
Generation of Synthetic Embedded
Application Models Based on

Meta-models

Adam Derda

Supervised by Paul Pop

Kongens Lyngby 2009
IMM-MSC-2009-35

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

Abstract

Embedded systems are present everywhere: from alarm clocks to PDAs, from
mobile phones to cars. Almost all devices that we use are controlled by embed-
ded systems. Embedded systems work in different environments; they have to
fulfill many different functional and non-functional requirements, such as cost,
energy consumption, reliability and flexibility.

Hence, it is important to have tool support for successfully designing embedded
systems. Modern embedded systems design relies on models for the application
behavior and hardware platform. Starting from these models, the embedded
systems system-level design tasks are responsible for finding a model of the
implementation that can later be synthesized to hardware and software.

The quality of a design technique has to be evaluated using several case studies.
Such case studies are often difficult to obtain, hence researchers use randomly
generated synthetic application models. There are many types of models of
computation and communication used in embedded systems, such as Data-Flow
and Sequencing Graphs, Petri nets, Kahn Process Networks, and a separate
synthetic-model software generation tool has to be written for each model.

The objective of this thesis is to create a software tool for the generation of
synthetic application models for embedded systems. The tool is generic, i.e., it
is able to take as input any meta-model describing the embedded system models
that have to be generated. We have proposed a set of entities and attributes that
are used to specify a broad range of embedded systems meta-models. Using these
entities, the user can graphically describe the meta-model within the Generic
Modeling Environment (GME), an open-source meta-modeling tool. The model
generator produces (1) synthetic application models conforming to the meta-

ii

model specification and (2) a meta-model for GME, such the generated models
can be loaded into GME and further manipulated, if necessary.

The proposed tool eliminates limitations of the currently used generators —
single model type support, limited configuration and difficult usage. The imple-
mented solution has been verified using several case studies of the most widely
used embedded system models.

iii

iv Contents

Contents

Abstract i

1 Introduction 1

2 Embedded Systems Modeling 5
2.1 Task Graphs . 6
2.2 Petri Nets . 7
2.3 Kahn Process Networks . 9
2.4 Sequencing Graphs . 10
2.5 Summary . 11

3 Related work 13
3.1 Task Graphs for Free . 13
3.2 SDF For Free . 15
3.3 Model Extraction . 16
3.4 Reason for Developing a New Solution 17

4 A Generic Meta-Model for Embedded System Models 19
4.1 Basic Meta-Modeling Terminology 20
4.2 Meta-Modeling Tools Comparison 21

4.2.1 MetaEdit+ . 21
4.2.2 The Eclipse Modeling Framework 22
4.2.3 The Generic Modeling Environment 23

4.3 GME Meta-Model vs. Graph Model as a Meta-Model 25
4.4 Embedded Systems Meta-Model 27

4.4.1 Vertices Aspect . 27
4.4.1.1 Vertex Type . 29
4.4.1.2 Connection Type 30
4.4.1.3 Multiple Successor or Predecessor Types 31

vi CONTENTS

4.4.1.4 Attributes . 34
4.4.2 Architecture Aspect . 36

5 Model Generator 39
5.1 Model Generator Overview . 40
5.2 Meta-Model Interpreter . 41

5.2.1 Attribute Representation 42
5.2.2 Vertex Type Representation 42
5.2.3 Connection Type Representation 43
5.2.4 Interpreting Process . 44
5.2.5 Constraints Generator . 45

5.3 Model Generator . 46
5.3.1 Synthetic Model Generation Algorithm 47
5.3.2 Uniformly Distributed Attributes Generator 53
5.3.3 Normally Distributed Attributes Generator 53
5.3.4 Exponentially Distributed Attributes Generator 54

5.4 Using the Tool . 55

6 Evaluation of the Implemented Tool 59
6.1 Task Graph . 59
6.2 Petri Net . 62
6.3 Sequencing Graph for Biochips 65
6.4 Future Work . 68

7 Conclusions 71

A GME meta-model and GME model XML Schemas 77

B Class Diagram of the GME Plug-in 81
B.1 Interpreter package . 81
B.2 Generator package . 84
B.3 Random package . 85
B.4 GUI package . 86

Chapter 1

Introduction

Embedded systems are present everywhere: from alarm clocks to PDAs, from
mobile phones to cars. Over 90% of microprocessors are used in embedded
systems, the number of embedded systems in use has become larger than the
number of humans on the planet, and is projected to increase to 40 billion
worldwide by 2020. Almost all devices that we use are controlled by embedded
systems. Embedded systems are the key to the competitiveness and innovation
in many major European industries, including Danish industry [20].

