
Application-Specific Fault-Tolerant Architecture Synthesis for
Digital Microfluidic Biochips

Mirela Alistar Paul Pop Jan Madsen

Department of Informatics and Mathematical Modeling
Technical University of Denmark, Denmark

Tel: +45-45253470 Fax: 45-4593-0074
e-mail: {mali, pop, jan}@imm.dtu.dk

Abstract—Microfluidic-based biochips are replacing the con-
ventional biochemical analyzers, and are able to integrate on-
chip all the necessary functions for biochemical analysis using
microfluidics. The digital microfluidic biochips are based on the
manipulation of liquids not as a continuous flow, but as discrete
droplets on an array of electrodes. Microfluidic operations, such
as transport, mixing, split, are performed on this array by
routing the corresponding droplets on a series of electrodes.
Researchers have proposed several approaches for the synthesis
of digital microfluidic biochips. All previous work assumes that
the biochip architecture is given, and most approaches consider a
rectangular shape for the electrode array. However, non-regular
application-specific architectures are common in practice. Hence,
in this paper, we propose an approach to the application-specific
architecture synthesis. Our approach can also help the designer to
increase the yield by introducing redundant electrodes to tolerate
permanent faults. The proposed architecture synthesis algorithm
has been evaluated using several benchmarks.

I. INTRODUCTION

Microfluidic biochips have the potential to replace the
conventional laboratory equipment as they integrate all the
functions needed to complete a bioassay. Applications on
biochips are considered in areas such as drug discovery,
clinical diagnosis, DNA sequencing, protein analysis and im-
munoassays [1], [2]. The digital microfluidic biochips (DMBs)
use discrete amounts of fluids of nanoliter volume, named
droplets, to perform operations such as: dispensing, transport,
mixing, split, dilution and detection.

A DMB is modeled as an array of identical electrodes, see
Fig. 1a, where each electrode can hold a droplet. Operations
such as mix and dilution are reconfigurable, i.e., they may take
place on any of the electrodes in the array. The reconfigurable
operations “execute” on “virtual devices” (also called mod-
ules) and droplets are transported on “virtual” routes, since
such execution and transport can take place on any of the
electrodes.

There is a significant amount of work on the synthesis of
DMBs [1], [3], [4], which consists of the following tasks:
allocation, binding, scheduling, placement and routing. The
output of these synthesis tasks is the “electrode actuation
sequence”, which controls the movement of droplets to run
the biochemical application. We will call these synthesis tasks
compilation, to distinguish it from the architecture synthesis
proposed in this paper.

Also, we make the distinction between the physical biochip
architecture, consisting of physical components, such as elec-
trodes, input and output reservoirs and detectors, and vir-
tual devices which are allocated and placed on the physical
array of electrodes and interconnected using virtual routes.
All previous work assumes that the physical architecture is
given, and most researchers use general-purpose architectures,

which have a rectangular shape (Fig. 1a). However, in prac-
tice, application-specific architectures which are non-regular
(Fig. 3) are more common because they can significantly
reduce the costs by reducing the number of components used
in the physical architecture. For example, application-specific
architectures have been proposed for disease screening in
newborns [5] and for diagnostics on human physiological
fluids [2].

Therefore, in this paper we propose an approach to the
architecture synthesis of application-specific biochips (see
Fig. 6). Starting from a biochemical application, modeled as
a sequencing graph, and a library of physical components,
our synthesis decides a physical biochip architecture that
minimizes unit costs and can execute the application within its
specified deadline. Fig. 3 shows such an architecture example
for the application in Fig. 2. Our synthesis approach decides
the allocation of physical components (electrodes, input and
output reservoirs, detectors), their placement and interconnec-
tion. However, our synthesis does not decide the allocation and
placement of virtual devices, or the virtual routes, since these
can use any of the physical electrodes on the architecture.
We assume that these decisions, together with binding and
scheduling of the operations in the biochemical application are
performed using existing synthesis approaches [1], taking as
input the non-regular application-specific physical architecture
derived by our algorithm.

Yield is a big concern for biochips, hence researchers have
proposed fabrication methodologies to increase the yield of
DMBs, e.g., from a very low 30% to 90% [6]. DMBs are
affected by permanent faults (e.g., due to abnormal layer
deposition, short between two adjacent electrodes, see [7] for
more details), which may lead to the failure of the biochemical
application. Hence, biochips are tested after fabrication [7]. If
permanent faults are detected, the biochip is discarded, unless
the applications can be reconfigured to avoid them [8]. In
order to increase the yield, which is very important for the
market success of DMBs, our physical architecture synthesis
approach can introduce redundancy (e.g., extra electrodes) to
tolerate a given number of permanent faults.

