
Safety-Critical Java

Martin Schoeberl

Safety-Critical Java 2

Safety Critical Java

  Certification for DO-178B level A
  Java Specification Request 302

  Lead Dough Locke

  Restricted subset of RTSJ
  More worst case analysis friendly
  JSR 302 on-going work

  3 different levels

Safety-Critical Java 3

SCJ Levels

  L0 Single threaded
  Cyclic executive

  L1 Static threads
  Initialization and mission phase
  Ravenscar like
  No wait/notify

  L2 Multiple missions

Safety-Critical Java 4

SCJ Memory Model

  No Garbage Collection
  RTSJ immortal memory
  RTSJ style scoped memories

  Scopes are thread private
  Communication via immortal

  Memory model still under discussion
  Type system to avoid scope checks

SCJ Execution Model

  Initialization phase - not time critical
  Class initializing
  Setup of all data structures and threads

  Mission phase
  Mission can be restarted
  Level 2: nested missions

  More dynamic systems
  Mode change not (yet) well defined

Safety-Critical Java 5

SCJ Tasks

  No threads at level 0
  Static threads/event handlers, priorities
  Event handlers

  Time-triggered periodic
  Event-triggered aporadic

  Single run method for all tasks
  No waitForNextX()
  No local state preserving

Safety-Critical Java 6

Safety-Critical Java 7

Periodic Tasks

  RTSJ
  waitForNextPeriod()
  Split of logic possible

  SCJ
  Single run() method
  Easier to analyze

Safety-Critical Java 8

RTSJ Periodic Task
public void run() {

 State local = new State();
 doSomeInit();
 local.setA();
 waitForNextPeriod();

 for (;;) {
 while (!switchToB()) {
 doModeAwork();
 waitForNextPeriod();
 }
 local.setB();
 while (!switchToA()) {
 doModeBWork();
 waitForNextPeriod();
 }
 local.setA();
 }
}

  Possible abuse
  Local state
  Initialization
  Split logic

  WCET analysis
harder

SCJ Periodic Task
  run() executed

  Periodic (time
triggered)

  Sporadic (event
triggered)

  No local state
  Single method for

WCET analysis

new PeriodicThread(
 new RelativeTime(...)) {

 public void run() {
 doPeriodicWork();

 }
};

Safety-Critical Java 9

SCJ Summary

  Restricted Java/RTSJ
  Aiming for certifiable systems
  Specification is in final phase
  First implementations emerging

  Could be your master project ;-)

Safety-Critical Java 10

