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Foreword

It is an exciting time to be in the world of digital design. With the end of Dennard
Scaling and the slowing of Moore’s Law, there has perhaps never been a greater
need for innovation in the field. Semiconductor companies continue to squeeze out
every drop of performance they can, but the cost of these improvements has been
rising drastically. Chisel reduces this cost by improving productivity. If designers
can build more in less time, while amortizing the cost of verification through reuse,
companies can spend less on Non-Recurring Engineering (NRE). In addition, both
students and individual contributors can innovate more easily on their own.

Chisel is unlike most languages in that it is embedded in another programming
language, Scala. Fundamentally, Chisel is a library of classes and functions repre-
senting the primitives necessary to express synchronous, digital circuits. A Chisel
design is really a Scala program that generates a circuit as it executes. To many, this
may seem counterintuitive: “Why not just make Chisel a stand-alone language like
VHDL or SystemVerilog?” My answer to this question is as follows: the software
world has seen a substantial amount of innovation in design methodology in the
past couple of decades. Rather than attempting to adapt these techniques to a new
hardware language, we can simply use a modern programming language and gain
those benefits for free.

A longstanding criticism of Chisel is that it is “difficult to learn.” Much of this
perception is due to the prevalence of large, complex designs created by experts to
solve their own research or commercial needs. When learning a popular language
like C++, one does not start by reading the source code of GCC. Rather, there are a
plethora of courses, textbooks, and other learning materials that cater toward new-
comers. In Digital Design with Chisel, Martin has created an important resource for
anyone who wishes to learn Chisel.

Martin is an experienced educator, and it shows in the organization of this book.
Starting with installation and primitives, he builds the reader’s understanding like a
building, brick-by-brick. The included exercises are the mortar that solidifies under-
standing, ensuring that each concept sets in the reader’s mind. The book culminates
with hardware generators like a roof giving the rest of the structure purpose. At
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the end, the reader is left with the knowledge to build a simple, yet useful design: a
RISC processor.

In Digital Design with Chisel, Martin has laid a strong foundation for productive
digital design. What you build with it is up to you.

Jack Koenig
Chisel and FIRRTL Maintainer
Staff Engineer, SiFive
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Preface

This book is an introduction to digital design with the focus on using the hardware
construction language Chisel. Chisel brings advances from software engineering,
such as object-orientated and functional languages, into digital design.

This book addresses hardware designers and software engineers. Hardware de-
signers, with knowledge of Verilog or VHDL, can upgrade their productivity with
a modern language for their next ASIC or FPGA design. Software engineers,
with knowledge of object-oriented and functional programming, can leverage their
knowledge to program hardware, for example, FPGA accelerators executing in the
cloud.

The approach of this book is to present small to medium-sized typical hardware
components to explore digital design with Chisel.

Foreword for the Second Edition

As Chisel allows agile hardware design, so does open access and on-demand print-
ing allow agile textbook publishing. Less than 6 months after the first edition of this
book I am able to provide an improved and extended second edition.

Besides minor fixes, the main changes in the second edition are as follows. The
testing section has been extended. The sequential building blocks chapter contains
more example circuits. A new chapter on input processing explains input synchro-
nization, shows how to design a debouncing circuit, and how to filter a noisy input
signal. The example designs chapter has been extended to show different imple-
mentations of a FIFO. The FIFO variations also show how to use type parameters
and inheritance in digital design.

Foreword for the Third Edition

Chisel has been moving forward in the last year, so it is time for a new edition of
the Chisel book. We changed all examples to the latest version of Chisel (3.5.3) and
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the recommended Scala version (2.12.13).
With Chisel 3.5 the testing environment PeekPokeTester as part of the iotesters

package has been deprecated. Therefore, we have changed the testing description to
the new ChiselTest framework. As there are still many Chisel designs available that
use the PeekPokeTester, we have moved the description for it into the appendix.

One of the fascinating aspects of the Chisel/Scala/Java environment is that we can
piggyback on the available infrastructure to distribute open-source libraries. We can
publish hardware components on Maven as simply as any other open-source Java
library. Publishing on Maven means that a 3rd party component can be integrated
into the compile flow with a single reference in the build.sbt configuration. This
is the same process as how you include the chisel library for your design. We have
added a section on how to publish a Chisel design on Maven Central.

We have improved the explanation of components with a simpler example.
Hardware generators are written in Scala. Therefore, we have added a short

section on Scala. We have extended the hardware generator chapter with a section
on using functional programing to write generators.

The appendix has been extended with a list of reserved keywords and a list of
acronyms.

Hans Jakob Damsgaard has contributed the description on how to use external
components, as so called black boxes, and how to use memories for clock domain
crossing (multi-clock memories).

Foreword for the Fourth Edition

For the fourth edition we have switched to the actual Chisel version 3.5.4. We
have added arbiter, priority encoder, and comparator to the Chapter of combina-
tional building blocks. We have extended the hardware generation chapter with
more functional examples, including building a fair arbitration tree out of a simple
2 to 1 arbitration circuits. We have added a new chapter in interconnect, bus in-
terfaces, and how to connect an IO device as a memory mapped device. We have
started a new chapter on debugging, testing and verification. The plan is to extend
the chapter on this important topic in the next edition. We have extended the proces-
sor chapter with a more gentle introduction of a microprocessor, including a figure
of the datapath.
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Translations

This book has been translated to Chinese, Japanese, and Vietnamese. All transla-
tions are available as free PDF from the books web page. I would like to thank
Yuda Wang, Qiwei Sun, and Yun Chen for the Chinese translation; Seiji Munetoh,
Masatoshi Tanabata, and Takaaki Hagino for the Japanese translation; and VieLe
Duc Hung for the Vietnamese translation. If you are interested to translate this book
into another language, feel free to do it and publish it under the same license. Please
contact me then, so I can point to your translation.
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1 Introduction

This book is an introduction to digital system design using a modern hardware con-
struction language, Chisel [5]. In this book, we focus on a higher abstraction level
than usual in digital design books, to enable you to build more complex, interacting
digital systems in a shorter time.

This book and Chisel are targeting two groups of developers: (1) hardware de-
signers and (2) software programmers. Hardware designers who are fluent in VHDL
or Verilog and using other languages such as Python, Java, or Tcl to generate hard-
ware can move to a single hardware construction language where hardware gen-
eration is part of the language. Software programmers may become interested in
hardware design, e.g., as future chips from Intel will include programmable hard-
ware to speed up programs. It is perfectly fine to use Chisel as your first hardware
description language.

Chisel brings advances in software engineering, such as object-orientated and
functional programming, into digital design. Chisel does not only allow to express
hardware at the register-transfer level but allows you to write hardware generators.

Hardware is now commonly described with a hardware description language. The
time of drawing hardware components, even with CAD tools, is over. Some high-
level schematics can give an overview of the system but are not intended to describe
the system. The two most common hardware description languages are Verilog and
VHDL. Both languages are old, contain many legacies, and have a moving line
of what constructs of the language are synthesizable to hardware. Do not get me
wrong: VHDL and Verilog are perfectly able to describe a hardware block that can
be synthesized into an ASIC. For hardware design in Chisel, Verilog serves as an
intermediate language for testing and synthesis.

This book is not a general introduction to digital design and the fundamentals
of it. For an introduction of the basics in digital design, such as how to build a
gate out of CMOS transistors, refer to other digital design books. However, this
book intends to teach digital design at an abstraction level that is current practice
to describe ASICs or designs targeting FPGAs.1 As prerequisites for this book, we

1As the author is more familiar with FPGAs than ASICs as target technology, some design optimiza-

1

https://www.chisel-lang.org/
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Field-programmable_gate_array
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assume basic knowledge of Boolean algebra and the binary number system. Further-
more, some programming experience in any programming language is assumed. No
knowledge of Verilog or VHDL is needed. Chisel can be your first programming
language to describe digital hardware. As the build process in the examples is based
on sbt and make, basic knowledge of the command-line interface (CLI, also called
terminal or Unix shell) will be helpful.

Chisel itself is not a big language. The basic constructs fit on one page and can
be learned within a few days. Therefore, this book is not a big book, as well. Chisel
is for sure smaller than VHDL and Verilog, which carry many legacies. The power
of Chisel comes from the embedding of Chisel within Scala, which itself in an
expressive language. Chisel inherits the feature from Scala being “a language that
grows on you” [22]. However, Scala is not the topic of this book. We provide a
short section on Scala for hardware designers. The textbook by Odersky et al. [22]
provides a general introduction to Scala. This book is a tutorial in digital design
and the Chisel language; it is not a Chisel language reference, nor is it a book on
complete chip design.

All code examples shown in this book are extracted from complete programs that
have been compiled and tested. Therefore, the code shall not contain any syntax
errors. The code examples are available from the GitHub repository of this book.
Besides showing Chisel code, we have also tried to show useful designs and princi-
ples of good hardware description style.

This book is optimized for reading on a laptop or tablet (e.g., an iPad). We include
links to further reading in the running text, mostly to Wikipedia articles.

1.1 Installing Chisel and FPGA Tools

Chisel is a Scala library, and the easiest way to install Chisel and Scala is with sbt,
the Scala build tool. Scala itself depends on the installation of Java JDK 1.8 (or a
later version). As Oracle has changed the license for Java, it may be easier to install
OpenJDK from AdoptOpenJDK.

More detailed setup instructions can be found in Setup.md from the chisel-lab.
The first lab explains how to open an existing Chisel project in IntelliJ.

tions shown in this book are targeting FPGA technology.
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1.1 INSTALLING CHISEL AND FPGA TOOLS

1.1.1 macOS

Install the Java OpenJDK 8 (or 11) from AdoptOpenJDK. On Mac OS X, with the
packet manager Homebrew, sbt and git can be installed with:

$ brew install sbt git

Install GTKWave and IntelliJ (the community edition). When importing a project,
select the JDK you installed before.

1.1.2 Linux/Ubuntu

Install Java and useful tools in Ubuntu with:

$ sudo apt install openjdk-8-jdk git make gtkwave

For Ubuntu, which is based on Debian, programs are usually installed from a
Debian file (.deb). However, as of the time of this writing, sbt is not available as
a ready to install package. Therefore, the installation process is a little bit more
involved. Follow the instructions from sbt download

1.1.3 Windows

Install the Java OpenJDK (8 or 11) from AdoptOpenJDK. Chisel and Scala can also
be installed and used under Windows. Install GTKWave and IntelliJ (the community
edition). When importing a project, select the JDK you installed before. sbt can
be installed with a Windows installer, see: Installing sbt on Windows. Install a git
client.

1.1.4 FPGA Tools

To build hardware for an FPGA, you need a synthesize tool. The two major FPGA
vendors, Intel2 and AMD,3 provide free versions of their tools that cover small to
medium-sized FPGAs. Those medium-sized FPGAs are large enough to build a
multicore RISC style processors. Intel provides the Quartus Prime Lite Edition and
Xilinx the Vivado Design Suite, WebPACK Edition. Both tools are available for
Windows and Linux, but not for macOS.

With F4PGA it is now possible to use a fully open-source synthesis tool for se-
lected FPGAs.

2former Altera
3former Xilinx
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1.2 Hello World

Each book on a programming language shall start with a minimal example, called
the Hello World example. Following code is the first approach:

object HelloScala extends App{

println("Hello Chisel World!")

}

Compiling and executing this short program with sbt

$ sbt run

leads to the expected output of a Hello World program:

[info] Running HelloScala

Hello Chisel World!

However, is this Chisel? Is this hardware generated to print a string? No, this is plain
Scala code and not a representative Hello World program for a hardware design.

1.3 Chisel Hello World

What is then the equivalent of a Hello World program for a hardware design? The
minimal useful and visible design? A blinking LED is the hardware (or even em-
bedded software) version of Hello World. If a LED blinks, we are ready to solve
bigger problems!

Listing 1.1 shows a blinking LED, described in Chisel. It is not important that you
understand the details of this code example. We will cover those in the following
chapters. Just note that the circuit is usually clocked with a high frequency, e.g., 50
MHz, and we need a counter to derive timing in the Hz range to achieve a visible
blinking. In the above example, we count from 0 up to 25000000-1 and then toggle
the blinking signal (blkReg := ˜blkReg) and restart the counter (cntReg := 0.U).
That hardware then blinks the LED at 1 Hz.

1.4 An IDE for Chisel

This book makes no assumptions about your programming environment or editor
you use. Learning the basics should be easy with just using sbt at the command
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class Hello extends Module {

val io = IO(new Bundle {

val led = Output(UInt(1.W))

})

val CNT_MAX = (50000000 / 2 - 1).U

val cntReg = RegInit(0.U(32.W))

val blkReg = RegInit(0.U(1.W))

cntReg := cntReg + 1.U

when(cntReg === CNT_MAX) {

cntReg := 0.U

blkReg := ˜blkReg

}

io.led := blkReg

}

Listing 1.1: A hardware Hello World in Chisel

line and an editor of your choice. In the tradition of other books, all commands that
you shall type in a shell/terminal/CLI are preceded by a $ character, which you shall
not type in. As an example, here is the Unix ls command, which lists files in the
current folder:

$ ls

That said, an integrated development environment (IDE), where a compiler is
running in the background, can speed up coding. As Chisel is a Scala library, all
IDEs that support Scala are also good IDEs for Chisel. It is possible in IntelliJ and
Eclipse to generate a project from the sbt project configuration in build.sbt.

In IntelliJ you need to install the Scala plugin. Then you can create a new project
from existing sources with: File - New - Project from Existing Sources... and then
select the build.sbt file from the project.

In Eclipse you can create a project via

$ sbt eclipse

and import that project into Eclipse.4

4This function needs the Eclipse plugin for sbt.
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Visual Studio Code is another option for a Chisel IDE. The Scala Metals exten-
sion provides Scala support. On the left bar select Extensions and search for Metals
and install Scala (Metals). To import an sbt based project open the folder with File
- Open.

1.5 Source Access and eBook Features

This book is open source and hosted at GitHub: schoeberl/chisel-book. All Chisel
code examples, shown in this book, are included in the repository. All code shown
in the book passed the compiler and therefore should not contain any syntax errors.
Furthermore, most examples also include a test bench. The code is extracted auto-
matically from that source. We collect larger Chisel examples in the accompanying
repository chisel-examples and in ip-contributions.

If you find an error or typo in the book, a GitHub pull request is the most con-
venient way to incorporate your improvement. You can also provide feedback or
comments for improvements by filing an issue on GitHub or sending a plain, old
school email.

The repository of the book also contains slides in Latex that I use for a 13 week
course on Digital Electronics5 at the Technical University of Denmark. That course
also contains lab exercises in Chisel. If you are teaching digital design with Chisel,
feel free to adapt the slides and lab exercises to your needs. All material is open-
source. To build the book and slides you need a recent version of Latex and the
needed tools for Chisel (sbt and a Java JDK installation). All code is compiled,
tested, extracted, and the Latex compiled with a simple:

$ make

This book is freely available as a PDF eBook and in classical printed form Ama-
zon. The eBook version features links to further resources and Wikipedia entries.
We use Wikipedia entries for background information (e.g., binary number system)
that does not directly fit into this book. We optimized the format of the eBook for
reading on a tablet, such as an iPad.

1.6 Further Reading

Here a list of further reading for digital design and Chisel:
5The course page contains the PDF versions of the slides
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1.6 FURTHER READING

• Digital Design: A Systems Approach, by William J. Dally and R. Curtis Hart-
ing, is a modern textbook on digital design. It is available in two versions:
using Verilog or VHDL as a hardware description language.

The official Chisel documentation and further documents are available online:

• The Chisel home page is the official starting point to download and learn
Chisel.

• The website of the Digital Electronics 2 course at the Technical University
of Denmark contains the slides for a 13 weeks course, based on Chisel. The
source code for the slides is available as part of the source code for this book.
Feel free to adapt them for your teaching needs.

• The schoeberl/chisel-lab GitHub repo contains Chisel exercises for the course
Digital Electronics 2. The exercises also fit well for a selfstudy with this book.

• The empty Chisel project is a good starting point with a very minimal hard-
ware (an adder) and a test. That project is a GitHub template where you can
base your GitHub repository on.

• The Chisel3 Cheat Sheet summarizes the main constructs of Chisel on a single
page.

• Scott Beamer’s course Agile Hardware Design contains advanced Chisel ex-
amples. The lectures include executable source examples and are available as
Jupyter notebooks.

• ChiselTest is in its own repository.

• The Generator Bootcamp is a Chisel course focusing on hardware generators,
as a Jupyter notebook

• The Chisel Tutorial provides a ready setup project containing small exercises
with testers and solutions. However, it is a bit outdated.

• A Chisel Style Guide by Christopher Celio.
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1.7 Exercises

Each chapter ends with a hands-on exercises. For the introduction exercise, we will
use an FPGA board to get one LED blinking.6 As a first step clone (or fork) the
chisel-examples repository from GitHub. The Hello World example is in the folder
hello-world, set up as a minimal project. You can explore the Chisel code of the
blinking LED in src/main/scala/Hello.scala. Compile the blinking LED with
the following steps:

$ git clone https://github.com/schoeberl/chisel-examples.git

$ cd chisel-examples/hello-world/

$ sbt run

After some initial downloading of Chisel components, this will produce the Ver-
ilog file Hello.v. Explore this Verilog file. You will see that it contains two inputs
clock and reset and one output io led. When you compare this Verilog file with
the Chisel module, you will notice that the Chisel module does not contain clock
or reset. Those signals are implicitly generated, and in most designs, it is con-
venient not to need to deal with these low-level details. Chisel provides register
components, and those are connected automatically to clock and reset (if needed).

The next step is to set up an FPGA project file for the synthesize tool, assign the
pins, compile7 the Verilog code, and configure the FPGA with the resulting bitfile.
We cannot provide the details of these steps. Please consult the manual of your Intel
Quartus or AMD Vivado tool. However, the examples repository contains some
ready to use Quartus projects in folder quartus for several popular FPGA boards
(e.g., DE2-115). If the repository contains support for your board, start Quartus,
open the project, compile it by pressing the Play button, and configure the FPGA
board with the Programmer button and one of the LEDs should blink.

Congratulations! You managed to get your first design in Chisel running in
an FPGA!

If the LED is not blinking, check the status of reset. On the DE2-115 configura-
tion, the reset input is connected to SW0.

Now change the blinking frequency to a slower or a faster value and rerun the
build process. Blinking frequencies and also blinking patterns communicate differ-

6If you at the moment have no FPGA board available, continue to read as we will show you a simulation
version at the end of the exercise.

7The real process is more elaborated with following steps: synthesizing the logic, performing place
and route, performing timing analysis, and generating a bitfile. However, for the purpose of this
introduction example we simply call it “compile” your code.
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ent “emotions”. For example, a slow blinking LED signals that everything is ok, a
fast blinking LED signals an alarm state. Explore which frequencies express best
those two different emotions.

As a more challenging extension to the exercise, generate the following blinking
pattern: the LED shall be on for 200 ms every second. For this pattern, you might
decouple the change of the LED blinking from the counter reset. You will need a
second constant where you change the state of the blkReg register. What kind of
emotion does this pattern produce? Is it alarming or more like a sign-of-live signal?

If you do not (yet) have an FPGA board, you can still run the blinking LED
example. You will use the Chisel simulation. To avoid a too long simulation time
change the clock frequency in the Chisel code from 50000000 to 50000. Execute
following instruction to simulate the blinking LED:

$ sbt test

This will execute the tester that runs for one million clock cycles. The blinking
frequency depends on the simulation speed, which depends on the speed of your
computer. Therefore, you might need to experiment a little bit with the assumed
clock frequency to see the simulated blinking LED.
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2 Basic Components

In this section, we introduce the basic components for digital design: combinational
circuits and flip-flops. These essential elements can be combined to build larger,
more interesting circuits.

Digital systems, in general, use binary signals, which means a single bit or signal
can only have one of two possible values. These values are often called 0 and 1.
However, we also use following terms: low/high, false/true, and deasserted/asserted.
These terms mean the same two possible values of a binary signal.

2.1 Chisel Types and Constants

Chisel provides three data types to describe connections, combinational logic, and
registers: Bits, UInt, and SInt. UInt and SInt extend Bits, and all three types
represent a vector of bits. UInt gives this vector of bits the meaning of an unsigned
integer and SInt of a signed integer.1 Chisel uses two’s complement as signed
integer representation. Here is the definition for different types, an 8-bit Bits, an
8-bit unsigned integer, and a 10-bit signed integer:

Bits(8.W)

UInt(8.W)

SInt(10.W)

The width of a vector of bits is defined by a Chisel width type (Width). The fol-
lowing expression casts the Scala integer n to a Chisel width, which we use for the
definition of the Bits vector:

n.W

Bits(n.W)

Constants can be defined by using a Scala integer and converting it to a Chisel type:

1The type Bits in the current version of Chisel is missing operations and therefore not very useful for
user code.
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0.U // defines a UInt constant of 0

-3.S // defines a SInt constant of -3

Constants can also be defined with a width, by using the Chisel width type:

3.U(4.W) // An 4-bit constant of 3

If you find the notation of 3.U and 4.W a little bit funny, consider it as a variant of
an integer constant with a type. This notation is similar to 3L, representing a long
integer constant in C, Java, and Scala.

Possible pitfall: One possible error when defining constants with a dedicated
width is missing the .W specifier for a width. E.g., 1.U(32) will not define a 32-
bit wide constant representing 1. Instead, the expression (32) is interpreted as bit
extraction from position 32, which results in a single bit constant of 0. Probably not
what the original intention of the programmer was.

Chisel benefits from Scala’s type inference and in many places type information
can be left out. The same is also valid for bit widths. In many cases, Chisel will
automatically infer the correct width. Therefore, a Chisel description of hardware
is more concise and better readable than VHDL or Verilog.

For constants defined in other bases than decimal, the constant is defined in a
string with a preceding h for hexadecimal (base 16), o for octal (base 8), and b
for binary (base 2). The following example shows the definition of constant 255 in
different bases. In this example we omit the bit width and Chisel infers the minimum
width to fit the constants in, in this case 8 bits.

"hff".U // hexadecimal representation of 255

"o377".U // octal representation of 255

"b1111_1111".U // binary representation of 255

The above code shows how to use an underscore to group digits in the string that
represents a constant. The underscore is ignored.

Characters to represent text (in ASCII encoding) can also be used as constants in
Chisel:

val aChar = ’A’.U

To represent logic values, Chisel defines the type Bool. Bool can represent a
true or false value. The following code shows the definition of type Bool and the
definition of Bool constants, by converting the Scala Boolean constants true and
false to Chisel Bool constants.
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AND

OR

b
a

c
logic

Figure 2.1: Logic for the expression (a & b) | c. The wires can be a single bit or
multiple bits. The Chisel expression, and the schematics are the same.

Bool()

true.B

false.B

2.2 Combinational Circuits

Chisel uses Boolean algebra operators, as they are defined in C, Java, Scala, and
several other programming languages, to described combinational circuits: & is the
AND operator and | is the OR operator. Following line of code defines a circuit that
combines signals a and b with and gates and combines the result with signal c with
or gates and names it logic.

val logic = (a & b) | c

Figure 2.1 shows the schematic of this combinatorial expression. Note that this
circuit may be for a vector of bits and not only single wires that are combined with
the AND and OR circuits.

In this example, we do not define the type nor the width of signal logic. Both are
inferred from the type and width of the expression. The standard logic operations in
Chisel are:

val and = a & b // bitwise and

val or = a | b // bitwise or

val xor = a ˆ b // bitwise xor

val not = ˜a // bitwise negation

The arithmetic operations use the standard operators:

val add = a + b // addition

val sub = a - b // subtraction
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val neg = -a // negate

val mul = a * b // multiplication

val div = a / b // division

val mod = a % b // modulo operation

The resulting width of the operation is the maximum width of the operators for ad-
dition and subtraction, the sum of the two widths for the multiplication, and usually
the width of the numerator for divide and modulo operations.2

A signal can also first be defined as a Wire of some type. Afterward, we can
assign a value to the wire with the := update operator.

val w = Wire(UInt())

w := a & b

A single bit can be extracted as follows:

val sign = x(31)

A subfield can be extracted from end to start position:

val lowByte = largeWord(7, 0)

Bit fields are concatenated with the ## operator.3

val word = highByte ## lowByte

Table 2.1 shows the full list of operators (see also builtin operators). The Chisel
operator precedence is determined by the evaluation order of the circuit, which fol-
lows the Scala operator precedence. If in doubt, it is always a good practice to use
parentheses.4

Table 2.2 shows various functions defined on and for Chisel data types.

2The exact details are available in the FIRRTL specification.
3Note, that there is a Cat function available that performs the same operation with Cat(highByte,
lowByte).

4The operator precedence in Chisel is a side effect of the hardware elaboration when the tree of hard-
ware nodes is created by executing the Scala operators. The Scala operator precedence is similar but
not identical to Java/C. Verilog has the same operator precedence as C, but VHDL has a different
one. Verilog has precedence ordering for logic operations, but in VHDL those operators have the
same precedence and are evaluated from left to right.
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Operator Description Data types

* / % multiplication, division, modulus UInt, SInt
+ - addition, subtraction UInt, SInt
=== =/= equal, not equal UInt, SInt, returns Bool
> >= < <= comparison UInt, SInt, returns Bool
<< >> shift left, shift right (sign extend on SInt) UInt, SInt
˜ NOT UInt, SInt, Bool
& | ˆ AND, OR, XOR UInt, SInt, Bool
! logical NOT Bool
&& || logical AND, OR Bool

Table 2.1: Chisel defined hardware operators.

Function Description Data types

v.andR v.orR v.xorR AND, OR, XOR reduction UInt, SInt, returns Bool
v(n) extraction of a single bit UInt, SInt
v(end, start) bitfield extraction UInt, SInt
Fill(n, v) bitstring replication, n times UInt, SInt
a ## b bitfield concatenation UInt, SInt
Cat(a, b, ...) bitfield concatenation UInt, SInt

Table 2.2: Chisel defined hardware functions, invoked on v.
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a
y

sel

b

T

F

Figure 2.2: A basic 2:1 multiplexer.

2.2.1 Multiplexer

A multiplexer is a circuit that selects between alternatives. In the most basic form,
it selects between two alternatives. Figure 2.2 shows such a 2:1 multiplexer, or mux
for short. Depending on the value of the select signal (sel) signal y will represent
signal a or signal b.

A multiplexer can be built from logic. However, as multiplexing is such a stan-
dard operation, Chisel provides a multiplexer,

val result = Mux(sel, a, b)

where a is selected when the sel is true.B, otherwise b is selected. The type of
sel is a Chisel Bool; the inputs a and b can be any Chisel base type or aggregate
(bundles or vectors) as long as they are the same type.

With logical and arithmetical operations and a multiplexer, every combinational
circuit can be described. However, Chisel provides further components and control
abstractions for a more elegant description of a combinational circuit, which are
described in a later chapter.

The second basic component needed to describe a digital circuit is a state element,
also called register, which is described next.

2.3 Registers

Chisel provides a register, which is a collection of D flip-flops. The register is im-
plicitly connected to a global clock and is updated on the rising edge. When an ini-
tialization value is provided at the declaration of the register, it uses a synchronous
reset connected to a global reset signal. A register can be any Chisel type that can
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D Q

reset

d

0 q

clock

Figure 2.3: A D flip-flop based register with a synchronous reset to 0.

be represented as a collection of bits. Following code defines an 8-bit register, ini-
tialized with 0 at reset:

val reg = RegInit(0.U(8.W))

An input is connected to the register with the := update operator and the output of
the register can be used just with the name in an expression:

reg := d

val q = reg

A register can also be connected to its input at the definition:

val nextReg = RegNext(d)

Figure 2.3 shows the circuit of our register definition with a clock, a synchronous
reset to 0.U, input d, and output q. The global signals clock and reset are implicitly
connected to each register defined.
A register can also be connected to its input and a constant as initial value at the
definition:

val bothReg = RegNext(d, 0.U)

To distinguish between signals representing combinational logic and registers, a
common practice is to postfix register names with Reg. Another common practice,
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coming from Java and Scala, is to use camelCase for identifier consisting of several
words. The convention is to start functions and variables with a lower case letter
and classes (types), e.g., a Module name, with an upper case letter.

In Chisel you are relative free to name your identifiers. However, use taste and
descriptive names. Furthermore, several words are reserved. They are listed in
Appendix A.

2.3.1 Counting

Counting is a fundamental operation in digital systems. One might count events.
However, more often counting is used to define a time interval. Counting the clock
cycles and triggering an action when the time interval has expired.

A simple approach is counting up to a value. However, in computer science, and
digital design, counting starts at 0. Therefore, if we want to count till 10, we count
from 0 to 9. The following code shows such a counter that counts till 9 and wraps
around to 0 when reaching 9.

val cntReg = RegInit(0.U(8.W))

cntReg := Mux(cntReg === 9.U, 0.U, cntReg + 1.U)

2.4 Structure with Bundle and Vec

Chisel provides two constructs to group related signals: (1) a Bundle and (2) a
Vec. A Bundle groups signals of different types as named fields. A Vec represents
an indexable collection of signals (elements) of the same type. Bundles and Vecs
create new, user defined Chisel types and can be arbitrarily nested.

2.4.1 Bundle

A Chisel Bundle groups several signals. The entire bundle can be referenced as a
whole, or individual fields can be accessed by their name. A Bundle is similar to
a struct in C and SystemVerilog or a record in VHDL. We can define a bundle
(collection of signals) by defining a class that extends Bundle and list the fields as
vals within the constructor block.

class Channel() extends Bundle {
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val data = UInt(32.W)

val valid = Bool()

}

To use a bundle, we create it with new and wrap it into a Wire. The fields are accessed
with the dot notation:

val ch = Wire(new Channel())

ch.data := 123.U

ch.valid := true.B

val b = ch.valid

Dot notation is common in object-oriented languages, where x.y means x is a
reference to an object and y is a field of that object. As Chisel is object-oriented, we
use dot notation to access fields in a bundle. A bundle can also be referenced as a
whole:

val channel = ch

2.4.2 Vec

A Chisel Vec (a vector) represents a collection of Chisel types of the same type.
Each element can be accessed by an index. A Chisel Vec is similar to array data
structures in other programming languages.5

A Vec is used for three different purposes: (1) dynamic addressing in hardware,
which is a multiplexer; (2) a register file, which includes multiplexing the read and
generating the enable signal for the write; (3) parametrization if the number of ports
of a Module. For other collections of things, being it hardware elements or other
generator data, it is better to use the Scala collection Seq.

Combinational Vec

A Vec is created by calling the constructor with two parameters: the number of
elements and the type of the elements. A combinational Vec needs to be wrapped
into a Wire

val v = Wire(Vec(3, UInt(4.W)))

5The name Array is already used in Scala.
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x

muxOut

select

y

0

1

z 2

Figure 2.4: A vector wrapped in a Wire is just a mulitplexer.

Individual elements are accessed with (index). A vector wrapped into a Wire is just
a multiplexer.

v(0) := 1.U

v(1) := 3.U

v(2) := 5.U

val index = 1.U(2.W)

val a = v(index)

Here is another example of using Vec as a multiplexer. The three inputs are con-
nected to the three wires x, y, and z. The select wire selects which input is used
and connects it to muxOut.

val vec = Wire(Vec(3, UInt(8.W)))

vec(0) := x

vec(1) := y

vec(2) := z

val muxOut = vec(select)

Figure 2.4 shows the resulting schematic of the above code snippet.
Similar to using a WireDefault, we can set default values of a Vec with VecInit.

The following code represents 3:1 multiplexer with three constant defaults. Note,
that we specify the size (3 bits) of the UInt data types with the first constant. With
the condition (cond) we can overwrite those default values. This overwrite hardware
itself consists of three 2:1 multiplexers. The last line selects one of the three inputs
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of the defVecmultiplexer. Note, that VecInit already returns a Chisel hardware and
we do not need to wrap it into a Wire.6

val defVec = VecInit(1.U(3.W), 2.U, 3.U)

when (cond) {

defVec(0) := 4.U

defVec(1) := 5.U

defVec(2) := 6.U

}

val vecOut = defVec(sel)

It is not only possible to set initial constants (like in WireDefault) for the Vec
input, but we can also connect signals (wires) with VecInit to the inputs of the Vec.
The following example connects the wires d, e, and f to the three inputs of the Vec.

val defVecSig = VecInit(d, e, f)

val vecOutSig = defVecSig(sel)

Register Vec

We can also wrap a Vec into a register to define an array of registers. Following code
shows a vector of three registers.

val regVec = Reg(Vec(3, UInt(8.W)))

val dout = regVec(rdIdx)

regVec(wrIdx) := din

Figure 2.5 shows the schematic of that circuit. It contains three registers. The read
index (rdIdx) selects the multiplexer connected to the output of the three registers.
The output signal is dout The write index (wrIdx) selects which register will be
written with the data from din. wrIdx is driving a decoder which selects one of the
three enable signals of the registers.

Following example defines a register file for a processor; 32 registers each 32-bits
wide, as for a classic 32-bit RISC processor, like the 32-bit version of RISC-V.

val registerFile = Reg(Vec(32, UInt(32.W)))

6This is different from an plain Vec that needs to be wrapped into a Wire. We could wrap the VecInit
into a WireDefault, but this uncommon coding style.
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Figure 2.5: A vector of registers.

An element of that register file is accessed with an index and used as a normal
register.

registerFile(index) := dIn

val dOut = registerFile(index)

A register of a vector can also be initialized. This is then the value that the register
is reset to. To initialize the register file, we use A VecInit with the constants for
reset, wrapped into a RegInit. The input of the three registers are then connected to
wires a, b, and c.

val initReg = RegInit(VecInit(0.U(3.W), 1.U, 2.U))

val resetVal = initReg(sel)

initReg(0) := d

initReg(1) := e

initReg(2) := f
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If we want to reset all elements of a large register file to the same value (probably
0), we can use a Sala sequence Seq. VecInit can be constructed with a sequence
containing Chisel types. Seq contains a creation function fill to initialize a se-
quence with identical values. The following code constructs a register file contain-
ing 32 registers, each 32-bit wide and reset to 0:

val resetRegFile =

RegInit(VecInit(Seq.fill(32)(0.U(32.W))))

val rdRegFile = resetRegFile(sel)

Combining Bundle and Vec

We can freely mix bundles and vectors. When creating a vector with a bundle type,
we need to pass a prototype for the vector fields. Using our Channel, which we
defined above, we can create a vector of channels with:

val vecBundle = Wire(Vec(8, new Channel()))

A bundle may as well contain a vector:

class BundleVec extends Bundle {

val field = UInt(8.W)

val vector = Vec(4,UInt(8.W))

}

When we want a register of a bundle type that needs a reset value, we first create a
Wire of that bundle, set the individual fields as needed, and then passing this bundle
to a RegInit:

val initVal = Wire(new Channel())

initVal.data := 0.U

initVal.valid := false.B

val channelReg = RegInit(initVal)

With combinations of Bundles and Vecs we can define our own data structures,
which are powerful abstractions.

