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Abstract

Microfluidic-based biochips are replacing the conventional biochemical analyzers, and are able to integrate all the necessary func-
tions for biochemical analysis. The digital microfluidic biochips are based on the manipulation of liquids not as a continuous flow,
but as discrete droplets. Several approaches have been proposed for the synthesis of digital microfluidic biochips, which, starting
from a biochemical application and a given biochip architecture, determine the allocation, resource binding, scheduling, placement
and routing of the operations in the application. Researchers have assumed that each biochemical operation in an application is
characterized by a worst-case execution time (wcet). However, during the execution of the application, due to variability and ran-
domness in biochemical reactions, operations may finish earlier than their wcets, resulting in unexploited slack in the schedule. In
this paper, we first propose an online synthesis strategy that re-synthesizes the application at runtime when operations experience
variability in their execution time, exploiting thus the slack to obtain shorter application completion times. We also propose a
quasi-static synthesis strategy that determines offline a database of alternative implementations. During the execution of the appli-
cation, several implementations are selected based on the current execution scenario with operation execution time variability. The
proposed strategies have been evaluated using several benchmarks and compared to related work.
Keywords: Microfluidic biochips, Electrowetting on dielectric, Lab-on-a-chip, Computer-Aided Design, Real-time scheduling

1. Introduction

Microfluidics, the study and handling of small volumes of
fluids, is a well-established field, with over 10,000 papers pub-
lished every year [1]. With the introduction at the beginning
of 1990s of microfluidic components such as microvalves and
micropumps, it was possible to realize “micro total analysis sys-
tems” (µTAS), also called “lab-on-a-chip” and “biochips”, for
the automation, miniaturization and integration of complex bio-
chemical protocols [2]. The trend today is towards microfluidic
platforms, which according to [2], provide “a set of fluidic unit
operations, which are designed for easy combination within a
well-defined fabrication technology”, and offer a “generic and
consistent way for miniaturization, integration, customization
and parallelization of (bio-)chemical processes”. Microfluidic
platforms are used in many application areas, such as, in vitro
diagnostics (point-of-care, self-testing), drug discovery (high-
throughput screening, hit characterization), biotech (process mon-
itoring, process development), ecology (agriculture, environ-
ment, homeland security) [2–4].

Microfluidic platforms are classified according to the liquid
propulsion principle (e.g., capillary, pressure driven, centrifu-
gal, electrokinetic, acoustic) used for operation. In this paper,
we are interested in microfluidic platforms that manipulate the
fluids as droplets, using electrokinetics, i.e., electrowetting-on-
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dielectric (EWOD) [5]. We call such platforms digital microflu-
idic biochips (DMBs). DMBs are able to perform operations
such as dispensing, transport, mixing, split, dilution and detec-
tion using droplets (discrete amount of fluid of nanoliters vol-
ume) [6].

To be executed on a DMB, a biochemical application has to
be synthesized. There is a significant amount of work on the
synthesis of DMBs [4, 7–10], which typically consists of the
following tasks: modeling of the biochemical application func-
tionality and biochip architecture, allocation, during which the
needed modules are selected from a module library, binding the
selected modules to the biochemical operations in the applica-
tion, placement, during which the positions of the modules on
the biochip are decided, scheduling, when the order of opera-
tions is determined and routing the droplets to the needed loca-
tions on the biochip. The output of these synthesis tasks is the
“electrode actuation sequence”, applied by a control software
to run the biochemical application. The control software exe-
cutes on a computer connected to the biochip, as schematically
represented in Fig. 1a.

All synthesis strategies proposed so far in related research
(the only exception is [11]) consider a given module library L ,
which contains for each operation its worst-case execution time
(wcet). However, an operation can finish before its wcet, due to
variability and randomness in biochemical reactions [12, 13].
Such situations, when the actual execution time of the opera-
tion is less than the wcet, result in time slacks in the sched-
ule of operations. These time slacks can be used for executing
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other operations in the application, thus, reducing the applica-
tion completion time. Besides reduced costs, due to shorter ex-
perimental times, reducing the application execution time can
also be beneficial for fault-tolerance. For example, researchers
have shown [14, 15] how the slack can be used to introduce
recovery operations to tolerate transient faults.

1.1. Related work and contributions

The only work that addresses variability in operation exe-
cution is [11], which proposes an Operation-Interdependency-
Aware (OIA) synthesis to derive an offline implementation that
is scaled at runtime according to the actual operation execution
scenario. The strategy of OIA is to group the operations accord-
ing to their types and scheduling constraints and then to sched-
ule the operations in phases. A dilution/mixing (D/M) phase
contains all dilution and mixing operations that can be exe-
cuted at the same time without violating the fluidic and schedul-
ing constraints. Similarly, a transport (T) phase contains the
dispensing and transport operations that satisfy all the neces-
sary constraints to be scheduled concurrently. The D/M and T
phases are executed alternatively, and each phase is considered
completed when all its operations finish executing.

Although OIA can handle any variability in the operation
execution by deriving a scalable schedule, its approach where
all operations of the same phase have to wait for each other to
finish is overly pessimistic and leads to long application com-
pletion times.

In this paper we first propose an Online Synthesis strat-
egy (called ONS) that, when an operation finishes earlier than
its wcet, runs a re-synthesis to derive a new solution, aiming
at minimizing the application completion time. Because it is
executed at runtime, our online synthesis strategy has the ad-
vantage of taking into account the actual operation execution
times, successfully adapting the binding, placement, routing
and scheduling of operations. The disadvantage of an online
approach is its overhead due to multiple runtime re-syntheses
which add delays to the application completion time. However,
the execution of the synthesis tasks on the computer is orders
of magnitude smaller compared to typical biochemical opera-
tion completion times [7, 15, 16]. Consequently, the runtime
overhead is not significant and thus an online re-synthesis is a
viable strategy.

