
 16-18 April 2013, Barcelona, Spain

©EDA Publishing/DTIP 2013 ISBN:

Operation Placement for Application-Specific
Digital Microfluidic Biochips

Mirela Alistar, Paul Pop, Jan Madsen
Technical University of Denmark

Dep. of Applied Mathematics and Computer Science
DK-2800 Kgs. Lyngby, Denmark

email: mali@dtu.dk

Abstract— Microfluidic-based biochips are replacing the con-
ventional biochemical analyzers, and are able to integrate on-
chip all the necessary functions for biochemical analysis using
microfluidics. The digital microfluidic biochips are based on the
manipulation of liquids not as a continuous flow, but as discrete
droplets on an array of electrodes. Microfluidic operations, such
as transport, mixing, split, are performed on this array by
routing the corresponding droplets on a series of electrodes.
Researchers have proposed several approaches for the synthesis
of digital microfluidic biochips. All previous work assumes that
the biochip architecture is given, and consider a rectangular
shape for the electrode array. However, non-regular application-
specific architectures are common in practice. In this paper,
we are interested in determining a placement of operations for
application-specific biochips, such that the application completion
time is minimized. The proposed algorithm has been evaluated
using several benchmarks.

Index Terms—Digital Microfluidic Biochips; Computer Aided
Design; Routing; Placement

I. INTRODUCTION

Microfluidic biochips have the potential to replace the
conventional laboratory equipment as they integrate all the
functions needed to complete a bioassay. Applications on
biochips are considered in areas such as drug discovery,
clinical diagnosis, DNA sequencing, protein analysis and im-
munoassays [1]–[3]. The digital microfluidic biochips (DMBs)
use discrete amounts of fluids of nanoliter volume, named
droplets, to perform operations such as: dispensing, transport,
mixing, split and detection.

A DMB is modeled as an array of identical electrodes,
where each electrode can hold a droplet. Operations such as
mix and split are reconfigurable, i.e., they may take place
on any of the electrodes in the array. The reconfigurable
operations “execute” on “virtual devices” (also called modules)
and droplets are transported on “virtual” routes, since such
execution and transport can take place on any of the electrodes.

In order to be executed on a DMB, a biochemical application
has to be synthesized. There is a significant amount of work
on the synthesis of DMBs [3]–[5], which consists of five tasks:
allocation, during which the needed modules are selected
from a module library, binding the selected modules to the
biochemical operations in the application, placement, during
which the positions of the modules on the biochip are decided,
scheduling, when the order of operations is determined and

routing the droplets to the needed locations on the biochip.
Most researchers consider general-purpose architectures of

rectangular shape. However, in practice, application-specific
architectures, which are non-regular (Fig. 1) are common. For
example, application-specific architectures have been proposed
for disease screening in newborns [6] and for diagnostics on
human physiological fluids [2]. Therefore, in [7] we have pro-
posed an approach to the architecture synthesis of application-
specific biochips. Starting from a biochemical application,
modeled as a sequencing graph, and a library of physical
components, our synthesis from [7] decides a physical biochip
architecture which can execute the application within its spec-
ified deadline, such that the architecture cost is minimized.

In this paper we propose an approach for the placement of
operations for application-specific biochips. So far, researchers
have grouped the electrodes on which the fluidic operation
takes place, into rectangular “virtual devices”, called modules.
Once a module is placed on the biochip, the corresponding
electrodes are considered occupied, and cannot be used un-
til the operation finished executing, which, in the case of
application-specific biochips, results in a longer application
completion time, due to inefficient use of the space. However,
the operations (e.g., mixing, split) can execute anywhere on
the microfluidic array, by transporting the droplets on any
sequence of electrodes, forming thus a droplet route. Such
a “routing-based operation execution” is proposed in [5],
where operations are executed by moving the droplets freely
on the biochip, without being constrained to any specific
area. Such unconstrained routes are not feasible in case of
contamination, a frequent problem for the biochemical assays
that use proteins [8].

In this paper, we consider that the modules on which
operations execute consist of circular routes, which do not
have to be rectangular (see Fig. 2a for three route examples).