Possible pitfall: In Chisel partial assignments are not allowed, although they
have been allowed in Chisel 2 and are possible in Verilog and VHDL. Following
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code will generate an error during circuit elaboration:

val assignWord = Wire(UInt(16.W))

assignWord(7, 0) := lowByte

assignWord(15, 8) := highByte

The argument is that it would be better to use bundles for this use case. One possible
workaround for this issue is to create a (local) bundle, create a Wire from that bundle,
assign the individual fields, casting that bundle with asUInt() to a UInt, and assigne
this value to the target UInt. Note, that we define here a Bundle as a local data
structure as we need it only locally.

val assignWord = Wire(UInt(16.W))

class Split extends Bundle {

val high = UInt(8.W)

val low = UInt(8.W)

}

val split = Wire(new Split())

split.low := lowByte

split.high := highByte

assignWord := split.asUInt()

The small drawback of this solution is that one needs to know in which orders bundle
fields are merged to a singe bit vector. Another option is to use a vector of Bool to
individually assign values and then convert it to a UInt.

val vecResult = Wire(Vec(4, Bool()))

// example assignments

vecResult(0) := data(0)

vecResult(1) := data(1)

vecResult(2) := data(2)

vecResult(3) := data(3)

val uintResult = vecResult.asUInt
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2.5 Wire, Reg, and IO

UInt, SInt, and Bits are Chisel types, which themself do not represent hardware.
Only wrapping them into a Wire, Reg, or IO generates hardware. A Wire represents
combinational logic, a Reg represents a register (collection of D flip-flops), and an
IO represents a connection of a module (like pins of a concrete integrated circuit
(IC)). Wire, Reg, or IO can be wrapped over any Chisel type, also a Bundle or a Vec.

You give a hardware component a name by assigning it to a Scala immutable
variable:7

val number = Wire(UInt())

val reg = Reg(SInt())

You can later assign (or reassign) a value or expression to a Wire, Reg, or IO with
the Chisel operator :=

number := 10.U

reg := value - 3.U

Note the small difference between the Scala assignment operator “=” and the Chisel
operator “:=”. You use Scala’s “=” operator when creating a hardware object (and
giving it a name) but you use Chisel’s “:=” operator when assigning or reassigning
a value to an existing hardware object.

Combinational values can be conditionally assigned, but need to be assigned in
every branch of the condition. Otherwise, one would describe a latch, which the
Chisel compiler will reject. Best practice is to already define a default value at the
creation of the Wire. Therefore, the former code is better rewritten as follows.

val number = WireDefault(10.U(4.W))

Although Chisel infers the needed bit width for signals and registers, it is also a good
practice to specify the intended bit width at the creation of the hardware object. In
most cases it is also good practice to set registers to known initial values on reset:8

val reg = RegInit(0.S(8.W))

7Scala also supports mutable variables with var, but those are of no use when describing hardware in
Chisel

8Leaving the register value undefined on reset may save some load on the reset wire. However, testing
and verification is simplified with known reset values.
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2.6 Chisel Generates Hardware

After seeing some initial Chisel code, it might look similar to classic programming
languages such as Java or C. However, Chisel (or any other hardware description
language) does define hardware components. While in a software program one line
of code after the other is executed, in hardware all lines of code execute in parallel.

It is essential to keep in mind that Chisel code does generate hardware. Try to
imagine, or draw on a sheet of paper, the individual blocks that are generated by
your Chisel circuit description. Each creation of a component adds hardware; each
assignment statement generates gates and/or flip-flops.

More technically, when Chisel executes your code it runs as a Scala program, and
by executing the Chisel statements, it collects the hardware components and con-
nects those nodes. This network of hardware nodes is the hardware, which Chisel
can spill out as Verilog code for ASIC or FPGA synthesis or can be tested with a
Chisel tester. The network of hardware nodes is what is executed fully parallel.

For a software engineer imagine this immense parallelism that you can create in
hardware without needing to partition your application into threads and getting the
locking correct for the communication.

2.7 Exercises

In the introduction you implemented a blinking LED on an FPGA board (from
chisel-examples), which is a reasonable hardware Hello World example. It used
only internal state, a single LED output, and no input. Copy that project into a
new folder and extend it by adding some inputs to the io Bundle with val sw =
Input(UInt(2.W)).

val io = IO(new Bundle {

val sw = Input(UInt(2.W))

val led = Output(UInt(1.W))

})

For those switches, you also need to assign the pins for the FPGA board. You can
find examples of pin assignments in the Quartus project files of the ALU project
(e.g., for the DE2-115 FPGA board).

When you have defined those inputs and the pin assignment, start with a simple
test: drop all blinking logic from the design and connect one switch to the LED
output; compile and configure the FPGA device. Can you switch the LED on an
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off with the switch? If yes, you have now inputs available. If not, you need to
debug your FPGA configuration. The pin assignment can also be done with the
GUI version of the tool.

Now use two switches and implement one of the basic combinational functions,
e.g., AND two switches and show the result on the LED. Change the function. The
next step involves three input switches to implement a multiplexer: one acts as a
select signal, and the other two are the two inputs for the 2:1 multiplexer.

Now you have been able to implement simple combinational functions and test
them in real hardware in an FPGA. As a next step, we will take a first look at how the
build process works to generate an FPGA configuration. Furthermore, we will also
explore a simple testing framework from Chisel, which allows you to test circuits
without configuring an FPGA and toggle switches.
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To get started with more interesting Chisel code we first need to learn how to com-
pile Chisel programs, how to generate Verilog code for execution in an FPGA, and
how to write tests for debugging and to verify that our circuits are correct.

Chisel is written in Scala, so any build process that supports Scala is possible with
a Chisel project. One popular build tool for Scala is sbt, which stands for the Scala
interactive build tool. Besides driving the build and test process, sbt also downloads
the correct version of Scala and the Chisel libraries.

3.1 Building your Project with sbt

The Scala library that represents Chisel and the Chisel testers are automatically
downloaded during the build process from a Maven repository. The libraries are ref-
erenced by build.sbt. It is possible to configure build.sbt with latest.release
to always use the most actual version of Chisel. However, this means on each build
the version is looked up from the Maven repository. This lookup needs an Internet
connection for the build to succeed. Better use a dedicated version of Chisel and all
other Scala libraries in your build.sbt. Maybe sometimes it is also good to be able
to write hardware code and test it without an Internet connection. For example, it is
cool to do hardware design on a plane.

3.1.1 Source Organization

sbt inherits the source convention from the Maven build automation tool. Maven
also organizes repositories of open-source Java libraries.1

Figure 3.1 shows the organization of the source tree of a typical Chisel project.
The root of the project is the project home, which contains build.sbt. It may also
include a Makefile for the build process, a README, and a LICENSE file. Folder
src contains all source code. From there it is split between main, containing the

1That is also the place where you downloaded the Chisel library on your first build: https://
mvnrepository.com/artifact/edu.berkeley.cs/chisel3.
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project

src

main

scala

package

sub-package

test

scala

package

target

generated

Figure 3.1: Source tree of a Chisel project (using sbt)

hardware sources and test containing testers. Chisel inherits from Scala, which
itself inherits from Java, the organization of source in packages. Packages organize
your Chisel code into namespaces. Packages can also contain sub-packages. The
folder target contains the class files and other generated files. I recommend to also
use a folder for generated Verilog files, which is usually call generated.

To use the facility of namespaces in Chisel, you need to declare that a class/mod-
ule is defined in a package, in this example in mypack:

package mypack

import chisel3._

class Abc extends Module {

val io = IO(new Bundle{})

}

Note that in this example we see the import of the chisel3 package to use Chisel
classes.

To use the module Abc in a different context (package name space), the compo-
nents of packet mypack need to be imported. The underscore ( ) acts as wildcard,
meaning that all classes of mypack are imported.

import mypack._

class AbcUser extends Module {
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val io = IO(new Bundle{})

val abc = new Abc()

}

It is also possible to not import all types from mypack, but use the fully qualified
name mypack.Abc to refer to the module Abc in package mypack.

class AbcUser2 extends Module {

val io = IO(new Bundle{})

val abc = new mypack.Abc()

}

It is also possible to import just a single class and create an instance of it:

import mypack.Abc

class AbcUser3 extends Module {

val io = IO(new Bundle{})

val abc = new Abc()

}

3.1.2 Running sbt

A Chisel project can be compiled and executed with a simple sbt command:

$ sbt run

This command will compile all your Chisel code from the source tree and searches
for classes that contain an object that includes a main method, or simpler that ex-
tends App. If there is more than one such object, all objects are listed and one can
be selected. You can also directly specify the object that shall be executed as a
parameter to sbt:

$ sbt "runMain mypacket.MyObject"
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Per default sbt searches only the main part of the source tree and not the test
part.2 To execute tests based in ChiselTest and ScalaTest you can simply run them
with

$ sbt test

If you have a test that does not follow the ChiselTest convention and it contains
a main function, but is placed in the test part of the source tree you can execute it
with following sbt command:

$ sbt "test:runMain mypacket.MyMainTest"

3.1.3 Generating Verilog

To synthesize the Chisel code for an FPGA or ASIC we need to translate Chisel into
a hardware description language that a synthesize tool understands. With Chisel we
can generate a synthesizable Verilog description of the circuit.

To generate the Verilog description, we need an application. A Scala object that
extends App is an application that implicitly generates the main function where the
application starts. The only action of this application is to create a new Hello object
and pass it to the Chisel emitVerilog() function. The following code will generate
the Verilog file Hello.v.

object Hello extends App {

emitVerilog(new Hello())

}

Using the default version of emitVerilog() will put the generated files into the
root folder of our project (where we run the sbt command). To put the generated
files into a subfolder, we need to specify options to emitVerilog(). I recommend to
specify a folder generated, as shown in Figure 3.1. The build options can be set as
a second argument, which is an array of Strings, The following code will generate
the Verilog file Hello.v in the subfolder generated.

object HelloOption extends App {

emitVerilog(new Hello(), Array("--target-dir",

"generated"))

}

2This is a convention form Java/Scala that the test folder contains unit tests and not objects with a main.
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You can also request the Verilog code as a Scala String without writing a file.
You can simply print out the string for testing.

object HelloString extends App {

val s = getVerilogString(new Hello())

println(s)

}

This form of output is popular when showing small Chisel examples in Scastie, a
web based Scala compiler and runtim. See as an example of the Hello World on
Scastie.

3.1.4 Tool Flow

Figure 3.2 shows the tool flow of Chisel. The digital circuit is described in a Chisel
class shown as Hello.scala. The Scala compiler compiles this class, together with
the Chisel and Scala libraries, and generates the Java class Hello.class that can
be executed by a standard Java virtual machine (JVM). Executing this class with
a Chisel driver generates the so-called flexible intermediate representation for RTL
(FIRRTL), an intermediate representation of digital circuits. In our example the file
is Hello.fir. The FIRRTL compiler performs transformations on the circuit.

Treadle is a FIRRTL interpreter to simulate the circuit. Together with the Chisel
tester it can be used to debug and test Chisel circuits. With assertions we can pro-
vide test results. Treadle can also generate waveform files (Hello.vcd) that can be
viewed with a waveform viewer (e.g., the free viewer GTKWave or Modelsim).

One FIRRTL transformation, the Verilog emitter, generates Verilog code for syn-
thesis (Hello.v). A circuit synthesize tool (e.g., Intel Quartus, AMD/Xilinx Vivado,
or an ASIC tool) synthesizes the circuit. In an FPGA design flow, the tool generates
the FPGA bitstream that is used to configure the FPGA, e.g., Hello.bit.

Now that we know the basic structure of a Chisel project and how to compile and
run it with sbt, we can continue with a simple testing framework.

3.2 Testing with Chisel

Tests of hardware designs are usually called test benches. The test bench instantiates
the design under test (DUT), drives input ports, observes output ports, and compares
them with expected values. Chisel provides two testing methods, the ChiselTest in
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Figure 3.2: Tool flow of the Chisel ecosystem.
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package chiseltest and the older PeekPokeTester in package iotesters.3 Here
we describe the ChiselTest method.

One strength of Chisel is that it can use the full power of Scala to write those
test benches. One can, for example, code the expected functionality of the hardware
in a software simulator and compare the simulation of the hardware with the soft-
ware simulation. This method is very efficient when testing an implementation of a
processor [14].

3.2.1 ScalaTest

ScalaTest is testing tool for Scala (and Java). ChiselTest is an extension of ScalaTest.
Therefore, we first explore a simple ScalaTest example. To use it, include the library
in your build.sbt with following line:

libraryDependencies += "org.scalatest" %% "scalatest" %

"3.1.4" % "test"

Tests are usually found in src/test/scala and the entire test suite can be run with:

$ sbt test

A minimal test (a testing hello world) to test a Scala integer addition and a multipli-
cation looks as follows:

import org.scalatest._

import org.scalatest.flatspec.AnyFlatSpec

import org.scalatest.matchers.should.Matchers

class ExampleTest extends AnyFlatSpec with Matchers {

"Integers" should "add" in {

val i = 2

val j = 3

i + j should be (5)

}

"Integers" should "multiply" in {

val a = 3

val b = 4

3iotesters is deprecated since Chisel 3.5. A description how to use the PeekPokeTester can be
found in Appendix C
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a * b should be (12)

}

}

ScalaTest enables simple unit tests that read like an executable specification. The
example above contains two tests and the output of the test run will repeat the spec-
ification and show that both tests passed:

[info] ExampleTest:

[info] Integers

[info] - should add

[info] Integers

[info] - should multiply

[info] ScalaTest

[info] Run completed in 119 milliseconds.

[info] Total number of tests run: 2

[info] Suites: completed 1, aborted 0

[info] Tests: succeeded 2, failed 0, canceled 0, ignored 0, pending 0

[info] All tests passed.

[info] Passed: Total 2, Failed 0, Errors 0, Passed 2

sbt test executes all available tests, which is useful for regression test.4 How-
ever, if you want to run just a single test (suite) you can do this with:

$ sbt "testOnly ExampleTest"

If you misspell the class name, for example, Exampletest, there will be a relatively
silent error message: No tests were executed.

3.2.2 ChiselTest

ChiselTest is the standard testing tool for Chisel modules based on the ScalaTest
tool for Scala and Java, which we can use to run Chisel tests. To use it, include the
chiseltest library in your build.sbt with the following line:

libraryDependencies += "edu.berkeley.cs" %% "chiseltest" %

"0.5.3"

Including ChiselTest this way automatically includes the necessary version of Sca-
laTest. Therefore, you do not need to include a line for the ScalaTest library. To use
ChiselTest, the following packages need to be imported:

4Try sbt test in the repository of this book and you will see more than 80 tests passing.
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import chisel3._

import chiseltest._

import org.scalatest.flatspec.AnyFlatSpec

Testing a circuit contains (at least) two components: the device under test (often
called DUT) and the testing logic, also called a test bench. Tests are started with
sbt test. No object with a main function is needed.

The following code shows our simple design under test. It contains two input
ports (2-bit width) and two output ports, a 2-bit width and a Bool. The circuit does
a bit-wise AND to its inputs a and b and outputs the result on out and tests the two
signals for equality:

class DeviceUnderTest extends Module {

val io = IO(new Bundle {

val a = Input(UInt(2.W))

val b = Input(UInt(2.W))

val out = Output(UInt(2.W))

val equ = Output(Bool())

})

io.out := io.a & io.b

io.equ := io.a === io.b

}

The test bench for this DUT extends AnyFlatSpec with ChiselScalatestTester,
which provides ChiselTest functionality within ScalaTest. The method test() is
invoked with the DUT as parameter and the test code as a function literal.

class SimpleTest extends AnyFlatSpec with

ChiselScalatestTester {

"DUT" should "pass" in {

test(new DeviceUnderTest) { dut =>

dut.io.a.poke(0.U)

dut.io.b.poke(1.U)

dut.clock.step()

println("Result is: " + dut.io.out.peek().toString)

dut.io.a.poke(3.U)

dut.io.b.poke(2.U)

dut.clock.step()

println("Result is: " + dut.io.out.peek().toString)

}
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}

}

The input and output ports of the DUT are accessed with dut.io. You can set val-
ues via a poke on a port, which takes the value as a Chisel type of the input port as
parameter. An output port can be read by invoking peek() on the port, which will re-
turn the value as a Chisel type. The method toString converts that value to a string.
The tester advances the simulation by one clock cycle with dut.clock.step(). For
advancing the simulation by several clock cycles, we can provide a parameter to
step(). We can print the values of the outputs with println().

When you run the test

$ sbt "testOnly SimpleTest"

you will see the results printed to the terminal (besides other information):

...

Result is: UInt<2>(0)

Result is: UInt<2>(2)

[info] SimpleTest:

[info] DUT

[info] - should pass

[info] ScalaTest

...

We see that 0 AND 1 results in 0; 3 AND 2 results in 2. The toString method
also tells us the Chisel type of a 2-bit UInt. Besides manually inspecting printouts,
which is a good starting point, we can also express our expectations in the test
bench itself by invoking expect(value) on the output port and the expected value
as parameter. The following example shows testing with expectations:

class SimpleTestExpect extends AnyFlatSpec with

ChiselScalatestTester {

"DUT" should "pass" in {

test(new DeviceUnderTest) { dut =>

dut.io.a.poke(0.U)

dut.io.b.poke(1.U)

dut.clock.step()

dut.io.out.expect(0.U)

dut.io.a.poke(3.U)

dut.io.b.poke(2.U)
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dut.clock.step()

dut.io.out.expect(2.U)

}

}

}

Executing this test does not print out any values from the hardware, but that all
tests passed as all expect values are correct.

[info] SimpleTestExpect:

[info] DUT

[info] - should pass

[info] ScalaTest

[info] Run completed in 1 second, 85 milliseconds.

[info] Total number of tests run: 1

[info] Suites: completed 1, aborted 0

[info] Tests: succeeded 1, failed 0, canceled 0, ignored 0, pending 0

[info] All tests passed.

[info] Passed: Total 1, Failed 0, Errors 0, Passed 1

A failed test, when either the DUT or the test bench contains an error, produces
an error message describing the difference between the expected and actual value.
In the following, we changed the test bench to expect a 4, which is an error:

[info] SimpleTestExpect:

[info] DUT

[info] - should pass *** FAILED ***

[info] io_out=2 (0x2) did not equal expected=4 (0x4)

(lines in testing.scala: 27) (testing.scala:35)

[info] ScalaTest

[info] Run completed in 1 second, 214 milliseconds.

[info] Total number of tests run: 1

[info] Suites: completed 1, aborted 0

[info] Tests: succeeded 0, failed 1, canceled 0, ignored 0, pending 0

[info] *** 1 TEST FAILED ***

[error] Failed: Total 1, Failed 1, Errors 0, Passed 0

[error] Failed tests:

[error] SimpleTestExpect

The peek() function returns a Chisel type, which would need conversion to be
used as Scala type. To simplify using test values in Scala land, ChiselTest supports
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peekInt() and peekBoolean(). The following test example reads the output with
peekInt(), which returns a Scala integer5 that is used in the assert() statement.
Similar we can read the equ output into a Scala Boolean, directly used in the assert
statement.

class SimpleTestPeek extends AnyFlatSpec with

ChiselScalatestTester {

"DUT" should "pass" in {

test(new DeviceUnderTest) { dut =>

dut.io.a.poke(0.U)

dut.io.b.poke(1.U)

dut.clock.step()

dut.io.out.expect(0.U)

val res = dut.io.out.peekInt()

assert(res == 0)

val equ = dut.io.equ.peekBoolean()

assert(!equ)

}

}

}

This example is a bit too simple to see the benefit of reading values from the DUT
into Scala types. However, with more complex tests, e.g., looping till some value is
true, these functions become useful.

In this section, we described the basic testing facility with Chisel for simple tests.
However, keep in mind that the full power of Scala is available to write testers. This
includes, for example, writing a reference model of your hardware in Scala to test
the DUT against.

3.2.3 Waveforms

Testers, as described above, work well for small designs and for unit testing, as
it is common in software development. A collection of unit tests can also serve
regression testing. However, for debugging more complex designs, one would like
to investigate several signals at once. A classic approach to debug digital designs is
displaying the signals in a waveform. In a waveform the signals are displayed over
time.
Chisel testers can generate a waveform that includes all registers and all IO signals.

5To support arbitrary wide integer values the return value is a Scala BigInt instead of a Scala Int.
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In the following examples we show waveform testers for the DeviceUnderTest from
the former example (the 2-bit AND function). To generate a waveform for a test pass
a definition of writeVcd=1 to the test, as shown in the following sbt command:

sbt "testOnly SimpleTest -- -DwriteVcd=1"

You can view the waveform with the free viewer GTKWave or with ModelSim.
Start GTKWave and select File – Open New Window and navigate to the folder
where the Chisel tester put the .vcd file. Per default the generated files are in
test run dir then the description of the test. Within this folder you should be able
to find DeviceUnderTest.vcd. You can select the signals from the left side and drag
them into the main window. If you want to save a configuration of signals you can
do so with File – Write Save File and load it later with File – Read Save File.

The generation of waveforms can also be initiated by passing the WriteVcdAnnotation
annotation to the test() function. We start with a simple tester that pokes values to
the inputs and advances the clock with step. We do not read any output or compare
it with expect. Instead, we will inspect the generated waveform in the .vcd file.6

class WaveformTest extends AnyFlatSpec with

ChiselScalatestTester {

"Waveform" should "pass" in {

test(new DeviceUnderTest)

.withAnnotations(Seq(WriteVcdAnnotation)) { dut =>

dut.io.a.poke(0.U)

dut.io.b.poke(0.U)

dut.clock.step()

dut.io.a.poke(1.U)

dut.io.b.poke(0.U)

dut.clock.step()

dut.io.a.poke(0.U)

dut.io.b.poke(1.U)

dut.clock.step()

dut.io.a.poke(1.U)

dut.io.b.poke(1.U)

dut.clock.step()

}

}

}

6This is an alternative to use the command line options.
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Explicitly enumerating all possible input values does not scale. Therefore, we
will use some Scala code to drive the DUT. The following tester enumerates all
possible values for the two 2-bit input signals.

class WaveformCounterTest extends AnyFlatSpec with

ChiselScalatestTester {

"WaveformCounter" should "pass" in {

test(new DeviceUnderTest)

.withAnnotations(Seq(WriteVcdAnnotation)) { dut =>

for (a <- 0 until 4) {

for (b <- 0 until 4) {

dut.io.a.poke(a.U)

dut.io.b.poke(b.U)

dut.clock.step()

}

}

}

}

}

and execute it with

$ sbt "testOnly WaveformCounterTest"

3.2.4 printf Debugging

Another form of debugging is the so-called “printf debugging”. The name of this
debugging method comes from simply putting printf statements in C code to print
variables of interest during the execution of the program. This printf debugging is
also available during testing of Chisel circuits. The printing happens at the rising
edge of the clock. A printf statement can be inserted just anywhere in the module
definition, as shown in the printf debugging version of the DUT.

class DeviceUnderTestPrintf extends Module {

val io = IO(new Bundle {

val a = Input(UInt(2.W))

val b = Input(UInt(2.W))

val out = Output(UInt(2.W))

})

io.out := io.a & io.b
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printf("dut: %d %d %d\n", io.a, io.b, io.out)

}

When testing this module with the counter based tester, which iterates over all pos-
sible values, we get following output, verifying that the AND function is correct:

Elaborating design...

Done elaborating.

dut: 0 0 0

dut: 0 1 0

dut: 0 2 0

dut: 0 3 0

dut: 1 0 0

dut: 1 1 1

dut: 1 2 0

dut: 1 3 1

dut: 2 0 0

dut: 2 1 0

dut: 2 2 2

dut: 2 3 2

dut: 3 0 0

dut: 3 1 1

dut: 3 2 2

dut: 3 3 3

dut: 0 0 0

test DeviceUnderTestPrintf Success: 0 tests passed in 18 cycles

in 0,031521 seconds 571,04 Hz

Chisel printf supports C and Scala style formatting.

3.3 Exercises

For this exercise, we will revisit the blinking LED from chisel-examples and explore
Chisel testing.

3.3.1 A Minimal Project

First, let us find out what a minimal Chisel project is. Explore the files in the Hello
World example. The Hello.scala is the single hardware source file. It contains the
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hardware description of the blinking LED (class Hello) and an App that generates
the Verilog code.

Each file starts with the import of Chisel and related packages:

import chisel3._

Then follows the hardware description, as shown in Listing 1.1. To generate the
Verilog description, we need an application. The only action of this application is
to create a new Hello object and pass it to the emitVerilog() function.

object Hello extends App {

emitVerilog(new Hello())

}

Run the generation of the example manually with

$ sbt run

and explore the generated Hello.v with an editor. The generated Verilog code
may not be very readable, but we can find out some details. The file starts with
a module Hello, which is the same name as our Chisel module. We can identify
our LED port as output io led. Pin names are the Chisel names with a prepended
io . Besides our LED pin, the module also contains clock and reset input signals.
Those two signals are added automatically by Chisel.

Furthermore, we can identify the definition of our two registers cntReg and blkReg.
We may also find the reset and update of those registers at the end of the module
definition. Note, that Chisel generates a synchronous reset.

For sbt to be able to fetch the correct Scala compiler and the Chisel library, we
need a build.sbt:

scalaVersion := "2.12.13"

scalacOptions ++= Seq(

"-feature",

"-language:reflectiveCalls",

)

resolvers ++= Seq(

Resolver.sonatypeRepo("releases")

)
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// Chisel 3.5.4

addCompilerPlugin("edu.berkeley.cs" % "chisel3-plugin" %

"3.5.4" cross CrossVersion.full)

libraryDependencies += "edu.berkeley.cs" %% "chisel3" %

"3.5.4"

libraryDependencies += "edu.berkeley.cs" %% "chiseltest" %

"0.5.4"

Note that in this example, we have a concrete Chisel version number to avoid check-
ing on each run for a new version (which will fail if we are not connected to the
Internet, e.g., when doing hardware design during a flight). Additionally, we have
added the Chisel3 compiler plugin which is recommended for easier support of fu-
ture features. Change the build.sbt configuration to use the latest Chisel version
by changing the library dependency to

libraryDependencies += "edu.berkeley.cs" %% "chisel3" %

"latest.release"

and rerun the build with sbt. Is there a newer version of Chisel available and will it
be automatically downloaded?

For convenience, the project also contains a Makefile. It just contains the sbt
command, so we do not need to remember it and can generate the Verilog code
with:

make

Besides a README file, the example project also contains project files for different
FPGA boards. E.g., in quartus/altde2-115 you can find the two project files to define
a Quartus project for the DE2-115 board. The main definitions (source files, device,
pin assignments) can be found in a plain text file hello.qsf. Explore the file and find
out which pins are connected to which signals. If you need to adapt the project to a
different board, this is where the changes are applied. If you have Quartus installed,
open that project, compile with the green Play button, and then configure the FPGA.

Note that the Hello World is a minimal Chisel project. More realistic projects
have their source files organized in packages and contain testers.

3.3.2 Using a GitHub Template

The chisel-empty project is a minimal Chisel project that contains an adder circuit,
a tester, and a Makefile to generate Verilog code, test the circuit, and cleanup the
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repository. That project is a GitHub template, which means you can simply start a
new GitHub repository using this template.

Navigate to that GitHub repository and press the button “Use this template” to
create your GitHub project. Then clone your new project locally and explore the
Makefile. Generate Verilog code with:

make

Test the adder with:

make test

Remove all generated files with:

make clean

You can also execute these tasks by running the sbt and git commands directly.

3.3.3 A Testing Exercise

In the last chapter’s exercise, you have extended the blinking LED example with
some input to build an AND gate and a multiplexer and run this hardware in an
FPGA. We will now use this example and test the functionality with a Chisel tester
to automate testing and also to be independent of an FPGA board. Use your designs
from the previous chapter and add a Chisel tester to test the functionality. Try to
enumerate all possible inputs and test the output with expect().

Testing within Chisel can speed up the debugging of your design. However, it is
always a good idea to synthesize your design for an FPGA and run tests with the
FPGA. There you can perform a reality check on the size of your design (usually
in LUTs and flip-flops) and your performance of your design in maximum clocking
frequency. As a reference point, a textbook style pipelined RISC processor may
consume about 3000 4-bit LUTs and may run around 100 MHz in a low-cost FPGA
(Intel Cyclone or Xilinx Spartan).
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A larger digital design is structured into a set of components, often in a hierarchical
way. Each component has an interface with input and output wires, sometimes
called ports. These are similar to input and output pins on an integrated circuit (IC).
Components are connected by wiring up the inputs and outputs. Components may
contain subcomponents to build the hierarchy. The outermost component, which is
connected to physical pins on a chip, is called the top-level component.

In this chapter, we will explain how components are described in Chisel and
provide several simple examples of components. Note that the components in this
section are very small (e.g., just an adder), just to show the principles: how to
define, instantiate, and connect components. Real-world examples shall contain
more “meat” than just a single line for an adder.

4.1 Components in Chisel are Modules

Hardware components are called modules in Chisel. Each module extends the class
Module and contains a field io for the interface. The interface is defined by a Bundle
that is wrapped into a call to IO(). The Bundle contains fields to represent input and
output ports of the module. The direction is given by wrapping a field into either a
call to Input() or Output(). The direction is from the view of the component itself.

We show an example design where we build a counter out of two components: an
adder and a register.

Figure 4.1 shows the schematic of the adder component. It has two inputs (a and
b) and one output (y). Listing 4.1 shows the Chisel definition of the adder. The input
and output signals are accessed with the dot notation, such as io.a, as they are part
of the io Bundle.

Figure 4.2 shows another simple component, an 8-bit register. The Chisel code
for this component is shown in Listing 4.2.

Now we build a counter with those two components that counts from 0 to 9 and
repeats. Figure 4.3 shows the schematic of the counter. We use an adder to add 1
to the value of count. A multiplexer selects between this sum and a 0. That result,
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 +

Adder

a

y

b

Figure 4.1: An adder component.

class Adder extends Module {

val io = IO(new Bundle {

val a = Input(UInt(8.W))

val b = Input(UInt(8.W))

val y = Output(UInt(8.W))

})

io.y := io.a + io.b

}

Listing 4.1: The adder component in Chisel.

d q

Register

Figure 4.2: A register components.
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class Register extends Module {

val io = IO(new Bundle {

val d = Input(UInt(8.W))

val q = Output(UInt(8.W))

})

val reg = RegInit(0.U)

reg := io.d

io.q := reg

}

Listing 4.2: The register component in Chisel.

Register

next
1

Adder
0

result

Count10

count

dout
a

b
y

d q

Figure 4.3: A counter built out of components.
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class Count10 extends Module {

val io = IO(new Bundle {

val dout = Output(UInt(8.W))

})

val add = Module(new Adder())

val reg = Module(new Register())

// the register output

val count = reg.io.q

// connect the adder

add.io.a := 1.U

add.io.b := count

val result = add.io.y

// connect the Mux and the register input

val next = Mux(count === 9.U, 0.U, result)

reg.io.d := next

io.dout := count

}

Listing 4.3: A counter built out of components.
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CompA

CompB CompD

CompC

Figure 4.4: A design consisting of a hierarchy of components.

called next is the input for the register component. The output of the register is the
count value and also the output of the Count10 component (dout).

Listing 4.3 shows the Chisel code for the Count10 component. The two compo-
nents are instantiated by creating them with new, wrapping them into a Module()
call, and assigning it a name. In our example add and reg. In this example we give
the output of the register (reg.io.q) the name count. We connect 1.U and count to
the two inputs of the adder component. We give the output of the adder the name
result. The multiplexer selects between 0.U and result depending on the counter
value count. We name the output of the multiplexer next and connect it to the input
of the register. Finally, we connect the counter value count to the single output of
the Count10 component, io.dout.

4.2 Nested Components

A medium to high complex hardware design is built out of a hierarchy of nested
components. Figure 4.4 shows the structure of such an example design. Component
C has three input ports and two output ports. The component itself is assembled
out of two subcomponents: B and C, which are connected to the inputs and outputs
of C. One output of A is connected to an input of B. Component D is at the same
hierarchy level as component C and connected to it.

Listing 4.4 shows the definition of the two example components A and B from

Contents Index 51



4 COMPONENTS

class CompA extends Module {

val io = IO(new Bundle {

val a = Input(UInt(8.W))

val b = Input(UInt(8.W))

val x = Output(UInt(8.W))

val y = Output(UInt(8.W))

})

// function of A

}

class CompB extends Module {

val io = IO(new Bundle {

val in1 = Input(UInt(8.W))

val in2 = Input(UInt(8.W))

val out = Output(UInt(8.W))

})

// function of B

}

Listing 4.4: Definitions of component A and B
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class CompC extends Module {

val io = IO(new Bundle {

val in_a = Input(UInt(8.W))

val in_b = Input(UInt(8.W))

val in_c = Input(UInt(8.W))

val out_x = Output(UInt(8.W))

val out_y = Output(UInt(8.W))

})

// create components A and B

val compA = Module(new CompA())

val compB = Module(new CompB())

// connect A

compA.io.a := io.in_a

compA.io.b := io.in_b

io.out_x := compA.io.x

// connect B

compB.io.in1 := compA.io.y

compB.io.in2 := io.in_c

io.out_y := compB.io.out

}

Listing 4.5: Component C

Figure 4.4. Component A has two inputs, named a and b, and two outputs, named
x and y. For the ports of component B we chose the names in1, in2, and out.
All ports use an unsigned integer (UInt) with a bit width of 8. As this example
code is about connecting components and building a hierarchy, we do not show any
implementation within the components. The implementation of the component is
written at the place where the comments states “function of X”. As we have no
function associated with those example components, we used generic port names.
For a real design use descriptive port names, such as data, valid, or ready.

Component C, shown in Listing 4.5, has three input and two output ports. It is
built out of components A and B. We show how A and B are connected to the ports
of C and also the connection between an output port of A and an input port of B.

Components are created with new, e.g., new CompA(), and need to be wrapped
into a call to Module(). The reference to that module is stored in a local variable, in
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class CompD extends Module {

val io = IO(new Bundle {

val in = Input(UInt(8.W))

val out = Output(UInt(8.W))

})

// function of D

}

Listing 4.6: Component D

this example val compA = Module(new CompA()).
With this reference, we can access the IO ports by dereferencing the io field of

the module and the individual fields of the IO Bundle.
The simplest component in our design, shown in Listing 4.6, has just an input

port, named in, and an output port named out. The final missing piece of our exam-
ple design is the top-level component, which itself is assembled out of components
C and D, shown in Listing 4.7.

Good component design is similar to the good design of functions or methods in
software design. One of the main questions is how much functionality shall we put
into a component and how large should a component be. The two extremes are tiny
components, such an adder, and huge components, such as a full microprocessor,

Beginners in hardware design often start with tiny components. The problem is
that digital design books use tiny components to show the principles. But the sizes
of the examples (in those books, and also in this book) are small to fit onto a page
and to not distract by too many details.

The interface to a component is a little bit verbose (with types, names, directions,
IO construction). As a rule of thumb, I propose that the core of the component, the
function, should be at least as long as the interface of the component.

For tiny components, such as a counter, Chisel provides a more lightweight way
to describe them as functions that return hardware.

4.3 An Arithmetic Logic Unit

One of the central components for circuits that compute, e.g., a microprocessor, is
an arithmetic-logic unit, or ALU for short. Figure 4.5 shows the symbol of an ALU.
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class TopLevel extends Module {

val io = IO(new Bundle {

val in_a = Input(UInt(8.W))

val in_b = Input(UInt(8.W))

val in_c = Input(UInt(8.W))

val out_m = Output(UInt(8.W))

val out_n = Output(UInt(8.W))

})

// create C and D

val c = Module(new CompC())

val d = Module(new CompD())

// connect C

c.io.in_a := io.in_a

c.io.in_b := io.in_b

c.io.in_c := io.in_c

io.out_m := c.io.out_x

// connect D

d.io.in := c.io.out_y

io.out_n := d.io.out

}

Listing 4.7: Top-level component

 ALU y

fn

b

a

Figure 4.5: An arithmetic logic unit, or ALU for short.
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The ALU has two data inputs, labeled a and b in the figure, one function input fn,
and an output, labeled y. The ALU operates on a and b and provides the result at
the output. The input fn selects the operation on a and b. The operations are usually
some arithmetic, such as addition and subtraction, and some logical functions such
as and, or, xor. That’s why it is called ALU.