Figure 1: Biochip architecture model example

An online synthesis strategy also needs a powerful micro-
controller or computer attached to the biochip, in order to run
the re-synthesis at runtime. To avoid the runtime overheads and
the need of powerful microcontrollers, we also propose a Quasi-
Static Synthesis strategy (QSS), which derives offline alterna-
tive implementations which are stored in a database. During the
execution of the application, we select from the database the
implementation that matches the best the current execution sce-
nario. Then, the selected implementation is applied and the ap-
plication continues executing. With QSS we can take advantage
of the actual operation execution times without the re-synthesis
overhead added by the online approach. However, deriving and
storing the complete database of solutions (i.e., containing the
solutions for all possible execution scenarios) is feasible only
for small applications. Our proposed QSS approach derives
only a part of the database, aiming at finding a good balance
between the number of stored solutions and the quality of the
results in terms of application completion time.

In this paper we propose two synthesis strategies that ex-
ploit the slack time resulted due to uncertainties in operation ex-
ecution, aiming at minimizing the application completion time.
This paper is organized in eight sections. Sections 2 and 3
present the architecture and application models, respectively.
We formulate the problem in Section 4 and present a motiva-
tional example. Next, we discuss our proposed approaches: the
online synthesis strategy (Section 5) and the quasi-static synthe-
sis strategy (Section 6). The proposed algorithms are evaluated
in Section 7, and Section 8 presents our conclusions.

2. Biochip architecture model

In a DMB, a droplet is sandwiched between a top ground-
electrode and bottom control-electrodes, see Fig. 1b. Two glass
plates, a top and a bottom one, protect the droplets from exter-
nal factors. The droplet is separated from electrodes by insu-
lating layers and it can be surrounded by a filler fluid (such
as silicone oil) or by air. The droplets are manipulated us-
ing the EWOD principle [5]. For example, in Fig. 1b, if the
control-electrode on which the droplet is resting is turned off,

Table 1: Module library L
Operation Module area bcet (s) wcet (s)

Dispensing N/A 1 2
Mix 3×6 2 3.47
Mix 4×6 1.5 2.5
Mix 4×2 2.5 4.3
Mix 4×3 2.3 4
Mix 1×3 4 7
Mix 3×3 1 5

Dilution 3×6 2.3 4
Dilution 4×6 1.5 3.1
Dilution 1×3 5 10
Dilution 3×3 3 7

Store 1×1 N/A N/A
Transport 1×1 0.01 0.01
Detection 1×1 5 5
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and the left control-electrode is activated by applying voltage,
the droplet will move to the left. A biochip is typically con-
nected to a computer (or microcontroller) as shown in Fig. 1a.
The biochip is controlled by the “electrode actuation sequence”
that specifies for each time step which electrodes have to be
turned on and off.

A DMB is modeled as a two-dimensional array of identical
control-electrodes, see Fig. 1a, where each electrode can hold
a droplet. There are two types of operations: reconfigurable
(mixing, split, dilution, merge, transport), which can be exe-
cuted on any electrode on the biochip, and non-reconfigurable
(dispensing, detection), which are bound to a specific device
such as a reservoir, a detector or a sensor. A mixing operation is
executed when two droplets are moved to the same location and
then transported together according to a specific pattern (see
Fig. 1a). Considering the biochip in Fig. 1a, a droplet can only
move up, down, left or right with EWOD, and cannot move di-
agonally. A split operation is done by keeping the electrode on
which the droplet is resting turned off, while applying concur-
rently the same voltage on two opposite neighboring electrodes.

The biochip contains non-reconfigurable devices such as in-
put (dispensing) and waste reservoirs, sensors and actuators, on
which the non-reconfigurable operations are performed. For ex-
ample, the biochip from Fig. 1a has three dispensing reservoirs,
one for buffer, one for sample, one for reagent and one waste
reservoir. The location of these non-reconfigurable devices is
fixed on the biochip array. Fig. 1a shows the location of reser-
voirs and a sensor, which are placed on a biochip architecture
of 10×8 electrodes.

Each reconfigurable operation is executed in a determined
biochip area, called a “module”. For example, the two droplets
from Fig. 1a are mixing on a 2× 5 module, by moving ac-
cording to the indicated pattern. In case two droplets are on
neighboring electrodes, they merge instantly. To avoid acciden-
tal merging, each module is surrounded by a “segregation bor-
der” of one-electrode thickness, see Fig. 1a. With the exception
of [11], all of the research so far has assumed that each opera-
tion will execute for a given wcet. Significant research work has
been done to determine the wcet of the fluidic operations such
as mixing and dilution [17–21]. Thus, based on experiments,
researchers characterize a module library L , such as the one in
Table 1, which provides the area and corresponding wcet for
each operation. As shown in Table 1, the time needed for two
droplets to mix on a 3×6 module is 3.47 s. These wcets are safe
pessimistic values for the execution times of the operations, be-
cause so far there has not been any technique to determine when
an operation has completed.

Recent work [11, 14] has addressed the cybephysical inte-
gration of the biochip and the control system. In such a setup,
the biochip is equipped with a “sensing system” [22, 23] that
can monitor the execution of an operation, monitoring attributes
such as color, volume, diameter and position [11]. We have
used such a sensing system to detect if an operation is erro-
neous, and thus provide fault-tolerance for transient faults [14].
Similar to [11], in this paper, we assume that we are able to
also determine the completion time of an operation. We sug-
gest, as in [11], the use of a Charge-Coupled Device (CCD)

camera-based system. The CCD camera-based system is used
to capture periodically images of the droplets during the execu-
tion of the each operation. The images are analyzed in real-time
and thus the position, size and concentration of the droplets are
determined. By comparing the results with the nominal values,
we can determine if an operation has finished executing (e.g.,
a transport operation finishes when droplets are at the wanted
location, a dilution finishes when the product droplet has the
desired concentration). Note that the choice of the sensing sys-
tem is orthogonal to the problem addressed in this paper. The
strategies proposed in this paper are general and can work with
any available sensing system.