To the best of our knowledge, this is the first time when
an approach to the synthesis of fault-tolerant application-
specific architectures has been proposed. Researchers have
so far only considered varying the dimensions of purely
rectangular general-purpose architectures or have addressed
limited aspects such as minimizing the number of pins used to
control the electrodes [9], which is orthogonal to our problem.
Also, the issue of fault-tolerance has only been tackled in the
context of rectangular architectures, by introducing a regular
pattern of redundant electrodes [8].

978-1-4673-3030-5/13/$31.00 ©2013 IEEE

9D-4

794

Fig. 1: Biochip architecture model

The biochip architecture and application models are pre-
sented in the next section. The synthesis problem is presented
in Section III using a motivational example. We have pro-
posed a heuristic approach based on Simulated Annealing
(SA) to solve this optimization problem (Section V). Each
architecture solution visited by SA is evaluated in terms of its
cost, performance and fault-tolerance to permanent faults, i.e.,
regardless of where permanent faults happen, the application
can be reconfigured to complete within its deadline. We
have proposed a List Scheduling (LS)-based heuristic, which
determines the worst-case completion time of an application
in case of faults, see Section IV. The proposed synthesis
methodology has been evaluated in Section VI using several
benchmarks.

II. SYSTEM MODEL

A. Biochip Architecture

In a DMB, a droplet is sandwiched between a top ground
electrode and a bottom electrode as shown in Fig. 1b. Two
glass plates, a top and a bottom one, protect the DMB
from external factors. The droplets are manipulated using the
electrowetting-on-dielectric (EWOD) principle. For example,
in Fig. 1b, if the middle electrode on the bottom plate is turned
off, and the left electrode is activated by applying voltage, the
droplet will move to the left.

There are two types of operations: (i) non-reconfigurable,
such as dispensing, executed on input reservoirs, detection,
using on-chip optical detectors, and (ii) reconfigurable, such
as droplet routing, mixing, dilution and split operations. A
mixing operation is executed when two droplets are moved
to the same location and then transported together. A split
operation is done by applying concurrently the same voltage
on both left and right electrodes, while the middle one remains
turned off. Dilution is a mixing operation followed by a split
operation. The reconfigurable operations are executed using
the physical electrodes in the biochip architecture array.

Researchers have used several approaches to group these
electrodes and thus form “virtual devices” on which the
operations execute [10]. The straightforward approach used
by most researchers is to consider a rectangular area of
electrodes, called a “module”. However, an operation can
execute anywhere on the microfluidic array, and it is not
necessarily confined to a rectangular area, as is the case with
the routing-synthesis approach [10], which allows operations
to execute on any route. In this paper, we consider the

Fig. 2: Biochip application model

approach from [11] where the virtual devices have rectangular
shapes, but the position of droplets inside these modules is
known, hence the name, “droplet-aware operation execution”,
as opposed to black-box module-based operation execution,
which ignores the positions of droplets. The advantage of
knowing the position of the droplets inside the module is
that we can control the droplets movement to avoid accidental
droplet merging with adjacent modules (black-box modules
are typically surrounded by a border of unused electrodes to
avoid such situations), or with routes (which had to be routed
around the black-box modules).

Although the approach used for operation execution on
virtual devices is orthogonal to our architecture synthesis
methodology, we have decided to use the “droplet-aware”
approach [11] because of its improved reconfigurability in case
of permanent faults: the droplets are simply instructed to avoid
the faulty electrodes.

Based on experiments, researchers characterize a virtual
device library L , such as Table I, which provides the shape
and corresponding execution time that are needed for each
operation. For example, as seen in Table I, the execution
time for a mixing operation on a 3×6 rectangular module is
2.52 s if no faults are present. Section IV-B presents a way to
determine, at design time, the worst-case operation execution
in case of k permanent faults.

Fig. 3 shows an application-specific architecture A . The cost
of an architecture depends on the costs of the components,
which are provided by the designer in a physical components
library M (Table II) and is defined as:

CostA = ∑NMi ×CostMi (1)

, where NMi is the number of components of type Mi and
CostMi is the cost of the physical component Mi from the
library M . The total cost of A from Fig. 3 is 187 units.