The ALU is usually a combinational circuit without any state elements. An ALU
might also have additional outputs to signal properties of the result, such as zero or
the sign.

The following code shows an ALU with 16-bit inputs and outputs that supports:
addition, subtraction, or, and and operation, selected by a 2-bit fn signal.

class Alu extends Module {

val io = IO(new Bundle {

val a = Input(UInt(16.W))

val b = Input(UInt(16.W))

val fn = Input(UInt(2.W))

val y = Output(UInt(16.W))

})

// some default value is needed

io.y := 0.U

// The ALU selection

switch(io.fn) {

is(0.U) { io.y := io.a + io.b }

is(1.U) { io.y := io.a - io.b }

is(2.U) { io.y := io.a | io.b }

is(3.U) { io.y := io.a & io.b }

}

}

In this example, we use a new Chisel construct, the switch/is construct to describe
the table that selects the output of our ALU. To use this utility function, we need to
import another Chisel package:

import chisel3.util._
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4.4 Bulk Connections

For connecting components with multiple IO ports, Chisel provides the bulk con-
nection operator <>. This operator connects parts of bundles in both directions.
Chisel uses the names of the leaf fields for the connection. If a name is missing, it
is not connected.

As an example, let us assume we build a pipelined processor. The fetch stage has
a following interface:

class Fetch extends Module {

val io = IO(new Bundle {

val instr = Output(UInt(32.W))

val pc = Output(UInt(32.W))

})

// ... Implementation of fetch

}

The next stage is the decode stage.

class Decode extends Module {

val io = IO(new Bundle {

val instr = Input(UInt(32.W))

val pc = Input(UInt(32.W))

val aluOp = Output(UInt(5.W))

val regA = Output(UInt(32.W))

val regB = Output(UInt(32.W))

})

// ... Implementation of decode

}

The final stage of our simple processor is the execute stage.

class Execute extends Module {

val io = IO(new Bundle {

val aluOp = Input(UInt(5.W))

val regA = Input(UInt(32.W))

val regB = Input(UInt(32.W))

val result = Output(UInt(32.W))

})

// ... Implementation of execute

}
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To connect all three stages we need just two <> operators. We can also connect
the port of a submodule with the parent module.

val fetch = Module(new Fetch())

val decode = Module(new Decode())

val execute = Module(new Execute)

fetch.io <> decode.io

decode.io <> execute.io

io <> execute.io

4.5 External Modules

Sometimes you might wish to include a component whose description is written
in Verilog, or you might wish to ensure the emitted Verilog of a component has a
very specific structure that your synthesis tool can recognize and map to an avail-
able primitive. Chisel provides support for this through its BlackBox and ExtModule
classes, which allow you to define components with Verilog sources. Both are pa-
rameterized with a Map[String, Param] which is translated to module parameters
in the emitted Verilog. BlackBoxes are emitted as individual Verilog files, while
ExtModules act as placeholders and are emitted as source-less module instantia-
tions. This feature makes ExtModules particularly useful for, e.g., Xilinx or Intel
device primitives such as clock or input buffers.

class BUFGCE extends BlackBox(Map("SIM_DEVICE" ->

"7SERIES")) {

val io = IO(new Bundle {

val I = Input(Clock())

val CE = Input(Bool())

val O = Output(Clock())

})

}

class alt_inbuf extends ExtModule(Map("io_standard" -> "1.0

V",

"location" ->

"IOBANK_1",

58 Index Contents



4.5 EXTERNAL MODULES

"enable_bus_hold" ->

"on",

"weak_pull_up_resistor"

-> "off",

"termination" ->

"parallel 50 ohms")

) {

val io = IO(new Bundle {

val i = Input(Bool())

val o = Output(Bool())

})

}

Blackboxes, on the other hand, can represent any component. They can be declared
in three different ways with their source either inlined or available in a separate file.
As an example, consider a 32-bit adder with the following IO.

class BlackBoxAdderIO extends Bundle {

val a = Input(UInt(32.W))

val b = Input(UInt(32.W))

val cin = Input(Bool())

val c = Output(UInt(32.W))

val cout = Output(Bool())

}

The inlined version is declared as follows.

class InlineBlackBoxAdder extends HasBlackBoxInline {

val io = IO(new BlackBoxAdderIO)

setInline("InlineBlackBoxAdder.v",

s"""

|module InlineBlackBoxAdder(a, b, cin, c, cout);

|input [31:0] a, b;

|input cin;

|output [31:0] c;

|output cout;

|wire [32:0] sum;

|

|assign sum = a + b + cin;

|assign c = sum[31:0];

|assign cout = sum[32];
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|

|endmodule

""".stripMargin)

}

Providing the source code within a string literal (denoted by an s or an f before
the double quotes) and using pipes allows including nicely formatted Verilog code.
Additionally, it enables support for parameterization because Scala variables can be
inserted using the $ or ${} escape characters. The stripMarginmethod removes the
pipes and tabs when emitting the code.

There are two alternatives to inlined blackboxes, both expecting the Verilog source
in a separate file. They are declared as follows.

class ResourceBlackBoxAdder extends HasBlackBoxResource {

val io = IO(new BlackBoxAdderIO)

addResource("/ResourceBlackBoxAdder.v")

}

class PathBlackBoxAdder extends HasBlackBoxPath {

val io = IO(new BlackBoxAdderIO)

addPath("./src/main/resources/PathBlackBoxAdder.v")

}

The HasBlackBoxResource version expects to find its Verilog source in the
./src/main/resource folder. The HasBlackBoxPath version can be provided with
any relative path from the project folder.

Blackboxes are instantiated the same way as other modules by wrapping them as
Module(new BlackBoxModule). They cannot be tested directly but must be wrapped
either in a named class or in an anonymous class in the tester. Both are allowed to
have the same IO as the black box.

class InlineAdder extends Module {

val io = IO(new BlackBoxAdderIO)

val adder = Module(new InlineBlackBoxAdder)

io <> adder.io

}

test(new Module {

val io = IO(new BlackBoxAdderIO)
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val adder = Module(new InlineBlackBoxAdder)

io <> adder.io

})

Note that HasBlackBoxInline, HasBlackBoxPath, and HasBlackBoxResource are
traits that extend Chisel’s BlackBox class meaning that, e.g., class Example extends
BlackBox with HasBlackBoxInline is equivalent to
class Example extends HasBlackBoxInline.
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In this chapter, we explore various combinational circuits, basic building blocks that
we can use to construct more complex systems. In principle, all combinational cir-
cuits can be described with Boolean equations. However, more often, a description
in the form of a table is more efficient. We let the synthesize tool extract and mini-
mize the Boolean equations. Two basic circuits, best described in a table form, are
a decoder and an encoder.

5.1 Combinational Circuits

Before describing some standard combinational building blocks, we will explore
how combinational circuits can be expressed in Chisel. The simplest form is a
Boolean expression, which can be assigned a name:

val e = (a & b) | c

The Boolean expression is given a name (e) by assigning it to a Scala value. The
expression can be reused in other expressions:

val f = ˜e

Such an expression is considered fixed. A reassignment to e with = would result
in a Scala compiler error: reassignment to val. A try with the Chisel operator :=,
as shown below,

e := c & b

results in a runtime exception: Cannot reassign to read-only.
Chisel also supports describing combinational circuits with conditional updates.

Such a circuit is declared as a Wire. Then you use conditional operations, such as
when, to describe the logic of the circuit. The following code declares a Wire w of
type UInt and assigns a default value of 0. The when block takes a Chisel Bool and
reassigns 3 to w if cond is true.B.
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2

cond2

3

w

cond

1

Figure 5.1: A chain of multiplexers.

val w = Wire(UInt())

w := 0.U

when (cond) {

w := 3.U

}

The logic of the circuit is a multiplexer, where the two inputs are the constants 0 and
3 and the condition cond the select signal. Keep in mind that we describe hardware
circuits and not a software program with conditional execution.

The Chisel condition construct when also has a form of else, it is called .otherwise.
With assigning a value under any condition we can omit the default value assign-
ment:

val w = Wire(UInt())

when (cond) {

w := 1.U

} .otherwise {

w := 2.U

}

Chisel also supports a chain of conditionals (a if/elseif/else chain) with .elsewhen:

val w = Wire(UInt())

when (cond) {

w := 1.U
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} .elsewhen (cond2) {

w := 2.U

} .otherwise {

w := 3.U

}

This chain of when, .elsewhen, and .otherwise construct a chain of multiplexers.
Figure 5.1 shows this chain of multiplexers. That chain introduces a priority, i.e.,
when cond is true, the other conditions are not evaluated.

Note the ‘.’ in .elsewhen that is needed to chain methods in Scala. Those
.elsewhen branches can be arbitrary long. However, if the chain of conditions de-
pends on a single signal, it is better to use the switch statement, which is introduced
in the following subsection with a decoder circuit.

For more complex combinational circuits it might be practical to assign a default
value to a Wire. A default assignment can be combined with the wire declaration
with WireDefault.

val w = WireDefault(0.U)

when (cond) {

w := 3.U

}

// ... and some more complex conditional assignments

One might question why using when, .elsewhen, and .otherwise when Scala has
if, else if, and else? Those Scala statements are for conditional execution of
Scala code, not generating Chisel (multiplexer) hardware. Those Scala conditionals
have their use in Chisel when we write circuit generators, which take parameters to
conditionally generate different hardware instances.

5.2 Decoder

A decoder converts a binary number of n bits to an m-bit signal, where m≤ 2n. The
output is one-hot encoded (where exactly one bit is one). Figure 5.2 shows a 2-bit to
4-bit decoder. We can describe the function of the decoder with a truth table, such
as Table 5.1.

A Chisel switch statement describes the logic as a truth table. To use the switch
statement we need to include the package chisel.util.
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a1
Decoder

a0

b0

b1

b2

b3

Figure 5.2: A 2-bit to 4-bit decoder.

a b

00 0001
01 0010
10 0100
11 1000

Table 5.1: Truth table for a 2 to 4 decoder.

import chisel3.util._

The following code uses the switch statement of Chisel to describe a decoder:

result := 0.U

switch(sel) {

is (0.U) { result := 1.U}

is (1.U) { result := 2.U}

is (2.U) { result := 4.U}

is (3.U) { result := 8.U}

}

The above switch statement lists all possible values of the sel signal and assigns
the decoded value to the result signal. Note, that even if we enumerate all possible
input values, Chisel still needs us to assign a default value, as we do by assigning
an initial 0 to result. This assignment will never be active and therefore optimized
away by the backend tool. It is intended to avoid situations with incomplete assign-
ments for combinational circuits (in Chisel a Wire) that will result in unintended
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latches in hardware description languages such as VHDL and Verilog. Chisel does
not allow incomplete assignments.

In the example before we used unsigned integers for the signals. Maybe a clearer
representation of an encode circuit uses binary notation:

switch (sel) {

is ("b00".U) { result := "b0001".U}

is ("b01".U) { result := "b0010".U}

is ("b10".U) { result := "b0100".U}

is ("b11".U) { result := "b1000".U}

}

A table gives a very readable representation of the decoder function but is also
a little bit verbose. When examining the table, we see a regular structure: a 1 is
shifted left by the number represented by sel. Therefore, we can express a decoder
with the Chisel shift operation <<.

result := 1.U << sel

Decoders are used as a building block for a multiplexer by using the output as
an enable with an AND gate for the multiplexer data input. However, in Chisel,
we do not need to construct a multiplexer, as a Mux is available in the core library.
Decoders can also be used for address decoding of some bits of an address bus of a
microprocessor. The outputs are used as select signals for memories and different
IO devices connected to the microprocessor.

5.3 Encoder

An encoder converts a one-hot encoded input signal into a binary encoded output
signal. The encoder does the inverse operation of a decoder.

Figure 5.3 shows a 4-bit one-hot input to a 2-bit binary output encoder, and Ta-
ble 5.2 shows the truth table of the encode function. However, an encoder works
only as expected when the input signal is one-hot coded. For all other input values,
the output is undefined. As we cannot describe a function with undefined outputs,
we use a default assignment that catches all undefined input patterns.

The following Chisel code assigns a default value of 0 and then uses the switch
statement for the legal input values.

b := "b00".U
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a1
Encoder

a0

a2

a3

b0

b1

Figure 5.3: A 4-bit to 2-bit encoder.

a b

0001 00
0010 01
0100 10
1000 11
???? ??

Table 5.2: Truth table for a 4 to 2 encoder.

switch (a) {

is ("b0001".U) { b := "b00".U}

is ("b0010".U) { b := "b01".U}

is ("b0100".U) { b := "b10".U}

is ("b1000".U) { b := "b11".U}

}

For the decoder we found an elegant single line statement to express the logic.
This also enables to describe a wide decoder. However, we are not aware of such an
expression for the encoder.

To express larger encoders, we need to write a (simple) hardware generator.
Therefore, we need to introduce the Scala loop construct. Following two lines of
Scala code express a loop, counting from 0 to 9.

// Loops i from 0 to 9

for (i <- 0 until 10) {

// use i to index into a Wire or Vec

}
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The loop variable i can be used to index individual bits from a Wire or Reg; or
an element in a Vec. This Scala generator loop is the simplest form of describing
a hardware generator. Chapter 10 describes how to write hardware generators in
more detail. Note that the loop is executed at circuit generation time. This is not a
hardware counter.

For the encoder generator we will use a Vec, where each element represents one
column of the encoder table. The following code shows a 16-bit encoder, where the
output is 4 bits:

val v = Wire(Vec(16, UInt(4.W)))

v(0) := 0.U

for (i <- 1 until 16) {

v(i) := Mux(hotIn(i), i.U, 0.U) | v(i - 1)

}

val encOut = v(15)

The input of the encoder is hotIn and the output is encOut. Vec element 0 is the
default case (0), and also represents the output value when the least significant bit
(LSB) is set in hotIn.
Vec elements 1 till 15 are connected to a multiplexer. If the bit at position i is

set in hotIn, the multiplexer output is the index, otherwise it is 0. For the correct
behavior of our encoder we assume that the input signal is one-hot encoded. Finally
we need to merge all vector elements for a single output. As the vector elements are
0 when the corresponding bit in the input is 0, we can simply combine all elements
with an OR function. In the loop we OR the current element with one vector element
before (... | v(i-1)). When several elements are combined with a function we
call this operation also reduce. Therefore, here we perform an OR reduction.

5.4 Arbiter

We use an arbiter to arbitrate requests from several clients to a single shared re-
source. An example would be several processor cores sharing a single serial port
(UART).

Figure 5.4 shows the schematic of a 4-bit arbiter. It consists of four request lines
(r0–r3) and four grant lines (g0–g3). The arbiter grants only a single request. For
example, a request input of 0101 will result in a grant output of 0001. The arbiter
prioritizes the lower inputs. Therefore, we call it a priority arbiter. The lower the bit
number, the higher the priority.
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r1
Arbiter

r0

r2

r3

g0

g1

g2

g3

Figure 5.4: A symbol for a 4-bit arbiter.

To build a fair arbiter we need to add state to remember the last arbitration. We
will present a fair arbiter a later chapter.

Figure 5.5 shows the schematic of a 4-bit arbiter. The individual grant requests
need to check if a lower bit has already won the arbitration. For the first request
the grant g0 depends only on the request r0. The second grant can only win the
arbitration when request r1 is asserted and request r0 is deasserted. For the next
requests these lookup is further chained.

Following code shows an arbiter for 3 clients.

val grant = VecInit(false.B, false.B, false.B)

val notGranted = VecInit(false.B, false.B)

grant(0) := request(0)

notGranted(0) := !grant(0)

grant(1) := request(1) && notGranted(0)

notGranted(1) := !grant(1) && notGranted(0)

grant(2) := request(2) && notGranted(1)

The code is the same as the schematic in Figure 5.5. We use vectors of Bool to rep-
resent the request, grant, and not-granted chain. We can see that grant(0) depends
only on request(0). notGranted is used to chain the information that no lower bit
requests have been granted.

Small arbiters can also be directly described with a logic table. Following code
shows the table for a 3-bit arbiter.

val grant = WireDefault("b0000".U(3.W))

switch (request) {

is ("b000".U) { grant := "b000".U}

is ("b001".U) { grant := "b001".U}
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r0

r1
g1

g0

r2
g2

r3
g3

Figure 5.5: A 4-bit arbiter.
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is ("b010".U) { grant := "b010".U}

is ("b011".U) { grant := "b001".U}

is ("b100".U) { grant := "b100".U}

is ("b101".U) { grant := "b001".U}

is ("b110".U) { grant := "b010".U}

is ("b111".U) { grant := "b001".U}

}

However, for larger arbitration circuits we will use our newly learned trick of a
for loop as a generator loop. The following code shows a parameterized arbiter for
n requests and grants. Here we use again Vec of Bool.

val grant = VecInit.fill(n)(false.B)

val notGranted = VecInit.fill(n)(false.B)

grant(0) := request(0)

notGranted(0) := !grant(0)

for (i <- 1 until n) {

grant(i) := request(i) && notGranted(i-1)

notGranted(i) := !grant(i) && notGranted(i-1)

}

The code shown above is the loop version of the initial arbiter version. It generates
the arbitration circuit for n requests. The small difference to the manual version
(unrolled loop) is that we generate a notGranted wire also for the last request (n -
1). That wire is not used and the synthesize tools will optimize it away.

5.5 Priority Encoder

With our original encoder design we had to assume that the input is one-hot encoded,
meaning maximal one bit is allowed to be 1. Inputs with several bits set are illegal
and lead to undefined behavior.

We can solve this problem by combining an arbitration circuit, which selects only
the highest-priority bit set. When we feed the output of the arbiter into an encoder
we create a priority encoder. Figure 5.6 shows the schematic.
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Figure 5.6: With an arbiter and an encoder we can build a priority encoder.

a

Comparator

b

equ

gt

a == b

a > b

Figure 5.7: A simple comparator.

5.6 Comparator

As the last circuit for the chapter of combinational building blocks we present the
comparator. Figure 5.7 shows the schematic of a comparator. It has two multi-bit
inputs and compares those two values. It has two outputs: (1) signaling that a and b
are equal (equ) and (2) that a is greater than b. These two outputs are enough for all
possible comparisons. For example, the if equ or gt are asserted we know that the
condition a >= b is true. For the condition a <= b we test for not gt.

Following code snippet shows the comparator. As you can see, these are just two
lines of Chisel code. Therefore, compare functions are usually just directly used in
other components and not wrapped into a module.

val equ = a === b

val gt = a > b

Contents Index 73



5 COMBINATIONAL BUILDING BLOCKS

5.7 Exercise

Describe a combinational circuit to convert a 4-bit binary input to the encoding of
a 7-segment display. You can either define the codes for the decimal digits, which
was the initial usage of a 7-segment display or additionally, define encodings for
the remaining bit pattern to be able to display all 16 values of a single digit in
hexadecimal. When you have an FPGA board with a 7-segment display, connect
4 switches or buttons to the input of your circuit and the output to the 7-segment
display.
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6 Sequential Building Blocks

Sequential circuits are circuits where the output depends on the input and previous
values. As we are interested in synchronous design (clocked designs), we mean
synchronous sequential circuits when we talk about sequential circuits.1 To build
sequential circuits, we need elements that can store state: the so-called registers.

6.1 Registers

The fundamental elements for building sequential circuits are registers. A register
is a collection of D flip-flops. A D flip-flop captures the value of its input at the
rising edge of the clock and stores it at its output. Alternatively, in other words: the
register updates its output with the value of the input on the rising edge of the clock.

Figure 6.1 shows the schematic symbol of a register. It contains an input D and an
output Q. Each register also contains an input for a clock signal. As this global clock
signal is connected to all registers in a synchronous circuit, it is usually not drawn
in our schematics. The little triangle on the bottom of the box symbolizes the clock
input and tells us that this is a register. We omit the clock signal in the following

1We can also build sequential circuits with asynchronous logic and feedback, but this is a specific niche
topic and cannot be easily expressed in Chisel.

D Q

clock

Figure 6.1: A D flip-flop based register.
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schematics. The omission of the global clock signal is also reflected by Chisel where
no explicit connection of a signal to the register’s clock input is needed.

In Chisel a register with input d and output q is defined with:

val q = RegNext(d)

Note that we do not need to connect a clock to the register, Chisel implicitly does
this. A register’s input and output can be arbitrary complex types made out of a
combination of vectors and bundles.

A register can also be defined and used in two steps:

val delayReg = Reg(UInt(4.W))

delayReg := delayIn

First, we define the register and give it a name. Second, we connect the signal
delayIn to the input of the register. Note also that the name of the register contains
the string Reg. To easily distinguish between combinational circuits and sequential
circuits, it is common practice to have the marker Reg as part of to the name. Also,
note that names in Scala (and therefore also in Chisel) are usually in CamelCase.
Variable names start with lowercase and classes start with upper case.

A register can be initialized on reset. The reset signal is, as the clock signal,
implicit in Chisel. We supply the reset value, for example, zero, as a parameter
to the register constructor RegInit. The input for the register is connected with a
Chisel assignment statement.

val valReg = RegInit(0.U(4.W))

valReg := inVal

The default implementation of reset in Chisel is a synchronous reset.2 For a
synchronous reset no change is needed on a D flip-flop, just a multiplexer needs to
be added to the input that selects between the initialization value under reset and
the data value. Figure 6.2 shows the schematics of a register with a synchronous
reset where the reset drives the multiplexer. However, as synchronous reset is used
quite often, modern FPGA flip-flops contain a synchronous reset (and set) input to
the flip-flop to not waste LUT resources for the multiplexer.

Sequential circuits change their value over time. Therefore, their behavior can be

2Support for asynchronous reset is available.
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D Q
init

reset

data

Figure 6.2: A D flip-flop based register with a synchronous reset.

clock

reset

inVal 3 5 2 7 4

regVal 0 5 2 7

1 2 3 4 5 6 7

Figure 6.3: A waveform diagram for a register with a reset.

described by a diagram showing the signals over time. Such a diagram is called a
waveform or timing diagram.

Figure 6.3 shows a waveform for the register with a reset and some input data
applied to it. Time advances from left to right. On top of the figure, we see the
clock that drives our circuit. In the first clock cycle (0), before a reset, the register
content is undefined. In the second clock cycle reset is asserted high, and on the
rising edge of this clock cycle the register takes the initial value 0. Input inVal is
ignored. In the next clock cycle reset is 0, and the value of inVal is captured on
the next rising edge. From then on reset stays 0, as it should be, and the register
output follows the input signal with one clock cycle delay.

Waveforms are an excellent tool to specify the behavior of a circuit graphically.
Especially in more complex circuits where many operations happen in parallel and
data moves pipelined through the circuit, timing diagrams are convenient. Chisel
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D Q

enable

data

Figure 6.4: A D flip-flop based register with an enable signal.

clock

enable

inVal 2 3 5 6 2 7 4

regEnable 2 3 5 2 7

1 2 3 4 5 6 7

Figure 6.5: A waveform diagram for a register with an enable signal.

testers can also produce waveforms during testing that can be displayed with a wave-
form viewer and used for debugging.

A typical design pattern is a register with an enable signal. Only when the enable
signal is true (high), the register captures the input; otherwise, it keeps its old value.
The enable can be implemented, similar to the synchronous reset, with a multiplexer
at the input of the register. One input to the multiplexer is the feedback of the output
of the register.

Figure 6.4 shows the schematic of a register with enable. As this is also a common
design pattern, modern FPGA flip-flops contain a dedicated enable input, and no
additional resources are needed.

Figure 6.5 shows an example waveform for a register with enable. Most of the
time, enable is high (true) and the register follows the input with one clock cycle
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delay. Only in the fourth clock cycle enable is low, and the register keeps its value
(5) at rising edge D.

A register with an enable can be described in a few lines of Chisel code with a
conditional update:

val enableReg = Reg(UInt(4.W))

when (enable) {

enableReg := inVal

}

Using an enable signal for a register is so common that Chisel defines RegEnable
where the second parameter is the enable signal:

val enableReg2 = RegEnable(inVal, enable)

A register with enable can also be reset:

val resetEnableReg = RegInit(0.U(4.W))

when (enable) {

resetEnableReg := inVal

}

The functionality of enable and initialization at reset can be combined when using
the three-parameter version of RegEnable. The first parameter is the input signal,
the second parameter is the initialization value, and the third parameter is the enable
signal:

val resetEnableReg2 = RegEnable(inVal, 0.U(4.W), enable)

A register can also be part of an expression, without giving it a name. The fol-
lowing circuit detects the rising edge of a signal by comparing its current value with
the one from the last clock cycle.

val risingEdge = din & !RegNext(din)

Now that we have explored all basic uses of a register, we put those registers to
good use and build more interesting sequential circuits. For the next schematics we
will further simplify the register symbol and omit the D for the input and the Q for
the output.
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 +

1

Figure 6.6: An adder and a register result in counter.

 +

1

event

Figure 6.7: Counting events.

6.2 Counters

One of the most basic sequential circuits is a counter. In its simplest form, a counter
is a register where the output is connected to an adder and the adder’s output is
connected to the input of the register. Figure 6.6 shows such a free-running counter.

A free-running counter with a 4-bit register counts from 0 to 15 and then wraps
around to 0 again. A counter shall also be reset to a known value.

val cntReg = RegInit(0.U(4.W))

cntReg := cntReg + 1.U

When we want to count events, we use a condition to increment the counter, as
shown in Figure 6.7 and in the following code.
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val cntEventsReg = RegInit(0.U(4.W))

when(event) {

cntEventsReg := cntEventsReg + 1.U

}

6.2.1 Counting Up and Down

To count up to a value and then restart with 0, we need to compare the counter value
with a maximum constant, for example, with a when conditional statement.

val cntReg = RegInit(0.U(8.W))

cntReg := cntReg + 1.U

when(cntReg === N) {

cntReg := 0.U

}

We can also use a multiplexer for our counter:

val cntReg = RegInit(0.U(8.W))

cntReg := Mux(cntReg === N, 0.U, cntReg + 1.U)

If we are in the mood of counting down, we start by resetting the counter register
with the maximum value and reset the counter to that value when reaching 0.

val cntReg = RegInit(N)

cntReg := cntReg - 1.U

when(cntReg === 0.U) {

cntReg := N

}

As we are coding and using more counters, we can define a function with a param-
eter to generate a counter for us.

// This function returns a counter

def genCounter(n: Int) = {

val cntReg = RegInit(0.U(8.W))

cntReg := Mux(cntReg === n.U, 0.U, cntReg + 1.U)

cntReg
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clock

reset

tick

counter 0 1 2 0 1 2 0 1

Figure 6.8: A waveform diagram for the generation of a slow frequency tick.

}

// now we can easily create many counters

val count10 = genCounter(10)

val count99 = genCounter(99)

The last statement of the function genCounter is the return value of the function, in
this example, the counting register cntReg.

Note, that in all the examples our counter had values between 0 and N, including
N. If we want to count 10 clock cycles we need to set N to 9. Setting N to 10 would
be a classic example of an off-by-one error.

6.2.2 Generating Timing with Counters

Besides counting events, counters are often used to generate a notion of time (time
as time on a wall clock). A synchronous circuit runs with a clock with a fixed
frequency. The circuit proceeds in those clock ticks. There is no notion of time in a
digital circuit other than counting clock ticks. If we know the clock frequency, we
can generate circuits that generate timed events, such as blinking an LED at some
frequency as we have shown in the Chisel “Hello World” example.

A common practice is to generate single-cycle ticks with a frequency ftick that
we need in our circuit. That tick occurs every n clock cycles, where n = fclock/ ftick
and the tick is precisely one clock cycle long. This tick is not used as a derived
clock, but as an enable signal for registers in the circuit that shall logically operate
at frequency ftick. Figure 6.8 shows an example of a tick generated every 3 clock
cycles.

In the following circuit, we describe a counter that counts from 0 to the maximum
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clock

reset

tick

slow cnt 0 1 2

Figure 6.9: Using the slow frequency tick.

value of N - 1. When the maximum value is reached, the tick is true for a single
cycle, and the counter is reset to 0. When we count from 0 to N - 1, we generate
one logical tick every N clock cycles.

val tickCounterReg = RegInit(0.U(32.W))

val tick = tickCounterReg === (N-1).U

tickCounterReg := tickCounterReg + 1.U

when (tick) {

tickCounterReg := 0.U

}

This logical timing of one tick every n clock cycles can then be used to advance
other parts of our circuit with this slower, logical clock. In the following code, we
use just another counter that increments by 1 every n clock cycles.

val lowFrequCntReg = RegInit(0.U(4.W))

when (tick) {

lowFrequCntReg := lowFrequCntReg + 1.U

}

Figure 6.9 shows the waveform of the tick and the slow counter that increments
every tick (n clock cycles).

Examples of the usage of this slower logical clock are: blinking an LED, gener-
ating the baud rate for a serial bus, generating signals for 7-segment display multi-
plexing, and subsampling input values for debouncing of buttons and switches.

Although width inference should size the registers, it is better to explicitly specify
the width with the type at register definition or with the initialization value. Explicit
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width definition can avoid surprises when a reset value of 0.U results in a counter
with a width of a single bit.

6.2.3 The Nerd Counter

Some of us feel like being a nerd, sometimes. For example, we want to design a
highly optimized version of our counter/tick generation. A standard counter needs
following resources: one register, one adder (or subtractor), and a comparator. We
cannot do much about the register or the adder. If we count up, we need to compare
against a number, which is a bit string. The comparator can be built out of inverters
for the zeros in the bit string and a large AND gate. When counting down to zero,
the comparator is a large NOR gate, which might be a little bit cheaper than the
comparator against a constant in an ASIC. In an FPGA, where logic is built out of
lookup tables, there is no difference between comparing against 0 or 1. The resource
requirement is the same for the up and down counter.

However, there is still one more trick a clever hardware designer can pull off.
Counting up or down needed a comparison against all counting bits, so far. What if
we count from N-2 down to -1? A negative number has the most significant bit set
to 1, and a positive number has this bit set to 0. We need to check this bit only to
detect that our counter reached -1. Here it is, the counter created by a nerd:

val MAX = (N - 2).S(8.W)

val cntReg = RegInit(MAX)

io.tick := false.B

cntReg := cntReg - 1.S

when(cntReg(7)) {

cntReg := MAX

io.tick := true.B

}

6.2.4 A Timer

Another form of timer we can create, is a one-shot timer. A one-shot timer is like
a kitchen timer: you set the number of minutes and press start. When the specified
amount of time has elapsed, the alarm sounds. The digital timer is loaded with the
time in clock cycles. Then it counts down until reaching zero. At zero the timer
asserts done.
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Figure 6.10: A one-shot timer.

Figure 6.10 shows the block diagram of a timer. The register can be loaded with
the value of din by asserting load. When the load signal is deasserted counting
down is selected (by selecting cntReg - 1 as the input for the register). When the
counter reaches 0, the signal done is asserted and the counter stops counting by
selecting the 0 input of the multiplexer.

Listing 6.1 shows the Chisel code for the timer. We use an 8-bit register cntReg,
that is reset to 0. The boolean value done is the result of comparing cntReg with
0. For the input multiplexer we introduce the wire next with a default value of 0.
The when/elsewhen block introduces the other two inputs with the select function.
Signal load has priority over the decrement selection. The last line connects the
multiplexer, represented by next, to the input of the register cntReg.

If we aim for a bit more concise code, we can directly assign the multiplexer
values to the register reg, instead of using the intermediate wire next.

6.2.5 Pulse-Width Modulation

Pulse-width modulation (PWM) is a signal with a constant period and a modulation
of the time the signal is high within that period.

Figure 6.11 shows a PWM signal. The arrows point to the start of the periods of
the signal. The percentage of time the signal is high, is also called the duty cycle.
In the first two periods the duty cycle is 25 %, in the next two 50 %, and in the last
two cycles it is 75 %. The pulse width is modulated between 25 % and 75 %.
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val cntReg = RegInit(0.U(8.W))

val done = cntReg === 0.U

val next = WireDefault(0.U)

when (load) {

next := din

} .elsewhen (!done) {

next := cntReg - 1.U

}

cntReg := next

Listing 6.1: A one-shot timer

PWM

Figure 6.11: Pulse-width modulation.
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Adding a low-pass filter to a PWM signal results in a simple digital-to-analog
converter. The low-pass filter can be as simple as a resistor and a capacitor.

The following code example will generate a waveform of 3 clock cycles high
every 10 clock cycles.

def pwm(nrCycles: Int, din: UInt) = {

val cntReg =

RegInit(0.U(unsignedBitLength(nrCycles -1).W))

cntReg := Mux(cntReg === (nrCycles -1).U, 0.U, cntReg +

1.U)

din > cntReg

}

val din = 3.U

val dout = pwm(10, din)

We use a function for the PWM generator to provide a reusable, lightweight compo-
nent. The function has two parameters: a Scala integer configuring the PWM with
the number of clock cycles (nrCycles), and a Chisel wire (din) that gives the duty
cycle (pulswidth) for the PWM output signal. We use a multiplexer in this exam-
ple to express the counter. The last line of the function compares the counter value
with the input value din to return the PWM signal. The last expression in a Chisel
function is the return value, in our case the wire connected to the compare function.

We use the function unsignedBitLength(n) to specify the number of bits for
the counter cntReg needed to represent unsigned numbers up to (and including) n.3

Chisel also has a function signedBitLength to provide the number of bits for a
signed representation of a number.

Another application of a PWM signal is to dim an LED. In that case the eye serves
as low-pass filter. We expand the above example to drive the PWM generation by a
triangular function. The result is an LED with continuously changing intensity.

val FREQ = 100000000 // a 100 MHz clock input

val MAX = FREQ/1000 // 1 kHz

val modulationReg = RegInit(0.U(32.W))

val upReg = RegInit(true.B)

3The number of bits to represent an unsigned number n in binary is blog2(n)c+1.
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din dout

Figure 6.12: A 4 stage shift register.

when (modulationReg < FREQ.U && upReg) {

modulationReg := modulationReg + 1.U

} .elsewhen (modulationReg === FREQ.U && upReg) {

upReg := false.B

} .elsewhen (modulationReg > 0.U && !upReg) {

modulationReg := modulationReg - 1.U

} .otherwise { // 0

upReg := true.B

}

// divide modReg by 1024 (about the 1 kHz)

val sig = pwm(MAX, modulationReg >> 10)

We use two registers for the modulation: (1) modulationReg for counting up and
down and (2) upReg as a flag to determine if we shall count up or down. We count
up to the frequency of our clock input (100 MHz in our example), which results in a
signal of 0.5 Hz. The lengthy when/.elsewhen/.otherwise expression handles the
up- or down-counting and the switch of the direction.

As our PWM counts only up to the 1000th of the frequency to generate a 1 kHz
signal, we need to divide the modulation signal by 1000. As real division is very
expensive in hardware, we simply shift by 10 to the right, which equates a division
by 210 = 1024. As we have defined the PWM circuit as a function, we can simply
instantiate that circuit with a function call. Wire sig represents the modulated PWM
signal.