An embedded system is a special-purpose computer system, part of a larger
system which it controls. The main characteristics of embedded systems are
that: they are single-functioned — dedicated to perform a single function; they
have complex functionality — often have to run sophisticated algorithms or
multiple algorithms, e.g., cell phone functionality; they are tightly-constrained
— have to be low cost, low power, small, fast, etc.; they are reactive and real-
time —continually reacting to changes in the system’s environment and must
compute certain results in real-time without delay; they are often safety-critical
— must not endanger human life and the environment.

Hence, the design of an embedded system is a very challenging and complex
task. Therefore, it is important to have tool support and use the right design
methodology for successfully designing embedded systems. The aim of a design
methodology is to coordinate the design tasks such that the time-to-market is

2 Introduction

minimized, and the design constraints are satisfied. Traditionally, the hardware
and software parts are developed independently, often by different teams located
far away from each other. Software code is written, the hardware is synthesized
and they are supposed to integrate correctly from the first attempt.

Such an approach does not work for today’s systems. Modern embedded systems
design relies on models for the application behavior and hardware platform.
Starting from these models, the embedded systems system-level design tasks
are responsible for finding a model of the implementation that can later be
synthesized to hardware and software.

Figure 1.1: Embedded system design methodology. Source: [35]

A possible system-level design process is presented in figure 1.1. At the func-
tional level, behavioral specification is designed and verified, as well as different
hardware architectures, which may be used as behavior implementation, are
created. On the mapping level different functionalities are assigned to different
hardware components. By mapping the same behavioral specification to dif-
ferent kinds of hardware architecture designers can choose an optimal solution
(with the best performance, the smallest space used, etc). On the implemen-
tation level the lower levels of abstraction are generated in a semi-automatic
manner.

The design tasks are implemented as software tools, and they use different kinds
of embedded system models, which provide a formal way to describe functional-
ity of embedded systems. The quality of design tools for the successful design of
embedded systems. Many companies are research groups, including the Embed-
ded Systems Engineering section at DTU Informatics, are currently developing
such state-of-the-art design tools.

3

After developing a tool, it must be thoroughly evaluated; its quality is typi-
cally determined by running them on case studies from the industry. Such case
studies are often difficult to obtain, hence researchers use randomly generated
synthetic application models. There are many types of models of computation
and communication used in embedded systems, such as Data-Flow and Sequenc-
ing Graphs, Petri nets, Kahn Process Networks, and a separate synthetic-model
software generation tool has to be written for each model.

The objective of this thesis is to create a software tool for the generation of
synthetic application and platform models for embedded systems. The tool is
generic, i.e., it is able to take as input any meta-model describing the embedded
system models that have to be generated. The figure 1.2 presents the diagram
of the proposed solution. Firstly, a set of entities and attributes (a meta-model)
describing an embedded system meta-model is defined. Using these entities,
the user can graphically describe the meta-model within the Generic Modeling
Environment (GME), an open-source meta-modeling tool. The meta-model is
then used as an input of the developed GME plug-in. It interprets the meta-
model and transforms it to the designed data structure. The data structure is
then used by generator to produce synthetic embedded system models in three
different formats, as well as to generate GME meta-model. Having such a meta-
model, user can load and modify synthetic models in GME environment or even
create models manually.

Figure 1.2: Process of model generation using GME and the Model Generator
plug-in.