TABLE I: Virtual Device Library

Op. Shape Time (s) Time (s) Time (s)
no faults k = 1 k = 2

Mix 3×6 2.52 2.71 3.77
Mix 5×8 2.05 2.09 2.3
Mix 4×7 2.14 2.39 2.51
Mix 5×5 2.19 2.28 2.71
Mix 5×5×1 2.19 2.73 3.92
Mix 5×5×2 3.98 5.82 7.56

Dilution 3×6 4.4 4.67 4.11
Dilution 5×8 3.75 4.76 6.3
Dilution 4×7 3.88 4.22 4.46
Dilution 5×5 3.98 4.12 4.67

Split 1×1 0 0 0
Storage 1×1 N/A N/A N/A

9D-4

795

Fig. 3: Application-specific biochip architecture

B. Biochemical Application Model
A biochemical application is modeled using an acyclic

directed graph G(V ,E), where the nodes V represent the op-
erations, and the edges E represent the dependencies between
them. Every operation Oi has an associated execution time Ci,
given in the library L (Table I), for reconfigurable operations,
and in library M (Table II) for non-reconfigurable operations.
In this paper, we consider that routing a droplet from one
electrode to another takes 0.01 s. In addition, the application
G has to complete by a given deadline DG . Let us consider
the biochemical application graph from Fig. 2, which has 22
operations. The directed edge between O17 and O20 signifies
that operation O17 has to finish before operation O20 can
start executing. Operation O20 uses the output droplet issued
by dilution operation O17. The input operations dispense
the droplets from the corresponding reservoirs. For instance,
operation O1 from Fig. 2, dispenses a droplet from the S1
reservoir on the biochip illustrated in Fig. 3.

III. PROBLEM FORMULATION

In this paper we address the following problem. Given
as input a biochemical application modeled as a graph, the
libraries M and L and a number k of permanent faults that
have to be tolerated, we are interested to synthesize a fault-
tolerant physical architecture A , such that the cost of A is
minimized and the application completion time is within the
deadline DG for any occurrence of the k faults.

A. Motivational Example
Let us consider an application graph G obtained by repeat-

ing three times (due to space reasons) the graph from Fig. 2.
We are interested to synthesize a physical architecture for
this application, considering the component library M from
Table II, such that the cost is minimized and a deadline of
DG = 20 s is satisfied (we ignore the detection operations for
this example). After an architecture is synthesized, we compile
the application G such that, using the virtual device library L
from Table I, we obtain the completion time δG .

So far, researchers have considered only general-purpose
biochips of n×m rectangular shape. To complete G within
deadline DG using a rectangular architecture A2, we need an
array of 19× 9 electrodes and eight reservoirs: two for the
reagent, two for the buffer, three for the sample and one for
the waste. In this case the optimal completion time is δG =
18.49 s, smaller than DG = 20 s, and the architecture cost is
CostA2 = 213. However, this costs can be reduced if we use an
application-specific architecture A1, such as the one in Fig. 3,

TABLE II: Component Library

Name Unit cost Dimensions (mm) Time (s)
Electrode 1 1.5×1.5 N/A

Input Reservoir 3 1.5×4.5 2
Waste Reservoir 3 1.5×4.5 N/A

Capacitive Sensor 1 1.5×4.5 0
Optical Detector 9 4.5×4.5 8

with a cost of 187. The completion1 time on this architecture
is δG = 18.98 s, within the deadline DG . In addition, A1 is also
fault-tolerant to k=1 permanent faults, i.e., in the worst-case
fault scenario, when the fault is placed such that it leads to
the largest delay on δG , the application still completes within
the deadline. For our example, the completion time increases
to δk=1

G = 19.41 s in the worst-case.
We assume that our architecture synthesis, outlined in

Fig. 6, is part of a methodology which has the following
steps: (1) we synthesize an application-specific architecture
A for an application G ; (2) we fabricate the biochips with
this architecture; (3) all the biochips are tested to determine
if they have permanent faults, and their location [7]; (4) if
there are more than k faults, the chip is discarded, otherwise
we perform a compilation of G on A (excluding the faulty
electrodes) to obtain the electrode actuation sequence, using
the approach from [8].

The architecture synthesis problem presented in this paper
is NP-complete. We have proposed a metaheuristic approach
based on Simulated Annealing (SA) to solve this optimization
problem, presented in Section V. Each architecture solution
visited by SA has to be evaluated in terms of its unit cost and
checked if it meets the deadline even in the worst-case fault-
occurrence (the exact cost function is presented in Section V).
The next section presents our proposed architecture evaluation
approach to derive the worst-case application completion time
δk

G , considering an application G , an architecture A and k
permanent faults. Note that since the architecture synthesis is
performed before the fabrication and testing, we cannot know
the permanent faults when we do the architectural evaluation.