6.3 Shift Registers

A shift register is a collection of flip-flops connected in a sequence. Each output of
a register (flip-flop) is connected to the input of the next register. Figure 6.12 shows
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a 4-stage shift register. The circuit shifts the data from left to right on each clock
tick. In this simple form the circuit implements a 4-tap delay from din to dout.

The Chisel code for this simple shift register does: (1) create a 4-bit register
shiftReg, (2) concatenate the lower 3 bits of the shift register with the input din
for the next input to the register, and (3) uses the most significant bit (MSB) of the
register as the output dout.

val shiftReg = Reg(UInt(4.W))

shiftReg := shiftReg(2, 0) ## din

val dout = shiftReg(3)

Shift registers are often used to convert from serial data to parallel data or from
parallel data to serial data. Section 11.2 shows a serial port that uses shift registers
for the receive and send functions.

6.3.1 Shift Register with Parallel Output

A serial-in parallel-out configuration of a shift register transforms a serial input
stream into parallel words. This may be used in a serial port (UART) for the receive
function. Figure 6.13 shows a 4-bit shift register, where each flip-flop output is
connected to one output bit. After 4 clock cycles this circuit converts a 4-bit serial
data word to a 4-bit parallel data word that is available in q. In this example we
assume that bit 0 (the least significant bit) is sent first and therefore arrives in the
last stage when we want to read the full word.

In the following Chisel code we initialize the shift register outReg with 0. Then
we shift in from the MSB, which means a right shift. The parallel result, q, is just
the reading of the register outReg.

val outReg = RegInit(0.U(4.W))

outReg := serIn ## outReg(3, 1)

val q = outReg

Figure 6.13 shows a 4-bit shift register with a parallel output function.

6.3.2 Shift Register with Parallel Load

A parallel-in serial-out configuration of a shift register transforms a parallel input
stream of words (bytes) into a serial output stream. This may be used in a serial port
(UART) for the transmit function.
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serIn

q3 q2 q1 q0

Figure 6.13: A 4-bit shift register with parallel output.
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Figure 6.14: A 4-bit shift register with parallel load.
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Figure 6.14 shows a 4-bit shift register with a parallel load function. The Chisel
description of that function is relatively straight forward:

val loadReg = RegInit(0.U(4.W))

when (load) {

loadReg := d

} otherwise {

loadReg := 0.U ## loadReg(3, 1)

}

val serOut = loadReg(0)

Note that we are now shifting to the right, filling in zeros at the MSB.

6.4 Memory

A memory can be built out of a collection of registers, in Chisel a Reg of a Vec.
However, this is expensive in hardware, and larger memory structures are built as
SRAM. For an ASIC, a memory compiler constructs memories. FPGAs contain on-
chip memory blocks, also called block RAMs. Those on-chip memory blocks can
be combined for larger memories. Memories in an FPGA usually have one read and
one write port, or two ports that can be switched between read and write at runtime.

FPGAs (and also ASICs) usually support synchronous memories. Synchronous
memories have registers on their inputs (read and write address, write data, and
write enable). That means the read data is available one clock cycle after setting the
address.

Figure 6.15 shows the schematics of such a synchronous memory. The memory
is dual-ported with one read port and one write port. The read port has a single
input, the read address (rdAddr) and one output, the read data (rdData). The write
port has three inputs: the address (wrAddr), the data to be written (wrData), and a
write enable (wrEna). Note that for all inputs, there is a register within the memory
showing the synchronous behavior.

To support on-chip memory, Chisel provides the memory constructor SyncReadMem.
Listing 6.2 shows a component Memory that implements 1 KiB of memory with byte-
wide input and output data and a write enable.

An interesting question is which value is returned from a read when in the same
clock cycle a new value is written to the same address that is read out. We are inter-
ested in the read-during-write behavior of the memory. There are three possibilities:
the newly written value, the old value, or undefined (which might be a mix of some
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Figure 6.15: A synchronous memory.
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class Memory() extends Module {

val io = IO(new Bundle {

val rdAddr = Input(UInt(10.W))

val rdData = Output(UInt(8.W))

val wrAddr = Input(UInt(10.W))

val wrData = Input(UInt(8.W))

val wrEna = Input(Bool())

})

val mem = SyncReadMem(1024, UInt(8.W))

io.rdData := mem.read(io.rdAddr)

when(io.wrEna) {

mem.write(io.wrAddr, io.wrData)

}

}

Listing 6.2: 1 KiB of synchronous memory.

bits from the old value and some of the newly written data). Which possibility is
available in an FPGA depends on the FPGA type and sometimes can be specified.
Chisel documents that the read data is undefined.

If we want to read out the newly written value, we can build a forwarding circuit
that detects that the addresses are equal and forwards the write data. Figure 6.16
shows the memory with the forwarding circuit. Read and write addresses are com-
pared and gated with the write enable to select between the forwarding path of the
write data or the memory read data. The write data is delayed by one clock cycle
with a register.

Listing 6.3 shows the Chisel code for a synchronous memory including the for-
warding circuit. We need to store the write data into a register (wrDataReg) to be
available in the next clock cycle in order to fit the synchronous memory that also
provides the read value in the next clock cycle. We compare the two input addresses
(wrAddr and rdAddr) and check if wrEna is true for the forwarding condition. That
condition is also delayed by one clock cycle. A multiplexer selects between the
forwarding (write) data or the read data from memory.

Chisel also provides Mem, which represents a memory with synchronous write and
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rdAddr

wrAddr

wrData

rdData

wrEna

=
AND

dout

Memory

Figure 6.16: A synchronous memory with forwarding for a defined read-during-
write behavior.

94 Index Contents



6.4 MEMORY

class ForwardingMemory() extends Module {

val io = IO(new Bundle {

val rdAddr = Input(UInt(10.W))

val rdData = Output(UInt(8.W))

val wrAddr = Input(UInt(10.W))

val wrData = Input(UInt(8.W))

val wrEna = Input(Bool())

})

val mem = SyncReadMem(1024, UInt(8.W))

val wrDataReg = RegNext(io.wrData)

val doForwardReg = RegNext(io.wrAddr === io.rdAddr &&

io.wrEna)

val memData = mem.read(io.rdAddr)

when(io.wrEna) {

mem.write(io.wrAddr, io.wrData)

}

io.rdData := Mux(doForwardReg , wrDataReg , memData)

}

Listing 6.3: A memory with a forwarding circuit.
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an asynchronous read. As this memory type is usually not directly available in an
FPGA, the synthesize tool will build it out of flip-flops. Therefore, we recommend
using SyncReadMem. If asynchronous read behavior is needed and the resources
are available in the FPGA you are using (e.g., in the shape of LUTRAM on Xilinx
FPGAs), you can manually implement this as a BlackBox. Vendors typically provide
code templates that can be used directly for this.

Memories in FPGAs can be initialized with either binary or hexadecimal initial-
ization files. The files are simple ASCII text files with the same number of lines as
there are entries in the corresponding memory. Each character represents either a
single bit or four bits. Traditionally, binary files use the .bin file extension, while
hexadecimal files use .hex. Using loadMemoryFromFile will result in emission of a
separate Verilog file and works in ChiselTest. Initializations are based around calls
to readmemb or readmemh.

6.5 Exercises

Use the 7-segment encoder from the last exercise and add a 4-bit counter as input to
switch the display from 0 to F. When you directly connect this counter to the clock
of the FPGA board, you will see all 16 numbers overlapped (all 7 segments will
light up). Therefore, you need to slow down the counting. Create another counter
that can generate a single-cycle tick signal every 500 milliseconds. Use that signal
as enable signal for the 4-bit counter.

Construct a PWM waveform with a generator function and set the threshold with
a function (triangular or a sine function). A triangular function can be created by
counting up and down. A sinus function with the use of a lookup table that you
can generate with a few lines of Scala code (see Section 10.4). Drive a LED on an
FPGA board with that modulated PWM function. What frequency shall your PWM
signal be? What frequency is the driver running?

Digital designs are often sketched as a circuit on paper. Not all details need to be
shown. We use block diagrams, like in the figures in this book. It is an important
skill to be able to fluently translate between a schematic representation of the circuit
and a Chisel description. Sketch the block diagram for the following circuits:

val dout = WireDefault(0.U)

switch(sel) {

is(0.U) { dout := 0.U }

is(1.U) { dout := 11.U }
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is(2.U) { dout := 22.U }

is(3.U) { dout := 33.U }

is(4.U) { dout := 44.U }

is(5.U) { dout := 55.U }

}

Here a little bit more complex circuit, containing a register:

val regAcc = RegInit(0.U(8.W))

switch(sel) {

is(0.U) { regAcc := regAcc}

is(1.U) { regAcc := 0.U}

is(2.U) { regAcc := regAcc + din}

is(3.U) { regAcc := regAcc - din}

}
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Input signals from the external world into our synchronous circuit are usually not
synchronous to the clock; they are asynchronous. An input signal may come from a
source that does not have a clean transition from 0 to 1 or 1 to 0. An example is a
bouncing button or switch. Input signals may be noisy with spikes that could trigger
a transition in our synchronous circuit. This chapter describes circuits that deal with
such input conditions.

The latter two issues, debouncing switches, and filtering noise, can also be solved
with external, analog components. However, it is more (cost-)efficient to deal with
those issues in the digital domain.

7.1 Asynchronous Input

Input signals that are not synchronous to the system clock are called asynchronous
signals. Those signals may violate the setup and hold time of the input of a flip-flop.
This violation may result in Metastability of the flip-flop. The Metastability may
result in an output value between 0 and 1 or it may result in oscillation. However,
after some time the flip-flop will stabilize at 0 or 1.

Another common issue with external asynchronous input signals is when that
signal changes close to the clock rising endge and is used in more than one place of
the circuit. Due to different delay times, those different usages of that input may be
registered at different clock cycles, which might violate some assumptions.1

We cannot avoid Metastability, but we can contain its effects. A classic solution is
to use two flip-flops at the input. The assumption is: when the first flip-flop becomes
metastable, it will resolve to a stable state within the clock period so that the setup
and hold times of the second flip-flop will not be violated.

Figure 7.1 shows the border between the external world and the synchronous
circuit. The input synchronizer consists of two flip-flops. The Chisel code for the
input synchronizer is a one-liner that instantiates two registers.

1I experienced this issue once and it took me quite some time to find the error.
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Synchronous circuit

External world

btn btnSync

Figure 7.1: Input synchronizer.

val btnSync = RegNext(RegNext(btn))

All asynchronous external signals need an input synchronizer.2 We also need to
synchronize an external reset signal. The reset signal shall pass through the two flip-
flops before it is used as the reset signal for other flip-flops in the circuit. Concrete,
the deassertion of the reset need to be synchronous to the clock.

7.2 Debouncing

Switches and buttons may need some time to transition between on and off. During
the transition, the switch may bounce between those two states. If we use such
a signal without further processing, we might detect more transition events than
we want to. One solution is to use time to filter out this bouncing. Assuming a
maximum bouncing time of tbounce we will sample the input signals with a period
T > tbounce. We will only use the sampled signal further downstream.

When sampling the input with this long period, we know that on a transition from
0 to 1 only one sample may fall into the bouncing region. The sample before will
safely read a 0, and the sample after the bouncing region will safely read a 1. The
sample in the bouncing region will either be 0 or a 1. However, this does not matter
as it then belongs either to the still 0 samples or to the already 1 samples. The

2The exception is when the input signal is dependent on a synchronous output signal, and we know
the maximum propagation delay. A classic example is the interfacing an asynchronous SRAM to a
synchronous circuit, e.g., by a microprocessor.
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bouncing in

debounced A

debounced B

Figure 7.2: Debouncing an input signal.

critical point is that we have only one transition from 0 to 1.
Figure 7.2 shows the sampling for the debouncing in action. The top signal shows

the bouncing input, and the arrows below show the sampling points. The distance
between those sampling points needs to be longer than the maximum bouncing time.
The first sample safely samples a 0, and the last sample in the figure samples a 1.
The middle sample falls into the bouncing time. It may either be 0 or 1. The two
possible outcomes are shown as debounced A and debounced B. Both have a single
transition from 0 to 1. The only difference between these two outcomes is that
the transition in version A is one sample period later. However, this is usually a
non-issue.

The Chisel code for the debouncing is a little bit more evolved than the code
for the synchronizer. We generate the sample timing with a counter that delivers a
single cycle tick signal, as we have done in Section 6.2.2.

val fac = 100000000/100

val btnDebReg = Reg(Bool())

val cntReg = RegInit(0.U(32.W))

val tick = cntReg === (fac-1).U
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cntReg := cntReg + 1.U

when (tick) {

cntReg := 0.U

btnDebReg := btnSync

}

First, we need to decide on the sampling frequency. The above example assumes
a 100 MHz clock and results in a sampling frequency of 100 Hz (assuming that the
bouncing time is below 10 ms). The maximum counter value is fac, the division
factor. We define a register btnDebReg for the debounced signal, without a reset
value. The register cntReg serves as counter, and the tick signal is true when the
counter has reached the maximum value. In that case, the when condition is true and
(1) the counter is reset to 0 and (2) the debounce register stores the input sample.
In our example, the input signal is named btnSync as it is the output from the input
synchronizer shown in the previous section.

The debouncing circuit comes after the synchronizer circuit. First, we need to
synchronize in the asynchronous signal, then we can further process it in the digital
domain.

7.3 Filtering of the Input Signal

Sometimes our input signal may be noisy, maybe containing spikes that we might
sample unintentionally with the input synchronizer and debouncing unit. One option
to filter those input spikes is to use a majority voting circuit. In the simplest case,
we take three samples and perform the majority vote. The majority function, which
is related to the median function, results in the value of the majority. In our case,
where we use sampling for the debouncing, we perform the majority voting on the
sampled signal. Majority voting ensures that the signal is stable for longer than the
sampling period.

Figure 7.3 shows the circuit of the majority voter. It consists of a 3-bit shift
register enabled by the tick signal we used for the debouncing sampling. The
output of the three registers is fed into the majority voting circuit. The majority
voting function filters any signal change shorter than the sample period.

The following Chisel code shows the 3-bit shift register, enabled by the tick
signal and the voting function, resulting in the signal btnClean.

Note, that a majority voting is very seldom needed.

val shiftReg = RegInit(0.U(3.W))
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en en en

din

Majority voting

dout = (a & b) | (a & c) | (b & c)

a b c

dout

tick

Figure 7.3: Majority voting on the sampled input signal.
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when (tick) {

// shift left and input in LSB

shiftReg := shiftReg(1, 0) ## btnDebReg

}

// Majority voting

val btnClean = (shiftReg(2) & shiftReg(1)) | (shiftReg(2)

& shiftReg(0)) | (shiftReg(1) & shiftReg(0))

To use the output of our carefully processed input signal, we first detect the rising
edge with a RegNext delay element and then compare this signal with the current
value of btnClean. In this example, we use hat single cycle rising edge signal to
increment a counter.

val risingEdge = btnClean & !RegNext(btnClean)

// Use the rising edge of the debounced and

// filtered button to count up

val reg = RegInit(0.U(8.W))

when (risingEdge) {

reg := reg + 1.U

}

7.4 Combining the Input Processing with Functions

To summarize the input processing, we show some more Chisel code. As the pre-
sented circuits might be tiny, but reusable building blocks, we encapsulate them
in functions. Section 10.2 showes how we can abstract small building blocks in
lightweight Chisel functions instead of full modules. Those Chisel functions create
hardware instances, e.g., the function sync creates two flip-flops connected to the
input and to each other. The function returns the output of the second flip-flop. List-
ing 7.1 shows all input processing circuits as functions. If useful, those functions
can be elevated to some utility class object.

7.5 Synchronizing Reset

Any digital circuit needs a reset signal to reset registers to a defined state. The
reset state is set in Chisel with the RegInit constructor. A reset signal is usually an
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def sync(v: Bool) = RegNext(RegNext(v))

def rising(v: Bool) = v & !RegNext(v)

def tickGen() = {

val reg = RegInit(0.U(log2Up(fac).W))

val tick = reg === (fac-1).U

reg := Mux(tick, 0.U, reg + 1.U)

tick

}

def filter(v: Bool, t: Bool) = {

val reg = RegInit(0.U(3.W))

when (t) {

reg := reg(1, 0) ## v

}

(reg(2) & reg(1)) | (reg(2) & reg(0)) | (reg(1) & reg(0))

}

val btnSync = sync(io.btnU)

val tick = tickGen()

val btnDeb = Reg(Bool())

when (tick) {

btnDeb := btnSync

}

val btnClean = filter(btnDeb, tick)

val risingEdge = rising(btnClean)

// Use the rising edge of the debounced

// and filtered button for the counter

val reg = RegInit(0.U(8.W))

when (risingEdge) {

reg := reg + 1.U

}

Listing 7.1: Summarizing input processing with functions.
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asynchronous input to the circuit. That means when directly connected to the reset
of a flip-flop it may violate timing constraints. In case of a synchronous reset it may
violate setup and hold times of the flip-flop. Also when used as an asynchronous
reset input, it still need to be synchronized to the clock. Concrete, the release of
the reset signal needs to be synchronized to the clock. Another failure with an
asynchronous reset can be that different parts of the circuit may be reset in two
different clock cycles and therefore be inconsistent.

The solution for this issue is to synchronize the reset signal in the very same way
as any other asynchronous input with two flip-flops.

The reset and clock signals are usually hidden from the Chisel design. However,
it is possible to access and set those signals. Each module has an implicit field
reset. The solution is to have a top-level module that performs the synchronizing
of the external reset signals and connects that synchronized signal to the reset input
of the contained module.

class SyncReset extends Module {

val io = IO(new Bundle() {

val value = Output(UInt())

})

val syncReset = RegNext(RegNext(reset))

val cnt = Module(new WhenCounter(5))

cnt.reset := syncReset

io.value := cnt.io.cnt

}

In the above example SyncReset is the top level module that contains a counter
(WhenCounter). The reset signal of the top-level module is called reset and is
connected to the input synchronizer (RegNext(RegNext(reset))). The output of
that input synchronizer (syncReset) is connected to the reset input of the counter
(cnt.reset := syncReset).

7.6 Exercise

Build a counter that is incremented by an input button. Display the counter value
in binary with the LEDs on an FPGA board. Build the complete input processing
chain with: (1) an input synchronizer, (2) a debouncing circuit, (3) a majority voting
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circuit to suppress noise, and (4) an edge detection circuit to trigger the increment
of the counter.

As there is no guarantee that modern button will always bounce, you can simulate
the bouncing and the spikes by pressing the button manually in a fast succession and
using a low sample frequency. Select, e.g., one second as sample frequency, i.e., if
the input clock runs at 100 MHz, divide it by 100,000,000. Simulate a bouncing
button by pressing several times in fast succession before settling to a stable press.
Test your circuit without and with the debouncing circuit sampling at 1 Hz. With the
majority voting, you need to press between one and two seconds for a reliable in-
crement of the counter. Also, the release of the button is majority voted. Therefore,
the circuit only recognizes the release when it is longer than 1–2 seconds.
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A finite-state machine (FSM) is a basic building block in digital design. An FSM can
be described as a set of states and conditional (guarded) state transitions between
states. An FSM has an initial state, which is set on reset. FSMs are also called
synchronous sequential circuits.

An implementation of an FSM consists of three parts: (1) a register that holds the
current state, (2) combinational logic that computes the next state that depends on
the current state and the input, and (3) combinational logic that computes the output
of the FSM.

In principle, every digital circuit that contains a register or other memory elements
to store state can be described as a single FSM. However, this might not be practical,
for example, try to describe your laptop as a single FSM. In the next chapter, we
describe how to build larger systems out of smaller FSMs by combining them into
communicating FSMs.

8.1 Basic Finite-State Machine

Figure 8.1 shows the schematics of an FSM. The register contains the current state.
The next state logic computes the next state value (nextState) from the current
state and the input (in). On the next clock tick, state becomes nextState. The

in

state

nextState
Next 
state
logic

Ouput
logic out

Figure 8.1: A finite-state machine (Moore type).
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bad event

green orange red/
ring bell

bad event

clear

reset

clear

Figure 8.2: The state diagram of an alarm FSM.

output logic computes the output (out). As the output depends on the current state
only, this state machine is called a Moore machine.

A state diagram describes the behavior of such an FSM visually. In a state dia-
gram, individual states are depicted as circles labeled with the state names. State
transitions are shown with arrows between states. The guard (or condition) when
this transition is taken is drawn as a label for the arrow.

Figure 8.2 shows the state diagram of a simple example FSM. The FSM has three
states: green, orange, and red, indicating a level of alarm. The FSM starts at the
green level. When a bad event happens the alarm level is switched to orange. On a
second bad event, the alarm level is switched to red. In that case, we want to ring
a bell; ring bell is the only output of this FSM. We add the output to the red state.
The alarm can be reset with a clear signal.

Although a state diagram may be visually pleasing and the function of an FSM
can be grasped quickly, a state table may be quicker to write down. Table 8.1 shows
the state table for our alarm FSM. We list the current state, the input values, the
resulting next state, and the output value for the current state. In principle, we
would need to specify all possible inputs for all possible states. This table would
have 3× 4 = 12 rows. We simplify the table by indicating that the clear input is
a don’t care when a bad event happens. That means bad event has priority over
clear. The output column has some repetition. If we have a larger FSM and/or more
outputs, we can split the table into two, one for the next state logic and one for the
output logic.

Finally, after all the design of our warning level FSM, we shall code it in Chisel.
Listing 8.1 shows the Chisel code for the alarm FSM. Note, that we use the Chisel
type Bool for the inputs and the output of the FSM. To use Enum and the switch
control instruction, we need to import chisel3.util. .
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8.1 BASIC FINITE-STATE MACHINE

import chisel3._

import chisel3.util._

class SimpleFsm extends Module {

val io = IO(new Bundle{

val badEvent = Input(Bool())

val clear = Input(Bool())

val ringBell = Output(Bool())

})

// The three states

val green :: orange :: red :: Nil = Enum(3)

// The state register

val stateReg = RegInit(green)

// Next state logic

switch (stateReg) {

is (green) {

when(io.badEvent) {

stateReg := orange

}

}

is (orange) {

when(io.badEvent) {

stateReg := red

} .elsewhen(io.clear) {

stateReg := green

}

}

is (red) {

when (io.clear) {

stateReg := green

}

}

}

// Output logic

io.ringBell := stateReg === red

}

Listing 8.1: The Chisel code for the alarm FSM.
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Table 8.1: State table for the alarm FSM.

Input

State Bad event Clear Next state Ring bell

green 0 0 green 0
green 1 - orange 0
orange 0 0 orange 0
orange 1 - red 0
orange 0 1 green 0

red - 0 red 1
red 0 1 green 1

The complete Chisel code for this simple FSM fits into one page. Let us step
through the individual parts. The FSM has two input and a single output signal,
captured in a Chisel Bundle:

val io = IO(new Bundle{

val badEvent = Input(Bool())

val clear = Input(Bool())

val ringBell = Output(Bool())

})

At this place we could spend some discussion on optimal state encoding. Two com-
mon options are binary or one-hot encoding. However, we leave those low-level
optimization to the synthesize tool and aim for readable code.1 Therefore, we use
an enumeration type with symbolic names for the states:

val green :: orange :: red :: Nil = Enum(3)

The individual state values are described as a list where the individual elements
are concatenated with the :: operator; Nil represents the end of the list. An Enum
instance is assigned to the list of states. The register holding the state is defined
with the green state as the reset value:

val stateReg = RegInit(green)

1In the current version of Chisel the Enum type represents states in binary encoding. If we want a
different encoding, e.g., one-hot encoding, we can define Chisel constants for the state names.
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The meat of the FSM is in the next state logic. We use a Chisel switch on the state
register to cover all states. Within each is branch we code the next state logic, which
depends on the inputs, by assigning a new value for our state register:

switch (stateReg) {

is (green) {

when(io.badEvent) {

stateReg := orange

}

}

is (orange) {

when(io.badEvent) {

stateReg := red

} .elsewhen(io.clear) {

stateReg := green

}

}

is (red) {

when (io.clear) {

stateReg := green

}

}

}

Last, but not least, we code our ringing bell output to be true when the state is red.

io.ringBell := stateReg === red

Note that we did not introduce a next state signal for the register input, as it is
common practice in Verilog or VHDL. Registers in Verilog and VHDL are described
in a special syntax and cannot be assigned (and reassigned) within a combinational
block. Therefore, the additional signal, computed in a combinational block, is in-
troduced and connected to the register input. In Chisel a register is a base type and
can be freely used and assigned within a combinational block.

8.2 Faster Output with a Mealy FSM

On a Moore FSM, the output depends only on the current state. That means that a
change of an input can be seen as a change of the output earliest in the next clock
cycle. If we want to observe an immediate change, we need a combinational path
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AND
NOTdin

risingEdge

Figure 8.3: A rising edge detector (Mealy type FSM).
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logic Output

logic out

Figure 8.4: A Mealy type finite-state machine.

from the input to the output. Let us consider a minimal example, an edge detection
circuit. We have seen this Chisel one-liner before:

val risingEdge = din & !RegNext(din)

Figure 8.3 shows the schematic of the rising edge detector. The output becomes
1 for one clock cycle when the current input is 1 and the input in the last clock cycle
was 0. The state register is just a single D flip-flop where the next state is just the
input. We can also consider this as a delay element of one clock cycle. The output
logic compares the current input with the current state.

When the output depends also on the input, i.e., there is a combinational path
between the input of the FSM and the output, this is called a Mealy machine.

Figure 8.4 shows the schematic of a Mealy type FSM. Similar to the Moore FSM,
the register contains the current state, and the next state logic computes the next
state value (nextState) from the current state and the input (in). On the next clock
tick, state becomes nextState. The output logic computes the output (out) from
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zero one

1/1

reset

0/0

0/0 1/0

Figure 8.5: The state diagram of the rising edge detector as Mealy FSM.

the current state and the input to the FSM.

Figure 8.5 shows the state diagram of the Mealy FSM for the edge detector. As
the state register consists just of a single D flip-flop, only two states are possible,
which we name zero and one in this example. As the output of a Mealy FSM does
not only depend on the state, but also on the input, we cannot describe the output as
part of the state circle. Instead, the transitions between the states are labeled with the
input value (condition) and the output (after the slash). Note also that we draw self
transitions, e.g., in state zero when the input is 0 the FSM stays in state zero, and
the output is 0. The rising edge FSM generates the 1 output only on the transition
from state zero to state one. In state one, which represents that the input is now 1,
the output is 0. We only want a single (cycle) puls for each rising edge of the input.

Listing 8.2 shows the Chisel code for the rising edge detection with a Mealy ma-
chine. As in the previous example, we use the Chisel type Bool for the single-bit
input and output. The output logic is now part of the next state logic; on the transi-
tion from zero to one, the output is set to true.B. Otherwise, the default assignment
to the output (false.B) counts.

One can ask if a full-blown FSM is the best solution for the edge detection circuit,
especially, as we have seen a Chisel one-liner for the same functionality. The hard-
ware consumptions is similar. Both solutions need a single D flip-flop for the state.
The combinational logic for the FSM is probably a bit more complicated, as the
state change depends on the current state and the input value. For this function, the
one-liner is easier to write and easier to read, which is more important. Therefore,
the one-liner is the preferred solution.

We have used this example to show one of the smallest possible Mealy FSMs.
FSMs shall be used for more complex circuits with three and more states.
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import chisel3._

import chisel3.util._

class RisingFsm extends Module {

val io = IO(new Bundle{

val din = Input(Bool())

val risingEdge = Output(Bool())

})

// The two states

val zero :: one :: Nil = Enum(2)

// The state register

val stateReg = RegInit(zero)

// default value for output

io.risingEdge := false.B

// Next state and output logic

switch (stateReg) {

is(zero) {

when(io.din) {

stateReg := one

io.risingEdge := true.B

}

}

is(one) {

when(!io.din) {

stateReg := zero

}

}

}

}

Listing 8.2: Rising edge detection with a Mealy FSM.
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Figure 8.6: The state diagram of the rising edge detector as Moore FSM.
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Figure 8.7: Mealy and a Moore FSM waveform for rising edge detection.

8.3 Moore versus Mealy

To show the difference between a Moore and Mealy FSM, we redo the edge detec-
tion with a Moore FSM.

Figure 8.6 shows the state diagram for the rising edge detection with a Moore
FSM. The first thing to notice is that the Moore FSM needs three states, compared
to two states in the Mealy version. The state puls is needed to produce the single-
cycle puls. The FSM stays in state puls just one clock cycle and then proceeds
either back to the start state zero or to the one state, waiting for the input to become
0 again. We show the input condition on the state transition arrows and the FSM
output within the state representing circles.

Listing 8.3 shows the Moore version of the rising edge detection circuit. It uses
double the number of D flip-flops than the Mealy or directly coded version. The
resulting next state logic is therefore also larger than the Mealy or directly coded
version.

Figure 8.7 shows the waveform of a Mealy and a Moore version of the rising edge
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import chisel3._

import chisel3.util._

class RisingMooreFsm extends Module {

val io = IO(new Bundle{

val din = Input(Bool())

val risingEdge = Output(Bool())

})

// The three states

val zero :: puls :: one :: Nil = Enum(3)

// The state register

val stateReg = RegInit(zero)

// Next state logic

switch (stateReg) {

is(zero) {

when(io.din) {

stateReg := puls

}

}

is(puls) {

when(io.din) {

stateReg := one

} .otherwise {

stateReg := zero

}

}

is(one) {

when(!io.din) {

stateReg := zero

}

}

}

// Output logic

io.risingEdge := stateReg === puls

}

Listing 8.3: Rising edge detection with a Moore FSM.
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detection FSM. We can see that the Mealy output closely follows the input rising
edge, while the Moore output rises after the clock tick. We can also see that the
Moore output is one clock cycle wide, where the Mealy output is usually less than
a clock cycle.

From the above example, one is tempted to find Mealy FSMs the better FSMs
as they need less state (and therefore logic) and react faster than a Moore FSM.
However, the combinational path within a Mealy machine can cause troubles in
larger designs. First, with a chain of communicating FSM (see next chapter), this
combinational path can become lengthy. Second, if the communicating FSMs build
a circle, the result is a combinational loop, which is an error in synchronous design.
Due to a cut in the combinational path with the state register in a Moore FSM, all
the above issues do not exist for communicating Moore FSMs.

In summary, Moore FSMs combine better for communicating state machines;
they are more robust than Mealy FSMs. Use Mealy FSMs only when the reaction
within the same cycle is of utmost importance. Small circuits such as the rising edge
detection, which are practically Mealy machines, are fine as well.

8.4 Exercise

In this chapter, you have seen many examples of very small FSMs. Now it is time to
write some real FSM code. Pick a little bit more complex example and implement
the FSM and write a test bench for it.

A classic example for a FSM is a traffic light controller (see [6, Section 14.3]).
A traffic light controller has to ensure that on a switch from red to green there is a
phase in between where both roads in the intersection have a no-go light (red and
orange). To make this example a little bit more interesting, consider a priority road.
The minor road has two car detectors (on both entries into the intersection). Switch
to green for the minor road only when a car is detected and then switch back to
green for the priority road.
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A problem is often too complex to describe it with a single FSM. In that case, the
problem can be divided into two or more smaller and simpler FSMs. Those FSMs
then communicate with signals. One FSMs output is another FSMs input; one FSM
watches the output of the other FSM. When we split a large FSM into simpler ones,
this is called factoring FSMs. Communicating FSMs are often directly designed
from the specification of the design. A single FSM for the design would be too
large in the first place.

9.1 A Light Flasher Example

To discuss communicating FSMs, we use an example from [6, Chapter 17], the
light flasher. The light flasher has one input start and one output light. The
specification of the light flasher is as follows:

• when start is high for one clock cycle, the flashing sequence starts;

• the sequence is to flash three times;

• where the light goes on for six clock cycles, and the light goes off for four
clock cycles between flashes;

• after the sequence, the FSM switches the light off and waits for the next
start.

The FSM for a direct implementation1 has 27 states: one initial state that is wait-
ing for the input, 3×6 states for the three on states and 2×4 states for the off states.
We do not show the code for this simple-minded implementation of the light flasher.

The problem can be solved more elegantly by factoring this large FSM into two
smaller FSMs: the master FSM implements the flashing logic, and the timer FSM
implements the waiting. Figure 9.1 shows the composition of the two FSMs.

1The state diagram is shown in [6, p. 376].
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Figure 9.1: The light flasher split into a Master FSM and a Timer FSM.

The timer FSM counts down for 6 or 4 clock cycles to produce the desired timing.
The timer specification is as follows:

• when timerLoad is asserted, the timer loads a value into the down counter,
independent of the state;

• timerSelect selects between 5 or 3 for the load;

• timerDone is asserted when the counter completed the countdown and re-
mains asserted;

• otherwise, the timer counts down.

Following code shows the timer FSM of the light flasher:

val timerReg = RegInit(0.U)

timerDone := timerReg === 0.U

// Timer FSM (down counter)

when(!timerDone) {

timerReg := timerReg - 1.U

}

when (timerLoad) {

when (timerSelect) {

timerReg := 5.U

} .otherwise {
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Figure 9.2: The light flasher split into a Master FSM, a Timer FSM, and a Counter
FSM.

timerReg := 3.U

}

}

Listing 9.1 shows the master FSM. It has a starting state off and states for the
complete blinking sequence. In each state it waits for the time being done. The
timer is loaded whenever it is done and in the initial off state. Signal timerSelect
selects the value for the next state down counter.

This solution with a master FSM and a timer has still redundancy in the code of
the master FSM. States flash1, flash2, and flash3 are performing the same func-
tion, states space1 and space2 as well. We can factor out the number of remaining
flashes into a second counter. Then the master FSM is reduced to three states: off,
flash, and space.

Figure 9.2 shows the design with a master FSM and two FSMs that count: one
FSM to count clock cycles for the interval length of on and off ; the second FSM to
count the remaining flashes.

Following code shows the down counter FSM:

val cntReg = RegInit(0.U)

cntDone := cntReg === 0.U

// Down counter FSM

when(cntLoad) { cntReg := 2.U }

when(cntDecr) { cntReg := cntReg - 1.U }
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val off :: flash1 :: space1 :: flash2 :: space2 :: flash3

:: Nil = Enum(6)

val stateReg = RegInit(off)

val light = WireDefault(false.B) // FSM output

// Timer connection

val timerLoad = WireDefault(false.B) // start timer

val timerSelect = WireDefault(true.B) // 6 or 4 cycles

val timerDone = Wire(Bool())

timerLoad := timerDone

// Master FSM

switch(stateReg) {

is(off) {

timerLoad := true.B

timerSelect := true.B

when (start) { stateReg := flash1 }

}

is (flash1) {

timerSelect := false.B

light := true.B

when (timerDone) { stateReg := space1 }

}

is (space1) {

when (timerDone) { stateReg := flash2 }

}

is (flash2) {

timerSelect := false.B

light := true.B

when (timerDone) { stateReg := space2 }

}

is (space2) {

when (timerDone) { stateReg := flash3 }

}

is (flash3) {

timerSelect := false.B

light := true.B

when (timerDone) { stateReg := off }

}

}

Listing 9.1: Master FSM of the light flasher.
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dinValid popCntValid

FSM

din popCnt

popCntReadydinReady
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Figure 9.3: A state machine with a datapath.

Note, that the counter is loaded with 2 for 3 flashes, as it counts the remaining
flashes and is decremented in state space when the timer is done. Listing 9.2 shows
the master FSM for the double refactored flasher.