3. Biochemical application model

A biochemical application is modeled using an acyclic di-
rected graph [3], where the nodes represent the operations, and
the edges represent the dependencies between them.

In this paper, we denote with G the biochemical application
model, such as the one in Fig. 2. A node in G represents an
operation Oi, thus in Fig. 2 we have operations O1 to O15. A
directed edge ei j between operations Oi and O j models a de-
pendency: O j can start to execute only when it has received the
input droplet from Oi. An operation is ready to execute only
after it has received all its input droplets. The mixing operation
O7 is ready to execute only after operations O6 and O11 have
finished executing and the droplets have been transported to the
biochip area where O7 will perform the mixing.

If the produced droplet cannot be used immediately (e.g.,
has to wait for another operation to finish), it has to be stored in
a storage unit (see Table 1, row 12) to avoid accidental merging.
In our model, we do not capture explicitly the routing opera-
tions required to transport the droplets, but we take routing into
account during the synthesis. We use the data from [5], thus
we assume that routing a droplet between two adjacent elec-
trodes takes 0.01 s (see the “Transport” operation in Table 1).
A droplet is dispensed in 2 s [20].

Biochemical applications can have strict timing constraints.
For example, in the case of sample preparation, the reagents de-
generate fast, affecting the efficiency of the entire bioassay [8,
24]. We assume that we know for each operation Oi its wcet
Ci and best-case execution time (bcet). We denote with Ei the
actual execution time of the operation on the biochip.

Figure 2: Example application G Figure 3: Placement of modules
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4. Problem formulation

As an input, we have a biochemical application G to be
executed on a given biochip architecture A . A characterized
module library L containing the area, bcet and wcet for each
operation, is also given as input. We are interested to determine
an implementation Ψ, which minimizes the application com-
pletion time δG in case of uncertainties in operation execution
times. Note that the actual operation execution times will only
be known during the execution of the application, once an op-
eration completes.

Deriving an implementation Ψ means deciding on the allo-
cation O, the binding B , the placement P , the schedule S and
the routing U. During allocation O, the modules to be used are
selected from the library L . The binding B decides what op-
erations to execute on the allocated modules and the placement
P decides the positions of the modules on the biochip architec-
ture A . The schedule S decides the order of operations and the
routing U determines the droplets routes to bring the droplets
to the needed locations on the biochip.

4.1. Motivational example

In order to illustrate our problem we use as example the
application graph G from Fig. 2, which has to execute on the
10× 9 biochip A in Fig. 3. We consider that the operations
are executing on rectangular modules which have their area,
bcet and wcet specified in the library L from Table 1. For the
purpose of this example, we assume that the placement of the
modules is fixed as presented in Fig. 3. Also, we ignore routing
for simplicity reasons in all the examples in the paper, but we
take into account the routing in all our experiments.

Researchers have so far proposed design-time algorithms
that use the wcets for the operation execution times. Such a so-
lution is presented in Fig. 4a, and the resulted application com-
pletion time δG is 12.94 s. The schedule is depicted as a Gantt
chart, where for each module, we represent the operations as
rectangles with their length corresponding to the duration of
that operation on the module. The allocation and binding of
operations to devices are shown in the Gantt chart as labels at
the beginning of each row of operations. For example, oper-
ation O10 is bound to module M1 and starts immediately after
operations O5 and O6 and takes 2.5 s.

Let us assume an execution scenario where operations O10
to O15 finish earlier than their respective wcet. In Fig. 4b we
show next to each operation O10 to O15 its actual execution
time Ei as observed by the sensing system and its wcet Ci (in
parentheses) on the respective module. For example, the actual
execution time of O10 is E10 = 2 s, instead of C10 = 2.5 s. When
an operation, such as O10, finishes earlier, we have the oppor-
tunity to improve the implementation and thus reduce δG . For
example, if O10 finishes as mentioned in E10 = 2 s, we could
start O13 sooner (i.e., at t = 4) on the faster module M1, as de-
picted in Fig. 4b, instead of waiting until t = 4.5 and use the
slower module M2 as in Fig. 4a. For the offline solution consid-
ering the wcets depicted in Fig. 4a, starting O13 at t = 5.47 on
module M2 was the best choice possible. However, by knowing

Figure 4: a) Design time (offline) vs b) Runtime (online) synthesis

the actual execution times we can take better decisions (on allo-
cation, binding, placement, routing and scheduling), which re-
duce δG . As we can see in Fig. 4b, by using the actual execution
times for the operations, and not their wcets, we can improve δG
from 13 s to 10.57 s (i.e., an improvement of 18.6%). The chal-
lenge is that we do not know in advance, at design time, which
operations will finish earlier and their execution times. The ac-
tual operation execution scenario is only known at runtime, as
detected by the available sensing system.

The only work that addresses the uncertainties in operation
execution problem is [11], where an Operation-Interdependency-
Aware (OIA) synthesis is proposed to derive an offline schedule
that is scaled at runtime depending on the actual operation exe-
cution times. As an alternative to OIA we propose two other ap-
proaches: (1) an Online Synthesis strategy (ONS) which deter-
mines at runtime a new implementation Ψ every time we detect
that an operation finishes before its wcet, and (2) a Quasi-Static
Synthesis strategy (QSS), which derives offline a set of imple-
mentations, considering varying execution times, and switches
online to the most appropriate implementation corresponding to
the observed execution times. We discuss in detail these strate-
gies in the following three sections: OIA in Section 7.2, ONS
in Section 5 and QSS in Section 6.

5. Online Synthesis strategy

We first propose an Online Synthesis strategy (ONS) to solve
the problem formulated in Section 4. As depicted in Fig. 5,
ONS is run at runtime each time the sensing system determines
that an operation finishes sooner, and it synthesizes a new im-
plementation for the operations that have not yet started or com-
pleted.