IV. ARCHITECTURE EVALUATION

To find out if an architecture A can run an application G
within the deadline DG , we need to determine the application
completion time δG . The value of δG is obtained through a
compilation process that has five steps: (i) allocation, which
selects the devices to be used from the virtual devices library
L ; (ii) binding the selected modules to the operations in the
application G ; (iii) placement, which decides the positions
of the virtual devices on the biochip architecture A ; (iv)
scheduling, which decides the order of the operations; and
(v) routing, which determines the droplet routes to bring the
droplets to the needed locations on the biochip.

This compilation process is a NP-complete problem for
which several approaches have been proposed. Metaheuristics,
such as [1], [4] are able to obtain near-optimal results for
δG , but take a long time. Recently, LS-based heuristics [12]
have been proposed, which are faster, but cannot guarantee
the optimality. In order to avoid discarding valid architectures
(i.e., for which the optimal δopt

G ≤DG), we need during the
architecture evaluation a value of δG that is as close as possible

1The binding of operations in the application are shown in the figure; we
replicate 3 times the graph in Fig. 2, hence for every Oi, we have O′

i and O′′
i .

9D-4

796

Fig. 4: Compilation example

to the optimal value. However, the calculation of δG should
be very fast, so it can be used for the evaluation of alternative
solutions during the design space search performed by SA.

Hence, in this paper, we extend the LS-based compilation
heuristic from [12] to be used for fault-tolerant architecture
evaluation (Section IV-C). The main extension is concerned
with considering the k permanent faults. As mentioned, we do
not know the position of the k faults during the architecture
synthesis (they will be known after fabrication and testing),
so our evaluation has to determine the δk

G in the worst-case.
This worst-case δk

G application completion time in case of k
faults should be safe, i.e., not smaller than the exact worst-case
(otherwise it may lead to synthesizing invalid architectures). It
should also not be too pessimistic (i.e., much larger than the
exact worst-case), because then it could discard many valid
architectures.

This problem of finding the worst-case schedule length
has been addressed in the context of transient faults on
distributed multiprocessor systems, and researchers have used
“fault-tolerant process graphs” to model all possible fault-
scenarios [13]. Such a modeling of all possible fault-scenarios
is not feasible in our case because of the interplay between
the faulty-electrodes and the allocation, binding, scheduling
and placement of the virtual devices that can be affected by
these faults. Instead, we take a potentially pessimistic but
simpler approach, where we consider that each device in the
application graph G could suffer from k faulty electrodes, and
we have proposed, in Section IV-B, a technique to determine
the overhead of k faults on an operation execution. These
updated operation execution values Ck

i are then used inside
our LS-based heuristic to determine a pessimistic (but safe)
value for δk

G .
One of the five steps of the compilation process is routing.

Due to permanent faults, an architecture can become discon-
nected, as in the case of the biochip in Fig. 3, considering the
two permanent faults marked with a red “×”. If a biochip
architecture under evaluation can be disconnected using k
faults, it should be discarded and in this case the evaluation
of δk

G is no longer meaningful. Therefore, we introduce a
routability check, described in the next subsection, which is
applied before the completion time evaluation.

Let us illustrate the tasks that any compilation technique
has to perform in order to obtain δk

G . Let us assume that we
have to compile the graph from Fig. 4a on the application-
specific biochip from Fig. 4b, using the virtual devices library
L from Table I. We consider k = 1 and we calculate the worst-
case increase in the operation execution Ci using the approach
from Section IV-B, resulting in the execution times Ck=1

i in
column 4 of Table I. Next, let us assume that, at time t = 2 s
mixing operation O11 has the highest priority among all the
ready operations (an operation is ready if all its input droplets
have arrived). Out of the allocated virtual devices for O11
from the library (Table I), the operation O11 is bound to 4×7
virtual device M1, since it can be placed on the biochip and
has the fastest completion time. Module M1 is placed on the
biochip as in Fig. 4b. At time t = 4.14 s, the operation O11
finishes executing, and its successor operation O15 becomes
ready to execute. The schedule is depicted in Fig. 4c, as a
Gantt chart, where the operations are presented as rectangles
with the length equal to their duration, measured in seconds.
For each operation we use the worst-case execution time Ck=1

i ,
which considers the execution delay in case of k = 1 faults
(marked with red in Fig. 4c). Note that at t = 4.14 s, operation
O11 finishes, but its output droplet cannot be used immediately,
so it has to be stored on the biochip (see Store location in
Fig. 4b). The total completion time for the application is
15.22 s. For simplicity reasons, we ignored routing in this
example.