Besides having a master FSM that is reduced to just three states, our current
solution is also better configurable. No FSM needs to be changed if we want to
change the length of the on or off intervals or the number of flashes.

In this section, we have explored communicating circuits, especially FSMs, that
only exchange control signals. To perform computation we can combine a FSM
with a datapath, as discussed in the next section.

9.2 State Machine with Datapath

One typical example of communicating state machines is a state machine combined
with a datapath. This combination is often called a finite-state machine with datap-
ath (FSMD). The state machine controls the datapath, and the datapath performs the
computation. The FSM input is the input from the environment and the input from
the datapath. The data from the environment is fed into the datapath, and the data
output comes from the datapath. Figure 9.3 shows an example of the combination
of the FSM with the datapath.

The FSMD shown in Figure 9.3 serves as an example that computes the popcount,
also called the Hamming weight. The Hamming weight is the number of symbols
different from the zero symbol. For a binary string, this is the number of ‘1’s.
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val off :: flash :: space :: Nil = Enum(3)

val stateReg = RegInit(off)

val light = WireDefault(false.B) // FSM output

// Timer connection

val timerLoad = WireDefault(false.B) // start timer with a

load

val timerSelect = WireDefault(true.B) // select 6 or 4

cycles

val timerDone = Wire(Bool())

// Counter connection

val cntLoad = WireDefault(false.B)

val cntDecr = WireDefault(false.B)

val cntDone = Wire(Bool())

timerLoad := timerDone

switch(stateReg) {

is(off) {

timerLoad := true.B

timerSelect := true.B

cntLoad := true.B

when (start) { stateReg := flash }

}

is (flash) {

timerSelect := false.B

light := true.B

when (timerDone & !cntDone) { stateReg := space }

when (timerDone & cntDone) { stateReg := off }

}

is (space) {

cntDecr := timerDone

when (timerDone) { stateReg := flash }

}

}

Listing 9.2: Master FSM of the double refactored light flasher.
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Figure 9.4: State diagram for the popcount FSM.
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Figure 9.5: Datapath for the popcount circuit.

The popcount unit contains the data input din and the result output popCount,
both connected to the datapath. For the input and the output we use a ready/valid
handshake. When data is available, valid is asserted. When a receiver can accept
data it asserts ready. When both signals are asserted the transfer takes place. The
handshake signals are connected to the FSM. The FSM is connected with the dat-
apath with control signals towards the datapath and with status signals from the
datapath.

We will co-design the FSM and the datapath. Figure 9.4 shows the state diagram
of the FSM Figure 9.5 shows the datapath for the popcount circuit. The FSM starts
in state Idle, where the FSM waits for input. When data arrives, signaled with a
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asserted dinValid, the FSM loads the shift register and advances to state Count. The
data is loaded into the shf register. On the load also the cnt register is reset to 0.

In state Count, the number of ‘1’s is counted sequentially. We use a shift register,
an adder, an accumulator register, and a down counter (not shown in the datapath)
to perform the computation. To count the number of ‘1’s, the shf register is shifted
right, and the least significant bit is added to cnt each clock cycle. A counter, not
shown in the figure, counts down until all bits have been shifted through the least
significant bit. When the counter reaches zero, the popcount has finished. The FSM
switches to state Done and signals the result by asserting popCntReady. When the
result is read, signaled by asserting popCntValid the FSM switches back to Idle,
ready to compute the next popcount.

The top level component, shown in Listing 9.3, instantiates the FSM and the
datapath components and connects them.

Listing 9.4 shows the Chisel code for the datapath of the popcount circuit. On
a load signal, the regData register is loaded with the input, the regPopCount reg-
ister reset to 0, and the counter register regCount set to the number of shifts to be
performed. Otherwise, the regData register is shifted to the right, the least signifi-
cant bit of the regData register added to the regPopCount register, and the counter
decremented until it is 0. When the counter is 0, the output contains the popcount.

Listing 9.5 shows the code of the FSM. The FSM starts in state idle. On a valid
signal for the input data (dinValid) it switches to the count state and waits till the
datapath has finished counting. When the popcount is done, the FSM switches to
state done and waits till the popcount is read (signaled by popCntReady).

The popcount example consumed (a word) data and produced (the popcount)
data. For the coordinated exchange of data, we use handshake signals. The next
section describes the ready/valid interface for flow control of unidirectional data
exchange.

9.3 Ready/Valid Interface

Communication of subsystems can be generalized to the movement of data and
handshaking for flow control. In the popcount example, we have seen a handshaking
interface for the input and the output data using valid and ready signals.

The ready/valid interface [6, p. 480] is a simple flow control interface consisting
of data and a valid signal at the sender side (also called producer or source) and a
ready signal at the receiver side (also called consumer or destination). Figure 9.6
shows the ready/valid connection. The sender asserts valid when data is available,
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class PopCount extends Module {

val io = IO(new Bundle {

val dinValid = Input(Bool())

val dinReady = Output(Bool())

val din = Input(UInt(8.W))

val popCntValid = Output(Bool())

val popCntReady = Input(Bool())

val popCnt = Output(UInt(4.W))

})

val fsm = Module(new PopCountFSM)

val data = Module(new PopCountDataPath)

fsm.io.dinValid := io.dinValid

io.dinReady := fsm.io.dinReady

io.popCntValid := fsm.io.popCntValid

fsm.io.popCntReady := io.popCntReady

data.io.din := io.din

io.popCnt := data.io.popCnt

data.io.load := fsm.io.load

fsm.io.done := data.io.done

}

Listing 9.3: The top level of the popcount circuit.

valid

data

ready
ReceiverSender

Figure 9.6: The ready/valid flow control.

Contents Index 129



9 COMMUNICATING STATE MACHINES

class PopCountDataPath extends Module {

val io = IO(new Bundle {

val din = Input(UInt(8.W))

val load = Input(Bool())

val popCnt = Output(UInt(4.W))

val done = Output(Bool())

})

val dataReg = RegInit(0.U(8.W))

val popCntReg = RegInit(0.U(8.W))

val counterReg= RegInit(0.U(4.W))

dataReg := 0.U ## dataReg(7, 1)

popCntReg := popCntReg + dataReg(0)

val done = counterReg === 0.U

when (!done) {

counterReg := counterReg - 1.U

}

when(io.load) {

dataReg := io.din

popCntReg := 0.U

counterReg := 8.U

}

// debug output

printf("%x %d\n", dataReg, popCntReg)

io.popCnt := popCntReg

io.done := done

}

Listing 9.4: Datapath of the popcount circuit.
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class PopCountFSM extends Module {

val io = IO(new Bundle {

val dinValid = Input(Bool())

val dinReady = Output(Bool())

val popCntValid = Output(Bool())

val popCntReady = Input(Bool())

val load = Output(Bool())

val done = Input(Bool())

})

val idle :: count :: done :: Nil = Enum(3)

val stateReg = RegInit(idle)

io.load := false.B

io.dinReady := false.B

io.popCntValid := false.B

switch(stateReg) {

is(idle) {

io.dinReady := true.B

when(io.dinValid) {

io.load := true.B

stateReg := count

}

}

is(count) {

when(io.done) {

stateReg := done

}

}

is(done) {

io.popCntValid := true.B

when(io.popCntReady) {

stateReg := idle

}

}

}

}

Listing 9.5: The FSM of the popcount circuit.
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Figure 9.7: Data transfer with a ready/valid interface, early ready.
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Figure 9.8: Data transfer with a ready/valid interface, late ready.

and the receiver asserts ready when it is ready to receive one word of data. The
transmission of the data happens when both signals, valid and ready, are asserted.
If either of the two signals is not asserted, no transfer takes place.

Figure 9.7 shows a timing diagram of the ready/valid transaction where the re-
ceiver signals ready (from clock cycle 2 on) before the sender has data. The data
transfer happens in clock cycle 4. From clock cycle 5 on neither the sender has
data nor the receiver is ready for the next transfer. When the receiver can receive
data in every clock cycle, it is called an “always ready” interface and ready can be
hardcoded to true.

Figure 9.8 shows a timing diagram of the ready/valid transaction where the sender
signals valid (from clock cycle 2 on) before the receiver is ready. The data transfer
happens in clock cycle 4. From clock cycle 5 on neither the sender has data nor the
receiver is ready for the next transfer. Similar to the “always ready” interface we
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Figure 9.9: Single cycle ready/valid and back-to-back transfers.

can envision and always valid interface. However, in that case the data will probably
not change on signaling ready and we would simply drop the handshake signals.

Figure 9.9 shows further variations of the ready/valid interface. In clock cycle 2
both signals (ready and valid become asserted just for a single clock cycle and the
data transfer of D1 happens. Data can be transferred back-to-back (in every clock
cycle) as shown in clock cycles 5 and 6 with the transfer of D2 and D3

To make this interface composable neither ready nor valid is allowed to depend
combinational on the other signal. As this interface is so common, Chisel defines
the DecoupledIO bundle, similar to the following:

class DecoupledIO[T <: Data](gen: T) extends Bundle {

val ready = Input(Bool())

val valid = Output(Bool())

val bits = Output(gen)

}

The DecoupledIO bundle is parameterized with the type for the data. The interface
defined by Chisel uses the field bits for the data. DecoupledIO is part of the package
chisel3.util.

One question remains if the ready or validmay be deasserted after being asserted
and no data transfer has happened. For example a receiver might be ready for some
time and not receiving data, but due to some other events may become not ready.
The same can be envisioned with the sender, having data valid only some clock
cycles and becoming non-valid without a data transfer. If this behavior is allowed
or not is not part of the ready/valid interface, but needs to be defined by the concrete
usage of the interface.
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Chisel places no requirements on the signaling of ready and validwhen using the
class DecoupledIO. However, the class IrrevocableIO places following restrictions
on the sender:

A concrete subclass of ReadyValidIO that promises to not change the
value of bits after a cycle where valid is high and ready is low. Addi-
tionally, once valid is raised it will never be lowered until after ready
has also been raised.

Note that this is just a convention that cannot be enforced just by using the class
IrrevocableIO.

The AXI bus [3] uses one ready/valid interface for each of the following parts
of the bus: read address, read data, write address, and write data. AXI restricts the
interface that once the sender assets valid it is not allowed to deasserted it until the
data transfer happened. Furthermore, the sender is not allowed to wait for a receivers
ready the assert valid. The receiver side is more relaxed. If ready is asserted, it is
allowed to deassert it before valid is asserted. Furthermore, the receiver is allowed
to wait for a asserted valid before asserting ready.

Listing 9.6 shows an example of using the ready/valid interface. The circuit
represents a buffer built out of a register. The buffer has a ready/valid interface
(DecoupledIO) at the input and one at the output. The DecoupledIO bundle is de-
fined from the sender’s viewpoint. Therefore, the input of the buffer (in) needs to
change the direction with Flipped.

The module contains a register for the data (dataReg) and a single bit register
(emptyReg) signaling if the buffer is empty or full. This single bit represents a two
state Moore FSM with states empty and full. The input ready signal and the output
valid signal depend only on the state of emptyReg. There is no combinational path
between the input and the output of the buffer.

When the buffer is empty and there is valid data at the input, the data is registered
and the state changed to full. When the buffer is full and the consumer side signals
to be ready, the data is considered read and the buffer is empty again.
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class ReadyValidBuffer extends Module {

val io = IO(new Bundle{

val in = Flipped(new DecoupledIO(UInt(8.W)))

val out = new DecoupledIO(UInt(8.W))

})

val dataReg = Reg(UInt(8.W))

val emptyReg = RegInit(true.B)

io.in.ready := emptyReg

io.out.valid := !emptyReg

io.out.bits := dataReg

when (emptyReg & io.in.valid) {

dataReg := io.in.bits

emptyReg := false.B

}

when (!emptyReg & io.out.ready) {

emptyReg := true.B

}

}

Listing 9.6: A register as a buffer with ready/valid interface.s
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The strength of Chisel is that it allows us to write so-called hardware generators.
With older hardware description languages, such as VHDL and Verilog, we usually
use another language, for example, Java or Python, to generate hardware. Before
using Chisel, I have often written small Java programs to generate VHDL tables.
In Chisel, the full power of Scala and Java with its many open-source libraries are
available at hardware construction time. Therefore, we can write our hardware gen-
erators in the same language and execute them as part of the Chisel circuit genera-
tion.

10.1 A Little Bit of Scala

This subsection gives a very brief introduction into Scala. It should be enough to
write simple hardware generators for Chisel. For an in-depth introduction into Scala
I recommend the textbook by Odersky et al. [22]. The Scala website also contains
an online Scala book.1

Scala has two types of variables: vals and vars. A val gives an expression a name
and cannot be reassigned a value. This following snippet shows the definition of an
integer value called zero. If we try to reassign a value to zero, we get a compile
error.

// A value is a constant

val zero = 0

// No new assignment is possible

// The following will not compile

zero = 3

In Chisel we use vals to name hardware components. Note that the := operator is a
Chisel operator and not a Scala operator.

Scala also provides the more classic version of a mutable variable as var. Fol-
lowing code defines an integer variable and reassigns it a new value:

1The link points to the Scala 2 version of the book, as Chisel is still based on Scala 2.
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// We can change the value of a var variable

var x = 2

x = 3

We will need Scala vars to write hardware generators, but never need vars to name
a hardware component.

You may have wondered what type those variables have. As we assigned an
integer constant in the above example, the type of the variable is inferred; it is a
Scala Int type. In most cases the Scala compiler is able to infer the type. However,
if we are in the mood of being more explicit, we can explicitly state the type as
follows:

val number: Int = 42

Simple loops are written as follows:

// Loops from 0 to 9

// Automatically creates loop value i

for (i <- 0 until 10) {

println(i)

}

We use a loop for circuit generators. The following loop connects individual bits
of a shift register.

val regVec = Reg(Vec(8, UInt(1.W)))

regVec(0) := io.din

for (i <- 1 until 8) {

regVec(i) := regVec(i-1)

}

Note that this is not the most concise expression of a shift register. Better use a plain
UInt with the right size and assign the new value for the register with an expression
using the ## operator and proper indexing. This code snipped is just to show how a
Scala for loop can be used for circuit generation.

Conditions are expressed with if and else. Note that this condition is evalu-
ated at Scala runtime during circuit generation. This construct does not create a
multiplexer, but allows to write configurable hardware generators.

for (i <- 0 until 10) {
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if (i%2 == 0) {

println(i + " is even")

} else {

println(i + " is odd")

}

}

Scala has the notion of a tuple. A tuple can hold a sequence of different types.
The tuple is built by placing the individual fields within parentheses. The fields are
then accessed with . n, starting with 1 for the first field. Following code creates a
tuple to represent a city with the zip code and the name.

val city = (2000, "Frederiksberg")

val zipCode = city._1

val name = city._2

Tuples are useful when we want to return more than one value from a function.
Tuples allow us to represent Chisel components with more than one output as a
lightweight function instead of a full blown module.

Scala has a powerful collection library. One of the simpler collection tpyes is
Seq, an ordered collection of elements (also called a sequence). The default im-
plementation is immutable. We index into a Seq with (), with zero based indexing.
Seq is a base class with several different implementations. However, for most Chisel
hardware generators direct use of Seq is the preferred choice. Following code shows
how to create a Seq, which holds four Scala Int values. The second line accesses
the second element, and second will be 15.

val numbers = Seq(1, 15, -2, 0)

val second = numbers(1)

10.2 Lightweight Components with Functions

Modules are the general way to structure your hardware description. However, there
is some boilerplate code when declaring a module and when instantiating and con-
necting it. A lightweight way to structure your hardware is to use functions. Scala
functions can take Chisel (and Scala) parameters and return generated hardware. As
a simple example, we generate an adder:

def adder (x: UInt, y: UInt) = {
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x + y

}

The return value of a function in Scala is the result of the last expression.2 We can
then create two adders by simply calling the function adder.

val x = adder(a, b)

// another adder

val y = adder(c, d)

Note that this is a hardware generator. That code is not executing any add operation
during elaboration, but creates two adders (hardware instances). Or in other words,
it returns a wire to the output of the adder. We have written our first hardware
generator!

The adder is an artificial example to keep it simple. Chisel has already an adder
generator function, like +(that: UInt).

Functions, as lightweight hardware generators, can also contain state (including a
register). Following example returns a one clock cycle delay element (a register). If
a function has just a single statement, we can write it in one line and omit the curly
braces ({}).

def delay(x: UInt) = RegNext(x)

By calling the function with the function itself as parameter, this generated a two
clock cycle delay.

val delOut = delay(delay(delIn))

Again, this is a too short example to be useful, as RegNext() is already that function
that creates the register for the delay.

Functions return only one value. In order to provide more than one output, we
can wrap several output wires into a Scala tuple. Following code generates hardware
that compares two inputs and has two outputs.

def compare(a: UInt, b: UInt) = {

val equ = a === b

val gt = a > b

(equ, gt)

}

2Scala also contains a return statement. The code could have been written a bit more verbose as
return x + y.
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With the parenthesis we wrap the two wires that are connected to the outputs of the
equal and the greater circuit into a Scala tuple.

When creating a comparator component with the compare function, it returns a
tuple of two wires. We can access the two wires with the . n syntax.

val cmp = compare(inA, inB)

val equResult = cmp._1

val gtResult = cmp._2

However, we can directly decompose the tuple into two wires, in this case equ and
gt, with following syntax.

val (equ, gt) = compare(inA, inB)

Functions can be declared as part of a Module. However, functions that shall be
used in different modules are better placed into a Scala object that collects utility
functions.

10.3 Configuration with Parameters

Chisel components and functions can be configured with parameters. Parameters
can be as simple as an integer constant, but can also be a Chisel hardware type.

10.3.1 Simple Parameters

The basic way to parameterize a circuit is to define a bit width as a parameter.
Parameters can be passed as arguments to the constructor of the Chisel module.
Following example is a toy example of a module that implements an adder with a
configurable bit width. The bit width n is a parameter (of Scala type Int) of the
component passed into the constructor that can be used in the IO bundle.

class ParamAdder(n: Int) extends Module {

val io = IO(new Bundle{

val a = Input(UInt(n.W))

val b = Input(UInt(n.W))

val c = Output(UInt(n.W))

})

io.c := io.a + io.b

}
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Parameterized versions of the adder can be created as follows:

val add8 = Module(new ParamAdder(8))

val add16 = Module(new ParamAdder(16))

10.3.2 Functions with Type Parameters

Having the bit width as a configuration parameter is just the starting point for hard-
ware generators. A very flexible configuration is the usage of types. That feature
allows for Chisel to provide a multiplexer (Mux) that can accept any types for the
multiplexing. To show how to use types for the configuration, we build a multi-
plexer that accepts arbitrary types. Following function defines the multiplexer:

def myMux[T <: Data](sel: Bool, tPath: T, fPath: T): T = {

val ret = WireDefault(fPath)

when (sel) {

ret := tPath

}

ret

}

Chisel allows parameterizing functions with types, in our case with Chisel types.
The expression in the square brackets [T <: Data] defines a type parameter T set
is Data or a subclass of Data. Data is the root of the Chisel type system.

Our multiplexer function has three parameters: the boolean condition, one param-
eter for the true path, and one parameter for the false path. Both path parameters
are of type T, an information that is provided at function call. The function itself
is straight forward: we define a wire with the default value of fPath and change
the value if the condition is true to the tPath. This condition is a classic multi-
plexer function. At the end of the function, we return the multiplexer hardware (the
output).

We can use our multiplexer function with simple types such as UInt:

val resA = myMux(selA, 5.U, 10.U)

The types of the two multiplexer paths need to be the same. Following wrong usage
of the multiplexer results in a runtime error:

val resErr = myMux(selA, 5.U, 10.S)
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To show a more complex multiplexer, we define a new type as a Bundle with two
fields:

class ComplexIO extends Bundle {

val d = UInt(10.W)

val b = Bool()

}

We can define Bundle constants by first creating a Wire and then setting the sub-
fields. Then we can use our parameterized multiplexer with this complex type.

val tVal = Wire(new ComplexIO)

tVal.b := true.B

tVal.d := 42.U

val fVal = Wire(new ComplexIO)

fVal.b := false.B

fVal.d := 13.U

// The mulitplexer with a complex type

val resB = myMux(selB, tVal, fVal)

In our initial design of the function, we used WireDefault to create a wire with
the type T with a default value. If we need to create a wire just of the Chisel type
without using a default value, we can use fPath.cloneType to get the Chisel type.
Following function shows the alternative way to code the multiplexer.

def myMuxAlt[T <: Data](sel: Bool, tPath: T, fPath: T): T

= {

val ret = Wire(fPath.cloneType)

ret := fPath

when (sel) {

ret := tPath

}

ret

}
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10.3.3 Modules with Type Parameters

We can also parameterize modules with Chisel types. Let us assume we want to
design a network-on-chip to move data between different processing cores. How-
ever, we do not want to hardcode the data format in the router interface; we want
to parameterize it. Similar to the type parameter for a function, we add a type pa-
rameter T to the Module constructor. Furthermore, we need to have one constructor
parameter of that type. Additionally, in this example, we also make the number of
router ports configurable.

class NocRouter[T <: Data](dt: T, n: Int) extends Module {

val io =IO(new Bundle {

val inPort = Input(Vec(n, dt))

val address = Input(Vec(n, UInt(8.W)))

val outPort = Output(Vec(n, dt))

})

// Route the payload according to the address

// ...

To use our router, we first need to define the data type we want to route, e.g., as a
Chisel Bundle:

class Payload extends Bundle {

val data = UInt(16.W)

val flag = Bool()

}

We create a router by passing an instance of the user-defined Bundle and the number
of ports to the constructor of the router:

val router = Module(new NocRouter(new Payload, 2))

10.3.4 Parameterized Bundles

In the router example, we used two different vectors of fields for the input of the
router: one for the address and one for the data, which was parameterized. A more
elegant solution would be to have a Bundle that itself is parametrized. Something
like:
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class Port[T <: Data](dt: T) extends Bundle {

val address = UInt(8.W)

val data = dt.cloneType

}

The Bundle has a parameter of type T, which is a subtype of Chisel’s Data type.
Within the bundle, we define a field data by invoking cloneType on the parameter.
However, when we use a constructor parameter, this parameter becomes a public
field of the class. When Chisel needs to clone the type of the Bundle, e.g., when it
is used in a Vec, this public field is in the way. A solution (workaround) to this issue
is to make the parameter field private:

class Port[T <: Data](private val dt: T) extends Bundle {

val address = UInt(8.W)

val data = dt.cloneType

}

With that new Bundle, we can define our router ports

class NocRouter2[T <: Data](dt: T, n: Int) extends Module {

val io =IO(new Bundle {

val inPort = Input(Vec(n, dt))

val outPort = Output(Vec(n, dt))

})

// Route the payload according to the address

// ...

and instantiate that router with a Port that takes a Payload as a parameter:

val router = Module(new NocRouter2(new Port(new Payload),

2))

10.4 Generate Combinational Logic

A logic table (truth table) is combinational logic. It is also called read-only memory
(ROM), as we can see the input to the table as an address into such a ROM. We
generate a logic table with VecInit. Following snippet of code creates a table to
compute the square of a number n.
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val squareROM = VecInit(0.U, 1.U, 4.U, 9.U, 16.U, 25.U)

val square = squareROM(n)

We can use the full power of Scala to generate our logic (tables). For example,
generate a table of fixpoint constants to represent a trigonometric function, compute
constants for digital filters, or writing an assembler in Scala to generate code for
a microprocessor written in Chisel. All those functions are in the same code base
(same language) and can be executed during hardware generation.

A classic example for a table generation is the conversion of a binary number into
a binary-coded decimal (BCD) representation. BCD is used to represent a number
in a decimal format using 4 bits for each decimal digit. For example, decimal 13
is in binary 1101 and BCD encoded as 1 and 3 in binary: 00010011. BCD allows
displaying numbers in decimal, a more user-friendly number representation than
hexadecimal.

When using a classic hardware description language, such as Verilog or VHDL,
we would use another script or programming language to generate such a table. We
can write a Java program that computes the table to convert binary to BCD. That
Java program prints out VHDL code that can be included in a project. The Java
program is about 100 lines of code; most of the code generating VHDL strings.
However, the key part of the conversion is just two lines of code. With Chisel, we
can compute this table directly as part of the hardware generation. Listing 10.1
shows the table generation for the binary to BCD conversion.

We can also generate a logic table from a Scala Array. We may have data in a file
that we want to read in during hardware generation time for the logic table. List-
ing 10.2 shows how to use the Scala Source class form the Scala standard library to
read the file data.txt, which contains integer constants in a textual representation.

A few words on the maybe a bit intimidating expression:

val table = VecInit(array.map(_.U(8.W)))

A Scala Array can be implicitly converted to a Scala sequence (Seq), which supports
the mapping function map. map invokes a function on each element of the sequence
and returns a sequence of the return value of the function. Our function .U(8.W)
represents each Int value from the Scala array as a and performs the conversion
from a Scala Int value to a Chisel UInt literal, with a size of 8-bits. The Chisel
object VecInit creates a Chisel Vec from a sequence Seq of Chisel types.

We can use the initialization of a Chisel Vec from a Scala sequence to represent a
message that we may send out to a serial port. Following code converts the standard
greeting from a Scala/Java String to a Chisel Vec:
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import chisel3._

class BcdTable extends Module {

val io = IO(new Bundle {

val address = Input(UInt(8.W))

val data = Output(UInt(8.W))

})

val table = Wire(Vec(100, UInt(8.W)))

// Convert binary to BCD

for (i <- 0 until 100) {

table(i) := (((i/10)<<4) + i%10).U

}

io.data := table(io.address)

}

Listing 10.1: Binary to binary-coded decimal conversion.

val msg = "Hello World!"

val text = VecInit(msg.map(_.U))

val len = msg.length.U

The Scala string msg can be used as a sequence and therefore, the map function is
available to map each Scala Char to a Chisel UInt. This code is extracted from the
serial port example, later in the text, to send a welcome message.

10.5 Use Inheritance

Chisel is an object-oriented language. A hardware component, the Chisel Module is
a Scala class. Therefore, we can use inheritance to factor a common behavior out
into a parent class. We explore how to use inheritance with an example.

In Section 6.2 we have explored different forms of counters, which may be used
for a low-frequency tick generation. Let us assume we want to explore those differ-
ent versions, for example, to compare their resource requirement. We start with an
abstract class to define the ticking interface:

Contents Index 147



10 HARDWARE GENERATORS

import chisel3._

import scala.io.Source

class FileReader extends Module {

val io = IO(new Bundle {

val address = Input(UInt(8.W))

val data = Output(UInt(8.W))

})

val array = new Array[Int](256)

var idx = 0

// read the data into a Scala array

val source = Source.fromFile("data.txt")

for (line <- source.getLines()) {

array(idx) = line.toInt

idx += 1

}

// convert the Scala integer array

// into a vector of Chisel UInt

val table = VecInit(array.map(_.U(8.W)))

// use the table

io.data := table(io.address)

}

Listing 10.2: Reading a text file to generate a logic table.
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class UpTicker(n: Int) extends Ticker(n) {

val N = (n-1).U

val cntReg = RegInit(0.U(8.W))

cntReg := cntReg + 1.U

val tick = cntReg === N

when(tick) {

cntReg := 0.U

}

io.tick := tick

}

Listing 10.3: Tick generation with a counter.

abstract class Ticker(n: Int) extends Module {

val io = IO(new Bundle{

val tick = Output(Bool())

})

}

Listing 10.3 shows a first implementation of that abstract class with a counter, count-
ing up, for the tick generation.

We can test all different versions of our ticker logic with a single test bench. We
just need to define the test bench to accept subtypes of Ticker. Listing 10.4 shows
the Chisel code for the tester. The TickerTester has several parameters: (1) the
type parameter [T <: Ticker] to accept a Ticker or any class that inherits from
Ticker, (2) the design under test, being of type T or a subtype thereof, and (3)
the number of clock cycles we expect for each tick. The tester waits for the first
occurrence of a tick (the start might be different for different implementations) and
then checks that tick repeats every n clock cycles.

With a first, easy implementation of the ticker, we can test the tester itself, prob-
ably with some println debugging. When we are confident that the simple ticker
and the tester are correct, we can proceed and explore two more versions of the
ticker. Listing 10.5 shows the tick generation with a counter counting down to 0.
Listing 10.6 shows the nerd version of counting down to -1 to use less hardware by

Contents Index 149



10 HARDWARE GENERATORS

import chisel3._

import chiseltest._

import org.scalatest.flatspec.AnyFlatSpec

trait TickerTestFunc {

def testFn[T <: Ticker](dut: T, n: Int) = {

// -1 means that no ticks have been seen yet

var count = -1

for (_ <- 0 to n * 3) {

// Check for correct output

if (count > 0)

dut.io.tick.expect(false.B)

else if (count == 0)

dut.io.tick.expect(true.B)

// Reset the counter on a tick

if (dut.io.tick.peek.litToBoolean)

count = n-1

else

count -= 1

dut.clock.step()

}

}

}

Listing 10.4: A tester for different versions of the ticker.
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class DownTicker(n: Int) extends Ticker(n) {

val N = (n-1).U

val cntReg = RegInit(N)

cntReg := cntReg - 1.U

when(cntReg === 0.U) {

cntReg := N

}

io.tick := cntReg === N

}

Listing 10.5: Tick generation with a down counter.

avoiding the comparator.
We can test all three versions of the ticker by using ScalaTest specifications, cre-

ating instances of the different versions of the ticker and passing them to the generic
test bench. Listing 10.7 shows the test specification. We run only the ticker tests
with:

sbt "testOnly TickerTest"

10.6 Hardware Generation with Functional
Programming

Scala supports functional programming, so does Chisel then. We can use functions
to represent hardware and combine those hardware components with functional pro-
gramming by using a so-called “higher-order function”. Let us start with a simple
example, the sum of a vector:

def add(a: UInt, b:UInt) = a + b

val sum = vec.reduce(add)
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class NerdTicker(n: Int) extends Ticker(n) {

val N = n

val MAX = (N - 2).S(8.W)

val cntReg = RegInit(MAX)

io.tick := false.B

cntReg := cntReg - 1.S

when(cntReg(7)) {

cntReg := MAX

io.tick := true.B

}

}

Listing 10.6: Tick generation by counting down to -1.

class TickerTest extends AnyFlatSpec with

ChiselScalatestTester with TickerTestFunc {

"UpTicker 5" should "pass" in {

test(new UpTicker(5)) { dut => testFn(dut, 5) }

}

"DownTicker 7" should "pass" in {

test(new DownTicker(7)) { dut => testFn(dut, 7) }

}

"NerdTicker 11" should "pass" in {

test(new NerdTicker(11)) { dut => testFn(dut, 11) }

}

}

Listing 10.7: ChiselTest for the ticker tests.
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First we define the hardware for the adder in function add. The vector (Chisel type
Vec) is located in vec. The Scala method reduce() combines all elements of a col-
lection with a binary operation, producing a single value. The reduce() method
reduces the sequence starting from the left. It takes the first two elements and per-
forms the operation. The result is then combined with the next element, until a
single result is left.

The function to combine two elements is provided as parameter to reduce, in
our case add, which returns an adder. The resulting hardware is a chain of adders
computing the sum of the elements of vector vec.

Instead of defining the (simple) add function, we can provide the addition as
anonymous function and use the Scala wildcard “ ” to represent the two operands.

val sum = vec.reduce(_ + _)

With this one liner we have generated the chain of adders. For the sum function a
chain is not the ideal configuration, a tree will have a shorter combinational delay. If
we do not trust the synthesize tool to rearrange our adder chain, we can use Chisel’s
reduceTree method to generated a tree of adders:

val sum = vec.reduceTree(_ + _)

10.6.1 Minimum Search Example

As a more elaborate example, we will build a circuit to find the minimum value in
a vec. To express this circuit we use an anonymous function, called function literal
in Scala. The syntax for a function literal is parameters in parentheses, followed by
a =>, followed by the function body:

(param) => function body

The function literal for the minimum function uses two parameters x and y and
returns a multiplexer (Mux) that compares the two parameters and returns the smaller
value.

val min = vec.reduceTree((x, y) => Mux(x < y, x, y))

Let us extend this circuit to return not only the minimal value from the vec, but
also the position (index) in the vec. To return two values we define the Bundle Two to
hold the value and the index. We declare the vecTwo Vec that can hold these bundles
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and connect them in a loop to the original input and the index within the Vec.
As before we use a function literal in the reduceTree method of the vecTwo,

comparing the value field within the bundle and returning the complete bundle from
the multiplexer. Value res points to the bundle containing the minimum value and
the position.

class Two extends Bundle {

val v = UInt(w.W)

val idx = UInt(8.W)

}

val vecTwo = Wire(Vec(n, new Two()))

for (i <- 0 until n) {

vecTwo(i).v := vec(i)

vecTwo(i).idx := i.U

}

val res = vecTwo.reduceTree((x, y) => Mux(x.v < y.v, x, y))

As a final variation of the minimum search circuit we will ues more Scala features
to avoid creating the bundle to return the value and index. We will use a tuple to
represent both values. The following code shows the application of a chain of func-
tions to the original sequence. Chaining functions is a typical pattern in functional
programming. This pattern can also be seen as a pipeline of operations.

val resFun = vec.zipWithIndex

.map ((x) => (x._1, x._2.U))

.reduce((x, y) => (Mux(x._1 < y._1, x._1, y._1),

Mux(x._1 < y._1, x._2, y._2)))

The first function (zipWithIndex) transforms the original sequence of UInts to a
sequence of tuples, where the first element is the unchanged UInt and the second
element is the index value within the vec as Sala Int. In general a zip function
merges two sequences (zips them) into a single one containing the two elements as
tuples.

The next function maps our duple of a Chisel UInt and a Scala Int to two Chisel
UInts. The reduce function provides the generation of the minimum finding. We
compare the first element of the tuple in two multiplexers and returning a tuple
containing the minimum value and the position as Chisel UInt types.

Note that the whole functional expression uses a Scala Vector to hold intermedi-
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ate results, but returns hardware (connected multiplexers) consisting of Chisel types
only. As we use a Scala Vector here, we cannot use reduceTree, which is available
on Chisel’s Vec only.

To keep using reduceTree the following solution uses a Chisel MixedVec.

val scalaVector = vec.zipWithIndex

.map((x) => MixedVecInit(x._1, x._2.U(8.W)))

val resFun2 = VecInit(scalaVector)

.reduceTree((x, y) => Mux(x(0) < y(0), x, y))

val minVal = resFun2(0)

val minIdx = resFun2(1)

A Chisel MixedVec is similar to a Scala tuple as it can have different types at dif-
ferent positions. Therefore, it cannot function has, for example, multiplexer. How-
ever, we can use it as an indexable collection during hardware generation. In the
above example we create a Scala Vector of the values with their index, but now
using Chisels “tuple”. We then convert the Scala Vector into a Chisel Vec. Then we
can again perform tree based reduction. Another benefit of this version is that we
have only one multiplexer, which selects between two Chisel “tuples” as MixedVec.
The result in resFun2 is a MixedVec with two elements, accessed with an index, like
a “normal” Vec.