We use an offline synthesis [25] to determine an initial im-
plementation considering the wcets of operations. Fig. 4a shows
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Figure 5: The biochip setup for ONS

Figure 6: ONS example

the implementation determined offline using wcet. At runtime,
we start to execute the application according to this offline im-
plementation. Fig. 6 shows how ONS runs considering the ex-
ample from Section 4. We start from the offline implementa-
tion depicted in Fig. 4a. As shown in Fig. 4a, O10 has a wcet of
2.5 s on M1. However, when executed on the biochip, the sens-
ing system reports that O10 finishes in 2 s instead. In Fig. 6,
the thick vertical lines on the row labeled “Computer”, mark
the runtime overhead of ONS, which is much smaller in com-
parison to the biochemical operation execution times. For this
example we assume that ONS completes in 10 ms. Considering
the actual execution times from Fig. 4b, ONS will compute the
application in δG = 10.58 s.

The synthesis is a NP-complete problem for which several
approaches have been proposed. Metaheuristics, such as [4, 25]
are able to obtain near-optimal results in terms of application
completion time, but take a long time and thus they are not suit-
able to be executed online. An alternative to such metaheuris-
tics are implementations based on a List Scheduling (LS) [14,
15, 26] heuristic. Although, they cannot guarantee the opti-
mality, LS-based syntheses have been proposed previously for
online error recovery [14, 15, 26] and the comparisons to the ap-
proaches based on metaheuristics show that LS provides good
results in a short time [14]. Hence, we have decided to use a
LS-based heuristic for ONS, see the next subsection.

5.1. List Scheduling-based ONS
Our proposed ONS is presented in Fig. 7. ONS takes as

input the application graph G , the biochip architecture A , the
module library L , the current implementation Ψ and the cur-
rent time t. The output of ONS is an implementation Ψ′ =
{O,B ′,P ′,S ′,U′}, where new binding B ′, placement P ′, sched-
ule S ′ and routing U′ are decided. We use the same module
allocation O for all the implementations. Before ONS is run,

we sort offline the library L in ascending order of operation ex-
ecution time, i.e., the fastest modules come first in the library.

First, ONS adapts the application graph to the current exe-
cution scenario. A new graph G ′ is obtained by removing the
executed operations (line 1). The graph G ′ contains the opera-
tions that have not yet started or completed. Every node from
G ′ is assigned a specific priority according to the critical path
priority function (line 2 in Fig. 7) [27]. The critical path is de-
fined as the longest path in the graph [27].

List contains all operations that are ready to run, sorted by
priority (line 3). An operation is ready to be executed when all
input droplets have been produced, i.e., all predecessor oper-
ations from the application graph G ′ finished executing. The
intermediate droplets that have to wait for the other operations
to finish, are stored on the biochip. Note that the operations that
are interrupted in their execution at the time ONS is triggered
are also included in List.

The algorithm takes each ready operation Oi (line 5) and
performs placement, binding, routing and scheduling. For sim-
plicity, in the examples we have considered a fixed placement
that does not change. However, in our implementation the place-
ment may change in each new implementation P ′. For the
placement of operations we have adapted the Fast Template
Placement (FTP) algorithm from [28], which uses: (i) a free-
space partitioning manager that divides the free space in maxi-
mal empty rectangles (MERs) and (ii) a search engine that se-
lects the best-fit rectangle for each module. Hence, the function
FTP (line 6) returns the first available module M j ∈ L that can
be placed on the biochip A . Since the library has been ordered
offline by operation execution time, we know M j is the fastest
available module for Oi.

Next, Oi is bound to M j (line 7), the routing from the cur-
rent placement of the input droplets to the location of M j is
determined. Since the routing times are up to three orders of
magnitude faster than the other fluidic operation (e.g., routing
takes 0.01 s while a mixing operation varies between 2 s and
10 s [20]), in this paper we have approximated the routing over-
head as the Manhattan distance between the top-left corners of
the modules.

Let us consider the example in Fig. 2. At time t = 4 s the

ONS(G , A ,L ,Ψ, t)
1: G ′ = RemoveExecutedOperations(G ,Ψ)
2: CriticalPath(G)
3: List = GetReadyOperations(G)
4: repeat
5: Oi = RemoveOperation(List)
6: P ′ = FTP(L ,A ,Oi, t)
7: B ′ = Bind(M j, Oi)
8: U′ = DetermineRoute(Oi, M j, A)
9: S ′ = Schedule(Oi, U′, t, L)

10: t = the earliest time when an operation finishes
11: UpdateReadyList(G ′, t, List)
12: until List = /0

13: return Ψ′ = {O,B ′,P ′,S ′,U′}

Figure 7: Online synthesis strategy

5



mixing operation O10 finishes earlier than wcet. As shown in
Fig. 6, the computer will execute ONS to determine a new im-
plementation. Operation O13 has the highest priority among all
the ready operations. Module M1 is the fastest available module
(i.e., not occupied by other operations), hence O13 is bound to
M1. When scheduling the operation Oi, we consider two cases:
(1) Oi has not yet started executing and (2) Oi has started exe-
cuting but has not yet completed (i.e., the execution of Oi was
interrupted by ONS). In case (1), the operation Oi is scheduled
considering the routing time overhead and the corresponding
wcet in the module library L . In case (2), Oi has already ex-
ecuted partially, so we calculate the remaining percentage of
execution for Oi (assuming it executes up to its wcet) and we
scale its wcet accordingly. Then, we schedule Oi as in case (1).

When a scheduled operation finishes executing, List is up-
dated with the operations that have become ready (line 11). The
repeat loop terminates when the List is empty (line 12).

