
JOP: a Java Processor for
Embedded Real-Time Systems

Martin Schoeberl
ESE Seminar

ESE Seminar Java Optimized Processor 2

Overview

  Motivation
  JOP architecture
  WCET analysis
  Conclusion
  Current and future work

ESE Seminar Java Optimized Processor 3

RT System Properties

  Often safety critical
  Execution time has to be known

  Analyzable system
  Application software
  Scheduling
  Hardware properties

  Worst case execution time (WCET)

ESE Seminar Java Optimized Processor 4

Issues with COTS

  COTS are for average case performance
  Make the common case fast
  Very complex to analyze WCET

  Pipeline (out-of-order)
  Cache
  Multiple execution units

ESE Seminar Java Optimized Processor 5

The Idea

  Build a processor for RT System
  Optimize for the worst case

  Design philosophy
  Only WCET analyzable features

  No unbound pipeline effects
  New cache structure

  Shall not be slow

ESE Seminar Java Optimized Processor 6

Related Work

  picoJava
  SUN, never released

  aJile JEMCore
  Available, two versions

  Komodo
  Multithreaded Java processor

  FemtoJava
  Application specific processor

ESE Seminar Java Optimized Processor 7

JOP Architecture

  Overview
  Microcode
  Processor pipeline
  An efficient stack machine
  Instruction cache

ESE Seminar Java Optimized Processor 8

JOP Block Diagram

ESE Seminar Java Optimized Processor 9

JVM Bytecode Issue

  Simple and complex instruction mix
  No bytecodes for native functions
  Common solution (e.g. in picoJava):

  Implement a subset of the bytecodes
  SW trap on complex instructions
  Overhead for the trap – 16 to 926 cycles
  Additional instructions (115!)

ESE Seminar Java Optimized Processor 10

JOP Solution

  Translation to microcode in hardware
  Additional pipeline stage
  No overhead for complex bytecodes

  1 to 1 mapping results in single cycle
execution

  Microcode sequence for more complex
bytecodes

  Bytecodes can be implemented in Java

ESE Seminar Java Optimized Processor 11

Microcode

  Stack-oriented
  Compact
  Constant length
  Single cycle
  Low-level HW

access

  Two examples

dup: dup nxt // 1 to 1 mapping

// a and b are scratch variables

// for the JVM microcode.

dup_x1: stm a // save TOS

 stm b // and TOS−1

 ldm a // duplicate TOS

 ldm b // restore TOS−1

 ldm a nxt // restore TOS

 // and fetch next bytecode

ESE Seminar Java Optimized Processor 12

Processor Pipeline

ESE Seminar Java Optimized Processor 13

An Efficient Stack Machine

  JVM stack is a logical stack
  Frame for return information
  Local variable area
  Operand stack

  Argument-passing regulates the layout
  Operand stack and local variables need

caching

ESE Seminar Java Optimized Processor 14

Stack Access

  Stack operation
  Read TOS and TOS-1
  Execute
  Write back TOS

  Variable load
  Read from deeper stack location
  Write into TOS

  Variable store
  Read TOS
  Write into deeper stack location

ESE Seminar Java Optimized Processor 15

Two-Level Stack Cache

  Dual read only from TOS and
TOS-1

  Two register (A/B)
  Dual-port memory
  Simple Pipeline
  No forwarding logic

  Instruction fetch
  Instruction decode
  Execute, load or store

ESE Seminar Java Optimized Processor 16

JVM Properties

  Short methods
  Maximum method size is restricted
  No branches out of or into a method
  Only relative branches

ESE Seminar Java Optimized Processor 17

Proposed Cache Solution

  Full method cached
  Cache fill on call and return

  Cache misses only at these bytecodes

  Relative addressing
  Any position in the cache

  No fast tag memory
  Simpler WCET analysis

Java Optimized Processor 18

Method Cache

  Whole method loaded
  Cache is divided in blocks
  Method can span several blocks
  Continuous blocks for a method
  Replacement

  LRU not useful
  Free running next block counter
  Stack oriented next block

  Tag memory: One entry per block

b

foo

a

a

b

b

ESE Seminar

ESE Seminar Java Optimized Processor 19

Size of Java Processors

Resources Memory fmax

Processor (LC) (KB) (MHz)
JOP 2-3000 3-6 100
Lightfoot 3400 1 40
Komodo 2600 ? 33/4 (?)
FemtoJava 2000 ? 4 (?)
picoJava-II 27500 ~45 40
NIOS/MB 2-3000 ~5 100+

ESE Seminar Java Optimized Processor 20

Architecture Summary

  Microcode
  1+3 stage pipeline
  Two-level stack cache
  Method cache

The JVM is a CISC stack architecture,
whereas JOP is a RISC stack architecture.