10.6.2 An Arbitration Tree

With our tree reduction function we can build an arbitration tree out of just 2:1
arbiters. We can generate the arbitration circuit as follows:

class Arbiter[T <: Data: Manifest](n: Int, private val gen:

T) extends Module {

val io = IO(new Bundle {

val in = Flipped(Vec(n, new DecoupledIO(gen)))

val out = new DecoupledIO(gen)

})

io.out <> io.in.reduceTree((a, b) => arbitrateSimp(a, b))

}

The input is a Vec of ready/valid interfaces and the output a single ready/valid inter-
face. We just need a function that provides arbitration between two requests.
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Simple Arbitration

As a first solution we will build a priority based arbitration, similar to the arbiter
shown in Section 5.4. That arbiter in Section 5.4 was a pure combinational circuit
resulting in a priority based arbitration. However, with the ready/valid interface we
are not allowed to have a combinational flow between a ready and a valid signal.
Therefore, we need to introduce state for those signals and also need to register the
incoming data.

Listing 10.8 shows the 2 to 1 arbitration function. This function assumes that
a requester who has asserted valid will only deassert it when it is read by the re-
ceiver (signaled with a ready). Furthermore, we are allowed to set ready in the
next clock cycle depending on valid in the current clock cycle. This is one specific
interpretation of the ready/valid protocol, which is also used in AXI.

We need following register: regData to hold the data for the output, regEmpty as
a flag to signal that the data register is empty, and two flags for the ready signals of
the two inputs (regReadyA and regReadyB). The return value of the function (out) is
a wire of type DecoupledIO.

When the data register is empty and one of the two inputs signals a valid input,
we signal a ready in the next clock cycle (via the ready register). Note that we can
only signal one of the two inputs that the arbiter is ready, as we have only one data
register. When we have a registered ready, we assume that the input is still valid,
register the data, deassert regEmpty, and reset the ready flag.

The output is valid, when the data register is not empty. When the receiver is
ready, the data is transmitted and the data register is empty again. As the last
statement, the function returns out, the reference to the DecoupledIO wire.

Fair Arbitration

In Section 5.4 we presented a combinational version of an arbitration circuit. The
combinational version is a priority arbiter, which means one high priority requester
can dominate the arbitration. To avoid this domination we need to introduce state
to remember who won the arbitration last time. Our assumption is that if the 2:1
arbiter is fair, this results in a fair arbitration on a balanced arbitration tree.

Listing 10.9 shows that fair 2:1 arbitration circuit. The arbiter contains one regis-
ter for the data to store and one state register. To be fair, the arbiter switches between
two idle states (ildeA and idleB) when there is no request. In each of the two idle
states it accepts only one of the inputs. Note, that with just a single register for stor-
age the arbiter can only be ready for one of the two inputs. To allow being ready for
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def arbitrateSimp(a: DecoupledIO[T], b: DecoupledIO[T]) = {

val regData = Reg(gen)

val regEmpty = RegInit(true.B)

val regReadyA = RegInit(false.B)

val regReadyB = RegInit(false.B)

val out = Wire(new DecoupledIO(gen))

when (a.valid & regEmpty & !regReadyB) {

regReadyA := true.B

} .elsewhen (b.valid & regEmpty & !regReadyA) {

regReadyB := true.B

}

a.ready := regReadyA

b.ready := regReadyB

when (regReadyA) {

regData := a.bits

regEmpty := false.B

regReadyA := false.B

}

when (regReadyB) {

regData := b.bits

regEmpty := false.B

regReadyB := false.B

}

out.valid := !regEmpty

when (out.ready) {

regEmpty := true.B

}

out.bits := regData

out

}

Listing 10.8: A simple 2 to 1 arbiter.
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def arbitrateFair(a: DecoupledIO[T], b: DecoupledIO[T]) = {

val idleA :: idleB :: hasA :: hasB :: Nil = Enum(4)

val regData = Reg(gen)

val regState = RegInit(idleA)

val out = Wire(new DecoupledIO(gen))

a.ready := regState === idleA

b.ready := regState === idleB

out.valid := (regState === hasA || regState === hasB)

switch(regState) {

is (idleA) {

when (a.valid) {

regData := a.bits

regState := hasA

} otherwise {

regState := idleB

}

}

is (idleB) {

when (b.valid) {

regData := b.bits

regState := hasB

} otherwise {

regState := idleA

}

}

is (hasA) {

when (out.ready) {

regState := idleB

}

}

is (hasB) {

when (out.ready) {

regState := idleA

}

}

}

out.bits := regData

out

}

Listing 10.9: A fair 2 to 1 arbiter.
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both inputs and switching priority we would need a second data register to handle
the case when both inputs are valid in the same clock cycle.

When a request is accepted, it stores the data and switches to one of the full
states (hasA or hasB). When the consumer of the output accepts the data, the arbiter
switches back to an idle state. It switches to the idle state that will accepts a pending
requesting from the other input in the next clock cycle.
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11 Example Designs

In this section, we explore some small size digital designs, such as a FIFO buffer,
which are used as building blocks for a larger design. As another example, we de-
sign a serial interface (also called UART), which itself may use the FIFO buffer.
Furthermore, we will generalize the FIFO interface and show different possible im-
plementations.

11.1 FIFO Buffer

We can decouple a writer (sender) and a reader (receiver) by a buffer between the
writer and reader. A common buffer is a first-in, first-out (FIFO) buffer. Figure 11.1
shows a writer, the FIFO, and a reader. Data is put into the FIFO by the writer on
din with an active write signal. Data is read from the the FIFO by the reader on
dout with an active read signal.

A FIFO is initially empty, singled by the empty signal. Reading from an empty
FIFO is usually undefined. When data is written and never read a FIFO will become
full. Writing to a full FIFO is usually ignored and the data are lost. In other words,
the signals empty and full serve as handshake signals

Several different implementations of a FIFO are possible: For example, using
on-chip memory and read and write pointers or simply a chain of registers with a
tiny state machine. For small buffers (up to tens of elements) a FIFO organized with

write

din

full
read

empty

dout

FIFOWriter Reader

Figure 11.1: A writer, a FIFO buffer, and a reader.
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individual registers connected into a chain of buffers is a simple implementation
with a low resource requirement. The code of the bubble FIFO is available in the
chisel-examples repository.1

We start by defining the IO signals for the writer and the reader side. The size of
the data is configurable with size. The write data are din and a write is signaled by
write. The signal full performs the flow control at the writer side.

class WriterIO(size: Int) extends Bundle {

val write = Input(Bool())

val full = Output(Bool())

val din = Input(UInt(size.W))

}

The reader side provides data with dout and the read is initiated with read. The
empty signal is responsible for the flow control at the reader side.

class ReaderIO(size: Int) extends Bundle {

val read = Input(Bool())

val empty = Output(Bool())

val dout = Output(UInt(size.W))

}

Listing 11.1 shows a single buffer. The buffer has a enqueueing port enq of type
WriterIO and a dequeueing port deq of type ReaderIO. The state elements of the
buffer is one register that holds the data (dataReg) and one state register for the
simple FSM (stateReg). The FSM has only two states: either the buffer is empty
or full. If the buffer is empty, a write will register the input data and change to
the full state. If the buffer is full, a read will consume the data and change to the
empty state. The IO ports full and empty represent the buffer state for the writer
and the reader.

Listing 11.2 shows the complete FIFO. The complete FIFO has the same IO in-
terface as the individual FIFO buffers. BubbleFifo has as parameters the size of
the data word and depth for the number of buffer stages. We can build a depth
stages bubble FIFO out of depth FifoRegisters. We create the stages by filling
them into a Scala Array. The Scala array has no hardware meaning, it just provides
us with a container to have references to the created buffers. In a Scala for loop
we connect the individual buffers. The first buffer’s enqueueing side is connected
to the enqueueing IO of the complete FIFO and the last buffer’s dequeueing side to

1For completeness, the Chisel book repository contains a copy of the FIFO code as well.
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class FifoRegister(size: Int) extends Module {

val io = IO(new Bundle {

val enq = new WriterIO(size)

val deq = new ReaderIO(size)

})

val empty :: full :: Nil = Enum(2)

val stateReg = RegInit(empty)

val dataReg = RegInit(0.U(size.W))

when(stateReg === empty) {

when(io.enq.write) {

stateReg := full

dataReg := io.enq.din

}

}.elsewhen(stateReg === full) {

when(io.deq.read) {

stateReg := empty

dataReg := 0.U // just to better see empty slots in

the waveform

}

}.otherwise {

// There should not be an otherwise state

}

io.enq.full := (stateReg === full)

io.deq.empty := (stateReg === empty)

io.deq.dout := dataReg

}

Listing 11.1: A single stage of the bubble FIFO.

Contents Index 163



11 EXAMPLE DESIGNS

class BubbleFifo(size: Int, depth: Int) extends Module {

val io = IO(new Bundle {

val enq = new WriterIO(size)

val deq = new ReaderIO(size)

})

val buffers = Array.fill(depth) { Module(new

FifoRegister(size)) }

for (i <- 0 until depth - 1) {

buffers(i + 1).io.enq.din := buffers(i).io.deq.dout

buffers(i + 1).io.enq.write := ˜buffers(i).io.deq.empty

buffers(i).io.deq.read := ˜buffers(i + 1).io.enq.full

}

io.enq <> buffers(0).io.enq

io.deq <> buffers(depth - 1).io.deq

}

Listing 11.2: A FIFO is composed of an array of FIFO bubble stages.

the dequeueing side of the complete FIFO.
The presented idea of connecting individual buffers to implement a FIFO queue

is called a bubble FIFO, as the data bubbles through the queue. This is simple,
and a good solution when the data rate is considerable slower than the clock rate,
for example, as a decouple buffer for a serial port, which is presented in the next
section.

However, when the data rate approaches the clock frequency, the bubble FIFO
has two limitations: (1) As each buffer’s state has to toggle between empty and full,
which means the maximum throughput of the FIFO is 2 clock cycles per word. (2)
The data needs to bubble through the complete FIFO, therefore, the latency from
the input to the output is at least the number of buffers. I will present other possible
implementations of FIFOs in Section 11.3.

11.2 A Serial Port

A serial port (also called UART or RS-232) is one of the easiest options to com-
municate between your laptop and an FPGA board. As the name implies, data is
transmitted serially. An 8-bit byte is transmitted as follows: one start bit (0), the
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b0 b1 b2 b3 b4 b5 b6 b7

Figure 11.2: One byte transmitted by a UART.

8-bit data, least significant bit first, and then one or two stop bits (1). When no data
is transmitted, the output is 1. Figure 11.2 shows the timing diagram of one byte
transmitted.

We design our UART in a modular way with minimal functionality per module.
We present a transmitter (TX), a receiver (RX), a buffer, and then usage of those
base components.

First, we need an interface, a port definition. For the UART design, we use a
ready/valid handshake interface (extending DecoupledIO), with with a data size of
8 bits.

class UartIO extends DecoupledIO(UInt(8.W)) {

}

The convention of a ready/valid interface is that the data is transferred when both
ready and valid are asserted.

Listing 11.3 shows a bare-bone serial transmitter (Tx). The IO ports are the txd
port, where the serial data is sent and a channel where the transmitter can receive
the characters to serialize and send. To generate the timing, we compute a constant
for the time in clock cycles for one serial bit.

We use three registers: (1) register to shift the data (serialize them) (shiftReg),
(2) a counter to generate the correct baud rate (cntReg), and (3) a counter for the
number of bits that still need to be shifted out (bitsReg). No additional state register
of FSM is needed, all state is encoded in those three registers.

Counter cntReg is continuously running (counting down to 0 and reloaded with
the start value when 0). All action is only done when cntReg is 0. As we build a
minimal transmitter, we have only the shift register to store the data. Therefore, the
channel is only ready when cntReg is 0 and no bits are left to shift out.

The IO port txd is directly connected to the least significant bit of the shift regis-
ter.

When there are more bits to shift out (bitsReg =/= 0.U), we shift the bits to the
right and fill with 1 (the idle level of a transmitter). If no more bits need to be shifted
out, we check if the channel contains data (signaled with the io.channel.valid
input). If so, the bit string to be shifted out is constructed with one start bit (0), the
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class Tx(frequency: Int, baudRate: Int) extends Module {

val io = IO(new Bundle {

val txd = Output(UInt(1.W))

val channel = Flipped(new UartIO())

})

val BIT_CNT = ((frequency + baudRate / 2) / baudRate -

1).asUInt

val shiftReg = RegInit(0x7ff.U)

val cntReg = RegInit(0.U(20.W))

val bitsReg = RegInit(0.U(4.W))

io.channel.ready := (cntReg === 0.U) && (bitsReg === 0.U)

io.txd := shiftReg(0)

when(cntReg === 0.U) {

cntReg := BIT_CNT

when(bitsReg =/= 0.U) {

val shift = shiftReg >> 1

shiftReg := 1.U ## shift(9, 0)

bitsReg := bitsReg - 1.U

} .otherwise {

when(io.channel.valid) {

// two stop bits, data, one start bit

shiftReg := 3.U ## io.channel.bits ## 0.U

bitsReg := 11.U

} .otherwise {

shiftReg := 0x7ff.U

}

}

} .otherwise {

cntReg := cntReg - 1.U

}

}

Listing 11.3: A transmitter for a serial port.
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class Buffer extends Module {

val io = IO(new Bundle {

val in = Flipped(new UartIO())

val out = new UartIO()

})

val empty :: full :: Nil = Enum(2)

val stateReg = RegInit(empty)

val dataReg = RegInit(0.U(8.W))

io.in.ready := stateReg === empty

io.out.valid := stateReg === full

when(stateReg === empty) {

when(io.in.valid) {

dataReg := io.in.bits

stateReg := full

}

} .otherwise { // full

when(io.out.ready) {

stateReg := empty

}

}

io.out.bits := dataReg

}

Listing 11.4: A single-byte buffer with a ready/valid interface.

8-bit data, and two stop bits (1). Therefore, the bit count is set to 11.
This very minimal transmitter has no additional buffer and can accept a new char-

acter only when the shift register is empty and at the clock cycle when cntReg is 0.
Accepting new data only when cntReg is 0 also means that the ready flag is also de-
asserted when there would be space in the shift register. However, we do not want
to add this “complexity” to the transmitter but delegate it to a buffer.

Listing 11.4 shows a single byte buffer, similar to the FIFO register for the bub-
ble FIFO. The input and the output are UartIOs. The buffer contains the mini-
mal state machine to indicate empty or full. The buffer driven handshake signals
(io.in.ready and io.out.valid) depend on the state register.
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class BufferedTx(frequency: Int, baudRate: Int) extends

Module {

val io = IO(new Bundle {

val txd = Output(UInt(1.W))

val channel = Flipped(new UartIO())

})

val tx = Module(new Tx(frequency , baudRate))

val buf = Module(new Buffer())

buf.io.in <> io.channel

tx.io.channel <> buf.io.out

io.txd <> tx.io.txd

}

Listing 11.5: A transmitter with an additional buffer.

When the state is empty, and data on the input is valid, we register the data and
switch to state full. When the state is full, and the downstream receiver is ready,
the downstream data transfer happens, and we switch back to state empty.

With that buffer we can extend our bare-bone transmitter. Listing 11.5 shows
the combination of the transmitter Tx with a single-buffer in front. This buffer now
relaxes the issue that Tx was ready only for single clock cycles. We delegated the
solution of this issue to the buffer module. An extension of the single word buffer to
a real FIFO can easily be done and needs no change in the transmitter or the single
byte buffer.

Listing 11.6 shows the code for the receiver (Rx). A receiver is a little bit tricky,
as it needs to reconstruct the timing of the serial data. The receiver waits for the
falling edge of the start bit. From that event, the receiver waits 1.5 bit times to
position itself into the middle of bit 0. Then it samples and shifts in the bits every
bit time. You can observe these two waiting times as BIT CNT and START CNT. For
both sample times, the same counter (cntReg) is used. After 8 bits are shifted in,
validReg signals an available byte.

Listing 11.7 shows the usage of the serial port transmitter by sending out a friendly
message. We define the message as a Scala string (msg) and converting it to a Chisel
Vec of UInt. A Scala string is a sequence that supports the map method. The map
method takes as argument a function literal, applies this function to each element,
and builds a sequence of the function’s return values. If the function literal has only
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class Rx(frequency: Int, baudRate: Int) extends Module {

val io = IO(new Bundle {

val rxd = Input(UInt(1.W))

val channel = new UartIO()

})

val BIT_CNT = ((frequency + baudRate / 2) / baudRate - 1).U

val START_CNT = ((3 * frequency / 2 + baudRate / 2) /

baudRate - 1).U

// Sync in the asynchronous RX data, reset to 1 to not

start reading after a reset

val rxReg = RegNext(RegNext(io.rxd, 1.U), 1.U)

val shiftReg = RegInit(0.U(8.W))

val cntReg = RegInit(0.U(20.W))

val bitsReg = RegInit(0.U(4.W))

val validReg = RegInit(false.B)

when(cntReg =/= 0.U) {

cntReg := cntReg - 1.U

} .elsewhen(bitsReg =/= 0.U) {

cntReg := BIT_CNT

shiftReg := rxReg ## (shiftReg >> 1)

bitsReg := bitsReg - 1.U

// the last bit shifted in

when(bitsReg === 1.U) {

validReg := true.B

}

} .elsewhen(rxReg === 0.U) {

// wait 1.5 bits after falling edge of start

cntReg := START_CNT

bitsReg := 8.U

}

when(validReg && io.channel.ready) {

validReg := false.B

}

io.channel.bits := shiftReg

io.channel.valid := validReg

}

Listing 11.6: A receiver for a serial port.
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class Sender(frequency: Int, baudRate: Int) extends Module {

val io = IO(new Bundle {

val txd = Output(UInt(1.W))

})

val tx = Module(new BufferedTx(frequency , baudRate))

io.txd := tx.io.txd

val msg = "Hello World!"

val text = VecInit(msg.map(_.U))

val len = msg.length.U

val cntReg = RegInit(0.U(8.W))

tx.io.channel.bits := text(cntReg)

tx.io.channel.valid := cntReg =/= len

when(tx.io.channel.ready && cntReg =/= len) {

cntReg := cntReg + 1.U

}

}

Listing 11.7: Sending “Hello World!” via the serial port.
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class Echo(frequency: Int, baudRate: Int) extends Module {

val io = IO(new Bundle {

val txd = Output(UInt(1.W))

val rxd = Input(UInt(1.W))

})

val tx = Module(new BufferedTx(frequency , baudRate))

val rx = Module(new Rx(frequency , baudRate))

io.txd := tx.io.txd

rx.io.rxd := io.rxd

tx.io.channel <> rx.io.channel

}

Listing 11.8: Echoing data on the serial port.

one argument, as it is in this case, the argument can be represented by . Our func-
tion literal calls the Chisel method .U to convert the Scala Char to a Chisel UInt.
The sequence is then passed to VecInit to construct a Chisel Vec. We index into
the vector text with the counter cntReg to provide the individual characters to the
buffered transmitter. With each ready signal we increase the counter until the full
string is sent out. The sender keeps valid asserted until the last character has been
sent out.

Listing 11.8 shows the usage of the receiver and the transmitter by connecting
them together. This connection generates an Echo circuit where each received char-
acter is sent back (echoed).

11.3 FIFO Design Variations

At the beginning of this Chapter we introduced the design of a simple bubble FIFO.
In this section we will generalize the FIRO and implement different variations of
the queue. To make these implementations interchangeable we will use inheritance,
as introduced in Section 10.5.

11.3.1 Parameterizing FIFOs

We define an abstract FIFO class with a Chisel type as parameter to be able to
buffer any Chisel data type. In the abstract class we also test that the parameter
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depth has a useful value.

abstract class Fifo[T <: Data](gen: T, val depth: Int)

extends Module {

val io = IO(new FifoIO(gen))

assert(depth > 0, "Number of buffer elements needs to be

larger than 0")

}

In Section 11.1 we defined our own types for the interface with common names
for signals, such as write, full, din, read, empty, and dout. The input and the out-
put of such a buffer consists of data and two signals for handshaking (for example,
we write into the FIFO when it is not full).

Here we can generalize this handshaking to the so called ready/valid interface.
We can enqueue an element (write into the FIFO) when the FIFO is ready. We
signal this at the writer side with valid. As this ready/valid interface is so common,
Chisel provides a definition of this interface in DecoupledIO as follows:2

class DecoupledIO[T <: Data](gen: T) extends Bundle {

val ready = Input(Bool())

val valid = Output(Bool())

val bits = Output(gen)

}

With the DecoupledIO interface we define the interface for our FIFOs: a FifoIOwith
an enqueue (enq) and a dequeue (deq ) port consisting of read/valid interfaces. The
DecoupledIO interface is defined from the writer’s (producer’s) view point. There-
fore, the enqueue port of the FIFO needs to flip the signal directions.

class FifoIO[T <: Data](private val gen: T) extends Bundle {

val enq = Flipped(new DecoupledIO(gen))

val deq = new DecoupledIO(gen)

}

With the abstract base class and an interface we can specialize for different FIFO
implementations optimized for different parameters (speed, area, power, or just sim-
plicity).

2This is a simplification, as DecoupledIO actually extends an abstract class.
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11.3.2 Redesigning the Bubble FIFO

We can redefine our bubble FIFO from Section 11.1 using standard ready/valid in-
terfaces and being parametrizable with a Chisel data type.

Listing 11.9 shows the refactored bubble FIFO with a ready/valid interface. Note
what we put the Buffer component inside BubbleFifo as private class. This helper
class is only needed for this component and therefore we hide it and avoid polluting
the name space. The buffer class has also been simplified. Instead of an FSM we
use only a single bit (fullReg) for the state of the buffer: full or empty.

The bubble FIFO is simple, easy to understand, and uses minimal resources.
However, as each buffer stage has to toggle between empty and full, the maximum
bandwidth of this FIFO is two clock cycles per word.

One could consider to look at both interface sides in the buffer to be able to
accept a new word when the producer valid and the consumer is ready. However,
this introduces a combinational path from the consumer handshake to the producer
handshake, which violates the semantics of the ready/valid protocol.

11.3.3 Double Buffer FIFO

One solution is stay ready even when the buffer register is full. To be able to accept
a data word from the producer, when the consumer is not ready we need a second
buffer, we call it the shadow register. When the the buffer is full, new data is stored
in the shadow register and ready is deasserted. When the consumer becomes ready
again, data is transferred from the data register to the consumer and from the shadow
register into the data register.

class DoubleBufferFifo[T <: Data](gen: T, depth: Int)

extends Fifo(gen: T, depth: Int) {

private class DoubleBuffer[T <: Data](gen: T) extends

Module {

val io = IO(new FifoIO(gen))

val empty :: one :: two :: Nil = Enum(3)

val stateReg = RegInit(empty)

val dataReg = Reg(gen)

val shadowReg = Reg(gen)

switch(stateReg) {
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class BubbleFifo[T <: Data](gen: T, depth: Int) extends

Fifo(gen: T, depth: Int) {

private class Buffer() extends Module {

val io = IO(new FifoIO(gen))

val fullReg = RegInit(false.B)

val dataReg = Reg(gen)

when (fullReg) {

when (io.deq.ready) {

fullReg := false.B

}

} .otherwise {

when (io.enq.valid) {

fullReg := true.B

dataReg := io.enq.bits

}

}

io.enq.ready := !fullReg

io.deq.valid := fullReg

io.deq.bits := dataReg

}

private val buffers = Array.fill(depth) { Module(new

Buffer()) }

for (i <- 0 until depth - 1) {

buffers(i + 1).io.enq <> buffers(i).io.deq

}

io.enq <> buffers(0).io.enq

io.deq <> buffers(depth - 1).io.deq

}

Listing 11.9: A bubble FIFO with a ready/valid interface.
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is (empty) {

when (io.enq.valid) {

stateReg := one

dataReg := io.enq.bits

}

}

is (one) {

when (io.deq.ready && !io.enq.valid) {

stateReg := empty

}

when (io.deq.ready && io.enq.valid) {

stateReg := one

dataReg := io.enq.bits

}

when (!io.deq.ready && io.enq.valid) {

stateReg := two

shadowReg := io.enq.bits

}

}

is (two) {

when (io.deq.ready) {

dataReg := shadowReg

stateReg := one

}

}

}

io.enq.ready := (stateReg === empty || stateReg === one)

io.deq.valid := (stateReg === one || stateReg === two)

io.deq.bits := dataReg

}

private val buffers = Array.fill((depth+1)/2) { Module(new

DoubleBuffer(gen)) }

for (i <- 0 until (depth+1)/2 - 1) {

buffers(i + 1).io.enq <> buffers(i).io.deq

}

io.enq <> buffers(0).io.enq

io.deq <> buffers((depth+1)/2 - 1).io.deq
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}

Listing 11.10: A FIFO with double buffer elements.

Listing 11.10 shows the double buffer FIFO. As each buffer element can store
two entries we need only half of the buffer elements (depth/2). The DoubleBuffer
contains two registers, dataReg and shadowReg. The consumer is served always
from dataReg. The double buffer has three states: empty, one, and two, which signal
the fill level of the double buffer. The buffer is ready to accept new data when is it
in state empty or one. The has valid data when it is in state one or two.

If we run the FIFO at full speed and the consumer is always ready the steady state
of the double buffers are one. Only when the consumer deasserts ready, the queue
fills up and the buffers enter state two. However, compared to a single bubble FIFO,
a restart of the queue takes only half the number of clock cycles for the same buffer
capacity. Similar the fall through latency is half of the bubble FIFO.

11.3.4 FIFO with Register Memory

When you come with a software engineering background you may have been won-
dering that we built hardware queues out of many small individual small buffer
elements, all executing in parallel and handshaking with upstream and downstream
elements. For small buffers this is probably the most efficient implementation.

A queue in software is usually used by sequential code in a single thread. We us a
queue to decouple a producer and consumer thread. In this setting a fixed size FIFO
queue is usually implemented as a circular buffer. Two pointers point into read and
write positions in a memory set aside for the queue. When the pointers reach the
end of the memory, the are set back to the begin of that memory. The difference
between the two pointers is the number of elements in the queue. When the two
pointers point to the same address, the queue is either empty or full. To distinguish
between empty and full we need another flag.

We can implement such a memory based FIFO queue in hardware as well. For
small queues, we can use a register file (i.e., a Reg(Vec())). Listing 11.11 shows a
FIFO queue implemented with memory and read and write pointers.

class RegFifo[T <: Data](gen: T, depth: Int) extends

Fifo(gen: T, depth: Int) {

def counter(depth: Int, incr: Bool): (UInt, UInt) = {

val cntReg = RegInit(0.U(log2Ceil(depth).W))
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val nextVal = Mux(cntReg === (depth -1).U, 0.U, cntReg +

1.U)

when (incr) {

cntReg := nextVal

}

(cntReg, nextVal)

}

// the register based memory

val memReg = Reg(Vec(depth, gen))

val incrRead = WireDefault(false.B)

val incrWrite = WireDefault(false.B)

val (readPtr, nextRead) = counter(depth, incrRead)

val (writePtr, nextWrite) = counter(depth, incrWrite)

val emptyReg = RegInit(true.B)

val fullReg = RegInit(false.B)

when (io.enq.valid && !fullReg) {

memReg(writePtr) := io.enq.bits

emptyReg := false.B

fullReg := nextWrite === readPtr

incrWrite := true.B

}

when (io.deq.ready && !emptyReg) {

fullReg := false.B

emptyReg := nextRead === writePtr

incrRead := true.B

}

io.deq.bits := memReg(readPtr)

io.enq.ready := !fullReg

io.deq.valid := !emptyReg

}

Listing 11.11: A FIFO with a register based memory.

As there are two pointers that behave the same, being incremented on an action
and wrap around at the end of the buffer, we define a function counter that im-
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plements those wrapping counters. With log2Ceil(depth).W we compute the bit
length for the counter. The next value is either an increment by 1 or a wrap around
to 0. The counter is incremented only when the input incr is true.B.

Furthermore, as we need also the possible next value (increment or 0 on wrap
around), we return this value from the counter function as well. In Scala we can
return a so called tuple, which is simply a container to hold more than one value.
The syntax to create such a duple is simply wrapping the comma separated values
in parentheses:

val t = (v1, v2)

We can deconstruct such a tuple by using the parenthesis notation on the left hand
side of the assignment:

val (x1, x2) = t

For the memory we us a register of a vector (Reg(Vec(depth, gen)) of Chisel
data type gen. We define two signals to increment the read and write pointer and
create the read and write pointers with the function counter. When both pointers
are equal, the buffer is either empty or full. We define two flags to for the notion of
empty and full.

When the producer asserts valid and the FIFO is not full we: (1) write into the
buffer, (2) ensure emptyReg is deasserted, (3) mark the buffer full if the write pointer
will catch up with the read pointer in the next clock cycle (compare the current read
pointer with the next write pointer), and (4) signal the write counter to increment.

When the consumer is ready and the FIFO is not empty we: (1) ensure that the
fullReg is deasserted, (2) mark the buffer empty if the read pointer will catch up
with the write pointer in the next clock cycle, and (3) signal the read counter to
increment.

The output of the FIFO is the memory element at the read pointer address. The
ready and valid flags are simply derived from the full and empty flags.

11.3.5 FIFO with On-Chip Memory

The last version of the FIFO used a register files to represent the memory, which is a
good solution for a small FIFO. For larger FIFOs it is better to use on-chip memory.
Listing 11.12 shows a FIFO using a synchronous memory for storage.
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class MemFifo[T <: Data](gen: T, depth: Int) extends

Fifo(gen: T, depth: Int) {

def counter(depth: Int, incr: Bool): (UInt, UInt) = {

val cntReg = RegInit(0.U(log2Ceil(depth).W))

val nextVal = Mux(cntReg === (depth -1).U, 0.U, cntReg +

1.U)

when (incr) {

cntReg := nextVal

}

(cntReg, nextVal)

}

val mem = SyncReadMem(depth, gen)

val incrRead = WireDefault(false.B)

val incrWrite = WireDefault(false.B)

val (readPtr, nextRead) = counter(depth, incrRead)

val (writePtr, nextWrite) = counter(depth, incrWrite)

val emptyReg = RegInit(true.B)

val fullReg = RegInit(false.B)

val idle :: valid :: full :: Nil = Enum(3)

val stateReg = RegInit(idle)

val shadowReg = Reg(gen)

when (io.enq.valid && !fullReg) {

mem.write(writePtr, io.enq.bits)

emptyReg := false.B

fullReg := nextWrite === readPtr

incrWrite := true.B

}

val data = mem.read(readPtr)

// Handling of the one cycle memory latency

// with an additional output register

switch(stateReg) {

is(idle) {

when(!emptyReg) {
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stateReg := valid

fullReg := false.B

emptyReg := nextRead === writePtr

incrRead := true.B

}

}

is(valid) {

when(io.deq.ready) {

when(!emptyReg) {

stateReg := valid

fullReg := false.B

emptyReg := nextRead === writePtr

incrRead := true.B

} otherwise {

stateReg := idle

}

} otherwise {

shadowReg := data

stateReg := full

}

}

is(full) {

when(io.deq.ready) {

when(!emptyReg) {

stateReg := valid

fullReg := false.B

emptyReg := nextRead === writePtr

incrRead := true.B

} otherwise {

stateReg := idle

}

}

}

}

io.deq.bits := Mux(stateReg === valid, data, shadowReg)

io.enq.ready := !fullReg

io.deq.valid := stateReg === valid || stateReg === full

}
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class CombFifo[T <: Data](gen: T, depth: Int) extends

Fifo(gen: T, depth: Int) {

val memFifo = Module(new MemFifo(gen, depth))

val bufferFIFO = Module(new DoubleBufferFifo(gen, 2))

io.enq <> memFifo.io.enq

memFifo.io.deq <> bufferFIFO.io.enq

bufferFIFO.io.deq <> io.deq

}

Listing 11.13: Combining a memory based FIFO with double-buffer stage.

Listing 11.12: A FIFO with a on-chip memory.

The handling of read and write pointer is identical to the register memory FIFO.
However, a synchronous on-chip memory delivers the result of a read in the next
clock cycle, where the read of the register file was available in the same clock cycle.

Therefore, we need an additional FSM and a shadow register to handle this la-
tency. We read the memory out and provide the value of the top of the queue to the
output port. If that value is not consumed, we need to store it in the shadow register
shadowReg while reading the next value from the memory. The state machine con-
sists of three states to represent: (1) an empty FIFO, (2) a valid data read out from
the memory, and (3) head of the queue in the shadow register and valid data (the
next element) from the memory.

The memory based FIFO can efficiently hold larger amounts of data in the queue
and has a short fall through latency. In the last design, the output of the FIFO may
come directly from the memory read. If this data path is in the critical path of the
design, we can easily pipeline our design by combining two FIFOs. Listing 11.13
shows such a combination. On the output of the memory based FIFO we add a
single stage double buffer FIFO to decouple the memory read path from the output.

11.4 A Multi-clock Memory

In large designs with multiple clock domains, you may need a way to safely pass
data from one domain to another. We have previously seen synchronization as one
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solution to this issue. An alternative is to use a multi-clock memory as a buffer
between the two (or more) domains.

Chisel supports multi-clock designs with the withClock and withClockAndReset
constructs. All storage elements defined within a withClock(clk) block are clocked
by clk. For multi-clock memories, the memory module should be defined outside
all withClock blocks, while each port should have their own withClock block. A
parameterized multi-clock memory is shown in Listing 11.14.

class MemoryIO(val n: Int, val w: Int) extends Bundle {

val clk = Input(Bool())

val addr = Input(UInt(log2Up(n).W))

val datai = Input(UInt(w.W))

val datao = Output(UInt(w.W))

val en = Input(Bool())

val we = Input(Bool())

}

class MultiClockMemory(ports: Int, n: Int = 1024, w: Int =

32) extends Module {

val io = IO(new Bundle {

val ps = Vec(ports, new MemoryIO(n, w))

})

val ram = SyncReadMem(n, UInt(w.W))

for (i <- 0 until ports) {

val p = io.ps(i)

withClock(p.clk.asClock) {

val datao = WireDefault(0.U(w.W))

when(p.en) {

datao := ram(p.addr)

when(p.we) {

ram(p.addr) := p.datai

}

}

p.datao := datao

}

}

}
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Listing 11.14: A multi-clock memory generator.

Naturally, using these multi-clock memories introduces some constraints to the
operations that can be performed simultaneously. Two (or more) ports cannot write
to the same address at the same time as this may cause metastability. Similarly,
one must make sure to define the wanted read-during-write behavior. The memory
should be configured to either write first, in which the input data is forwarded to the
read port, or read first in which the old memory value is presented on the read port.

Beware, though, that multi-clock support in ChiselTest is still at a very early
stage. You need to manually toggle clock signals to force transitions.

11.5 Exercises

This exercise section is a little bit longer as it contains two exercises: (1) explor-
ing the bubble FIFO and implement a different FIFO design; and (2) exploring the
UART and extending it. Source code for both exercises is included in the chisel-
examples repository.

11.5.1 Explore the Bubble FIFO

The FIFO source also includes a tester that provokes different read and write behav-
ior and generates a waveform in the value change dump (VCD) format. The VCD
file can be viewed with a waveform viewer, such as GTKWave. Explore the FifoS-
pec in the repository. The repository contains a Makefile to run the examples, for
the FIFO example just type:

$ make fifo

This make command will compile the FIFO, run the test, and starts GTKWave for
waveform viewing.3 Explore the tester and the generated waveform.

In the first cycles, the tester writes a single word. We can observe in the waveform
how that word bubbles through the FIFO, therefore the name bubble FIFO. This
bubbling also means that the latency of a data word through the FIFO is equal to the
depth of the FIFO.