4 Introduction

This thesis is organized in 7 chapters. Chapter 2 is a comparison of the most
widely used models of embedded systems. The purpose for the chapter is to
define specific requirements to the general meta-model of embedded system
model. In chapter 3 there is a short overview of currently available solutions,
which shows a need to develop a new, more general and model independent
solution. Chapter 4 is a detailed description of a meta-model, which is used as
an input of the implemented model generator. Chapter 5 contains an overview
of the tool implementation. This chapter contains a description of the created
meta-model interpreter, the model generator and details of the algorithm gener-
ating models. In chapter 6 an evaluation of the developed solution is performed.
It is based on several case studies: generating directed acyclic graphs, Petri nets
and sequencing graphs for biochips. Chapter 7 contains a summary of the entire
thesis.

Chapter 2

Embedded Systems Modeling

A model of computation is an abstract representation of the behavior of an
embedded system. It defines two device aspects [17]:

• components – description of each component functionality (e.g. proce-
dures or finite state machines),

• communication protocols – description of interaction, between system
components (e.g. randez-vous or asynchronous message passing.

Optionally, model of computation can specify information sharing between com-
ponents (like global variables). Since embedded systems are used in many dif-
ferent domains, there are a lot of different models of computation. Depending
on the abstraction level and application area, designers can choose models that
describe system in the most detailed and appropriate manner.

This chapter is an overview of the models that are most widely used to describe
system level of abstraction: task graphs (section 2.1), Petri nets (section 2.2),
Kahn process network (section 2.3). The last section contains a presentation
of a sequencing graph for biochips, which in not as popular as the previously
listed ones, but it has a much more complicated structure. The main purpose
of the comparison is to find common properties in graphical representation of

6 Embedded Systems Modeling

each embedded application model, which allow defining detailed requirements
to the general meta-model of embedded system model. The summary of the
performed analysis is a content of section 2.5.

2.1 Task Graphs

One of the most important issues related to the multi-processor systems is the
problem of efficient task distribution, which shall minimize the execution time
of the program. Solving this problem is crucial for the system to achieve high
performance. However, it is strong NP-complete even in the simplest cases:
assuming that time of every task is the same and system contains arbitrary
number of processors, as well as in the situation, when there are only two types
of task with different execution times running on two processors [14]. There are
many different methods proposed in literature to solve task distribution problem
in a reasonable period of time. Some of them are based on clustering similar
tasks in order to make the problem as simple as possible for each cluster [34][24].
Other scientists categorize parallel system into different classes, depending on
their structure and task characteristic and prepare optimal solution just for a
chosen class [9][6]. Yet another approach is to find a dynamic critical path and
planning execution according to the current and predicted nodes usage [14].

Correctness and efficiency of task distribution algorithm is verified using model
of the application. This model is mostly represented as task graph, which is an
example of directed acyclic graph (DAG). Vertices of the graph represent tasks.
In all cases, there is an integer or a floating point number assigned to each node.
This number represents time of execution of each task [18]. This time is usually
not a constant, but random and has different kinds of distributions. The most
commonly used are uniform, normal and exponential distributions [29].

Each edge in a task graph represents precedence between tasks. Figure 2.1
shows simple directed acyclic graph with 10 nodes (10 tasks). It is easy to
see task dependencies on the presented graph. In this situation task 6 must
be completed before tasks 7 and 8 are executed. Tasks 7 and 8 be executed
concurrently. Task 9 may be started only if task 2, 4 or 5 is completed. Task 6
may start immediately after the execution of task 4, or after completion of task
5 inbetween.

Similarly to nodes, arcs may also have assigned weights. Those numbers repre-
sent communication cost between processes. In many models it is skipped and
it is implicitly included in the execution time of a task [18].

2.2 Petri Nets 7

Figure 2.1: Example of directed acyclic graph with 10 nodes. Source: [8]

The arcs of a DAG cannot duplicate, which means that if there is one edge
connecting vertex 0 and 1, there cannot be another edge connecting the same
pare of vertices. Maximum number of edges outgoing from a node and incoming
to a node is system dependent. Another parameter describing model is a number
of tasks, i.e. the number of vertices.

2.2 Petri Nets

Another way of modeling complex systems is using Petri nets. Inventor of this
mathematical and graphical tool is Carl Adam Petri. As a mathematical tool
Petri nets are a set of linear equations that allows conducting formal proofs of
model correctness, relation precedence, freedom from deadlock, etc. The de-
tailed description of Petri net as a mathematical tool is beyond the scope of this
thesis [19][36].

