
Written Examination, May 29th, 2015 Course no. 02157

The duration of the examination is 4 hours.

Course Name: Functional programming

Allowed aids: All written material

The problem set consists of 4 problems which are weighted approximately as follows:
Problem 1: 20%, Problem 2: 20%, Problem 3: 30%, Problem 4: 30%

Marking: 7 step scale.

02157



DTU CIVILINGENIØREKSAMEN May 29th, 2015 Page 2 of 5 pages

Problem 1 (20%)
1. Declare a function: repeat: string -> int -> string, so that repeat s n builds a

new string by repeating the string s altogether n times. For example: repeat "ab" 4
= "abababab" and repeat "ab" 0 = "".

2. Declare a function f s1 s2 n that builds a string with n lines alternating between s1
and s2. For example: f "ab" "cd" 4 = "ab\ncd\nab\ncd" and f "XO" "OX" 3 =
"XO\nOX\nXO". Note that \n is the escape sequence for the newline character.
Give the type of the function.

3. Consider now certain patterns generated from the strings "XO" and "OX". Declare a
function vizm n that gives a string consisting of n lines, where

• the first line contain m repetitions of the string "XO",
• the second line contain m repetitions of the string "OX",
• the third line contain m repetitions of the string "XO",
• and so on.

For example, printfn "%s" (viz 4 5) should generate the following output
XOXOXOXO
OXOXOXOX
XOXOXOXO
OXOXOXOX
XOXOXOXO

4. Reconsider the function repeat from Question 1.

1. Make a tail-recursive variant of repeat using an accumulating parameter.
2. Make a continuation-based tail-recursive variant of repeat.

Problem 2 (20%)
1. Declare a function mixMap so that

mixMap f [x0;x1; . . . ;xm] [y0; y1; . . . ; ym] = [f(x0, y0); f(x1, y1); . . . ; f(xm, ym)]

2. Declare a function unmixMap so that

unmixMap f g [(x0, y0); (x1, y1); . . . ; (xn, yn)] = ([f x0; f x1; . . . ; f xn], [g y0; g y1; . . . ; g yn])

3. Give the most general types for mixMap and unmixMap.

02157 ... Continued on next page



DTU CIVILINGENIØREKSAMEN May 29th, 2015 Page 3 of 5 pages

Problem 3 (30%)

Consider the following F# declarations of a type for binary trees and a binary tree t:

type Tree<’a> = Lf | Br of Tree<’a> * ’a * Tree<’a>;;

let t = Br(Br(Br(Lf,1,Lf),2,Br(Lf,3,Lf)),4,Br(Br(Lf,5,Lf),6,Br(Lf,7,Lf)));;

4

6 2

7 5 3 1

reflect t

4

2 6

1 3 5 7

The tree t

4

6 16

7 10 21 28

accumulate t

An illustration of the tree t is given in the middle part of the above figure. The left part
of the figure shows the reflection of t, that is, a mirror image of t formed by exchanging
the left and right subtrees all the way down.

1. Declare a function reflect that can reflect a tree as described above.

The right part of the figure shows a tree obtained from t by accumulating the values in the
nodes of t as they are visited through a pre-order traversal. For example, the values in the
nodes of t are visited in the sequence: 4, 2, 1, 3, 6, 5, 7. Hence, the node of accummulate t
corresponding to the node of t with value 3, has value 10 = 4+2+1+3.

2. Declare a function accumulate that can accumulate the values in a tree as described
above. Hint: You may declare an auxiliary function having an accumulating parameter.

Consider now the following declarations:

let rec k i t =
match t with
| Lf -> Lf
| Br(tl,a,tr) -> Br(k (i*i) tl, i*a, k (i*i) tr);;

let rec h n m =
function
| Br(tl,a,tr) when n=m -> h n 1 tl @ [a] @ h n 1 tr
| Br(tl,_,tr) -> h n (m+1) tl @ h n (m+1) tr
| Lf -> []

let q n t = h n n t;;

3. Give the most general types of k and q and describe what each of these two functions
computes. Your description for each function should focus on what it computes, rather
than on individual computation steps.