3Depending on your operating system you might need to start GKTWave manually
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The next test fills the FIFO until it is full. A single read follows. Notice how
the empty word bubbles from the reader side of the FIFO to the writer side. When
a bubble FIFO is full, it takes a latency of the buffer depth for a read to affect the
writer side.

The end of the test contains a loop that tries to write and read at maximum speed.
We can see the bubble FIFO running at maximum bandwidth, which is two clock
cycles per word. A buffer stage has always to toggle between empty and full for a
single word transfer.

A bubble FIFO is simple and for small buffers has a low resource requirement.
The main drawbacks of an n stage bubble FIFO are: (1) maximum throughput is
one word every two clock cycles, (2) a data word has to travel n clock cycles from
the writer end to the reader end, and (3) a full FIFO needs n clock cycles for the
restart.

These drawbacks can be solved by a FIFO implementation with a circular buffer.
The circular buffer can be implemented with a memory and read and write pointers.
Rerun/rewrite the test with the other FIFO implementation and compare the band-
width and latency. Synthesize the different FIFO versions and compare the resource
requirements.

11.5.2 The UART

For the UART example, you need an FPGA board with a serial port and a serial port
for your laptop (usually with a USB connection). Connect the serial cable between
the FPGA board and the serial port on your laptop. Start a terminal program, e.g.,
Hyperterm on Windows or gtkterm on Linux:

$ gtkterm &

Configure your port to use the correct device, with a USB UART this is often some-
thing like /dev/ttyUSB0. Set the baud rate to 115200 and no parity or flow control
(handshake). With the following command you can create the Verilog code for the
UART:

$ make uart

Then use your synthesize tool to synthesize the design. The repository contains a
Quartus project for the DE2-115 FPGA board. With Quartus use the play button to
synthesize the design and then configure the FPGA. After configuration, you should
see a greeting message in the terminal.
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Extend the blinking LED example with a UART and write 0 and 1 to the serial
line when the LED is off and on. Use the BufferedTx, as in the Sender example.

With the slow output of characters (two per second), you can write the data to
the UART transmit register and can ignore the ready/valid handshake. Extend the
example by writing repeated numbers 0-9 as fast as the baud rate allows. In this
case, you have to extend your state machine to poll the UART status to check if the
transmit buffer is free.

The example code contains only a single buffer for the Tx. Feel free to add the
FIFO that you have implemented to add buffering to the transmitter and receiver.

11.5.3 FIFO Exploration

Write a simple FIFO with 4 buffer elements in dedicated registers. Use 2-bit read
and write counters, which can just overflow. As a further simplification consider
the situation when the read and write pointers are equal as empty FIFO. This means
you can maximally store 3 elements. This simplification avoids the counter function
from the example in Listing 11.11 and the handling of the empty or full with the
same pointer values. We do not need empty or full flags, as this can be derived form
the pointer values alone. How much simpler is this design?

The presented different FIFO designs have different design tradeoffs relative to
following properties: (1) maximum throughput, (2) fall through latency, (3) resource
requirement, and (4) maximum clock frequency. Explore all FIFO variations in
different sizes by synthesizing them for an FPGA; the source is available at chisel-
examples. Where are the sweet spots for FIFOs of 4 words, 16 words, and 256
words?
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12 Interconnect

We combine different components to build larger systems. To simplify the compo-
sition of components, interconnect standards such as Wishbone or AXI exist. This
chapter explores different forms of interconnect.

Interconnects can be used between chips (external) or within a chip, often then
called a system-on-chip (SoC).

12.1 A Classic Microprocessor Bus

Figure 12.1 shows the schematic of a simple, classic computer. The central process-
ing unit (CPU) is connected via a system bus to external memory and input/output
(I/O) devices. This type of bus interconnection was common with early micropro-
cessors, such as, Z80 or 6502.

The bus is split into an address bus, a data bus, and control signals such as read
and write. The CPU drives the address and control signals. The data bus is bidi-
rectional. The CPU is the master in the system and issues read or write commands.
Both commands include an address (addr in the schematic) to select a data word
from memory or a register from an I/O device. Not all address lines are connected
at all peripheral devices. To select between different devices, the upper bits of the
address bus are the input of a decoder. The outputs of the decoder are connected to
the chip select (CS) inputs of the peripheral devices.

On a read command the selected device will provide the data after some access
time on the data bus. The peripheral device drives the data bus. On a write com-
mand, the processor provides the data and the peripheral has to accept that data
(often on a rising edge of a signal). The CPU drives the data bus. As the data
bus is bi-directional and the data lines are shared between all devices, the outputs
must contain a tri-state driver. In tri-state configuration, both output transistors are
disabled and the output pin is practically disconnected from logic.

Note, that in the simplest form the bus does not contain a clock. The timing is
defined by read and write access times of the peripheral devices.
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CPU

addr

Memory Input and
Output

data rd/wr rd/wr rd/wrdata dataaddr addr

Address
decoder

CSm CSio

Figure 12.1: A classic computer consisting of a processor (CPU), memory, and I/O;
connected via address, data, and control busses.

Modern computers have different busses for different peripheral devices, for ex-
ample, a dedicated memory bus for external memory and I/O busses for peripheral
devices. Furthermore, modern I/O busses, such as PCI Express, are serial busses
and use point-to-point connections.

Nevertheless, the notion of the classic processor bus with an address bus, a data
bus, and chip select signals is still the mainstream mindset for core interconnec-
tions. We will derive an adaption of this concept for on-chip interconnect in the
next section.

12.2 On-Chip Bus

We can translate the concept of such an external bus to an on-chip bus. However,
we need to adapt some aspects. Shared busses with the need of tri-state drivers are
not practical within a chip. Furthermore, wires in a chip are cheaper than wires on a
PCB or at a connector. Therefore, we split the data bus into two collection of wires:
one for the read and and one for the write signals. Furthermore, on-chip connections
use a clock to define the timing.
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CPU

Address
decoder

CSm

addr din dout rd/wr

Memory

addr din dout rd/wr

Input and
Output

addr din dout rd/wr

CSio

Figure 12.2: The translation of the off-chip bus concept to an on-chip “bus”.
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clock

address address

rd

ack

data data

1 2 3 4 5

Figure 12.3: A read transaction with a combinational acknowledge.

Figure 12.2 shows the implementation of the bus concept within a chip. The
address, data output, and control signals are connected from the CPU to all periph-
erals. For the data input we use a multiplexer (instead of a tri-state bus). The address
decoder, besides generating the chip select signals, drives the selection of the data
input multiplexer.

With that simple setup we assume that each operation (read or write) can be ex-
ecuted in a single clock cycle. This is only possible for very small systems. We
can extend this by defining that we expect the read result in the next clock cycle,
following the read request. This fits well for on-chip memories with usually syn-
chronous reads that have one clock cycle latency. For IO devices this additional
clock cycle latency relaxes the timing constraints as well. We still assume that write
is performed in one clock cycle.

If we want to communicate with devices with different or even varying latency,
we need to introduce handshaking. The processor signals with a read or write re-
quest the start of a transaction and the memory or peripheral device signals the end
of a transaction.

12.2.1 Combinational Handshake

Figure 12.3 shows a read request with an acknowledgment. The processor drives the
address bus (address) and the read signal (rd) in clock cycle 3. Signal ack needs
to react within that first clock cycle. In our example the read data is not available
within one clock cycle, but two clock cycles later as seen in clock cycle 4. Data and
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clock

address A1 A2 A3

rd

ack

data D1 D2 D3

1 2 3 4 5 6 7 8

Figure 12.4: Read transaction with a pipelined acknowledgement.

the acknowledgment are valid for a single clock cycle. The benefit of that protocol
specification is, that it allows for a single cycle transaction. However, the price is
that the handshake process, including decoding is a combinational circuit, which can
lead to issues with the maximum frequency. The standard Wishbone [12] protocol
uses the same cycle acknowledgement. The newer version of Wishbone added a
pipelined protocol.

The same cycle acknowledgement (or ready signal) has been criticized in [13].
A single cycle transaction is usually not realistic in a larger system. Therefore, we
can define a specification where the acknowledge (or busy or ready) signal does not
need to be valid in the request cycle. That paper proposes SimpCon, a protocol
that enables pipelined transactions and avoids the combinational path between the
processor, address decoding, and the peripheral device.

12.2.2 Pipelined Handshake

A read or write command are signaled by an asserted rd or wr. The address and
write data (if it is a write) need to be valid during the command. Commands are
only valid for a single cycle. Each command needs to be acknowledged by an active
ack, earliest one cycle after the command. It can also insert wait states by delaying
ack. Read data is available with the ack signal for one clock cycle.

Figure 12.4 shows such a bus protocol that does not need a combinational reac-
tion of the peripheral device. The request from the processor is only a single cycle
long. The address bus and the read signal does not need to be driven till the ac-
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knowledgment. Compared to the former protocol, the ack signal comes earliest one
clock cycle after the rd command, in clock cycle 3. The first read sequence has one
cycle latency in this example. It has the same latency as the former example. How-
ever, as the request needs to be valid only one clock cycle, we can pipeline requests.
Read of addresses A2 and A3 can be requested back to back, allowing a throughput
of 1 data word per clock cycle.

The Patmos processor [20] uses an OCP version with exact this protocol for ac-
cessing IO devices. Memory is connected via a burst interface. The Patmos Hand-
book [16] gives a detailed description of the used OCP interfaces.

12.2.3 Example IO Device

Listing 12.1 shows an IO device that implements the specification of the pipelined
interconnect. The IO device contains four loadable counters. To address those four
counters we need two address bits. We read the value from the counter with a read
transaction (rd is asserted) and get the result in the next clock cycle (in dout). We
write to a counter with wr asserted and the value set in din.

To implement the delayed acknowledge, we use a single bit register (ackReg) to
delay any asserted rd or wr. As we provide the read result in the clock cycle that
follows the read command and the address is only valid during this command cycle,
we need to store the address in addrReg.

The counters themself consists of a small register file of 4 elements (a Reg of a
Vec). The counters are initialized to zero by using a Scala Seq, created with fill
containing the reset values as Chisel constants. That Seq is the input to the VecInit.
The counters are freely running and increment by one each clock cycle, except when
written a new value.

The on-chip version of an interconnect definition can be generalized to a point-
to-point connection. The processor and peripheral devices are connected with such
a point-to-point interface to a switching fabric. If the system contains more than
one processor (or master) we need arbitration within the switching fabric to decide
which master is allowed to issue read and write commands.

12.2.4 Memory Mapped Devices

In our example system all devices, being it memory or IO devices, are connected
to a shared address lines. Therefore, they appear in the shared address space. To
select individual devices we use address decoding of some upper bits. This is called
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class CounterDevice extends Module {

val io = IO(new Bundle() {

val addr = Input(UInt(2.W))

val wr = Input(Bool())

val rd = Input(Bool())

val wrData = Input(UInt(32.W))

val rdData = Output(UInt(32.W))

val ack = Output(Bool())

})

val ackReg = RegInit(false.B)

val addrReg = RegInit(0.U(2.W))

val cntRegs = RegInit(VecInit(Seq.fill(4)(0.U(32.W))))

ackReg := io.rd || io.wr

when(io.rd) {

addrReg := io.addr

}

io.rdData := cntRegs(addrReg)

for (i <- 0 until 4) {

cntRegs(i) := cntRegs(i) + 1.U

}

when (io.wr) {

cntRegs(io.addr) := io.wrData

}

io.ack := ackReg

}

Listing 12.1: An IO device consisting of four loadable counters.
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Address Device

0x0000–0x0fff ROM
0x1000–0x1fff RAM
0xf000 UART
0xf010 LEDs
0xf020 Keys

Table 12.1: An example address mapping.

memory mapped devices and as part of the system design we decide on an address
mapping.

Table 12.1 shows an example address map for a (16-bit) microcontroller. We
assume 16-bit addresses, therefore the range of the addresses is between 0x0000
and 0xffff. At the lowest address (the starting of program to be executed) we map a
read-only memory (ROM) that contains the program. In the next memory area we
map a writable memory (RAM) for the data. We decide to map all IO devices into
the upper area of the address space (above 0xf000), so they are out of the way, in
case we want to extend the memory. I this example we reserve 16 bytes of address
for each IO device. Note, this is a made up example and we have all the flexibility
when deciding on an address map.

Some IO devices do not have memory mapped registers, as the counter example
device, but a ready/valid interface, as explained in Section 9.3. The UART, as pre-
sented in Section 11.2, for example, has such two ready/valid interfaces: one for
writing and one for reading a value. A common solution is to map write and read
channel to one address and drive the according signals on the write or read com-
mand. To signal if the write channel is ready to receive a new data word or the read
channel has a valid data, we map those two signals into a status register at a different
address.

Table 12.2 shows an address mapping for the UART. At the base address (0xf000)
we access a status register on a read and an optional control register on a write. At
the next address (0xf001) we read from a read buffer and write into a transmit buffer.

Table 12.3 shows the mapping of two flags into the status register. Both bits
signal that we can perform a write or a read transaction. When the transmit data
register is empty (TDRE), we can write (send) new data to the transmitter (TX).
When the receive data register is full, we can read data from the receiver (RX). The
terminology might sound a bit like using old terms. And this is true for our interface.
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Address I/O Device read write

0xf000 UART status control
0xf001 UART receive buffer transmit buffer

Table 12.2: Address mapping for the UART.

Bit Status

0 TDRE Transmit (TX) data register empty
1 RDRF Receive (RX) data register full

Table 12.3: Status flags.

In fact, this is exactly the mapping of the first serial port for the IBM PC built with
the 8250 chip, and it is still valid.

Note, to use ready and valid in a status register for polling, the ready signal from
the transmitter and the valid signal from the receiver are not allowed to be deasserted
once they have been asserted. If this cannot be guaranteed, two single word buffers,
as shown in Listing 9.6, can be inserted between the IO interface and device with
the read/valid interface.

For our memory mapped devices we define a bundle:

class MemoryMappedIO extends Bundle {

val addr = Input(UInt(4.W))

val wr = Input(Bool())

val rd = Input(Bool())

val wrData = Input(UInt(32.W))

val rdData = Output(UInt(32.W))

val ack = Output(Bool())

}

Listing 12.2 shows the

12.3 Bus and Interface Standards

Several point-to-point and bus standards have been proposed over the years. The
following sections give a brief overview of common SoC interconnection standards.
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class MemMappedRV[T <: Data](gen: T, block: Boolean = false)

extends Module {

val io = IO(new Bundle() {

val mem = new MemoryMappedIO()

val tx = Decoupled(gen)

val rx = Flipped(Decoupled(gen))

})

val statusReg = RegInit(0.U(2.W))

val ackReg = RegInit(false.B)

val addrReg = RegInit(0.U(1.W))

val rdDlyReg = RegInit(false.B)

statusReg := io.rx.valid ## io.tx.ready

// ack

ackReg := io.mem.rd || io.mem.wr

io.mem.ack := ackReg

// read from status or rx

when (io.mem.rd) {

addrReg := io.mem.addr

}

rdDlyReg := io.mem.rd

io.rx.ready := false.B

when (addrReg === 1.U && rdDlyReg) {

io.rx.ready := true.B

}

io.mem.rdData := Mux(addrReg === 0.U, statusReg ,

io.rx.bits)

// write to tx

io.tx.bits := io.mem.wrData

io.tx.valid := io.mem.wr

}

Listing 12.2: An IO device for a ready/valid device.
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12.3.1 Wishbone

The Wishbone [12] specification is a definition of a point-to-point communication
and not a bus in the classic sense. Wishbone is a public domain standard used by
several open-source IP cores. The Wishbone interface specification is still in the
tradition of microcomputer or backplane busses. However, for a SoC interconnect,
which is usually point-to-point1, this is not the best approach. The master is re-
quested to hold the address and data valid through the whole read or write cycle.
This complicates the connection to a master that has the data valid only for one
cycle. In this case the address and data have to be registered before the Wishbone
connect or an expensive (time and resources) multiplexer has to be used. A register
results in one additional cycle latency. A better approach would be to register the
address and data in the slave. In that case the address decoding in the slave can
be performed in the same cycle as the address is registered. A similar issue, with
respect to the master, exists for the output data from the slave: As it is only valid
for a single cycle the data has to be registered by the master when the master is
not reading it immediately. Therefore, the slave should keep the last valid data at
its output even when the Wishbone strobe signal (wb.stb) is not assigned anymore.
Holding the data in the slave is usually for free from the hardware complexity—it
is just a specification issue. In the classic Wishbone specification there is no way to
perform pipelined read or write. However, for blocked memory transfers (e.g. cache
load) this is the usual way to achieve good performance.

12.3.2 AXI

The Advanced Microcontroller Bus Architecture (AMBA) [2] is the interconnection
definition from ARM. The specification defines three different busses: Advanced
High-performance Bus (AHB), Advanced System Bus (ASB), and Advanced Pe-
ripheral Bus (APB). The AHB is used to connect on-chip memory, cache, and ex-
ternal memory to the processor. Peripheral devices are connected to the APB. A
bridge connects the AHB to the lower bandwidth APB. An AHB bus transfer can
be one cycle with burst operation. With the APB a bus transfer requires two cycles
and no burst mode is available. Peripheral bus cycles with wait states are added in
the version 3 of the APB specification. ASB is the predecessor of AHB and is not
recommended for new designs (ASB uses both clock phases for the bus signals –
very uncommon for today’s synchronous designs).

1Multiplexers are used instead of busses to connect several slaves and masters.
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Amba AXI (Advanced eXtensible Interface) and ACE version 4 [3] is the latest
extension to AMBA. AXI introduces out-of-order transaction completion with the
help of a 4 bit transaction id tag. A ready signal acknowledges the transaction start.
The master has to hold the transaction information (e.g. address) till the interconnect
signals ready. This enhancement ruins the elegant single cycle address phase from
the original AHB specification.

The AXI bus uses ready/valid handshaking for all signals (read address, read data,
write address, write data, and write response). The decoupling of the write address
and the write data needs a more complex slave that can accept the any order of
arriving address and data.

12.3.3 Open Core Protocol

Sonics Inc. defined the Open Core Protocol (OCP) [11] as an open, freely avail-
able standard. The standard is now handled by the OCP International Partnership
(www.ocpip.org). The Patmos processor [20] and the T-CREST [15] multicore plat-
form use the OCP standard. The Patmos repository2 contains several memory con-
trollers, many peripherals devices, and a network-on-chip with an OCP interface.

12.3.4 Further Bus Specifications

The Avalon [1] interface specification is provided by Intel for a system-on-a-
programmable-chip interconnection. Avalon defines a great range of interconnec-
tion devices ranging from a simple asynchronous interface intended for direct static
RAM connection up to sophisticated pipeline transfers with variable latencies. This
great flexibility provides an easy path to connect a peripheral device to Avalon. How
is this flexibility possible? The Avalon Switch Fabric translates between all those
different interconnection types. The switch fabric is generated by Intel’s SOPC
Builder tool. However, it seems that this switch fabric is Intel proprietary thus tying
this specification to Intel FPGAs.

The On-Chip Peripheral Bus (OPB) [10] is an open standard provided by IBM
and used by Xilinx. The OPB specifies a bus for multiple masters and slaves. The
implementation of the bus is not directly defined in the specification. A distributed
ring, a centralized multiplexer, or a centralized AND/OR network are suggested.
Xilinx used the AND/OR approach and all masters and slaves must drive the data
busses to zero when inactive. Xilinx switched to AXI for all their interconnect.

2https://github.com/t-crest/patmos
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13 Debugging, Testing, and
Verification

In Chapter 3 we gave a quick introduction how to test Chisel designs. In this Chapter
we will dig deeper into the topic of testing and verification.

Testing and verification have slightly different meaning in software development
and digital design. In software development testing means running tests on compo-
nents where verification usually is the short for formal verification (mathematical
proofs or exhaustive testing with model checking). In digital design we used the
term testing similar to software when writing test benches that stimulate and check
a device under test (DUT). However, the term testing is also used in the actual test
of the physical chip (on a tester using a built-in self test). Therefore, the digital de-
sign community slowly moves to use the term verification for testing the hardware
description. If we want to apply formal methods to verify hardware components,
we call it formal verification. In this book we will stick to the term testing when we
write tests for our hardware description.

13.1 Debugging

During your design and coding phase you often debug your design. Debugging is the
process of finding defects in your code. Those defects are called bugs. Debugging
is often performed in parallel with writing new code.

One can debug a program by using a debugger or simply by printing interesting
values to the terminal, called printf debugging. In hardware elements are executing
in parallel. Therefore a common form of hardware debugging is generating wave-
forms and watching how interesting signals evolve over time. We call this waveform
debugging.1

A Chisel tester can generate waveforms, which can be viewed, for example, with
GTKWave. However, for quick checks it is also possible to print signal values

1There is no entry in Wikipedia for this, we should create one.
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during simulation of the circuit. Values are printed at the rising edge of the clock.

13.2 Testing in Chisel

ChiselTest is based on ScalaTest. Therefore, we can run all tests with a simple sbt
test. ScalaTest also supports multithreaded testing out of the box meaning that if
you have more test classes in your project, they can run in parallel. Additionally,
you can make use of the FlatSpec syntax to write clear test descriptions and make
debugging easier.

You define Chisel tests as classes that extend AnyFlatSpec with the
ChiselScalatestTester trait. ChiselTest uses peek, poke, expect, and step meth-
ods that operate on the DUT’s IO ports. The ChiselTest methods operate on Chisel
types (i.e., UInts, SInts and Bools). To advance the simulation by one clock cycle,
we call step on the DUT’s implicit clock port.

You can define individual tests within the test function which takes two param-
eter lists, one being the module to test and the other being the test description itself
which is passed the DUT as parameter. As an example, the following tester tests a
few inputs to a BCD table:

class BcdTableTest extends AnyFlatSpec with

ChiselScalatestTester {

"BCD table" should "output BCD encoded numbers" in {

test(new BcdTable) { dut =>

dut.io.address.poke(0.U)

dut.io.data.expect("h00".U)

dut.io.address.poke(1.U)

dut.io.data.expect("h01".U)

dut.io.address.poke(13.U)

dut.io.data.expect("h13".U)

dut.io.address.poke(99.U)

dut.io.data.expect("h99".U)

}

}

}

Alternatively, you can use the behavior of "module name" syntax to refer to the
module with it. This is useful when you have several tests for a single module.

class BcdTableTest extends FlatSpec with
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ChiselScalatestTester {

behavior of "BCD table"

it should "output BCD encoded numbers" in {

test(new BcdTable) { dut =>

...

}

}

}

Simple tests start by writing text vectors with poke to the DUT, advancing the
clock, and testing the outputs with an expect. For debugging purposes we can also
peek values and print them out for manual inspection. The code in Listing 13.1 tests
the counter device that we introduced in Chapter 12 as an example IO device.

As you can see, the test covers only a few cases, but is already very long to read.
All those pokes and expects are cumbersome. As a first step we shall introduce
functions to represent a read and a write request. Those functions abstract away the
manual “bit banging” at the interface pins in the tesing code. Listing 13.2 shows a
test with those functions. For a shortcut we also define the function step to advance
the clock.

The read function takes an address as parameter and returns the read value. After
poking the address and the read signal the function advances the clock by one clock
cycle and deasserts the read function. In our example device, the read value should
be available after one clock cycle. However, we generalize the read function also for
devices with longer latencies and the read function waits in an endless loop that ack
will become true. Note, how we convert a Chisel Bool to a Scala Boolean. However,
when a device has a fault to never assert ack after a request, the test will hang in an
endless loop. A robuster read function will contain a timeout for the ack polling.
Finally we read the data from rdData and convert it to a Scala integer (concrete a
BigInt to express any sized integer).

The write function takes an address and the data parameters as Scala Int. Similar
to the read function, the values are poked into the device, the clock advanced one
clock cycle and then the write signal deasserted. Also here we wait in an endless
loop that ack becomes true.

With those three functions available, we can write in less lines of code and better
readable our tests. This testing code covers already way more cases than the original
bit-banging tester.2

2It happened, that I had an off by one error (until 3 instead of until 4) in the counter device, that
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"CounterDevice" should "work" in {

test(new CounterDevice()) { dut =>

dut.io.ack.expect(false.B)

dut.clock.step()

dut.io.addr.poke(0.U)

dut.io.rd.poke(true.B)

dut.io.ack.expect(false.B)

dut.clock.step()

dut.io.rd.poke(false.B)

dut.io.ack.expect(true.B)

dut.clock.step(100)

dut.io.rd.poke(true.B)

dut.io.addr.poke(1.U)

dut.clock.step()

assert(dut.io.rdData.peek().litValue > 100)

dut.io.wr.poke(true.B)

dut.io.wrData.poke(0.U)

dut.clock.step()

dut.io.wr.poke(false.B)

dut.io.rd.poke(true.B)

dut.clock.step()

dut.io.rdData.expect(1.U)

dut.io.addr.poke(0.U)

dut.clock.step()

assert(dut.io.rdData.peek().litValue > 100)

}

}

Listing 13.1: Testing the counter device.
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"CounterDevice" should "work with functions" in {

test(new CounterDevice()) { dut =>

def step(n: Int = 1) = {

dut.clock.step(n)

}

def read(addr: Int) = {

dut.io.addr.poke(addr.U)

dut.io.rd.poke(true.B)

step()

dut.io.rd.poke(false.B)

while (!dut.io.ack.peek().litToBoolean) {

step()

}

dut.io.rdData.peek().litValue

}

def write(addr: Int, data: Int) = {

dut.io.addr.poke(addr.U)

dut.io.wrData.poke(data.U)

dut.io.wr.poke(true.B)

step()

dut.io.wr.poke(false.B)

while (!dut.io.ack.peek().litToBoolean) {

step()

}

}

for (i <- 0 until 4) {

assert(read(i) < 10, s"Counter $i should have just

started")

}

step(100)

for (i <- 0 until 4) {

assert(read(i) > 100, s"Counter $i should advance")

}

write(2, 0)

write(3, 1000)

assert(read(2) < 5, "Counter should reset")

assert(read(3) > 1000, "Counter should load")

}

}

Listing 13.2: Testing the counter device with fuctions.

Contents Index 203



13 DEBUGGING, TESTING, AND VERIFICATION

If you have a large test suite, you may wish to run only a subset of your tests as
part of a continuous integration run or similar. The easiest way to achieve this and
still have to run only a single SBT command is by tagging your tests.

object Unnecessary extends Tag("Unnecessary")

class TagTest extends AnyFlatSpec with Matchers {

"Integers" should "add" taggedAs(Unnecessary) in {

17 + 25 should be (42)

}

}

Per default, all tests can be run by using sbt test or sbt testOnly *. To leave out
tests tagged with, for example, Unnecessary, you can run:

$ sbt "testOnly * -- -l Unnecessary"

When you run the command, the test will show up as ignored in the terminal:

[info] TagTest:

[info] Integers

...

[info] No tests were executed.

If your tests (and tags) are part of a package, remember to provide the full refer-
ence path to both. Next, we will look at a few useful debugging techniques.

The following subsections present advanced testing techniques that you likely do
not need yet. You can skip ahead to the exercise and return later if you find the need.

13.3 Multithreaded Testing

ChiselTest has support for multithreaded testing through the use of fork and join
calls. fork spawns a new tester thread with a block of test code as its parameter,
while joinmay be called on a tester thread variable (returned by a fork call) to wait
for it to join the main thread.

Running multiple threads does present some new limitations to peeks and pokes
in that no two threads can peek respectively poke the same signal at the same time.

I found only with the second, more comprehensive test.
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Similarly, to guarantee correct operation, the threads are synchronized on calls to
step.

The following snippet is a small test of a FIFO that enqueues an element in one
thread and dequeues it in the main thread:

it should "work with multiple threads" in {

test(new BubbleFifo(8, 4)) { dut =>

val enq = fork {

while (dut.io.enq.full.peek.litToBoolean)

dut.clock.step()

dut.io.enq.din.poke(42.U)

dut.io.enq.write.poke(true.B)

dut.clock.step()

dut.io.enq.write.poke(false.B)

}

while (dut.io.deq.empty.peek.litToBoolean)

dut.clock.step()

dut.io.deq.dout.expect(42.U)

dut.io.deq.read.poke(true.B)

dut.clock.step()

dut.io.deq.empty.expect(true.B)

enq.join

}

}

Multiple threads are spawned with stacked calls to fork. The spawned threads
represent a hierarchy in which the first thread should not finish before one of the
subsequent threads.

13.4 Simulator Backends

Per default, tests written with ChiselTest are run by the Treadle simulation backend.
The benefit of Treadle is the quick startup time and no additional tools need to be
installed.

However, larger system tests may either require another backend to support, for
example, latches, or may benefit in terms of simulation time. To enable this, Chisel-
Test supports two other backends: Verilator and Synopsys VCS. Because Verilator
is open-source, we will use it for the examples presented in this section. Note that
in all cases, VCS can be directly substituted in instead of Verilator.
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Switching to a different backend is simply a matter of adding another annotation
to the withAnnotations call as shown in the Waveforms section. To use Verilator,
add following annotation:

test(new

Dut()).withAnnotations(Seq(VerilatorBackendAnnotation))

{

Additional flexibility arises from the ability to supply your own switches to the
simulator command that starts the backend. This is done by using VerilatorFlags
to add switches to the Verilator simulation command, or VerilatorCFlags to add
switches to GCC. They should be in the list of annotations along with the backend
annotation. You need to refer to the tool’s user manual to find a detailed list of com-
mand line arguments. Note that VerilatorFlags and VerilatorCFlags annotations
are advanced features that should generally not be needed. Furthermore, the flags
are not guaranteed to remain stable.

Note that ChiselTest 0.3.4 and later support code coverage measures directly in
simulation. To support this, make sure to install Verilator version 4.028 or newer.

Also, beware that different simulators work in different ways. Verilator is a so-
called synchronous simulator, which means that it runs updates only at the rising
edge of the clock and thus does not support latches. It also does not officially support
multiple clocks. VCS, on the other hand, is an event-based simulator, which is
significantly more detailed in its simulations and supports all synthesizable Verilog
constructs. Generally, for single-clock circuits, Verilator is the fastest and most
widely available tool.
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14 Design of a Processor

As one of the last chapters in this book, we present a medium size project: the de-
sign, simulation, and testing of a microprocessor. To keep this project manageable,
we design a simple accumulator machine. The processor is called Leros [18] and is
available in open source at https://github.com/leros-dev/leros. We would
like to mention that this is an advanced example and some computer architecture
knowledge is needed to follow the presented code examples.

14.1 The Instruction Set Architecture

The definition of an instruction set is also called instruction set architecture (ISA).
The ISA is the most important abstraction in computer architecture. The ISA is the
contract between the compiler (or assembler programmer) and the concrete proces-
sor implementation. The ISA is independent of the actual implementation. Different
implementations of a microprocessor (also called microarchitecture) can execute the
same ISA.

Leros is designed to be simple, but still a good target for a C compiler. The
description of the instructions fits on one page, see Table 14.1.

Leros is a so called accumulator machine. This means that all operations have
the accumulator as one of the source inputs and the result is usually written into
the accumulator. The second operand of an arithmetic or logic operation can either
be an immediate (a constant) or from one of the 256 on-chip registers. Access to
memory (load or store) is also performed via the accumulator: on a load the value
from memory is stored in the accumulator and for a store the value is taken from
the accumulator. The address for the memory access is stored in the address register
(AR).

The program counter (PC) is pointing to the current instruction in the instruction
memory. The PC is usually incremented to the following instructions. To implement
control flow, the PC can be manipulated by a branch or jump instruction. Leros has
unconditional and conditional branch instructions. Conditional branches depend on
the content of the accumulator. E.g., brz branches only when the content of the ac-
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Opcode Function Description

add A = A + Rn Add register Rn to A
addi A = A + i Add immediate value i to A
sub A = A - Rn Subtract register Rn from A
subi A = A - i Subtract immediate value i from A
shr A = A >>> 1 Shift A logically right
load A = Rn Load register Rn into A
loadi A = i Load immediate value i into A
and A = A and Rn And register Rn with A
andi A = A and i And immediate value i with A
or A = A or Rn Or register Rn with A
ori A = A or i Or immediate value i with A
xor A = A xor Rn Xor register Rn with A
xori A = A xor i Xor immediate value i with A
loadhi A15−8 = i Load immediate into second byte
loadh2i A23−16 = i Load immediate into third byte
loadh3i A31−24 = i Load immediate into fourth byte
store Rn = A Store A into register Rn
jal PC = A, Rn = PC + 2 Jump to A and store return address in Rn
ldaddr AR = A Load address register AR with A
loadind A = mem[AR+(i << 2)] Load a word from memory into A
loadindbu A = mem[AR+i]7−0 Load a byte unsigned from memory into A
storeind mem[AR+(i << 2)] = A Store A into memory
storeindb mem[AR+i]7−0 = A Store a byte into memory
br PC = PC + o Branch
brz if A == 0 PC = PC + o Branch if A is zero
brnz if A != 0 PC = PC + o Branch if A is not zero
brp if A >= 0 PC = PC + o Branch if A is positive
brn if A < 0 PC = PC + o Branch if A is negative
scall scall A System call (simulation hook)

Table 14.1: Leros instruction set.
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cumulator is 0. Leros branches are relative to the current instruction and can branch
forward and backward around 2000 instructions. For larger control flow changes
and for function calls and returns, Leros has a jump-and-link (jal) instruction. That
instructions jumps to the address that is in the accumulator and stores the address of
the following instruction into a register. That value can then be used to return from
a function with jal.

The accumulator and the register file is in our current implementation 32 bits
wide.1

In Table 14.1 A represents the accumulator, PC is the program counter, i is an
immediate value (0 to 255), Rn a register n (0 to 255), o a branch offset relative to
the PC, and AR an address register for memory access.

Following code snippets shows examples of Leros instructions in assembly:

loadi 1

addi 2

ori 0x50

andi 0x1f

subi 0x13

loadi 0xab

addi 0x01

subi 0xac

scall 0

We can see that each instruction consists for the instruction name (also call opcode
mnemonic) and a constant. The constant can be written in decimal or hexadecimal
notion. The code shows immediate versions of load, arithmetic, and logic instruc-
tions. the last instruction (scall 0) is a system call and ends the execution (or
simulation). This short program is part of Leros test suit. The convention of the test
is that at the end of the program the accumulator shall contain 0.

Instructions are 16 bits wide. The higher byte is used to encode the instruc-
tion, the lower byte contains either an immediate value, a register number, or a
branch offset (part of the branch offset uses also bits in the upper byte). For example
00001001.00000010 is an add immediate instruction that adds 2 to the accumulator,
where 00001000.00000011 adds the content of R3 to the accumulator. For branches
we use 3 of the instruction bits for larger offsets.

Listing 14.1 shows the encoding of the instructions in the upper 8 bits of each
instruction. Not all instruction bits are currently used (unused are marked with -)

1We try to keep it configurable to be able to also implement 16-bit or 64-bit versions of Leros.
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+--------+----------+

|00000---| nop |

|000010-0| add |

|000010-1| addi |

|000011-0| sub |

|000011-1| subi |

|00010---| sra |

|00011---| - |

|00100000| load |

|00100001| loadi |

|00100010| and |

|00100011| andi |

|00100100| or |

|00100101| ori |

|00100110| xor |

|00100111| xori |

|00101001| loadhi |

|00101010| loadh2i |

|00101011| loadh3i |

|00110---| store |

|001110-?| out |

|000001-?| in |

|01000---| jal |

|01001---| - |

|01010---| ldaddr |

|01100-00| ldind |

|01100-01| ldindb |

|01100-10| ldindh |

|01110-00| stind |

|01110-01| stindb |

|01110-10| stindh |

|1000nnnn| br |

|1001nnnn| brz |

|1010nnnn| brnz |

|1011nnnn| brp |

|1100nnnn| brn |

|11111111| scall |

+--------+----------+

Listing 14.1: Leros instruction encoding.
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14.2 The Datapath

Section 9.2 describes how to implement an algorithm in hardware with a state ma-
chine and datapath. We will use the same approach for an initial implementation of
Leros.