As a graphical tool Petri nets illustrates in a simple way behavior and dataflow
of a system. They are widely used during designing of communication proto-
cols, as well as models of different kinds of embedded systems (machine shops,

8 Embedded Systems Modeling

automated assembly lines, automotive industry etc.). Petri nets are used as an
alternative to the ladder logic diagrams during designing PLC logic. They are
also used by software engineers to model and analyze software behavior [36].

Figure 2.2: Example of a simple Petri net. Source: [36]

Petri net is a kind of a directed graph, where cycles are allowed. It contains two
types of vertices: places (represented as circles) and transitions (represented as
bars). Edges are directed and can lead from a place to a transition or from
transition to a place. A place that has an edge outgoing towards a transition
is an input place. A place which has an edge incoming from a transition is an
output stage. Transitions represent events in a system, input places are their
pre-conditions, whereas output places are post-conditions. Petri net elements
may also be interpreted in the context of system resources. In such a case input
state represents resource availability, transition represents its utilization and
output place is resource releasing. Figure 2.2 shows an example of Petri net
with 4 transitions and 5 places. Place p3 is input place for transition t3, and it
is one of the two output places of transition t1 [36].

There may be more than one edge between the same pair of states in Petri nets.
Using multiple edges may be expressed as a number of parallel edges, as well as
a label to a single edge. Label is then a nonnegative integer number indicating
multiplicity of edges. In order to specify dynamic behavior of a system, tokens
are used. Token is a nonnegative integer number assigned to a place (a place is
marked with tokens). Graphically, each token is represented as a dot inside a

2.3 Kahn Process Networks 9

place. A transition is ”enable” if each of its input places is marked with at least
k tokens, where k is multiplicity of edges. When a transition is ”enable”, it may
be executed – a required number of tokens is cleared from all the input places
and all the output places are marked according to the multiplicity of outgoing
edges [19].

(a) (b)

Figure 2.3: Concurrent vs. alternative transitions in Petri net. Source: [19]

Using Petri nets it is very easy to show concurrency and alternative paths of
execution. In order to present that two events may happen concurrently, one
transition leads to two different places. Both of them are input places for two
different, concurrent transitions (as presented in figure 6.7(a)). To show choice
between two paths, one place leads to two different transitions. In figure 6.7(b)
there are two alternative transitions t1 and t2. Only one of them may be exe-
cuted, when place p1 is marked with one token.

2.3 Kahn Process Networks

Kahn process networks were proposed by Gilles Kahn in 1974 [12]. It is a model
of computation for multiprocessor systems, mainly used for developing signal-
processing applications. There are two elements in this model: processes and
channels. Each process performs sequential computation. Processes communi-
cate using channels, which are FIFO queues with unbounded capacity. Each
process can read a channel, or write to a channel. Since channels have un-
bounded capacity, write operations are non-blocking. Read operation stalls the
process until all the required input data is available in a channel. Kahn process
network is a deterministic model, which means that the result of computation
is always the same, for the same set of inputs, independently from the schedule
used to calculate the result [13].

Kahn process network can be presented as a directed graph, where cycles are
allowed. An example of a graphic representation of Kahn process network is

10 Embedded Systems Modeling

Figure 2.4: Example of a simple Kahn process network. Source: [26]

presented in figure 2.4. Nodes of the graph represent processes. Channels and
directions of data exchange are presented as directed edge of a graph. Number
of input and output channels for each process is system dependent.

2.4 Sequencing Graphs

There are two types of sequencing graphs: data flow graphs and control/data
flow graphs. The first type ilustrates dependencies between data in a process,
whereas control/data flow graphs represent control dependencies. Sequencing
graphs are widely used in software engineering, to ilustrate process of software
execution. They are also used by hardware designers to demonstrate control
and data flow in circuits [3][5].

Figure 2.5: Example of a sequencing graph. Source: [3]

2.5 Summary 11

An example of a simple sequencing graph is presented in figure 2.5. It is rep-
resented by a directed graph. Each node represents an operation. Direction of
an edge specifies the direction of a data/control flow. Edges may form cycles,
to present loops in a model. In order to show dynamic behavior of a model,
tokens are used. A process can be executed only if tokens are available in each
of incoming edges. After execution, the process produces tokens for all its suc-
cessors.