Fig. 1: Application-specific biochip architecture

 16-18 April 2013, Barcelona, Spain

©EDA Publishing/DTIP 2013 ISBN:

The circular routes are determined offline, during a pre-
synthesis step, and take into account the characterization of
the application-specific biochip given as input. During the
operation execution, we assume that we know the positions
of the droplets on the circular routes. Thus, we do not have to
assume that all the electrodes of these circular-route modules
are occupied. However, in case of contamination constraints,
we can assign particular circular routes for specific operations.
Our approach takes care that the droplets do not accidentally
merge during the execution of operations.

In related literature, researchers proposed several placement
strategies. In [9], a Simulated Annealing-based method is
used to determine the positions of the operations on the
biochip. A unified high-level synthesis and module place-
ment, based on parallel recombinative simulated annealing,
was proposed in [10]. Better results were obtained by us-
ing a T-Tree algorithm for placement [11] or by using a
fast-template placement [12] integrated in a Tabu Search-
based synthesis [13]. A placement approach that minimizes
droplet routing, when deciding the locations of the modules,
is considered in [14]. Placement strategies based on virtual
topology [15] were proposed for fast synthesis approaches,
which are run online for purposes such as error recovery.
However, all mentioned approaches consider placement of
rectangular modules, which are difficult to place on the irregu-
lar area of an application-specific biochip, resulting in unused
space. Although a placement strategy for modules of non-
rectangular shapes is proposed in [16], it still considers that
the whole module area is occupied during the execution of the
operations, blocking the corresponding electrodes from being
used for other operations. An improvement is the routing-based
approach from [5], which eliminates the borders of a module
and allows the droplets to move freely on the biochip until the
operation is completed. However, in case of contamination, the
routing-based strategy requires a lot of washing, which slows
considerably the execution of the bioassay and can lead to
routing deadlocks.

In this paper, we propose a placement algorithm for circular-
route modules, that effectively use the available area on a
application specific biochip, such that the application comple-
tion time is minimized. To facilitate comparison with previous
placement approaches, we integrate our placement algorithm
into a List-Scheduling (LS)-based synthesis [17], which de-
rives a complete implementation. The experiments show that
our placement strategy, which considers the specificity of the
architecture layout, leads to shorter application completion
times.

II. SYSTEM MODEL

A. Biochip Architecture
In a DMB, a droplet is sandwiched between a top ground

electrode and a bottom electrode. The droplet is separated
from electrodes by insulating layers and it can be surrounded
by a filler fluid (such as silicone oil) or by air. Two glass
plates, a top and a bottom one, protect the DMB from external
factors. The droplets are manipulated using the electrowetting-
on-dielectric (EWOD) principle [18].

On a general-purpose architecture, the electrodes are ar-
ranged to form a rectangular shape, hence the area is highly re-
configurable, as opposed to the area of an application-specific
architecture, which is designed for a particular application with
the intention of reducing costs. Fig. 1 shows an application-
specific architecture of 164 electrodes with 7 dispensers, 1
waste reservoir and 2 detectors.

There are two types of operations: (i) non-reconfigurable,
such as dispensing, executed on input reservoirs and detection,
using on-chip optical detectors, and (ii) reconfigurable, such
as droplet routing, mixing, dilution and split operations. A
mixing operation is executed when two droplets are moved
to the same location and then transported together. A split
operation is done by applying concurrently the same voltage
on both left and right electrodes, while the middle one remains
turned off. The reconfigurable operations are executed using
the physical electrodes in the biochip architecture array.

B. Biochemical Application Model
A biochemical application is modeled [1] using an acyclic

directed graph G(V ,E), where the nodes V represent the
operations, and the edges E represent the dependencies be-
tween them. Let us consider part of a biochemical application,
depicted as a graph in Fig. 4a, which has seven mixing
operations. The directed edge between O1 and O3 signifies
that operation O1 has to finish before operation O3 can start
executing. Mixing operation O3 uses the output droplet issued
by operation O1.

C. Circular-Route Module
Researchers have typically assumed that the electrodes used

for operation execution are grouped in a rectangular area,
called a “module”. Based on experiments, designers charac-
terize a library LR , which contains information about the
module size and corresponding execution time needed for each
operation.

In this paper, we define a module as a circular route,
of any shape including rectangular, on which droplets move
repeatedly until the operation is completed (see Fig. 3c). The
electrodes assigned for one module are not considered occu-
pied, and can be used for other operations. As a consequence,
the routes for different operations may overlap over several
electrodes. In order to avoid undesired droplet merging for
intersecting routes during runtime, we instruct one of the
droplets to take a detour from its predetermined route as
shown in Fig. 2b or to wait until the other droplet passed by.
Some biochemical applications use protein-based compounds
that can leave residues behind. To avoid such contamination,
we minimize the number of overlapping electrodes among the
circular-route modules used by operations that have specified
contamination conflicts. By doing so, we restrict the washing
operations to the overlapping electrodes, thus minimizing the
execution overhead due to contamination avoidance.