A. Routability with Permanent Faults

We want to guarantee that the architecture solution can run
the application regardless of the location of k permanent faults.
We say that an architecture passes the fault-tolerant routability
test, if, in any scenario of k permanent faults, there is at least
one route that connects each non-faulty electrode to the other
non-faulty electrodes. We used the polynomial time O(kn3)
algorithm from [14], that tests the k-vertex connectivity of a
graph, to check the fault-tolerant routability of an architecture.
For this purpose we model the architecture as a graph, in which
the nodes represent the electrodes and the edges represent
the direct connection between them. Note that an electrode
is considered connected only to its top, bottom, left and right
neighbors, and not diagonally, since a droplet cannot be moved
diagonally with EWOD. The algorithm from [14] tests if the
graph remains connected in case of removal of k nodes. For
example, the architecture in Fig. 3 is still connected for k = 1,
but becomes disconnected for k = 2, e.g., if the 2 faults happen
as indicated with the red “×”.

B. Operation Execution Overhead

Considering a virtual device Mi executing an operation
Oi within Ci seconds, we are interested to determine the

Fig. 5: Fault-tolerant operation execution

9D-4

797

execution time Ck
i in case the virtual device Mi is placed

over an area which has k faulty electrodes. We use the
“droplet-aware” operation execution approach [11], outlined
in Section II-A, which knows the positions of the droplets
inside a virtual device. Let us consider the mixing example in
Fig. 5a, performed on a 5× 5 virtual device1. During fault-
free operation execution, the droplet will move on that pattern,
which leads to the fastest mixing time (the pattern depicted in
Fig. 5a with arrows, and corresponding to column 3 in Table I).
Let us suppose that after fabrication and testing (step 4 in our
overall methodology, see Section III-A) we have detected two
permanent faults, and after compilation, the virtual device is
placed over these affected electrodes as presented in Fig. 5b.
Because we use a “droplet-aware” operation execution, we
can instruct the droplet, which normally moves as indicated
in Fig. 5a, to avoid the faulty electrodes. However, this will
increase the operation execution times, since the droplet no
longer moves on its optimal path, with respect to the mixing
time. We can use the “routing-based synthesis” approach from
[10], which characterizes the operation completion time on a
given route, to determine the overhead on Ci due to the change
in route to avoid the two faults.

However, during the architecture synthesis (step 2 in our
methodology) we do not know the position of the faults, hence,
our approach is to determine the worst-case execution time Ck

i ,
i.e., the largest operation execution time among all possible
combinations of k faults placed on the electrode of the virtual
device Mi. We assume that the designer will provide such a
Ck

i for every virtual device in Table I, for that particular k
number of faults which has to be tolerated.

The value of Ck
i has to be determined only once, when the

virtual devices library L is characterized. Because the virtual
devices have a small area, the designer could use exhaustive
search to determine, for each possible combination2 of k faults
on the device’s electrodes, the best new route which avoids
the faults, and leads to the fastest operation execution. The
largest time among these is Ck

i . For example, for the device
in Fig. 5a, the route in Fig. 5c is better (in this case, optimal),
compared to the route in Fig. 5b (which has too many 90◦
turns, where the amount of mixing is limited, see [10] for
details). Columns 4 and 5 in Table I present the values of Ck

i
for k=1 and 2, respectively. We have also added to L in Table I
(rows 5, 6) modules with margins of 1 and 2 electrodes, and
empty inside.

C. Biochemical Application Compilation

We perform a compilation of the biochemical application G
on the architecture under evaluation A to determine the worst-
case completion time δk

G in case of k permanent faults. We use
a List Scheduling (LS)-based heuristic to perform the binding
and scheduling of the operations in G . During scheduling, we
also perform placement and routing.

Our LS-based heuristic, called LSPR (List Scheduling,
Placement and Routing) takes as input the application graph
G , the biochip architecture A , the virtual devices library L ,

1We also handle irregular-shaped devices, with empty areas inside.
2We have implemented such an exhaustive search. The worst-case increase

in Ck
i for k = 1 and 2, in each module, can be seen in Table I by comparing

columns 4 and 5 with column 3.