6. Quasi-Static Synthesis strategy (QSS)

In this section, we present the Quasi-Static Synthesis strat-
egy (QSS), which determines offline a set of implementations
from which a particular implementation will be chosen at run-
time, corresponding to the current operation execution scenario.
The set of implementations is stored as a tree, where the nodes
are the implementations, and the edges represent the conditions
under which the controller will switch at runtime to a different
implementation. The controller will use the sensing system to
determine when the operations complete, and thus if a switch-
ing condition is fulfilled.

Let us consider the example in Fig. 8, where we have the ap-
plication GQ in Fig. 8a to be executed on the biochip in Fig. 8b,
considering the module library in Table 1. The tree T Q of alter-
native implementations for GQ is depicted in Fig. 10, consider-
ing that the placement remains fixed as in Fig. 8b. We made the
latter assumption for simplicity reasons.

To depict a solution Ψ in a node, we use the following nota-
tion: Ψ = {M1 : O1...Om; M2 : Om+1...On;Mk : Op...Ol}, where
Mi, i = 1..k are the allocated modules and each element has
the structure Mi : Om+1...On, with Om+1...On representing the
order of the operations bound to Mi. The allocated modules
for the example in Fig. 8 are M1, M2 and D1. In Fig. 10,
Ψ0 = {M1 : O2O5O8O6; M2 : O1O3O4O7; D1 : O9O10O11} cor-
responds to the implementation in Fig. 8c, where operations O2,
O5, O8, and O6 execute, in this order, on module M1, operations
O1, O3, O4 and O7 execute on M2 and operations O9, O10 and
O11 execute on the detector D1. The placement for M1, M2 and
D1 is presented in Fig. 8b.

As mentioned, an edge in T Q captures a switching condi-
tion. We denote with ti the moment in time when an opera-
tion Oi finishes executing. A switching condition on an edge
is expressed as ti : Ii, where Ii = [tA, tB] represents an interval.
Thus, if the finishing time ti, as detected by the sensing sys-
tem for Oi, is within [tA, tB], then the controller will switch to
the implementation following the edge. For example, in case
operation O2 finishes at t2 = 6 s, which is in the interval [5,7],
the implementation Ψ2 is loaded. Considering now Ψ2 as the

Figure 8: Quasi-static strategy example

active implementation, in case O4 finishes at t4 = 8 s, which is
in the interval [7,12], the implementation Ψ4 is loaded. When
an implementation Ψi is loaded, we have all the information on
allocation, binding, placement, scheduling and routing, which
have been decided offline. However, depending on the actual
execution time Ei of Oi, we need to adjust online the start times
of operation in the schedule (the order does not change), subject
to scheduling constraints.

The controller will only switch to a new implementation
if a switching condition is active. Otherwise, it continues to
run the currently active implementations until its completion.
For example, in case of the mentioned scenario (t2 = 6 s, t4 =
8 s), the active implementation Ψ4 continues to run until its
completion, thus completing the application in 30 s.

Our proposed QSS is presented in Fig. 9 and has both an
offline and an online component. Most of the work is done in
the offline part, QSS-offline, which takes as input an application
graph G , a biochip architecture A and a module library L and
outputs the tree of implementations T Q.

The online part QSS-online is responsible for loading the
implementation corresponding to the current execution scenario.
The QSS-online function from Fig. 9 is called by the controller
every time an operation Oi finishes. The function checks if the
switching condition ti : Ii is fulfilled, and if so, it loads the cor-
responding implementation Ψi and adjusts its schedule consid-

QSS-offline(G ,A ,L)
1: Ψ0 = TabuSearchSynthesis(G ,A ,L)
2: T Q = DTI( /0,Ψ0,G ,A ,L)
3: return T Q

QSS-online(Oi, Ii, T Q)
1: if (ti : Ii) then
2: Ψi = GetImplementation(T Q, Oi, Ii)
3: AdjustSchedule(Ψi, Oi, ti)
4: LoadImplementation(Ψi)
5: end if

Figure 9: Quasi-static synthesis strategy
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Figure 10: Tree of implementations T Q

ering the finishing time ti of Oi.
QSS-offline has two steps: it first determines the implemen-

tation Ψ0 of the application considering the wcet of operations
(line 1) and then, starting from Ψ0, QSS-offline builds the tree
of implementations T Q (line 2). We use the Tabu Search ap-
proach from [25] to derive Ψ0, and the next subsection presents
how the tree T Q of implementations is determined.

6.1. Determining T Q

In order to determine the tree of implementations, QSS-
offline calls the Determine Tree of Implementations (DTI) func-
tion (line 2 in Fig. 9). For the implementation of DTI we have
adapted and extended the algorithm in [29] proposed for con-
structing the optimal tree of implementations for multiproces-
sor systems. A tree is optimal if it covers all the possible combi-
nations of execution order of operations. However, deriving an
optimal tree is infeasible: it may take too long time and may not
fit in the microcontroller memory even if compressed. Hence,
we first present the approach for determining the optimal tree
(Fig. 11) and then discuss a heuristic for reducing the tree’s
size (Section 6.2).

DTI(T Q,Ψ,G ,A ,L)
1: C = DetermineConcurrentOperations(Ψ)
2: for each Oi ∈C do
3: Ii = the interval when Oi completes first
4: G i = RemoveFromGraph(G ,Oi,Ψ)
5: Ψi = LSSynthesis(G i,A ,L ,Ψ, Ii)
6: InsertInTree(T Q,Ψi, Ii)
7: DTI(T Q,Ψi,G ,A ,L)
8: end for
9: return T Q

Figure 11: Algorithm for determining the tree of implementations

The DTI function presented in Fig. 11 is a recursive func-
tion that returns T Q. DTI takes as input the tree of implementa-
tions T Q, the currently determined implementation Ψ, the ap-
plication graph G , the biochip architecture A and the module
library L .