We use the routing-based operation execution proposed
in [5] to estimate the operation completion time for each such
circular route. In [5], the droplet movement during an operation
is decomposed into basic moves and the impact of each basic

 16-18 April 2013, Barcelona, Spain

©EDA Publishing/DTIP 2013 ISBN:

Fig. 2: Example of circular-route modules

move on the operation execution is calculated. As seen in
Fig. 3b, on a 1⇥4 mixer, the droplets complete one cycle in 3
moves: one of 180� followed by two moves of 0�. On a 2⇥3
mixer (see Fig. 3a), a cycle is completed by forward moves
(0�), followed by turns (90�). Using an experimentally deter-
mined library, that contains information about the execution
times of the operations, the method proposed in [5] estimates,
for each move, the percentage completion towards operation
execution. Thus we can determine n—the minimum number
of times the droplets have to rotate on a given route to achieve
at least 100% operation completion. The total execution time
is obtained by multiplying n with the time needed to complete
one rotation. For example, for the route depicted in Fig. 3c,
the droplets need to cycle 10 times in order to complete the
mixing operation, resulting in an execution time of t = 2.27 s.

III. PROBLEM FORMULATION

Let us illustrate the complete synthesis process by consid-
ering the application graph G depicted in Fig. 4a, consisting
of seven mixing operations, that have to execute on the
biochip architecture A from Fig. 2a. In order to synthesize
the application G on the given biochip A , we need to first
bind each operation to a module and then, during placement,
to find a location for the selected modules on the biochip.

Let us first consider that we can use only rectangular
modules. For the considered application G , we select from the
rectangular module library1 LR, the 3⇥4 rectangular module
M1 for operations O1, O5 and O6 and of the 4⇥5 rectangular
module M2 for O2, O4, O3 and O7. Next, we have to find
available space on the biochip to place M1 and M2 so that
they do not overlap. The optimal placement solution is shown
in Fig. 2a. After the placement is done, we schedule the
operations, i.e. we determine the order in which they are
executed. The schedule is illustrated in Fig. 4b, as a Gantt
chart, where the operations are presented as rectangles with
the length equal to their duration, measured in seconds. As
shown in Fig. 4b, for the case when rectangular modules are
used, we obtain a completion time of t = 11.43 s.

However, an application-specific architecture has an irreg-
ular shape, which makes placement of rectangular modules

1We use the library from [19] for this example.

TABLE I: Example of library for circular-route modules

Operation Circular-route module Operation time (s)
Mix CRM1 3.05
Mix CRM2 2.28
Mix CRM3 2.18

Fig. 3: Routing-based operation execution

difficult. As a direct consequence, a lot of biochip area remains
unused. For the same application and biochip architecture, if
we consider circular-route modules an application execution
time of t = 8.72 s is obtained. As depicted by the schedule
from Fig. 4c, operations O4, O5, O6 and O7 execute on the
additional circular-route module CRM3 (see Fig. 2a for the
CRMs and Table I for the corresponding execution times), in
parallel with the other operations, thus decreasing the total
execution time of the application. We ignored routing in this
example, for simplicity reasons. For this example, using a
circular-routes, instead of only rectangular modules, resulted
in an improvement of 23% in the application completion
time. The improvement is due to circular-routes, which make
better use of the area and the characteristics of the considered
application-specific architecture.

We formulate our operation placement problem as follows:
given as input a biochemical application modeled as a graph
G and an application-specific architecture A , we are interested
to determine the circular route module for each operation, and
its placement on A , such that the application completion time
dG is minimized.

IV. PLACEMENT OF CIRCULAR-ROUTE MODULES

We propose a two-step strategy for our problem. During the
first step, we determine a library L of circular-route modules
(see Sections IV-B and IV-C). In the second step, we select
from L , during synthesis, a circular-route module for the
current operation to be executed, such that the completion time
dG is minimized. Note that the library L , determined at step
one, can be used with any synthesis approach.

