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Image Problems 

Forward problem 

Discretization yields a LARGE system of linear equations: A x = b.

Two important aspects related to this system:

² Use the right boundary conditions.

² The matrix A is very ill conditioned ! Do not solve A x = b !
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A Systematic View of Regularization 
We must apply regularization in order to deal with the ill conditioning of the
problem and suppress the in°uence of the noise in the data.

Tikhonov regularization:

min
x

©
kA x¡ bk22 + ¸2 kL xk22

ª

The choice of smoothing norm, together with the choice of ¸, forces x to be
e®ectively dominated by components in a low-dimensional subspace, determined
by the GSVD of (A; L) { or the SVD of A if L = I.

Regularization by projection:

min
x
kA x¡ bk2 subject to x 2 Wk

where Wk is a k-dimensional subspace.

This works well if \most of" xexact lies in a low-dimensional subspace; hence
Wk must be spanned by desirable basis vectors. Think of Truncated SVD:
Wk = spanfv1; v2; : : : ; vkg, vi = right singular vectors.
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The Projection Method 
A more practical formulation of regularization by projection.

We are given the matrix Wk = (w1; : : : ; wk) 2 Rn£k such that Wk = R(Wk).

We can write the requirement as x = Wk y, leading to the formulation

x(k) = Wk y(k); y(k) = argminy k(A Wk) y ¡ bk2:

Projected problem 
Example: 
DCT basis 

Operations
often do not
require Wk

explicitly.
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Some Thought on the Basis Vectors 

The DCT basis – and similar bases that define fast transforms: 
•   computationally convenient (fast) to work with, but 
•   may not be well suited for the particular problem. 

The SVD basis – or GSVD basis if L ≠ I – gives an “optimal” 
basis for representation of the matrix A, but ... 

•   it is computationally expensive (slow), and 
•   it does not involve information about the right- 
     hand side b. 

Is there a basis that is computationally attractive and also 
involves information about both A and b, and thus the given 
problem? 
    →   Krylov subspaces! 
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Krylov Subspaces 
Given a square matrix M and a vector v, the associated Krylov subspace
is de¯ned by

Kk(M; v) ´ spanfv; Mv; M 2v; : : : ; Mk¡1vg; k = 1; 2; : : :

with dim(Kk(M; v)) · k.
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K2(M; v) = spanfv; Mvg

v

Mv

They are also important tools for regularization of large-scale discretizations
of inverse problems, which is the topic of this talk.

Krylov subspaces have many important
applications in scienti¯c computing:

² solving large systems of linear equations,

² computing eigenvalues,

² solving algebraic Riccati equations, and

² determining controllability in a control system.
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More about the Krylov Subspace 
The Krylov subspace, de¯ned as

Kk ´ spanfAT b; ATA AT b; (ATA)2AT b; : : : ; (ATA)k¡1AT bg;

always adapts itself to the problem at hand! But the \naive" basis,

pi = (ATA)i¡1AT b = k(ATA)i¡1AT bk2; i = 1; 2; : : :

are NOT useful: pi ! v1 as i !1.

Can use modi¯ed Gram-Schmidt:

w1 Ã AT b; w1 Ã w1=kw1k2
w2 Ã ATA w1; w2 Ã w2 ¡ wT

1 w2 w1; w2 Ã w2=kw2k2
w3 Ã ATA w2; w3 Ã w3 ¡ wT

1 w3 w1;

w3 Ã w3 ¡ wT
2 w3 w2; w3 Ã w3=kw3k2
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The Krylov Subspace – Example 
Normalized basis vectors pi (blue) and orthonormal basis wi (red).

Same example as before: Krylov subspace solutions 
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Regularizing Iterations 

Can we compute x(k) without forming and storing the Krylov basis in Wk?

Apply CG to the normal equations for the least squares problem

min kA x¡ bk2 , ATA x = AT b :

This stable stable and e±cient implementation of this algorithm is called CGLS,
and it produces a sequence of iterates x(k) which solve

min kA x¡ bk2 subject to x 2 Kk :

This use of CGLS to compute regularized solutions in the Krylov subspace Kk

is referred to as regularizing iterations.

! CGLS constructs a polynomial approximation to Ay = (ATA)¡1AT .

Iterative methods are based on multiplications with A and AT (blurring).

How come repeated blurings can lead to reconstruction?
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The CGLS Algorithm 

x(0) = starting vector (e.g., zero)

r(0) = b ¡A x(0)

d(0) = AT r(0)

for k = 1; 2; : : :

¹®k = kAT r(k¡1)k22=kA d(k¡1)k22
x(k) = x(k¡1) + ¹®k d(k¡1)

r(k) = r(k¡1) ¡ ¹®k A d(k¡1)

¹̄
k = kAT r(k)k22=kAT r(k¡1)k22

d(k) = AT r(k) + ¹̄
k d(k¡1)

end

Initialization 

Mult. with A Mult. with AT 
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The CGLS Polynomials 

CGLS implicitly constructs a polynomial Pk such that

x(k) = Pk(ATA)AT b :

To minimize residual norm kr(k)k2:

! make Qk(¾
2
i ) small where (uTi b)2 is large

! force Qk(¾
2
i ) to have roots

near ¾i that corresp. to large (uTi b)2.

But how is Pk constructed? Consider the residual

r(k) = b¡A x(k) =
¡
I ¡APk(ATA) AT

¢
b

kr(k)k22 =
°°¡I ¡ §Pk(§2)§

¢
UT b

°°2

2

=
nX

i=1

¡
1¡ ¾2

iPk(¾2
i )
¢2

(uTi b)2 =
nX

i=1

Qk(¾
2
i )(u

T
i b)2
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Semi-Convergence 

During the ¯rst iterations, the Krylov subspace Kk captures the

\important" information in the noisy right-hand side b.

² In this phase, the CGLS iterate x(k) approaches the exact solution.

At later stages, the Krylov subspace Kk starts to capture undesired

noise components in b.

² Now the CGLS iterate x(k) diverges from the exact solution and

approach the undesired solution Ayb to the least squares problem.

The iteration number k (= the dimension of the Krylov subspace Kk)

plays the role of the regularization parameter.

This behavior is called semi-convergence.
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Illustration of Semi-Convergence 
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Illustration of Semi-Convergence 

Recall this illustration: 

The ”ideal” behavior of the error || x(k) – xexact ||2 and the associated L-curve: 
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Yet Another Krylov Subspace Method 

If certain components (or features) are missing from the Krylov subspace, then
it makes good sense to augment the subspace with these components.

Augmented RRGMRES does precisely that:

~Sk = spanfw1; : : : ; wpg+ spanfAb; A2b; A3b; : : : ; Akbg:

Example: deriv2. 
 

All vectors in the 
Krylov subspace 
→ 0 at the ends. 
 

w1 = (1,1,...,1)T 

w2 = (1,2,...,n)T 

An ongoing project in HD-Tomo right now (with Yiqiu & Henrik). 
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