02157 ... Continued on next page



DTU CIVILINGENIØREKSAMEN May 29th, 2015 Page 4 of 5 pages

Problem 4 (30%)

The focus of this problem is on courses and curricula at DTU. A course is uniquely identified
by a course number and a course is described by a title and a number of ECTS point. The
course base is a map from course numbers to course descriptions. This is captured by the
following declarations:

type CourseNo = int
type Title = string
type ECTS = int
type CourseDesc = Title * ECTS

type CourseBase = Map<CourseNo, CourseDesc>

We require in this problem that valid ECTS points are positive integers that are divisible
by 5, that is, 5, 10, 15, 20, . . . is the sequence of valid ECTS points.

1. Declare a function isValidCourseDesc: CourseDesc -> bool,
where isValidCourseDesc desc is true if the ECTS part of desc is valid.

2. Declare a function isValidCourseBase: CourseBase -> bool,
where isValidCourseBase cb is true if every course description occurring the course
base cb is valid, that is, it satisfies the predicate isValidCourseDesc.

We shall from now on assume that course descriptions and course bases are valid.

The educations of DTU are organized so that students are required to earn a number
of ECTS points within certain course groups. For the BSc programmes, technological
core courses (Danish: “teknologiske linjefag”) constitutes one such course group. Course
groups are organized into a mandatory part and a optional part. Students following a
certain programme must take all courses belonging to the mandatory part, and some of
the courses in the optional part. For the bachelor programme in Software Technology,
the courses 02131 Embedded Systems and 02141 Computer Science Modelling are among
the mandatory technological core courses, while 02157 Functional programming and 02158
Parallel programming are among the optional courses. This is described by the following
type declarations, where mandatory courses and optional courses are represented by sets
of course numbers:

type Mandatory = Set<CourseNo>
type Optional = Set<CourseNo>
type CourseGroup = Mandatory * Optional

3. Declare a function disjoint: Set<’a> -> Set<’a> -> bool, where disjoint s1 s2
is true if the two sets s1 and s2 have no common element, that is, they are disjoint.

4. Declare a function sumECTS: Set<CourseNo> -> CourseBase -> int,
where sumECTS cs cb is the sum of all ECTS points of the courses with numbers in cs ,
where the ECTS points are extracted from course descriptions in the course base cb.

02157 ... Continued on next page



DTU CIVILINGENIØREKSAMEN May 29th, 2015 Page 5 of 5 pages

5. A course group (man, opt) for a bachelor programme is valid for a given course base cb
if:

• man and opt are disjoint,
• the sum of all mandatory ECTS points (i.e. the ECTS sum for all courses in man)

is less than or equal to 45,
• the set of optional courses opt is empty when the mandatory ECTS points add up

to 45, and
• the total number of ECTS points of mandatory and optional courses should be at

least 45.
Declare a function isValidCourseGroup: CourseGroup -> CourseBase -> bool that
can check whether a course group is valid for a given course base.

The bachelor programmes are organized according to the flag model, with three course
groups for basic natural science courses, technological core courses and project and profes-
sional skills courses, respectively.

The group of elective courses form the fourth component of the flag model. This group is
described by a predicate on course numbers, characterizing the courses the study leader
has accepted as suitable elective courses. Furthermore, a course plan is given by a set of
courses numbers:

type BasicNaturalScience = CourseGroup
type TechnologicalCore = CourseGroup
type ProjectProfessionalSkill = CourseGroup
type Elective = CourseNo -> bool

type FlagModel = BasicNaturalScience * TechnologicalCore
* ProjectProfessionalSkill * Elective

type CoursePlan = Set<CourseNo>

A flag model (bns , tc, pps , ep) is valid if

• the three course groups bns , tc and pps are all valid,
• no course belongs to more than one of the course groups bns , tc and pps , and
• any course belonging to a course group bns , tc or pps must qualify as an elective

course, that is, it must satisfy the predicate ep.

6. Declare a function isValid: FlagModel -> CourseBase -> bool that can test whether
a flag model is valid for a given course base.

A course plan cs satisfies a (valid) flag model of a bachelor programme (for a given course
base), if the number of ECTS points earned from the courses in cs is 180, subject to the
requirement that 45 points are earned in each course group of the flag model, including
the elective courses.

7. Declare a function checkPlan: CoursePlan -> FlagModel -> CourseBase -> bool
that can check whether a course plan satisfies a flag model for a given course base.

02157