A. List-Scheduling Synthesis

The synthesis process is a NP-complete problem for which
several approaches have been proposed. Metaheuristics, such
as [3], [16] are able to obtain near-optimal results for applica-
tion completion time dG , but take a long time. Recently, for the
synthesis of DMBs, List Scheduling (LS)-based heuristics [17]
have been proposed, which are faster, but cannot guarantee
the optimality. For step two, we use the LS-based synthesis
from [7].

As illustrated in Fig. 5, the LS-based synthesis takes as input
the application-specific architecture A , the application graph
G , and the library of circular-route modules L and outputs the
application completion time dG .

Every node from G is assigned a specific priority according
to the critical path priority function (line 1) [20]. List contains
all operations that are ready to run, sorted by priority.

 16-18 April 2013, Barcelona, Spain

©EDA Publishing/DTIP 2013 ISBN:

Fig. 4: Biochemical application and synthesis results

An operation is ready to be executed when all input droplets
have been produced, i.e. all predecessor operations from
the application graph G finished executing. For each ready
operation Oi, stored in List, Place (line 5) searches in the
library L for the fastest circular-route module that can be
placed on the biochip at current time t. If such a circular-
route module is found, the operation Oi is scheduled at time
t. When an operation finishes executing, the List is updated
with the operations that have become ready (line 8). The
ListScheduling outputs the schedule table obtained for G . The
application completion time dG is the finishing time of the last
operation in the schedule table.

Let us assume that we have to synthesize the graph from
Fig. 4a on the application-specific biochip from Fig. 2a, using
the circular-route module library L from Table I. Next, let us
assume that, at time t = 4.36 s dilution operation O6 has the
highest priority among all the ready operations (an operation is
ready if all its input droplets have arrived). For O6, Place (line
5) selects from library L (Table I), the circular-route module
CRM3 (see Fig. 2a), since it can be placed on the biochip and
it finishes the mixing operation the fastest. At time t = 6.54 s,
the dilution operation O6 finishes executing (line 7), and List is
updated (line 8) with its successor, the mixing operation O7,
which becomes ready to execute. For this example, the LS-
based synthesis will produce the schedule table from Fig. 4c.

B. Building a Library of Circular-Route Modules
During the first step of our strategy, we build a library L of

circular-route modules for the application-specific architecture
A (see Fig. 6). We want to determine circular-route modules
that will use effectively the area on A , so that the application
completion time is minimized. Mixing of two droplets is
achieved faster when the forward movement of the droplets

ListScheduling(G , A ,L)
1 CriticalPath(G)
2 repeat
3 List = GetReadyOperations(G)
4 Oi = RemoveOperation(List)
5 if Place(Oi,A ,L) then
6 tstart

i = Schedule(Oi, A)
7 t = earliest time when an operation terminates
8 UpdateReadyList(G , t, List)
9 end if

10 until List = /0
11 return dG

Fig. 5: List Scheduling synthesis

is increased and the backward movement is avoided [19]. An
application-specific architecture can have an irregular shape
(see Fig. 1), so we need to find locations where operations
can be favorably executed.

BuildLibrary (Fig. 6) starts by identifying restricted rect-
angles (RRs) (line 2), which are areas of rectangular shape
bordered by the margins of the architecture. We use the cutting
algorithm from [21], developed for paper cutting problems,
where the material needs to be optimally cut so that it
minimizes waste. The list of restricted rectangles LRR (line 2)
is obtained by using “guillotine” cuts, done parallel with the
edges of the architecture. We start the cuts from each corner-
electrodes of the architecture, using horizontal and vertical
cuts. A corner-electrode is an electrode that at least two edges
which are not bordered by any other electrode. To obtain
RXY we cut horizontally and vertically, and then, changing the
order, we use first vertical and then horizontal cuts to obtain
RY X , like the RRs depicted in Fig. 8 obtained for the bottom
right corner of the architecture. In some of the cases, RXY is
the same rectangle as RY X . Also, we consider those unused
areas containing inactive electrodes and we extend LRR with
restricted rectangles of such inactive electrodes. In this case,
the restricted rectangles will be bordered by active electrodes,
see RXY (inactive) in Fig. 8. We use the RRs as guiding areas
for obtaining CRMs. Thus, for each RR found, we determine
a list of circular route modules LCRM (line 4), which is stored
in the library L .