Fig. 6: Architecture synthesis flowchart

and the number of permanent faults k to be tolerated, and
outputs the worst-case completion time δk

G .
Every node from G is assigned a specific priority according

to the critical path priority function [13]. An operation Oi
is ready to run when all its input droplets have arrived. The
intermediate droplets that have to wait for the other operations
to finish, are stored on the biochip. The algorithm takes each
ready operation Oi and iterates through the virtual devices
library L , to find the virtual device Mi that can be placed
and scheduled at the earliest time. Oi is bound to Mi and
scheduled at the corresponding time. For Oi, we use the worst-
case operation time3 Ck

i from L , as discussed in the previous
subsection. A dispensing operation, such as O1 in Fig. 2,
has no predecessor operations, therefore, if the corresponding
reservoir is available, it can be scheduled at time t = 0.
However, until they can be used, the dispensed droplets have
to be stored on the biochip, occupying areas that can be used
for other operations. To avoid this situation, we schedule the
dispensing operations only when the dispensed droplets are
needed. When a scheduled operation finished executing, the
ready operations list is updated with the operations that have
become ready. LSPR terminates when the ready operations list
is empty.

An operation can be scheduled when it can be placed on
the biochip. We have adapted the Fast Template Placement
(FTP) algorithm from [15], which uses: (i) free-space parti-
tioning manager that divides the free space in maximal empty
rectangles (MERs) and (ii) a search engine that selects the

3Even with this pessimistic approach, the increase in δG is only 10%, see
Table IV, which we believe is acceptable when performing architecture eval-
uation inside a design space exploration loop. After the chip is manufactured,
and the faults are identified, we run the compilation from [8] (takes 1 hour),
which has no pessimism because it knows the fault locations.

9D-4

798

best-fit rectangle for each virtual device. FTP takes as input
the virtual device M that needs to be placed on the biochip
architecture A and the list of MERs Lrect . The search engine
evaluates all MERs from Lrect that can accommodate M, and
selects the one which is the nearest to the bottom-left corner
of the biochip. We have adapted FTP for application-specific
architectures such that we can place virtual devices of irregular
shape and which may have missing electrodes, see Fig. 3.

We also need to determine the routes of the droplets
between the virtual devices. In case of the black-box approach
(see Section II-A), the droplets have to avoid the virtual de-
vices, thus the route of a droplet can be obstructed by a virtual
device. However, by using the “droplet-aware” approach, we
can allow the droplets to pass through the virtual devices. In
our evaluation of δk

G we are not interested in the actual routes,
only in their length. Hence, we have adapted the “filling phase”
of Hadlock’s algorithm [16] to determine the route lengths,
considering the missing electrodes in the array (gaps) as the
obstacles to be avoided, and including the worst-case overhead
for the detours needed to avoid k faults.

V. ARCHITECTURE SYNTHESIS

We use a Simulated Annealing (SA) [17] metaheuristic
for our application-specific architecture synthesis optimization
problem (see Fig. 2). Our focus is to determine if application-
specific architectures are more cost effective than the rectangu-
lar architectures used so far. We have chosen SA because it is
easy to implement. In the future, we will investigate if other
metaheuristics, such as Tabu Search or Evolutionary Algo-
rithms are better suited to tackle our optimization problem. In
general, the consensus is that the choice of heuristic depends
on the nature of the problem, and none is always superior over
the others.

SA takes as input the application graph G , the physical
components library M , the number of permanent faults to be
tolerated k and the virtual devices library L and produces that
architecture A , which minimizes the objective function:

Ob jective(A) =CostA +W ×max(0,δk
G −DG) (2)

,where CostA is the cost of the architecture A currently
evaluated and δk

G is the worst-case completion time of the
application G on A obtained with our LSPR algorithm. If G is
schedulable, the second term is 0, otherwise, we use a penalty
weight W (a large constant) to penalize invalid architectures
(leading to unschedulable applications). Thus, we allow SA
to explore invalid solutions, in the hope to guide the search
towards valid architectures.