The structures of a sequencing graphs may be more complex. There may be
many rules describing predecessor types, required for a specified type of node,
types of starting and final types of nodes, etc. A good example of such a case
is a sequencing graph for biochips, capturing the operations of a biochemical
application. There are four different types of nodes: input, dilution, mixing
and detection. Only input nodes may act as starting nodes of a graph. Only
detection type nodes can act as final nodes. Each mixing node require two
predecessors: 2 inputs, 2 mixings, 1 mixing and 1 input or 1 dilution and 1 input.
Each dilution node may have one dilution type predecessor or two predecessors:
both mixing, both input, one input and one mixing or one input and one dilution.
Only detection type nodes can act as successor to the mixing node [33][32].

2.5 Summary

All the presented models are different types of directed graphs. A formal defi-
nition of a graph is (quote from [28]):

A graph G = (V,E) consists of two sets: a finite set V of elements
called vertices and finite set E of elements called edges. Each edge is
defined with a pair of vertices. If the edges of a graph G are identified
with ordered pairs of vertices, then G is called directed or an oriented
graph. Otherwise G is called an undirected or a nonoriented graph.

The main differences between the presented models are as follows:

• multiple types of vertices – each model uses different types of nodes, de-
scribed by different types of parameters (number of tokens, execution time,
etc.); some of the models contain a few different types of nodes (e.g. input,
dilution, mixing and detection in sequencing graphs for biochips),

• multiple types of edges – a model may use more than one type of edge;
e.g. in Petri nets there are two types of edges: one connecting a place

12 Embedded Systems Modeling

with a transition and one connecting a transition with a place (there is no
connection between the same types of vertices); similarly to vertices, edges
may be associated with different types of parameters (e.g. communication
cost, multiplicity, etc.)

• cycles – some of the presented models are represented by acyclic graphs,
whereas for some of them, cycles are allowed,

• multiplicity of edges – some models (like Petri nets) allow creating more
than one edge between the same two nodes,

• minimum/maximum number of outgoing and incoming edges – this pa-
rameter is different for each system; it depends on the hardware/software
architecture,

• type of start and final vertices – not all the types of vertices in a model
may be used as start of final types; e.g. a Petri net may start only from
place,

• multiple types of predecessors/successors – some models (like presented
sequencing graphs for biochips) specify more than one type of successors
or predecessors of the specified vertex type.

Chapter 4 contains the description of a set of entities and attributes, with asso-
ciated constraints, which can be used to specify a broad range of meta-models
describing embedded system models, such as the ones presented in this chapter.

Chapter 3

Related work

This chapter is an overview of the currently available model generators. Section
3.1 is a short presentation of Task Graph for Free DAGs generator. Section 3.2
describes SDF For Free tool, which is a generator of data flow graphs. Overview
of a tool that extracts model from a C code files is presented in section 3.3.
Section 3.4 contains a short summary of the chapter with emphasis being put
on the answer to the question: what is the point of developing a new model
generator?

3.1 Task Graphs for Free

Task Graph for Free (TGFF) is a generator of random directed acyclic graphs.
It is able to generate graphs with completely random structure, as well as series-
parallel graphs. The tool has no graphic interface. All the parameters are passed
as the program’s arguments. The basic settings allow user to specify [30]:

• number of graphs to be generated

• minimum number of vertices per graph

• number of start vertices

14 Related work

• mean execution time of each task

• additional parameters associated with each vertex or each edge

• maximum number of edges incoming to a vertex and outgoing from a
vertex

The simple TGFF input script is presented below.

#num task graphs 2 3
#a v g t a s k s p e r p e 8 10
#avg task t ime 1000 1000
#mul task t ime 250 250
#t a s k s l a c k 200 200
#num pe types 3 3
#num pe soln 4 4
#num pe com types 1 1
#num com soln 1 1
#a r c f i l l f a c t o r 0 . 2 0 . 1
#max in/ out deg 3 ,3 5 ,5

Figure 3.1: Example of TGFF output.