As an input to the DetermineCRM function (presented in
Fig. 7 and discussed in Section IV-C), we use the control pa-
rameters MinR, MaxR, MinW, MaxW, which are experimentally
determined for a given application-specific architecture. The
circular-route modules are stored in the library L and used
during the synthesis. It is difficult to predict at the pre-synthesis
stage which circular-route should be selected, to reduce the dG
of the application, as it depends not only on the architecture,

BuildLibrary(A ,MinR,MaxR,MinW,MaxW)

1 L - the library of Circular-Route Modules (CRM)
2 LRR = DetermineRestrictedRectangles(A)
3 for each RRi in LRR do
4 LCRM = DetermineCRM(A ,RRi,MinR,MaxR,MinW,MaxW)
5 InsertInLibrary(LCRM , L)
6 end for
7 return L

Fig. 6: Building the library L

 16-18 April 2013, Barcelona, Spain

©EDA Publishing/DTIP 2013 ISBN:

DetermineCRM(A ,RR,MinR,MaxR,MinW,MaxW)
1 LCRM = List of circular route modules
2 FillArch(A , RR)
3 LSP = GetStartPosition(A , RR, Radius)
4 for each StartPos in LSP do
5 for Radius from MinR to MaxR do
6 for Window from MinW to MaxW do
7 CRM = new circular route module
8 repeat
9 NextPos = GetBestNeighbor(CRM,Radius,Window)

10 InsertInRoute(CRM,NextPos)
11 until NextPos is StartPos
12 UpdateList(LCRM,CRM)
13 end for
14 end for
15 end for
16 InsertInList(LCRM,RR)
17 return LCRM

Fig. 7: Algorithm to determine circular-route modules

but also on application’s particularities such as dependencies
between operations and contamination constraints. Storing all
possible circular-route modules in the library L is an expensive
solution for cases when a fast synthesis is required. Hence,
we determine for each restricted rectangle a fixed number of
circular-route modules LCRM (line 7) for an operation to be
selected during synthesis.

C. Determining a Circular-Route Module

For each restricted rectangle (RR), we determine a list
of circular-route modules LCRM using DetermineCRM, illus-
trated in Fig. 7. We start from the centroid (geometric center)
of the RR and “graphic fill” the architecture, considering
each electrode a pixel (line 2). The centroid of a rectangle
is situated at the intersection of its diagonals. Fig. 8 shows a
filled architecture starting from the centroid of the restricted
rectangle R1. We use a greedy approach to find circular-route
modules that fulfill the distance constraints set by control
parameters MinR, MaxR, MinW, MaxW (line 8). MinR and
MaxR bound the Radius, which sets the distance from the
centroid and it is used to determine the start position of the
circular-route module. MinW and MaxW set the boundaries
for the next electrodes of the circular-route module, which can
be situated at a distance from the center that variates between
[Radius - Window, Radius], where Window can have any value
in the range [MinW, MaxW].

After the architecture is filled, the list of start points LSP for
the circular-route module is determined (line 3), by selecting
all points located at a distance equal with Radius from the
centroid of the considered RR. For example, for the restricted
rectangle R1 from Fig. 8, and a Radius = 6, the list of starting
points LSP contains all electrodes marked with 6. From each of
the starting points we construct a route (line 6–11), by adding
new electrodes until the route completes in a circle, i.e., it
reaches the starting point.

GetBestNeighbor (line 8) uses a greedy randomized [22]

Fig. 8: Determining circular-route modules

approach to select the next electrode of the route. Out of the
possible next electrodes, which are those that can be reached
from the current position, GetBestNeighbor selects from the
neighbors that are located within the boundaries imposed by
control parameters, the one that leads to the largest operation
completion percentage (see Section II-C). In case there are two
equally good candidates for the next position, GetBestNeigh-
bor randomly selects one of them. Backward moves are also
permitted in case there are no other options. Let us consider the
current position Pos, marked in Fig. 8, and the given control
parameters Radius = 6, MinW = 1 and MaxW = 3. For such a
window of size 3, out of the four neighboring cells that can be
reached from Pos, only three (the left, up and down ones) fulfill
the distance requirement, which is to be at a distance between
6 and 3 from the centroid of R1. In our example, selecting the
top or bottom electrode improves the mixing with 0.1%, while
the left electrode with �0.5%, due to flow reversibility. We
randomly select the top electrode to be the next position. For
each restricted rectangle RR we determine a number NCRM of
circular-route modules, which depends on the control parame-

ters: NCRM(RR) =
MaxR

Â
Radius=MinR

((MaxW �MinW +1)⇥ERadius),

where ERadius is the number of electrodes situated at Radius
distance from the centroid of RR. Each of the NCRM circular-
route modules is evaluated, and only three are stored in LCRM
(line 12): the one that minimizes the use of area, the one that
minimizes operation completion time; a third circular-route
module, represented by the corresponding RR is also stored
in LCRM (line 16). DetermineCRM returns the list of circular-
route modules LCRM (line 17).

