired solution A'd to the least squares problem.

The iteration number k£ (= the dimension of the Krylov subspace Ky)

plays the role of the regularization parameter.

This behavior is called semi-convergence.
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lllustration of Semi-Convergence

/ x(4)

2(0)
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lllustration of Semi-Convergence
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Recall this illustration:
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The "ideal” behavior of the error || x® — x®act ||, and the associated L-curve:

) Error history

10

10

10

14 P. C. Hansen — Krylov Subspace Methods

L-curve
_ 10°| I
1=
>
101, —————— .,
10 10 10°
1AX9 - b,

DTU Compute — September 2013



Yet Another Krylov Subspace Method =

An ongoing project in HD-Tomo right now (with Yigiu & Henrik).

If certain components (or features) are missing from the Krylov subspace, then
it makes good sense to augment the subspace with these components.

Augmented RRGMRES does precisely that:

Sy, = span{ws, ..., w,} + span{Ab, A%b, A%b, ..., AFb}.

- RRGMRES Aug-RRGMRES
Example: deriv2. 0.1 0.1
All vectors in the 0.08;
Krylov subspace 0.06!
— 0 at the ends.

0.04}
w, = (1,1,...,1)T

: 0.02 :

w, = (1,2,...,n)7T 0 500 1000 0 500 1000
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