SA explores the solution space using design transformations
called moves. A new solution, obtained by performing moves
on the current solution, is accepted if it is an improved
one. However, SA also accepts worse solutions, with a
probability that depends on the objective function and the
control parameter called temperature. We use the following
moves to explore the design space: (1) adding/removing and
changing the placement for non-reconfigurable components
and (2) adding and removing reconfigurable components. (1)
We increase and decrease the number of non-reconfigurable
components, such as input reservoirs, detectors and sen-
sors, under the limits conditioned by the execution of the
biochemical assay (i.e., for example, we have at least one
reservoir for each type of substance). In case detectors are

TABLE III: Architecture evaluation pessimism (no faults)

App. (ops.) Arch. δ0
G (s) Exec. time δopt

G (s) Exec. time Deviation (%)
PCR (7) 9×9 11 25 ms 10 60 min 9
IVD (28) 9×10 77 91 ms 73 60 min 5.4

CPA (103) 11×12 219 498 ms 214 60 min 2.3

TABLE IV: Architecture evaluation pessimism (k = 0,1,2)

App. Cost δ0
G (s) δ1

G (s) Deviation (%) δ2
G (s) Deviation (%)

PCR 98 8.42 8.81 4.6 9.43 11.9
IVD 85 12.62 13.11 3.8 14.81 17.3
CPA 129 153.9 169.3 10 190.11 23.5

used, we also modify their placement, since it can impact
the completion time of the bioassay by improving the routing
times. (2) The move on the reconfigurable components is
performed by adding/removing electrodes. We distinguish
between two cases: (i) adding/removing a single electrode
and (ii) adding/removing a group of electrodes on the sides
of the architecture. For each biochemical application, we
calibrated the cooling schedule, defined by initial temperature
TI , temperature length TL and cooling ratio ε. The algorithm
stops when the temperature is cooled down to 1.

VI. EXPERIMENTAL RESULTS

For experiments we used three real-life applications [1]:
(1) the mixing stage of polymerase chain reaction (PCR, 7
ops.); (2) in-vitro diagnostics on human physiological fluids
(IVD, 28 ops.); (3) the colorimetric protein assay (CPA, 103
ops.)(We ignored the detection operations.) The deadlines for
the applications are 10 s, 15 s and 100 s, respectively. The
algorithms were implemented in Java (JDK 1.6) and run on a
MacBook Pro computer with Intel Core 2 Duo CPU at 2.53
GHz and 4 GB of RAM. We used the L and M libraries from
Table I and Table II.

In the first set of experiments we were interested to de-
termine the pessimism of LSPR (Section IV-C) in terms of
the completion time δk

G . We have first compared δ0
G to the

nearly-optimal δopt
G obtained in [4] using Tabu Search for the

compilation. The results of this comparison are presented in
Table III. This comparison1 was only possible for rectangular
architectures, a limitation of [4]. As we can see from Table III,
our LS-based compilation is able to obtain good quality results
using a much shorter runtime (milliseconds vs 1 hour). Also,
the average percentage deviation from the near-optimal result
is 5.5%, hence, it can successfully be used for design space
exploration. Next, we wanted to determine the increase in δG
computed by LSPR as the number of permanent faults k in-
creases. Table IV shows the comparison between δk

G for k = 0,
1 and 2. As an input to LSPR we have used an application-
specific architecture, synthesized using our SA approach such
that it minimizes the cost for each particular case-study and is
tolerant to 2 faults. The cost of this architecture is presented
in column 2 of Table IV, and the δk

G results are in columns 3,
4 and 6, for k=0, 1 and 2, respectively. As we can see from
Table IV, the increase in δG is on average 11.8% for each
increase in k.

The focus of the paper is to determine if application-specific
architectures are more cost-effective than rectangular archi-
tectures. Thus, we have used our SA optimization approach

1As in [4], we ignored routing in this set of experiments.

9D-4

799

TABLE V: Application-specific synthesis results obtained by SA

k = 0 k = 1 k = 2
App. Arch Cost CSA TSA Arch Cost CSA TSA Arch Cost CSA TSA
PCR 7×10 79 60 14 7×10 79 65 38 9×11 108 98 50

(1,1,1) (1,1,1) (1,1,1)
IVD 7×10 88 62 16 7×10 88 70 58 10×8 98 85 45

(2,2,2) (2,2,2) (2,2,2)
CPA 7×8 71 59 10 7×8 71 66 20 11×12 147 127 30

(2,1,2) (2,1,2) (2,1,2)

from Section V to synthesize architectures for the case studies
considered. The results are presented in Table V. Together
with the results obtained by SA, we have also determined,
using exhaustive search (which varies the m× n dimensions
and the number of reservoirs), the cheapest general purpose
architecture (column 3), which can run the application within
the deadline. The size of the architectures for k = 0, 1 and
2 are presented in columns 2, 6 and 10, respectively (the
number in parentheses refer to the numbers of reservoirs
for buffer, sample and reagent) and their cost is in columns
3, 7 and 11. The results of SA for k = 0 are presented in
columns 4 and 5 (CSA is the architecture cost and TSA is the
runtime2 of the SA algorithm). As we can see from Table V,
our SA is able to produce application-specific architectures
which are significantly cheaper than the best general purpose
architecture.