We need a datapath that allows the data flow for all instructions, possible in sev-
eral clock cycles. We aim for a two clock cycles execution of each instruction.
Therefore, the base state machine has just two states: fetch and execute.

Figure 14.1 shows the datapath for our implementation of Leros. The figure is
slightly simplified. The data flows from left to right. The PC points to the instruction
to be fetched. On-chip memories have usually input registers that cannot be read.2

Therefore, we feed to the PC and the input register of the instruction memory the
same value of the next PC. The next PC is for non-branching instructions the PC
plus 1.3 For a relative branch the decode component sign extends the immediate
value and it is added to the PC. For the jal instruction the PC can also be loaded
from A.

In the first state an instruction is fetched from the instruction memory and de-
coded. The decode component decides what will happen in the next state, the ex-
ecute state. It also includes the generation of an operand for instructions with an
immediate operand (e.g., addi, or loadhi). As this operand is consumed in the
execution state, we need to store it in a register.

The second memory serves as general data memory, but also stores the values for
the 255 registers. For a read or write of one of the registers, the address is part of the
instruction. For memory load or store instructions, we use the address register AR.
AR itself is loaded from A. The result of a load is placed into A. On a store, A delivers
the data to be written into memory.

Finally, arithmetic and logic operations are performed with the ALU. One operand
comes from A the other is either an immediate value (from the instruction) or a reg-
ister value (from the memory).

14.3 Start with an ALU

A central component of a processor is the arithmetic logic unit, or ALU for short.
Therefore, we start with the coding of the ALU and a test bench. First, we define an
Enum to represent the different operations of the ALU:

2At least this is true for FPGA on-chip memories
3We count in this simple organization in 16-bit instruction words and not in bytes
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address rdData

Data Memory

PC
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 ALU A
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Figure 14.1: The Leros datapath.

object Types {

val nop :: add :: sub :: and :: or :: xor :: ld :: shr ::

Nil = Enum(8)

}

An ALU usually has two operand inputs (call them a and b), an operation op (or
opcode) input to select the function and an output y. Listing 14.2 shows the ALU.

We first define shorter names for the three inputs. The switch statement defines
the logic for the computation of res. Therefore, it gets a default assignment of 0.
The switch statement enumerates all operations and assigns the expression accord-
ingly. All operations map directly to a Chisel expression. In the end, we assign the
result res to the ALU output y

For the testing, we write the ALU function in plain Scala, as shown in List-
ing 14.3.
While this duplication of hardware written in Chisel and Scala implementation does
not detect errors in the specification; it is at least some sanity check. We use some
corner case values as the test vector:

// Some interesting corner cases

val interesting = Array(1, 2, 4, 123, 0, -1, -2,

0x80000000 , 0x7fffffff)

We test all functions with those values on both inputs:

def test(values: Seq[Int]) = {
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class Alu(size: Int) extends Module {

val io = IO(new Bundle {

val op = Input(UInt(3.W))

val a = Input(SInt(size.W))

val b = Input(SInt(size.W))

val y = Output(SInt(size.W))

})

val op = io.op

val a = io.a

val b = io.b

val res = WireDefault(0.S(size.W))

switch(op) {

is(add) {

res := a + b

}

is(sub) {

res := a - b

}

is(and) {

res := a & b

}

is(or) {

res := a | b

}

is(xor) {

res := a ˆ b

}

is (shr) {

// the following does NOT result in an unsigned shift

// res := (a.asUInt >> 1).asSInt

// work around

res := (a >> 1) & 0x7fffffff.S

}

is(ld) {

res := b

}

}

io.y := res

}

Listing 14.2: The Leros ALU.
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def alu(a: Int, b: Int, op: Int): Int = {

op match {

case 1 => a + b

case 2 => a - b

case 3 => a & b

case 4 => a | b

case 5 => a ˆ b

case 6 => b

case 7 => a >>> 1

case _ => -123 // This shall not happen

}

}

Listing 14.3: The Leros ALU function written in Scala.

for (fun <- add to shr) {

for (a <- values) {

for (b <- values) {

poke(dut.io.op, fun)

poke(dut.io.a, a)

poke(dut.io.b, b)

step(1)

expect(dut.io.y, alu(a, b, fun.toInt))

}

}

}

}

Full, exhaustive testing for 32-bit arguments is not possible, which was the reason
we selected some corner cases as input values. Beside testing against corner cases,
it is also useful to test against random inputs:

val randArgs = Seq.fill(100)(scala.util.Random.nextInt)

test(randArgs)

You can run the tests within the Leros project with

$ sbt "test:runMain leros.AluTester"
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and shall produce a success message similar to:

[info] [0.001] SEED 1544507337402

test Alu Success: 70567 tests passed in 70572 cycles taking

3.845715 seconds

[info] [3.825] RAN 70567 CYCLES PASSED

14.4 Decoding Instructions

From the ALU, we work backwards and implement the instruction decoder. How-
ever, first, we define the instruction encoding in its own Scala class and a shared
package. We want to share the encoding constants between the hardware implemen-
tation of Leros, an assembler for Leros, and an instruction set simulator of Leros.

object Constants {

val NOP = 0x00

val ADD = 0x08

val ADDI = 0x09

val SUB = 0x0c

val SUBI = 0x0d

val SHR = 0x10

val LD = 0x20

val LDI = 0x21

val AND = 0x22

val ANDI = 0x23

val OR = 0x24

val ORI = 0x25

val XOR = 0x26

val XORI = 0x27

val LDHI = 0x29

val LDH2I = 0x2a

val LDH3I = 0x2b

val ST = 0x30

// ...

For the decode component, we define a Bundle for the output, which is later fed
partially into the ALU.

class DecodeOut extends Bundle {

val ena = Bool()
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val func = UInt()

val exit = Bool()

}

Decode takes as input an 8-bit opcode and delivers the decoded signals as output.
Those driving signals are assigned a default value with WireDefault.

class Decode() extends Module {

val io = IO(new Bundle {

val din = Input(UInt(8.W))

val dout = Output(new DecodeOut)

})

val f = WireDefault(nop)

val imm = WireDefault(false.B)

val ena = WireDefault(false.B)

io.dout.exit := false.B

The decoding itself is just a large switch statement on the part of the instruction that
represents the opcode (in Leros for most instructions the upper 8 bits.)

switch(io.din) {

is(ADD.U) {

f := add

ena := true.B

}

is(ADDI.U) {

f := add

imm := true.B

ena := true.B

}

is(SUB.U) {

f := sub

ena := true.B

}

is(SUBI.U) {

f := sub

imm := true.B

ena := true.B

}
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is(SHR.U) {

f := shr

ena := true.B

}

// ...

14.5 Assembling Instructions

To write programs for Leros we need an assembler. However, for the very first test,
we can hard code a few instructions, and put them into a Scala array, which we use
to initialize the instruction memory.

val prog = Array[Int](

0x0903, // addi 0x3

0x09ff, // -1

0x0d02, // subi 2

0x21ab, // ldi 0xab

0x230f, // and 0x0f

0x25c3, // or 0xc3

0x0000

)

def getProgramFix() = prog

However, this is a very inefficient approach to test a processor. Writing an assembler
with an expressive language like Scala is not a big project. Therefore, we write a
simple assembler for Leros, which is possible within about 100 lines of code. We
define a function getProgram that calls the assembler. For branch destinations, we
need a symbol table, which we collect in a Map. A classic assembler runs in two
passes: (1) collect the values for the symbol table and (2) assemble the program
with the symbols collected in the first pass. Therefore, we call assemble twice with
a parameter to indicate which pass it is.

def getProgram(prog: String) = {

assemble(prog)

}

// collect destination addresses in first pass

val symbols = collection.mutable.Map[String, Int]()
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def assemble(prog: String): Array[Int] = {

assemble(prog, false)

assemble(prog, true)

}

The assemble function starts with reading in the source file4 and defining two
helper functions to parse the two possible operands: (1) an integer constant (allow-
ing decimal or hexadecimal notation) and (2) to read a register number.

def assemble(prog: String, pass2: Boolean): Array[Int] = {

val source = Source.fromFile(prog)

var program = List[Int]()

var pc = 0

def toInt(s: String): Int = {

if (s.startsWith("0x")) {

Integer.parseInt(s.substring(2), 16)

} else {

Integer.parseInt(s)

}

}

def regNumber(s: String): Int = {

assert(s.startsWith("r"), "Register numbers shall

start with \’r\’")

s.substring(1).toInt

}

Listing 14.4 shows the core of the assembler for Leros. A Scala match expression
covers the core of the assembly function.

14.6 Implementation Variations

As stated in the beginning of the Chapter, the Leros ISA definition does not de-
fine a concrete implementation. Along the chapter we performed implicit design

4This function does not actually read the source file, but for this discussion we can consider it as the
reading function.
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for (line <- source.getLines()) {

if (!pass2) println(line)

val tokens = line.trim.split(" ")

val Pattern = "(.*:)".r

val instr = tokens(0) match {

case "//" => // comment

case Pattern(l) => if (!pass2) symbols +=

(l.substring(0, l.length - 1) -> pc)

case "add" => (ADD << 8) + regNumber(tokens(1))

case "sub" => (SUB << 8) + regNumber(tokens(1))

case "and" => (AND << 8) + regNumber(tokens(1))

case "or" => (OR << 8) + regNumber(tokens(1))

case "xor" => (XOR << 8) + regNumber(tokens(1))

case "load" => (LD << 8) + regNumber(tokens(1))

case "addi" => (ADDI << 8) + toInt(tokens(1))

case "subi" => (SUBI << 8) + toInt(tokens(1))

case "andi" => (ANDI << 8) + toInt(tokens(1))

case "ori" => (ORI << 8) + toInt(tokens(1))

case "xori" => (XORI << 8) + toInt(tokens(1))

case "shr" => (SHR << 8)

// ...

case "" => // println("Empty line")

case t: String => throw new Exception("Assembler

error: unknown instruction: " + t)

case _ => throw new Exception("Assembler error")

}

Listing 14.4: The main part of the Leros assembler.
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decisions. Here we will discuss different design options.
In the presented implementation we share the data memory with the register file.

The 256 registers are just an array in memory. A different implementation might
have dedicated on-chip memories for data and the registers.

We implemented Leros in the idea of a state machine with a datapath. This also
means that each instruction takes more than one clock cycle. Actual processors per-
form instruction pipelining. In an instruction pipeline more than one instruction is
on the fly. For example with Leros we could implement three pipeline stages: in-
struction fetch, instruction decode, and execute. In that case three instructions would
be in the pipeline and we can execute one instruction each clock cycle. Compared
to the presented implementation pipelining could about double the performance of
Leros.

14.7 Exercise

This exercise assignment in one of the last Chapters is in a very free form. You are
at the end of your learning tour through Chisel and ready to tackle design problems
that you find interesting.

One option is to reread the chapter and read along with all the source code in the
Leros repository, run the test cases, fiddle with the code by breaking it and see that
tests fail.

Another option is to write your own implementation of Leros. The implemen-
tation in the repository is just one possible organization. You could write a Chisel
simulation version of Leros with just a single pipeline stage, or go crazy and super-
pipeline Leros for the highest possible clocking frequency.

A third option is to design your processor from scratch. Maybe the demonstration
of how to build the Leros processor and the needed tools has convinced you that
processor design and implementation is no magic art, but engineering that can be
very joyful.
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15 Contributing to Chisel

Chisel is an open-source project under constant development and improvement.
Therefore, you can also contribute to the project. Your contribution can be twofold:
(1) publish your Chisel circuits in open-source and as a library or (2) contribute
enhancements to Chisel itself. Here we describe first, how to publish a library and
second, how to set up your environment for Chisel library development and how to
contribute to Chisel.

15.1 Publishing a Chisel Library

When you develop a circuit in open-source and share it on, for example on GitHub,
this a very educational act, as other can learn describing hardware in Chisel from
your code example. However, sharing just the source code forces other to copy your
code into their project. This leads to at least two problems: (1) Two copies are never
the same.1 This means that changes will happen to the source of one copy and they
are then not in sync anymore. (2) It is cumbersome to update the copy when the
original design has been improved with a bug fix or a new feature.

A better approach is to publish that open-source circuit as a library. Compiled
Chisel code are simply Java class files. And those class files are platform indepen-
dent. Therefore, this is an ideal way to share Chisel libraries. Java (and Scala) have
a long tradition and good infrastructure to support public sharing of libraries with
unique group identifiers and version control. That is also the way Chisel itself and
some support libraries are published.

This section describes the steps needed to publish a Chisel library. As the tools
you use for publishing may change quickly, consider finding the latest information
on the Internet. A good blog entry on the topic can be found here.

1I learned this phrase from Doug Locke during discussion sessions developing the safety-critical spec-
ification for Java
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15.1.1 Using a Library

A Chisel library can be used in your project by adding it to build.sbt. Here as an
example a collection of Chisel circuits in ip-contributions:

libraryDependencies += "edu.berkeley.cs" % "ip-contributions" % "0.5.0"

The ip-contributions library contains also the UART and the FIFOs, described
in this book. Modern IDEs let you automatically download the source code of the
library for inspection, when configured in build.sbt.

If you have a Chisel circuit that you would like to share, consider contributing it
to ip-contributions. Contribution starts with a git pull request of your addition.
This will start a friendly review process.

15.1.2 Prerequisite

Maven Central is one of the largest repository hosting software libraries. Publishing
to Maven Central is easiest via Sonatype. Sonatype offers free hosting of open-
source projects via the Sonatype Repository. Following initial steps are needed
before publishing a library:

1. Create a Sonatype account, a JIRA account

2. You need a unique groupId, which is usually a domain name in reverse order,
e.g., edu.berkeley.cs. You can also use your GitHub account as a groupId,
for example, mine is io.github.schoeberl. You register this groupId by
opening an issue. This is a manual process where you get a request to prove
that you own the requested groupId. When using the GitHub domain name,
you are requested to setup a repository to show your ownership.

3. Create sonatype.sbt in $HOME/.sbt/1.0 with your Sonatype login informa-
tion:

credentials += Credentials(

"Sonatype Nexus Repository Manager",

"oss.sonatype.org",

"<user name>",

"<password>"

)

222 Index Contents

https://github.com/freechipsproject/ip-contributions
https://mvnrepository.com/repos/central
https://www.sonatype.com/
https://central.sonatype.org/pages/ossrh-guide.html
https://issues.sonatype.org/secure/Signup!default.jspa
https://issues.sonatype.org/secure/CreateIssue.jspa?issuetype=21&pid=10134


15.1 PUBLISHING A CHISEL LIBRARY

4. All artefacts must be signed with a PGP key pair. You can use the open-source
GNU Privacy Guard. You can create, list, and upload your public PGP key
with:

gpg --gen-key

gpg --list-keys

gpg --keyserver keyserver.ubuntu.com --send-keys keyID

15.1.3 Library Setup

Per library you need to setup following once:

1. Install sbt plugins in project/plugins.sbt:

addSbtPlugin("org.xerial.sbt" % "sbt-sonatype" % "2.3")

addSbtPlugin("com.jsuereth" % "sbt-pgp" % "2.0.2")

2. Add information of the library into build.sbt. Here as an example the rele-
vant section of build.sbt in ip-contributions:

name := "ip-contributions"

version := "0.4.0"

// groupId, SCM, license information

organization := "edu.berkeley.cs"

homepage := Some(url("https://github.com/freechipsproject/ip-contributions"))

scmInfo := Some(ScmInfo(url(

"https://github.com/freechipsproject/ip-contributions"),

"git@github.com/freechipsproject/ip-contributions"))

developers := List(Developer("schoeberl", "schoeberl",

"martin@jopdesign.com", url("https://github.com/schoeberl")))

licenses += ("Unlicense", url("https://unlicense.org/"))

publishMavenStyle := true

// disable publish with Scala version

crossPaths := false

publishTo := Some(

if (isSnapshot.value)

Opts.resolver.sonatypeSnapshots
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else

Opts.resolver.sonatypeStaging

)

15.1.4 Regular Publishing

All is now setup to sign and publish the library to Sonatype with:

sbt publishSigned

In my setup the signing from sbt does not work, so I have to copy out the pgp
command to sign, something similar to:

gpg --detach-sign --armor --use-agent --output path-to.asc path-to-0.1.pom

and repeat sbt publishSigned.
You can already use that library from Sonatype, for example, for an internal

project. However, to release your library to Maven Central run:

sbt sonatypeRelease

A few minutes later it should be visible on Maven Central Repository Search.

15.2 Contributing to Chisel

The following is an advanced topic and I propose you first start following the dis-
cussion of the project issues on GitHub.

15.2.1 Setup the Development Environment

Chisel consists of several different repositories: the main repositories are hosted on
CHIPS Alliance and others on the freechips organization at GitHub.

Fork the repository, which you like to contribute, into your personal GitHub ac-
count. You can fork the repository by pressing the Fork button in the GitHub web
interface. Then from that fork, clone your fork of the repository.2 In our example,
we change chisel3, and the clone command for my local fork is:

$ git clone git@github.com:schoeberl/chisel3.git

2Note that on a breaking firrt/Chisel change you might need to also fork and clone firrtl
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To compile Chisel 3 and publish as a local library execute:

$ cd chisel3

$ sbt compile

$ sbt publishLocal

Watch out during the publish local command for the version string of the pub-
lished library, which contains the string SNAPSHOT. If you use the tester and the
published version is not compatible with the Chisel SNAPSHOT, fork and clone the
chisel-tester repo as well and publish it locally.

To test your changes in Chisel, you probably also want to set up a Chisel project,
for example, by forking/cloning an empty Chisel project, renaming it, and removing
the .git folder from it.

Change the build.sbt to reference the locally published version of Chisel. Fur-
thermore, at the time of this writing, the head of Chisel source uses Scala 2.12, but
Scala 2.12 has troubles with anonymous bundles. Therefore, you need to add the
following Scala option: "-Xsource:2.11". The build.sbt should look similar to:

scalaVersion := "2.12.6"

scalacOptions := Seq("-Xsource:2.11")

resolvers ++= Seq(

Resolver.sonatypeRepo("snapshots"),

Resolver.sonatypeRepo("releases")

)

libraryDependencies +=

"edu.berkeley.cs" %% "chisel3" % "3.2-SNAPSHOT"

libraryDependencies +=

"edu.berkeley.cs" %% "chisel-iotesters" % "1.3-SNAPSHOT"

Compile your Chisel test application and take a close look if it picks up the local
published version of the Chisel library (there is also a SNAPSHOT version pub-
lished, so if, for example, the Scala version is different between your Chisel library
and your application code, it picks up the SNAPSHOT version from the server in-
stead of your local published library.)

See also some notes at the Chisel repo.
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15.2.2 Testing

When you change the Chisel library, you should run the Chisel tests. In an sbt
based project, this is usually run with:

$ sbt test

Furthermore, if you add functionality to Chisel, you should also provide tests for
the new features.

15.2.3 Contribute with a Pull Request

In the Chisel project, no developer commits directly to the main repository. A con-
tribution is organized via a pull request from a branch in a forked version of the
library. For further information, see the documentation at GitHub on collaboration
with pull requests. The Chisel group started to document contribution guidelines.

15.3 Exercise

Invent a new operator for the UInt type, implement it in the Chisel library, and
write some usage/test code to explore the operator. It does not need to be a useful
operator; just anything will be good, for example, a ? operator that delivers the
lefthand side if it is different from 0 otherwise the righthand side. Sounds like a
multiplexer, right? How many lines of code did you need to add?3

As simple as this was, please be not tempted to fork the Chisel project and add
your little extensions. Changes and extension shall be coordinated with the main
developers. This exercise was just a simple exercise to get you started.

If you are getting bold, you could pick one of the open issues and try to solve
it. Then contribute with a pull request to Chisel. However, probably first watch
the style of development in Chisel by watching the GitHub repositories. See how
changes and pull requests are handled in the Chisel open-source project.

3A quick and dirty implementation needs just two lines of Scala code.
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16 Summary

This book presented an introduction to digital design using the hardware construc-
tion language Chisel. We have seen several simple to medium-sized digital circuits
described in Chisel. Chisel is embedded in Scala and therefore inherits the powerful
abstraction of Scala. As this book is intended as an introduction, we have restricted
our examples to simple uses of Scala. A next logical step is to learn a few basics of
Scala and apply them to your Chisel project.

I would be happy to receive feedback on the book, as I will further improve it and
will publish new editions. You can contact me at mailto:masca@dtu.dk, or with
an issue request on the GitHub repository. I am also happily accepting pull requests
for the book repository for any fixes and improvements.

Source Access

This book is available in open source. The repository also contains slides for a
digital design course with Chisel and all Chisel examples: https://github.com/
schoeberl/chisel-book

A collection of medium-sized examples, which most are referenced in the book,
is also available in open source. This collection also contains projects for various
popular FPGA boards: https://github.com/schoeberl/chisel-examples
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A Reserved Keywords

Several keywords are reserved in Chisel (and Scala), and cannot be used as identi-
fiers for your hardware design. Table A.1 lists the reserved words from Scala.

: <- <: <% = =>

>: @ # abstract case

catch class def do else extends

false final finally for forSome if

implicit import lazy match new null

object override package private protected return

sealed super this throw trait true

try type val var while with

yield

Table A.1: Reserved keywords from the Scala language.

Table A.2 lists the reserved words added by the Chisel library. In contrast to
the Scala reserved word listing, it also contains type/class names defined by Chisel.
Although technically possible, you should also avoid to use Chisel (and Scala) op-
erators, such as for example, + or <<.

:= ## andR Bits Bool Cat

clock elsewhen io is Mem Module

name orR otherwise Reg RegEnable RegInit

RegNext reset SInt switch SyncMem UInt

Vec VecInit when Wire WireDefault xorR

Table A.2: Reserved keywords from the Chisel language.
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B Chisel Projects

Chisel is not (yet) used in many projects. Therefore, open-source Chisel code to
learn the language and the coding style is rare. Here we list several projects we are
aware of that use Chisel and are in open source.

Rocket Chip is a RISC-V [23] processor-complex generator that comprises the
Rocket microarchitecture and TileLink interconnect generators. Originally
developed at UC Berkeley as the first chip-scale Chisel project [4], Rocket
Chip is now commercially supported by SiFive.

Sodor is a collection of RISC-V implementations intended for educational use. It
contains 1, 2, 3, and 5 stages pipeline implementations. All processors use
a simple scratchpad memory shared by instruction fetch, data access, and
program loading via a debug port. Sodor is mainly intended to be used in
simulation.

Patmos is an implementation of a processor optimized for real-time systems [20].
The Patmos repository includes several multicore communication architec-
tures, such as a time-predictable memory arbiter [17], a network-on-chip [19]
a shared scratchpad memory with an ownership [21].

FlexPRET is an implementation of a precision timed architecture [24]. FlexPRET
implements the RISC-V instruction set and has been updated to Chisel 3.1.

Lipsi is a tiny processor intended for utility functions on a system-on-chip [14]. As
the code base of Lipsi is very small, it can serve as an easy starting point for
processor design in Chisel. Lipsi also showcases the productivity of Chisel/S-
cala. It took me 14 hours to describe the hardware in Chisel and run it on an
FPGA, write an assembler in Scala, write a Lipsi instruction set simulator in
Scala for co-simulation, and write a few test cases in Lipsi assembler.

OpenSoC Fabric is an open-source NoC generator written in Chisel [9]. It is in-
tended to provide a system-on-chip for large-scale design exploration. The
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NoC is a state-of-the-art design with wormhole routing, credits for flow con-
trol, and virtual channels. OpenSoC Fabric is still using Chisel 2.

DANA is a neural network accelerator [7] that integrates with the RISC-V Rocket
processor using the Rocket Custom Coprocessor (RoCC) interface [8]. DANA
supports inference and learning.

Chiselwatt is an implementation of the POWER Open ISA. It includes instructions
to run Micropython.

VTA Hardware Design Stack is an accelerator for machine learning for the Apache
TVM machine learning compiler framework.

Chisel IP Contributions started to collect small Chisel components.

If you know an open-source project that uses Chisel, please drop me a note so I
can include it in a future edition of the book.
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C PeekPokeTester

Chisel before version 3.5 provides test benches in the form of a PeekPokeTester.
From version 3.5 PeekPokeTester is deprecated and it is recommended to switch to
ChiselTest. However, there are probably many projects still using the old PeekPokeTester.
Therefore we give a short overview of it in this appendix.

To use the PeekPokeTester, following packages need to be imported:

import chisel3._

import chisel3.iotesters._

Testing a circuit contains (at least) three components: (1) the device under test (often
called DUT), (2) the testing logic, also called test bench, and (3) the tester objects
that contains the main function to start the testing.

The following code shows our simple design under test. It contains two input
ports and one output port, all with a 2-bit width. The circuit does a bit-wise AND
to it returns on the output:

class DeviceUnderTest extends Module {

val io = IO(new Bundle {

val a = Input(UInt(2.W))

val b = Input(UInt(2.W))

val out = Output(UInt(2.W))

val equ = Output(Bool())

})

io.out := io.a & io.b

io.equ := io.a === io.b

}

The test bench for this DUT extends PeekPokeTester and has the DUT as a param-
eter for the constructor:

class TesterSimplePeekPoke(dut: DeviceUnderTest) extends

PeekPokeTester(dut) {
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poke(dut.io.a, 0.U)

poke(dut.io.b, 1.U)

step(1)

println("Result is: " + peek(dut.io.out).toString)

poke(dut.io.a, 3.U)

poke(dut.io.b, 2.U)

step(1)

println("Result is: " + peek(dut.io.out).toString)

}

A PeekPokeTester can set input values with poke() and read back output values
with peek(). The tester advances the simulation by one step (= one clock cycle)
with step(1). We can print the values of the outputs with println().

The test is created and run with the following tester main:

object TesterSimplePeekPoke extends App {

chisel3.iotesters.Driver(() => new DeviceUnderTest()) { c

=>

new TesterSimplePeekPoke(c)

}

}

When you run the test, you will see the results printed to the terminal (besides other
information):

[info] [0.004] SEED 1544207645120

[info] [0.008] Result is: 0

[info] [0.009] Result is: 2

test DeviceUnderTest Success: 0 tests passed in 7 cycles

taking 0.021820 seconds

[info] [0.010] RAN 2 CYCLES PASSED

We see that 0 AND 1 results in 0; 3 AND 2 results in 2. Besides manually inspecting
printouts, which is an excellent starting point, we can also express our expectations
in the test bench itself with expect(), having the output port and the expected value
as parameters. The following example shows testing with expect():

class TesterPeekPoke(dut: DeviceUnderTest) extends

PeekPokeTester(dut) {
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poke(dut.io.a, 3.U)

poke(dut.io.b, 1.U)

step(1)

expect(dut.io.out, 1)

poke(dut.io.a, 2.U)

poke(dut.io.b, 0.U)

step(1)

expect(dut.io.out, 0)

}

Executing this test does not print out any values from the hardware, but that all tests
passed as all expect values are correct.

[info] [0.001] SEED 1544208437832

test DeviceUnderTest Success: 2 tests passed in 7 cycles

taking 0.018000 seconds

[info] [0.009] RAN 2 CYCLES PASSED

A failed test, when either the DUT or the test bench contains an error, produces an
error message describing the difference between the expected and actual value. In
the following, we changed the test bench to expect a 4, which is an error:

[info] [0.002] SEED 1544208642263

[info] [0.011] EXPECT AT 2 io_out got 0 expected 4 FAIL

test DeviceUnderTest Success: 1 tests passed in 7 cycles

taking 0.022101 seconds

[info] [0.012] RAN 2 CYCLES FAILED FIRST AT CYCLE 2
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D Chisel 2

This book covers version 3 of Chisel. Moreover, Chisel 3 is recommended for new
designs. However, there is still Chisel 2 code out in the wild, which has not yet been
converted to Chisel 3. There is documentation available on how to convert a Chisel
2 project to Chisel 3:

• Chisel2 vs. Chisel3 and

• Towards Chisel 3

However, you might get involved in a project that still uses Chisel 2, for exam-
ple, the OpenSoC Fabric project. Therefore, we provide here some information on
Chisel 2 coding for those who have started with Chisel 3.

First, all documentation on Chisel 2 has been removed from the web sites be-
longing to Chisel. We have rescued those PDF documents and put them on GitHub
at https://github.com/schoeberl/chisel2-doc. You can use the Chisel 2
tutorial by switching to the Chisel 2 branch:

$ git clone https://github.com/ucb-bar/chisel-tutorial.git

$ cd chisel-tutorial

$ git checkout chisel2

The main visible difference between Chisel 3 and 2 are the definitions of con-
stants, bundles for IO, wires, memories, and probably older forms of register defi-
nitions.

Chisel 2 constructs can be used, to some extent, in a Chisel 3 project by using the
compatibility layer using as package Chisel instead of chisel3. However, using
this compatibility layer should only be used in a transition phase. Therefore, we do
not cover it here.

Here are two examples of basic components, the same that have been presented
for Chisel 3. A module containing combinational logic:

import Chisel._
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D CHISEL 2

class Logic extends Module {

val io = new Bundle {

val a = UInt(INPUT, 1)

val b = UInt(INPUT, 1)

val c = UInt(INPUT, 1)

val out = UInt(OUTPUT, 1)

}

io.out := io.a & io.b | io.c

}

Note that the Bundle for the IO definition is not wrapped into an IO() class.
Furthermore, the direction of the different IO ports is defined as part of the type
definition, in this example as INPUT and OUTPUT as part of UInt. The width is given
as the second parameter.

The 8-bit register example in Chisel 2:

import Chisel._

class Register extends Module {

val io = new Bundle {

val in = UInt(INPUT, 8)

val out = UInt(OUTPUT, 8)

}

val reg = Reg(init = UInt(0, 8))

reg := io.in

io.out := reg

}

Here you see a typical register definition with a reset value passed in as a UInt
to the named parameter init. This form is still valid in Chisel 3, but the usage of
RegInit and RegNext is recommended for new Chisel 3 designs. Note also here the
constant definition of an 8-bit wide 0 as UInt(0, 8).

Chisel based testing C++ code and Verilog code are generated by calling
chiselMainTest and chiselMain. Both “main” functions take a String array for
further parameters.

import Chisel._
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class LogicTester(c: Logic) extends Tester(c) {

poke(c.io.a, 1)

poke(c.io.b, 0)

poke(c.io.c, 1)

step(1)

expect(c.io.out, 1)

}

object LogicTester {

def main(args: Array[String]): Unit = {

chiselMainTest(Array("--genHarness", "--test",

"--backend", "c",

"--compile", "--targetDir", "generated"),

() => Module(new Logic())) {

c => new LogicTester(c)

}

}

}

import Chisel._

object LogicHardware {

def main(args: Array[String]): Unit = {

chiselMain(Array("--backend", "v"), () => Module(new

Logic()))

}

}

A memory with sequential registered read and write ports is defined in Chisel 2
as:

val mem = Mem(UInt(width = 8), 256, seqRead = true)

val rdData = mem(Reg(next = rdAddr))

when(wrEna) {

mem(wrAddr) := wrData

}
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E Acronyms

Hardware designers and computer engineers like to use acronyms. However, it
needs time to get used to them. Here is a list of common terms related to digital
design and computer architecture.

ADC analog-to-digital converter

ALU arithmetic and logic unit

ASIC application-specific integrated circuit

CFG control flow graph

Chisel constructing hardware in a Scala embedded language

CISC complex instruction set computer

CPI clock cycles per instruction

CPU central processing unit

CRC cyclic redundancy check

DAC digital-to-analog converter

DFF D flip-flop, data flip-flop

DMA direct memory access

DRAM dynamic random access memory

EMC electromagnetic compatibility

ESD electrostatic discharge

FF flip-flop

FIFO first-in, first-out
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E ACRONYMS

FPGA field-programmable gate array

HDL hardware description language

HLS high-level synthesis

IC instruction count

IDE integrated development environment

ILP instruction level parallelism

IC integrated circuit

IO input/output

ISA instruction set architecture

JDK Java development kit

JIT just-Iin-time

JVM Java virtual machine

LC logic cell

LRU least-recently used

LSB least significant bit

MMIO memory-mapped IO

MSB most significant bit

MUX multiplexer

OO object oriented

OOO out-of order

OS operating system

RAM random access memory

RISC reduced instruction set computer
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SDRAM synchronous DRAM

SRAM static random access memory

TOS top-of stack

UART universal asynchronous receiver/transmitter

VHDL VHSIC hardware description language

VHSIC very high speed integrated circuit
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arithmetic operations, 13
Array, 18
Assembler, 217
Asynchronous Input, 99
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Chisel 2, 237
ChiselTest, 36

Circular buffer, 176
read pointer, 176
write pointer, 176

Clock, 75
Collection, 18
Combinational circuit, 63
Communicating state machines, 121
Component, 47
Counter, 80
Counting, 18

Data forwarding, 93
Datapath, 127
Debouncing, 100
Debugging, 199
Decoder, 65
DecoupledIO, 172
Double buffer FIFO, 173

Edge detection, 104
elsewhen, 64
emit Verilog, 32
Encoder, 67

Priority encoder, 72
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FIFO buffer, 161
File reading, 146
Finite-State Machine
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Mealy, 114
Moore, 110

Finite-state machine, 109
First-in, first-out buffer, 161
Flip-flop, 75
Flipped, 172
FSM, 109
FSMD, 125
Function components, 139
Functional programming, 151

generate Verilog, 32

Hardware generators, 137

if/elseif/else, 64
Inheritance, 147
Initialization, 76
Integer

constant, 12
signed, 11
unsigned, 11
width, 11

Interconnect, 187
IO, 25
IO interface, 47

Leros, 207
Logic generation, 145
Logic table generation, 145
Logical clock, 83
logical operations, 13

Majority voting, 102
Memory, 91
Memory mapped IO, 192
Metastability, 99
Module, 47
Multiplexer, 16

Object-oriented, 147
Operators, 14
otherwise, 64

Parameters, 141
PeekPokeTester, 233
Ports, 47
Processor, 207

ALU, 211
instruction decode, 215

RAM, 91
Ready/valid interface, 128, 172
Reg, 16, 25
Register, 16, 75

with enable, 78
Register file, 21
Reserved keywords, 229
Reset, 76
ROM, 145

sbt, 29
Scala, 137

for loop, 138
Seq, 139
tuple, 139
val, 137

ScalaTest, 35
Serial port, 164
Source organization, 29
SRAM, 91
State diagram, 110
State machine with datapath, 125
Structure, 18
switch, 66
Synchronous memory, 91
Synchronous sequential circuit, 109

Testing, 33, 199
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Tick, 83
Timing diagram, 77
Timing generation, 82
tuple, 178
Type parameters, 142

UART, 164

Vcd, 40
VCS, 205
Vec, 18
Vector, 18
Verification, 199
Verilator, 205
Verilog, 32

Waveform, 40
Waveform diagram, 77
when, 64
Wire, 14, 25
Wishbone, 197
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