DTI is called with the current implementation Ψ. For the
example in Fig. 8, the implementation is Ψ0, which is the cur-
rent implementation that executes on the biochip. DTI needs to
determine what alternative implementations can arise from Ψ0

and which are their switching conditions. The alternative im-
plementations depend on when operations will finish executing.
For Ψ0, we have two concurrent operations that start executing
at time 0: O1 on the 3× 3 M2, which according to Table 1 has
a bcet and wcet of 3 s and 7 s, and O2 which on the 1× 3 M1
module has a bcet and wcet of 5 s and 10 s. From Ψ0, two
alternatives are possible: Ψ1 and Ψ2, see Fig. 10. Thus, DTI
identifies the set of concurrent operations C , line 1 in Fig. 11,
that currently execute on the biochip. Currently, C = {O1,O2}.

For each such operation Oi we have an outgoing edge for
the current implementation Ψ. These edges are labeled with
the switching conditions ti : [tA, tB]. As mentioned, when the
sensing system determines that Oi has finishes executing, we
check if its finishing time ti is within the interval Ii = [tA, tB],
and if true, we load the corresponding implementation Ψi. The
interval Ii is determined in line 3 in Fig. 11. For our example,
considering the determined set of concurrent operations C =
{O1,O2}, we determine I1 = [3,7] for the case when O1 finishes
first, and I2 = [5,7] for the case when O2 finishes first.

We denote with G i the graph that contains only the partially
executed operations and the operations that have not executed.
The graph G i is determined in line 4. For our example, G1 is
obtained by removing O1 in the graph GQ (Fig. 8a).

The obtained G i is then synthesized to determine the im-
plementation Ψi at line 5. An alternative implementation Ψi

is obtained through synthesis by deriving a new allocation O i,
binding B i, placement P i, schedule S i and routing Ui for the
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operations that have not started executing. All the other opera-
tions (i.e., finished of currently executing) keep the same O, B ,
P , S and U as in Ψ. Since the tree T Q can grow very large, we
have decided to use a List Scheduling-based implementation,
for the synthesis, which has been shown to provide good qual-
ity results in a very short time [14]. The node Ψi and edge ti : Ii

are inserted in the tree T Q in line 6.
Finally, DTI is called recursively for Ψi (line 7 in Fig. 11).
Fig. 10 shows the obtained tree of implementations T Q for

our example. For each implementation, we marked with gray
the operations that have completed executing. At runtime, as-
suming the execution scenario t1 = 5 s, t3 = 10 s, t4 = 15 s, t8 =
20 s, we activate in T Q the path marked in Fig. 10 with red
arrows of thicker width.

Next, we calculate the complexity of our proposed DTI. The
function DetermineConcurrentOperations (line 1 in Fig. 11) has
the complexity O(V !) [29], where V is the number of nodes in
the graph. The List Scheduling-based synthesis has the com-
plexity O(MN) [11], where M, N are the width and the length
of the biochip area. We implemented the graphs using inci-
dence lists, hence removing a node from the graph (line 4) has
the complexity O(E), where E is the number of edges in the
graph. Inserting the node in the graph (line 6) has the complex-
ity O(1). For our problem M,N<<V , hence our heuristic has
a time complexity O(V !). The space complexity of DTI is also
O(V !).

6.2. Reducing the size of the tree

By using DTI from Fig. 11 we obtain the optimal tree of im-
plementations T Q, i.e., it contains implementations for all pos-
sible combinations of execution order of operations. As we dis-
cussed, deriving and using the optimal tree is infeasible. How-
ever, using a partial tree may result in larger application com-
pletion times δG , since QSS will not be able to adapt as needed:
it will have fewer implementations to choose from. The chal-
lenge is to reduce the size of the tree such that the negative
impact on δG is minimized. For this purpose, we have adapted
the approach from [29] called DIFF (from “different”), which
limits the size of the tree to a given limit, and favors implemen-
tations that are more different than their parents, because we
want a larger variety of implementations stored in T Q.

DIFF relies on a priority function which gives a higher pri-
ority to implementations that have less similarities to their par-
ents in T Q. Considering the DIFF approach, the following
modifications are performed to the DTI function in Fig. 11:

(a) DTI will now stop if the tree reaches a maximum size W ,
which is decided such that the compressed tree would fit in
the biochip microcontroller.

(b) When deciding on the successors of the implementation Ψ

(lines 2–8 in Fig. 11), DTI will sort the alternatives based
on their priority.

(c) DTI will call itself recursively on the highest priority im-
plementations first.

Figure 12: Restricted tree of implementations T R (size W = 9)

To determine the priority of an implementation Ψk, DTI will
compare Ψk to Ψ by looking at the binding, placement and or-
der of operations. Hence, the priority function is modeled as a
weighted sum over all operations in Ψk, where a higher weight
is considered for case when the binding or the placement are
different than in Ψ, than for the case when only the order of
operations differs.

For example, let us build the tree T R restricted to a max-
imum size W = 9 for the application where the complete tree
is the one in Fig. 10. The restricted tree T R is constructed
starting with the initial implementation Ψ0, the root of the tree.
From Ψ0, we derive Ψ1 and Ψ2—alternative implementations
depending on the completion time of operations O2 and O1. The
implementations Ψ1 and Ψ2 are inserted in T R. Then, using
DIFF, the priority function decides which of the two implemen-
tations, Ψ1 or Ψ2, is processed next. Implementation Ψ2 differs
from Ψ0 in the binding and the order of operations, while Ψ1 is
identical to Ψ0. Thus Ψ2 is given priority over Ψ1. The alterna-
tive implementations Ψ3 and Ψ4 derived from Ψ2, are added to
T R. The algorithm stops when the tree reaches the maximum
size W = 9. Fig. 12 depicts the obtained restricted tree T R.