Task Graph for Free generates 3 types of output files: native tgff format file,
PostScript file with plot of a graph and vcg file (input for Visualization of

3.2 SDF For Free 15

Compiler Graphs tool). Example of a graph that was generated to a PostScript
file is presented in figure 3.1.

3.2 SDF For Free

SDF For Free is a tool generating synchronous data flow graphs (SDFGs), with
random structure. The tool is used to generate synthetic models of multimedia
applications, which then can be mapped to a multiprocessor system. Similarly
to TGFF, the tool has no GUI. A user has to define graph properties in a XML
file instead. SDF For Free allows defining the following properties [27]:

• actor properties – properties of nodes, like name, minimum number of
input/output ports, etc.

• channel properties – properties of edges, like source and destination type,
initial token number, etc.

• maximum execution time

• maximum token number

• bandwidth and throughput attributes

• time constraints

Example of an input XML file is presented below.

<sd f3 type=’sdf’ version=’1.0’
xsi:noNamespaceSchemaLocation=’http://www.es.ele.tue.

nl/sdf3/xsd/sdf3-sdf.xsd’>
<s e t t i n g s type=’generate’>

<graph>
<a c t o r s nr=’10’/>
<degree avg=’2’ var=’1’ min=’1’ max=’5’/>
<r a t e avg=’2’ var=’1’ min=’1’ max=’5’

repet i t ionVectorSum=’10’/>
< i n i t i a l T o k e n s prop=’0’/>
<s t r u c t u r e stronglyConnected=’false’ a c y c l i c=

’true’ multigraph=’true’/>
</graph>
<graphProper t i e s>

<procs nrTypes=’3’ mapChance=’0.25’/>

16 Related work

<execTime avg=’10’ var=’0’ min=’10’ max=’10’/
>

<s t a t e S i z e avg=’1’ var=’1’ min=’1’ max=’1’/>
<tokenS ize avg=’1’ var=’1’ min=’1’ max=’1’/>
<b u f f e r S i z e />
<bandwidthRequirement avg=’2’ var=’0’ min=’1’

max=’4’/>
<latencyRequirement avg=’2’ var=’0’ min=’1’

max=’4’/>
<throughputConstra int autoConcurrencyDegree=’

1’ s c a l eF ac to r=’0.1’/>
<integerMCM/>

</ graphProper t i e s>
</ s e t t i n g s>

</ sd f3>

SDF For Free generates graphs in a DOT format file. It can be transformed into
a graphical representation using Graphviz tool. An example graph generated
by the tool is presented in picture 3.2.

Figure 3.2: Example of SDF For Free output transformed to a graphical repre-
sentation.

3.3 Model Extraction

Another approach to model generation is to extract it from an application. This
technique is presented in [31].

3.4 Reason for Developing a New Solution 17

Model generated by the tool is a directed acyclic graph. As an input it takes
C code of a program. The code is transformed by a preprocessor. After that,
abstract syntax tree of a program is generated. Next step is keywords extraction.
A keyword is a piece of code, which allows identification of data dependencies.
After analysis of keywords, a dependence graph is created. To get the DAG
model from the dependence graph, only execution and communication times
must be added.

Figure 3.3: Process of a task graph extraction from C code files. Source: [31]

To extract execution and communication times, two modified C files are created.
The first one contains annotations, which specify where each task begins and
ends. The second file is used to profile the application. After the execution of
the modified file, all the timing information is recorded. The timing data and
the dependence graph, obtained in the previous steps, are used to generate final
model of the application. A schema of the above described process is presented
in figure 3.3.

3.4 Reason for Developing a New Solution

There are very few tools available, which are able to generate application mod-
els. Most of the researchers do not use publicly available model generators.
They usually develop their own tools to generate a set of models dedicated to
the specified system, which makes these tools useless for other researchers. Fur-
thermore, model generators have to be developed from scratch, when model of
computation is changed (e.g., from DAG to Petri net).

18 Related work

To make the benchmarking of tools easier, a new, generic, model-independent
tool should be implemented. User should be able to freely change all the model
parameters, types of vertices and connections, constraints on the number of
vertex input and outputs, variables associated with nodes and edges etc. The
details of the design and implementation of such a tool are described in the next
chapters of this thesis.