V. EXPERIMENTAL RESULTS

For experiments we used one real-life application [3]: in-
vitro diagnostics on human physiological fluids (IVD, 28 ops.)
and three synthetic benchmarks (SB1 to SB3). The algorithms
were implemented in Java (JDK 1.6) and run on a MacBook
Pro with Intel Core 2 Duo CPU at 2.53 GHz and 4 GB of
RAM.

In our experiments we were interested to determine the ef-
ficiency of our proposed placement of operations (Section IV)

 16-18 April 2013, Barcelona, Spain

©EDA Publishing/DTIP 2013 ISBN:

TABLE II: Experimental results

App. (ops.*) Arch. MinR, MaxR dR
G (s) dCRM

G (s) Deviation (%)
IVD (23) 45 [3,5] 11.73 18.4 36

(2,2,2)
SB1 (50) 96 [3,5] 29.39 23.9 18.6

(1,2,1)
SB2 (70) 103 [3,6] 31.03 20.15 35

(2,2,2)
SB3 (90) 125 [3,8] 42.51 27.87 34

(2,2,2)
*We ignored the detection operations for experiments.

in terms of the application completion time dCRM
G obtained

after synthesis. We compared dCRM
G to the completion time

dR
G , obtained by using the routing-based synthesis approach

from [5], which is the only available synthesis approach that
is not limited to rectangular modules and can take advantage
of an application-specific architecture. The results of this
comparison are presented in Table II. The size of the used
benchmarks is presented in column 1 of each table, and the
control parameters MinR, MaxR, used for building the circular
route library (Section IV-B) are presented in column 3 (we
used MinW = 1 and MaxW = 3 for all the experiments).
For the real-life application (IVD), we used the application-
specific architecture (column 2) derived with our architecture
synthesis from [7]. The application-specific architectures for
the synthetic benchmarks were obtained manually. In column
2 we present, for each architecture, the number of electrodes
and in parentheses the numbers of reservoirs for sample, buffer
and reagent. As we can see from Table II, our placement results
in a better completion time dCRM

G (column 5) than dR
G (column

4) for all the tested benchmarks. For example, for IVD, we
obtained a completion time dCRM

G = 11.73 s, improving with
36% the completion time dR

G = 18.4 s.
In all our experiments the capacity of a circular-route mod-

ules was set to 1, i.e., maximum one operation could use the
circular-route module at a specific time. This was done to limit
the potential contamination. However, circular-route modules
were allowed to intersect under the assumption that wash
droplets are used at intersection points where contamination
is an issue.

VI. CONCLUSIONS

We have proposed a strategy for the placement of oper-
ations on application-specific DMB architectures, such that
the application completion time is minimized. We build a
library of circular-route modules that take advantage of the
characteristics of the architecture and use effectively the
available area. The library provides multiple choices, that
can be further exploited by the synthesis implementation to
fulfill requirements such as contamination constraints or fast
completion time. We have evaluated our proposed placement
strategy, by comparing the synthesis results with previous
work, on several benchmarks.

As the experimental results show, our placement strategy
is able to significantly reduce the completion time of the
applications. We plan to integrate the proposed placement
into our architecture synthesis heuristics from [7], which
determines a specific architecture for a given application.

REFERENCES

[1] K. Chakrabarty and F. Su, Digital microfluidic biochips: synthesis,
testing, and reconfiguration techniques. CRC, 2006.

[2] V. Srinivasan, V. K. Pamula, and R. B. Fair, “An integrated digital mi-
crofluidic lab-on-a-chip for clinical diagnostics on human physiological
fluids,” Lab Chip, vol. 4, no. 4, pp. 310–315, 2004.

[3] K. Chakrabarty, R. B. Fair, and J. Zeng, “Design tools for digital
microfluidic biochips: toward functional diversification and more than
moore,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 29, no. 7, pp. 1001–1017, 2010.