7. Evaluation results

For experiments we used two synthetic benchmarks (SB1
and SB2) and four real-life applications: (1) the mixing stage of
polymerase chain reaction (PCR, 7 operations), (2) in-vitro di-
agnostics on human physiological fluids (IVD, 28 operations),
(3) the interpolation dilution of a protein (IDP, 71 operations)
and (4) the colorimetric protein assay (CPA, 103 operations).
The application graphs and the descriptions of the bioassays can
be found in [20] for CPA, PCR and IVD, in [30] for IDP and
in [25] for SB1 and SB2. The algorithms were implemented
in Java (JDK 1.6) and run on a MacBook Pro computer with
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Table 2: Comparison of offline (no variability) approach vs. ONS and QSS

App. Arch.
δOFF

G (s)
k = 30% k = 50% k = 70%

δONS
G (s) Imp.(%) δ

QSS
G (s) δONS

G (s) Imp.(%) δ
QSS
G (s) δONS

G (s) Imp.(%) δ
QSS
G (s)

PCR
8×8

8.12
avg. 7.1

12.55
avg. 7.12 avg. 6.61

19
avg. 6.63 avg. 6.19

24
avg. 6.2

(1,1,1,0) dev. 0.01 dev. 0.03 dev. 0.48 dev. 0.48 dev. 0.24 dev. 0.24

IVD
9×8

193.14
avg. 159.91

17.2
avg. 185.21 avg. 156.83

18.7
avg. 182.64 avg. 156.62

18.91
avg. 180.86

(1,1,1,1) dev. 3.24 dev. 10.95 dev. 3.99 dev. 11.28 dev. 1.91 dev. 10.89

SB1
10×11

36.42
avg. 31.7

12.95
avg. 36.16 avg. 30.7

19.66
avg. 34.9 avg. 28.18

22.63
33.66

(2,2,2,0) dev. 0.61 dev. 0.46 dev. 1.14 dev. 1.56 dev. 1.5 dev. 1.99

SB2
11×12 76.65 avg. 66.15

11.39
avg. 73.28 avg. 63.27

15.24
avg. 72.18 avg. 62.85

15.8
avg. 71.34

(2,2,2,2) dev. 0.68 dev. 1.96 dev. 1.77 dev. 2.62 dev. 1.69 dev. 2.92

Intel Core 2 Duo CPU at 2.53 GHz and 4 GB of RAM. Both
the simulation of the application execution and the online syn-
thesis strategy were executed on the mentioned hardware. Un-
less specified, we used the experimentally determined module
library from Table 3.

7.1. Comparison between ONS and QSS

In the first set of experiments we were interested to deter-
mine if the proposed approaches, ONS and QSS, can success-
fully handle the variability in operation execution times. We
have simulated for PCR, IVD and SB1−2 applications a series of
scenarios where k = 30%, 50% and 70% of the operations fin-
ish executing before their wcet. We have generated between 35
and 1000 execution scenarios depending on the size of the ap-
plications and the number of operations that finish earlier than
wcet. Table 2 presents the results. The biochip size used for
each application is presented in column two. Next to the sizes,
we also present in parentheses the numbers of reservoirs for the
sample, buffer, reagents and optical detectors, respectively.

Thus, we have simulated the execution of PCR, IVD, SB1
and SB2 on the specified architectures, and we have randomly
generated an execution time between bcet and wcet for k per-
centage of operations. For each simulation, we adapt to the
variability using both ONS and QSS, obtaining an application
completion time δONS

G and δ
QSS
G , respectively. In Table 2 we re-

port the obtained average (avg.) application completion time

Table 3: Module library L used for experiments
Operation Module area bcet (s) wcet (s)

Mix 2×5 1 2
Mix 2×4 2 3
Mix 3×3 3 5
Mix 1×3 5 7
Mix 2×2 7 10

Dilution 2×5 3 4
Dilution 2×4 2 5
Dilution 3×3 3 7
Dilution 1×3 6 10
Dilution 2×2 7 12

Optical detection 1×1 25 30
Dispensing N/A 5 7

and the mean deviation (dev.) for ONS and QSS approaches
as follows: in columns 4, 7 and 10 we present the avg. and
dev. over all the simulation scenarios for k = 30%, 50% and
70%. The mean deviation is calculated as the average over the
absolute values of deviations from the average completion time.

The reported δONS
G times take into account the runtime over-

head required by re-synthesis (for all cases). The ONS runtime
varies between 10 ms and 270 ms. We have ignored the runtime
overhead required by QSS. Also, for QSS, we have limited the
size of the tree to 100, and we have implemented the DIFF ap-
proach (Section 6.2). We are interested to determine the advan-
tages of using ONS and QSS over the offline approach (OFF),
which uses the wcets for execution times. The application com-
pletion time δOFF

G obtained with the offline solution is reported
in the third column in Table 2. In columns 5, 8 and 11 we report
the percentage improvement (Imp.) of ONS over OFF, calcu-

lated as
δOFF

G −δONS
G

δOFF
G

×100. As we can see, ONS is able to exploit

the slack resulted from operations finishing before their wcet to
significantly improve the completion time δONS

G over the offline
solution, δOFF

G . For example, for PCR we have obtained a per-
centage improvement of 12.55%, 19% and 24% for k = 30%,
50% and 70%, respectively. We can see that as the number
of operations experiencing variability is increasing, ONS can
shorten the application completion times δG . Note that the op-
portunity for improvement is influenced also by the differences
between the bcet and wcet values in Table 3, which are not very
far apart for these experiments.

However, there are situations when an online solution can-
not be used (e.g., the biochip microcontroller cannot run an al-
gorithm such as ONS) or a design-time solution, such as our
proposed QSS is preferred. As we can see from Table 2, QSS
is a viable alternative to ONS. The results obtained by QSS are
significantly better than OFF. However, QSS (with the DIFF ap-
proach that limits the tree size to 100 implementations) obtains
worse results than ONS because QSS is limited in its ability to
adapt at runtime.