Chapter 4

A Generic Meta-Model for
Embedded System Models

The aim of the thesis is to create a generic model generator. A user should be
able to freely define different properties of a model: different types of vertices and
edges, parameters associated with them, restrictions on the number of incoming
and outgoing edges, etc. This specification can be expressed in many different
ways, e.g., using scripts with a number of different parameters or using XML
files with model description. However, using a textual model description would
make the tool less user friendly. It would require the user to be familiar with
a large number of parameters or a complicated XML schema. A much better
solution is to use a meta-modeling language and one of the meta-modeling tools
which have a user friendly GUI.

This chapter contains a detailed description of the meta-model that is used as
an input of the Model Generator (described in details in chapter 5). Section
4.1 of this chapter introduces basic meta-modeling terminology. Section 4.2 is
an overview of available meta-modeling tools and our decision on which one
to sue for this thesis purposes. Section 4.4 presents details of meta-model for
embedded system models.

20 A Generic Meta-Model for Embedded System Models

4.1 Basic Meta-Modeling Terminology

A meta-model is a model that specifies how a model is built. It defines all the
entities, relations and attributes that model can be composed of.

A generic modeling environment supports different types of model domains.
This make the tools universal, however, the general approach causes lack of
domain specific details, which usually are crucial for model designers.

A domain-specific modeling environment may be used as an alternative. It
is dedicated only to one, specific domain, so a designer can describe all the model
details. However, domain-specific approach is a very expensive and ineffective
solution – it requires developing many separated tools, just to model a small
part of the entire modeled system. In order to combine advantages and reduce
disadvantages of the both approaches, meta-programmable tools have been
developed. They constitute generic frameworks, which have to be customized
by the user, in order to make them domain-specific.

The process of meta-programmable tools customization is performed using a
meta-programming language. After applying a configuration described in a
meta-programming language, the modeling tool becomes domain-specific [16].

Figure 4.1: A finite-state machine meta-model

An example of a finite-state machine meta-model is presented in figure 4.1. It
is described in UML, using the Generic Modeling Environment (GME) tool,

4.2 Meta-Modeling Tools Comparison 21

which is a meta-programmable tool. The meta-model is used for transforming
the generic environment into domain-specific modeling environment. According
to the defined specification a model may be composed of StartState, State and
FinalState entities. They may be connected with each other using Transitions.
An example of a FSM model, created in GME environment is presented in figure
4.2.

Figure 4.2: A finite-state machine model

4.2 Meta-Modeling Tools Comparison

There are several configurable modeling tools available. This section is a com-
parison of advantages and disadvantages of the most popular ones.

4.2.1 MetaEdit+

MetaEdit+ is a powerful, commercial application. According to the authors, it is
one of the most widely used Domain-Specific Modeling Environment. There are
many examples of domain-specific models on the company webpage: from web
and smartphone applications to industrial machine controllers and automotive
product line feature model. An example of modeling environment for arithmetic
logic is presented in figure 4.3. It presents a model of automotive electronics.
The model is composed of sensors, logic gates and actuators.

Although MetaEdit+ is very powerful, it has a number of limitations. First of
all, it is an expensive tool (costs almost 6000 Euros). The other disadvantage,
which definitely eliminates usage of this tool in this thesis, is a lack of docu-
mentation of the generated meta-model files, which makes impossible to use the
files as an input to our model generator [1].

22 A Generic Meta-Model for Embedded System Models

Figure 4.3: MetaEdit+ modeling environment for arithmetic logic. Source: [1]

4.2.2 The Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is a project developed for the Eclipse
platform. It was mainly intended to create models of Java applications. It
supports automatic Java code generation based on the described model. EMF
accepts many ways of describing models: annotated Java, XML files, or different
kinds of modeling tools (e.g. Rational Rose). An example of a graphical tool
input is presented in figure 4.4. It is a class diagram of an Eclipse component.