ESE Seminar Java Optimized Processor 21

WCET Analysis

  WCET has to be known
  Needed for schedulability analysis
  Measurement usually not possible

  Would require test of all possible cases

  Static analysis
  Theory is mature
  Low-level analysis is the issue

ESE Seminar Java Optimized Processor 22

WCET Analysis

  Path analysis
  Low-level analysis (bytecodes)
  Global low-level analysis
  WCET Calculation

ESE Seminar Java Optimized Processor 23

WCET Analysis for JOP

  Simple low-level analysis
  Bytecodes are independent

  No shared state
  No timing anomalies

  Bytecode timing is known and
documented

  Simpler caches

ESE Seminar Java Optimized Processor 24

WCET Tool

  Execution time of basic blocks
  Annotated loop bounds (or use DFA)
  ILP problem solved
  Simple method cache analysis included

  All methods fit in local scope
  Single miss

  Expand local scope

ESE Seminar Java Optimized Processor 25

Applications

  Kippfahrleitung
  Distributed motor control

  ÖBB
  Vereinfachtes Zugleitsystem
  GPS, GPRS, supervision

  TeleAlarm
  Remote tele-control
  Data logging
  Automation

ESE Seminar Java Optimized Processor 26

JOP in Research
  University of Lund, SE

  Application specific hardware (Java->VHDL), HW GC
  Technical University Graz, AT

  HW accelerator for encryption
  University of York, GB

  Javamen – HW for real-time systems, hardware methods
  Institute of Informatics at CBS, DK

  WCET Analyzer, embedded RT Machine Learning
  Aalborg University, DK

  SC Java, Java HAL, Scheduling/WCET analysis with UppAal
  University of California Irvine, USA

  WCET tool Volta
  Università della Svizzera Italiana, CH

  Cross-profiling for embedded systems
  EU Project JEOPARD

ESE Seminar Java Optimized Processor 27

JOP for Teaching
  Easy access – open-source

  Computer architecture
  Embedded systems

  DTU: JVM in hardware
  UT Vienna

  JVM in hardware course
  Digital signal processing lab

  CBS, Copenhagen
  Distributed data mining (WS 2005)
  Very small information systems (SS 2006)

Current/Future Work

  JOP CMP
  Analyzable D$
  Transactional memory

ESE Seminar Java Optimized Processor 28

Chip-Multiprocessor

  Hot topic on PC and server
  Two Flavors

  Intel/AMD 2/4 OOO, super-scalar cores
  8 simple cores

  Sun Niagara: simple 6-stage RISC
  IBM CELL: synergistic processors

  We go the simple core approach

ESE Seminar Java Optimized Processor 29

JOP CMP System

ESE Seminar Java Optimized Processor 30

CMP Prototype

  Up to 8 cores in Cyclone-II (EP2C35)
  In Altera DE2 board

  90-110 MHz

  Simple synchronization
  Global HW lock

  Pressure on memory bandwidth
  Now we need better caching

ESE Seminar Java Optimized Processor 31

Caching

  Classic feature for average case throughput
  Instruction and data cache split

  Avoid structural hazard between
  Instruction fetch from I$
  Load/store on D$

  Now up to three levels
  1st level shared in chip multi-threading
  Next levels shard in (chip) multi-processing
  Analysis nightmare

ESE Seminar Java Optimized Processor 32

Cache WCET Analysis

  Depends on replacement strategy
  Direct mapped is fine, LRU is ok
  Random, PLRU is useless

  Depends on static address estimation
  I$ is analyzable
  D$ is hard to analyze

  We need a new organization for D$

ESE Seminar Java Optimized Processor 33

D$ Issues

  Data areas
  Static data ok
  Constants ok
  Stack data not so hard
  Heap data addresses not known statically
  A single unknown heap access destroys all known,

abstract cache states from one cache way!

  Let’s split the D$!

ESE Seminar Java Optimized Processor 34

Cache Split

  Different caches for different areas
  Avoid analysis influences
  Different characteristics (size vs. associativity)
  Independent, composable analysis

ESE Seminar Java Optimized Processor 35

Transactional Memory

  Automatic fine grain concurrency control
  Simpler than locks

  Analysis of max. # retries (RTS bounds)
  Local transaction buffer (= cache)

  Global lock on overflow

  Burst write on commit
  Status

  Analysis published
  Prototype implementation with JOP (Paper at FPL)

ESE Seminar Java Optimized Processor 36

ESE Seminar Java Optimized Processor 37

Conclusions

  Real-time Java processor
  Exactly known execution time of the BCs
  Time-predictable method cache
  WCET analysis possible

  Resource-constrained processor
  RISC stack architecture
  Efficient stack cache

  Platform for RT architecture research

ESE Seminar Java Optimized Processor 38

More Information

  JOP Thesis and source
  http://www.jopdesign.com/thesis/index.jsp
  http://www.jopdesign.com/download.jsp

  Various papers
  http://www.jopdesign.com/docu.jsp

  Web sites
  http://www.jopdesign.com/
  http://www.jopwiki.com/

Thank You!

 Questions
 and
 Suggestions

ESE Seminar Java Optimized Processor 39