7.2. Comparison to the related work

In [11], the only work that addresses variability in opera-
tion execution, which is a synthesis approach called Operation-
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Figure 13: OIA synthesis example

Interdependency-Aware (OIA) used offline to determine an im-
plementation Ψ = {O,B,P ,S∗,U}, where O,B,P and U are
the allocation, binding, placement and routing as defined ear-
lier, while S∗ is a partial schedule which contains only the or-
der of operations. At runtime, a sensing system is used to signal
when an operation has finished executing. The partial schedule
S∗ is scaled accordingly to adjust to the actual execution times
of the operations. Let us illustrate OIA, on the same example,
i.e., considering the application G in Fig. 2, executing on the
biochip in Fig. 3.

The OIA synthesis in [11] has four steps:
(1) First, the application graph G is partitioned into multiple

directed trees by determining the operations in G with more
than one successor and removing all the edges that start from
those operations. For the graph in Fig. 2, the only operation in
G that has more than one successor is O13. After removing all
edges that have O13 as source, we obtain the three trees TL, TC
and TR, depicted in Fig. 13a.

(2) Next, the OIA synthesis is applied to each of the trees
obtained at step 1. OIA synthesis executes the operations in
phases, namely the transport (T) phase and the dilution/mixing
(D/M). The T phase consists of the routing and dispensing oper-
ations, while the D/M phase consists of the dilution and mixing
operations. Each phase executes until all the operations that are
part of it are completed. The two phases, T and D/M, alternate
with only one being active at a time. The schedules obtained
using OIA for the three trees TL, TC and TR are presented in
Fig. 13c–e.

(3) The directed trees are sorted so that they do not present
scheduling and placement conflicts. Using the sorting algo-
rithm proposed in [11], we obtained for our example the sorted
order in Fig. 13b.

(4) Finally, the synthesis results for the trees are merged
according to the sorted order obtained during the previous step.

The execution of the application in our example is depicted
in Fig. 13f, considering the execution times from Fig. 4b, where
operations O10−15 finish sooner. The first phase is a T phase,
containing operations O5 and O6. When both operations fin-
ish executing, the next phase, containing operation O10 starts.
Each phase waits for all operations scheduled in the previous
phase to finish executing. The execution length of a phase is
given by the operation Oi that has the longest execution time
among all the operations in the same phase. In case the longest

Table 4: Comparison of proposed strategies (ONS, QSS) and OIA [11]

App. Arch. δOIA
G (s) δONS

G (s) Improv.(%) δ
QSS
G (s) Improv.(%)

PCR 8×8 25 18.56 25.76 19.10 23.6
IDP 10×10 154 116.93 24 117.62 23.6
CPA 10×10 172 120.02 30.2 122.15 28.98

operation Oi finishes earlier, then the length of its phase, and
thus the application completion time, are reduced. However,
if other operations in the phase finish earlier, the application
completion time is not reduced. As seen in Fig. 13f, the ap-
plication completion time δG = 19.9 s, which is actually larger
than the completion time obtained by the offline solution (13 s,
see Fig. 4a). Note that the advantage of OIA is that it does not
need the wcets, so it works even without a library L of modules.

In the last set of experiments we were interested to com-
pare ONS and QSS to the related work (OIA). Thus, we com-
pared the completion time δONS

G and δ
QSS
G obtained by the on-

line approach and QSS with δOIA
G obtained using the OIA ap-

proach. For a fair comparison, we adapted our online synthesis
strategy and QSS to match the assumptions in [11] as follows:
(i) we have used the same module library from [11], (ii) we
have considered the same assumptions for operation execution
as in [11], i.e., if an operation Oi finishes earlier than its wcet,
then Ei = 1.1×bcet and (iii) we have considered that the prob-
ability that the execution time of an operation finishes before
wcet is 0.5.

Based on the mentioned assumptions, we have simulated
the execution of all the applications considered in [11], namely
PCR, IDP and CPA. In Table 4 we present the architecture used
for each application (column 2), and the obtained application
completion times: δOIA

G [11] (column 3), δONS
G (column 4) and

δ
QSS
G (column 6). We have used 2 optical detectors for IVD and

4 optical detectors for CPA. The application completion time
δONS

G , obtained using our online approach, includes the runtime
overhead due to re-synthesis. In columns 5 and 7, we show
the percentage improvements of ONS and QSS over OIA. The
results presented in Table 4, show that our proposed strategies
can obtain better results than OIA. For example, for CPA, with
ONS we have obtained an improvement of 30.2%, and with
QSS and improvement of 28.98%.
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8. Discussion and conclusions

In this paper we have addressed the problem of variability
in the execution times of the operations. We have proposed two
strategies that can handle such variabilities: an online approach
and an approach based on a quasi-static strategy. The online
approach (Section 5) re-synthesizes the application at runtime
whenever an operation experiences variabilities in execution
time. Aware of the actual execution times of the operations, the
online approach can take full advantage of the current config-
uration to derive the appropriate implementation such that the
application completion time is minimized. The drawback of the
online approach is the requirement of a powerful computer con-
nected to the biochip to run ONS and the overhead introduced
by the re-syntheses performed at runtime.

Our second proposed strategy, QSS (Section 6), avoids such
overhead by deriving offline a tree of alternative implementa-
tions. At runtime, the implementation corresponding to the ac-
tual execution scenario is loaded. Ideally, the tree of implemen-
tations would contain solutions that cover all possible execution
scenarios. However, due to limited memory requirements, we
use the DIFF technique (Section 6.2) to reduce the size of the
table such that it satisfies the memory requirements while still
covering a large variety of execution scenarios. Consequently,
the drawback of QSS is that the resulted implementation may
not take full advantage of the execution time variability.

The experiments performed on four real-life case studies
and two synthetic benchmarks show that both ONS and QSS
can handle variabilities in operation execution time. The re-
sults reflect the advantages and disadvantages of ONS and QSS
approaches. We have also compared our strategies with prior
work and have obtained better results for both approaches.
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