[4] T.-W. Huang, S.-Y. Yeh, and T.-Y. Ho, “A network-flow based pin-
count aware routing algorithm for broadcast electrode-addressing ewod
chips,” in Proceedings of the International Conference on Computer-
Aided Design. IEEE Press, 2010, pp. 425–431.

[5] E. Maftei, P. Pop, and J. Madsen, “Routing-based synthesis of digital
microfluidic biochips,” in Proceedings of the 2010 international confer-
ence on Compilers, architectures and synthesis for embedded systems.
ACM, 2010, pp. 41–50.

[6] R. S. Sista, A. E. Eckhardt, T. Wang, C. Graham, J. L. Rouse, S. M.
Norton, V. Srinivasan, M. G. Pollack, A. A. Tolun, D. Bali et al., “Digital
microfluidic platform for multiplexing enzyme assays: implications for
lysosomal storage disease screening in newborns,” Clinical chemistry,
vol. 57, no. 10, pp. 1444–1451, 2011.

[7] M. Alistar, P. Pop, and J. Madsen, “Application-specific fault-tolerant
architecture synthesis for digital microfluidic bioships,” in Asia and
South Pacific Design Automation Conference, 2013. IEEE, 2013.

[8] Y. Zhao and K. Chakrabarty, “Cross-contamination avoidance for droplet
routing,” in Design and Testing of Digital Microfluidic Biochips.
Springer, 2013, pp. 27–55.

[9] F. Su and K. Chakrabarty, “Module placement for fault-tolerant
microfluidics-based biochips,” ACM Transactions on Design Automation
of Electronic Systems (TODAES), vol. 11, no. 3, pp. 682–710, 2006.

[10] ——, “Unified high-level synthesis and module placement for defect-
tolerant microfluidic biochips,” in Design Automation Conference, 2005.
Proceedings. 42nd. IEEE, 2005, pp. 825–830.

[11] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, “Placement of defect-tolerant
digital microfluidic biochips using the t-tree formulation,” ACM Journal
on Emerging Technologies in Computing Systems (JETC), vol. 3, no. 3,
p. 13, 2007.

[12] K. Bazargan, R. Kastner, M. Sarrafzadeh et al., “Fast template place-
ment for reconfigurable computing systems,” IEEE Design & Test of
Computers, vol. 17, no. 1, pp. 68–83, 2000.

[13] E. Maftei, P. Paul, and J. Madsen, “Tabu search-based synthesis of
dynamically reconfigurable digital microfluidic biochips,” ACM CASES,
pp. 195–203, 2009.

[14] T. Xu and K. Chakrabarty, “Integrated droplet routing and defect
tolerance in the synthesis of digital microfluidic biochips,” ACM Journal
on Emerging Technologies in Computing Systems (JETC), vol. 4, no. 3,
p. 11, 2008.

[15] D. Grissom and P. Brisk, “Fast online synthesis of generally pro-
grammable digital microfluidic biochips,” in Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis. ACM, 2012, pp. 413–422.

[16] E. Maftei, P. Pop, and J. Madsen, “Tabu search-based synthesis of digital
microfluidic biochips with dynamically reconfigurable non-rectangular
devices,” Design Automation for Embedded Systems, vol. 14, no. 3, pp.
287–307, 2010.

[17] M. Alistar, P. Pop, and J. Madsen, “Online synthesis for error recovery in
digital microfluidic biochips with operation variability,” in Design, Test,
Integration and Packaging of MEMS/MOEMS (DTIP), 2012 Symposium
on. IEEE, 2012, pp. 53–58.

[18] M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-
based actuation of liquid droplets for microfluidic applications,” Applied
Physics Letters, vol. 77, no. 11, pp. 1725–1726, 2000.

[19] P. Paik, V. K. Pamula, and R. B. Fair, “Rapid droplet mixers for digital
microfluidic systems,” Lab Chip, vol. 3, no. 4, pp. 253–259, 2003.

[20] G. De Micheli et al., Synthesis and optimization of digital circuits.
McGraw-Hill New York, 1994, vol. 94.

[21] U. Twisselmann, “Cutting rectangles avoiding rectangular defects,” Ap-
plied mathematics letters, vol. 12, no. 6, pp. 135–138, 1999.

[22] T. A. Feo and M. G. Resende, “Greedy randomized adaptive search
procedures,” Journal of global optimization, vol. 6, no. 2, pp. 109–133,
1995.