Our synthesis methodology can also support the designer in
performing a trade-off between the yield and the cost of the
architecture, by introducing redundant electrodes to tolerate
permanent faults. The increase in cost for k = 1 and k = 2 is
presented in columns 8 and 12 for SA.

VII. CONCLUSIONS

We have proposed an SA-based synthesis approach for
application-specific fault-tolerant DMB architecture, such that
the architecture cost is minimized and the deadlines are satis-
fied even in the case of permanent faults. Every solution visited
by SA is evaluated using a LS-based heuristics (LSPR), which
performs a compilation of the application on the architecture.
LSPR takes into account the worst-case overhead due to
permanent faults and performs binding, scheduling, placement
and routing evaluation.

As the experimental results show, our synthesis approach
is able to significantly reduce the costs compared to general-
purpose rectangular architectures. In addition, by synthesizing
fault-tolerant architectures, our methodology can help the
designer increase the yield of DMBs.

REFERENCES

[1] K. Chakrabarty, R. B. Fair, and J. Zeng, “Design tools for digital
microfluidic biochips: Toward functional diversification and more than
Moore,” IEEE Trans. on CAD of Integrated Circuits and Systems, 2010.

[2] V. Srinivasan, V. K. Pamula, and R. B. Fair, “An integrated digital mi-
crofluidic lab-on-a-chip for clinical diagnostics on human physiological
fluids,” Lab Chip, 2004.

[3] T.-W. Huang, S.-Y. Yeh, and T.-Y. Ho, “A network-flow based pin-count
aware routing algorithm for broadcast-addressing ewod chips,” IEEE
Trans. on CAD of Integrated Circuits and Systems, 2011.

[4] E. Maftei, P. Pop, and J. Madsen, “Tabu search-based synthesis of digital
microfluidic biochips with dynamically reconfigurable non-rectangular
devices,” Design Automation for Embedded Systems, 2010.

2For the cooling schedule we used T I = 40, T L = 100 and ε = 0.97.
[5] R. S. S. et all, “Digital microfluidic platform for multiplexing enzyme

assays: Implications for lysosomal storage disease screening in new-
borns,” Clinical Chemistry, 2011.

[6] F. Su and K. Bazargan, “Yield enhancement of reconfigurable
microfluidics-based biochips using interstitial redundancy,” ACM JETC,
2006.

[7] T. Xu and K. Chakrabarty, “Fault modeling and functional test methods
for digital microfluidic biochips,” IEEE T-BCAS, 2009.

[8] E. Maftei, P. Pop, and J. Madsen, “Droplet-aware module-based synthe-
sis for fault-tolerant digital microfluidic biochips,” DTIP, 2012.

[9] Y. Zhao, K. Chakrabarty, R. Sturmer, and V. Pamula, “Optimization
techniques for the synchronization of concurrent fluidic operations
in pin-costrained digital microfluidic biochip,” IEEE Trans. on VLSI
Systems, 2012.

[10] E. Maftei, P. Pop, and J. Madsen, “Routing-based synthesis of digital
microfluidic biochips,” Design Automation for Embedded Systems, 2012.

[11] ——, “Module-base synthesis of digital microfluidic biochips with
droplet-aware operation execution,” ACM JECT, in press.

[12] M. Alistar, P. Pop, and J. Madsen, “Online synthesis for error recovery
in digital microfluidic biochips with operation variability,” DTIP, 2012.

[13] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Scheduling and opti-
mization of fault-tolerant distributed embedded systems with trans-
parency/performance trade-offs,” ACM TECS, 2006.

[14] S. Even, “An algorithm for determining whether the connectivity of
a graph is at least k,” Computer Science Technical Reports, Cornell
University, 1973.

[15] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast template placement
for reconfigurable computing systems,” IEEE Design and Test, 2000.

[16] S. M. Sait and H. Youssef, VLSI physical Design Automation: Theory
and Practice. Wspc, 1999.

[17] E. K. Burke and G. Kendall, Search methodologies: introductory tuto-
rials in optimization and decision support techniques. Springer, 2005.

9D-4

800