Although the Eclipse Modeling Framework is well documented, it has some
disadvantages. Firstly, it is mainly focused on program modeling and code gen-
eration rather than being a completely generic modeling environment. Secondly,
the Eclipse Modeling Framework does not support any mechanisms, which are
able to apply advanced constraints to a model [16][2].

4.2 Meta-Modeling Tools Comparison 23

Figure 4.4: A class diagram specified using EMF. Source: [2]

4.2.3 The Generic Modeling Environment

The Generic Modeling Environment (GME) is a free academic tool. It is a meta-
programmable tool, which may be customized using UML-based class diagrams.
Classes may be associated with constraints described in Object Constraint Lan-
guage (OCL). It is a functional programming language, with structure similar
to SML. All constraints are expressed as statements, which return a boolean
value. Statements may be composed of conditional if ... else statements,
they may use local variables declared with let expression and they may perform
operations on object collections.

After defining a meta-model, it may be registered in GME. After that, a user
may create a model-specific environment. This environment contains all enti-
ties and their attributes defined in a meta-model. A user is able to create a

24 A Generic Meta-Model for Embedded System Models

model using those entities and he may verify if a model does not violate defined
constraints.

As mentioned before, GME comes with a UML-based meta-model that is used
to describe a domain-specific environment (in other words, to generate other
meta-models). There is a large number of elements that may be used by a
model designer. On the top of entities hierarchy, there is a Project entity. It
contains Folders, which help grouping all the objects (similarly to folders in a
file system). Folders contain Atoms, Models, Connections, References and
Sets (together called as FCOs). Atom is the most basic component, which cannot
contain any other part. Connections are used to express relation between enti-
ties. It may be directed or undirected and minimum and maximum multiplicity
may be specified. Models represent more complicated parts of a meta-model.
They may be composed of different type of entities (other FCOs). Each Model
component has a specified Role, defined by a model creator. Each model has an
Aspect. Aspects specify the visibility of a Model. User can choose an aspect,
and only the Models associated with it are visible. Reference is an analogy to
a pointer in HLL. It is not a physical object, but just a reference to the specified
FCO. A Set is a group of objects with the same properties. Each FCO may be
associated with an attribute of integer, double or string type [11][15]. A diagram
of GME components hierarchy is presented in figure 4.5.

Figure 4.5: GME components hierarchy. Source: [15]

4.3 GME Meta-Model vs. Graph Model as a Meta-Model 25

Apart from the rich entities collection, GME has other interesting features. First
advantage of using Generic Modeling Environment is Object Constraint Lan-
guage (OCL) support. Many advanced constraints may be easily expressed using
it, e.g. maximum/minimum parameter value, maximum number of connections,
multiplicity of connections, etc.

Secondly, it is possible to write a GME plug-in. It can be developed in any
language supporting COM technology or in Java. Plug-ins have access to all
the meta-model components, which means that it is possible to develop a meta-
model interpreter. Having such a tool, a user may generate models directly
from GME, without any intermediate steps (like generating XML output files
and then using them as generator input) [11].

GME seems to be the best program to create the input meta-model for the
model generator. To make the model generator tool simple and user friendly, it
should be developed as GME plug-in.

4.3 GME Meta-Model vs. Graph Model as a
Meta-Model

After choosing the modeling tool, another question must be answered: is it
possible to create a GME interpreter of a native GME meta-model? Or maybe
a dedicated meta-model, describing basic model elements would be better to
use.

A model may be constructed from many different types of entities. GME sup-
ports also Atoms and Models inheritance. All these elements and OCL con-
straints allow creating very advanced solutions. However, the problem is that
the same meta-model may be described in many different ways. As an example,
two meta-models of finite state machine were created. The class diagrams of
the meta-models are presented in the figure 4.6.

In the first approach (figure 4.6(a)) inheritance is used. There is an abstract class
GeneralState which is then inherited by StartState, State and FinalState.
Each kind of state is associated with Name parameter. States are connected by
Transitions. Transitions have one Condition attribute. In order to avoid
edges outgoing from the final states and edges incoming to the starting states,
two OCL constraints associated with GeneralState are used:

−− e l i m i n a t e s edges outgo ing from the f i n a l s t a t e s
l et connFCOs = s e l f . connectedFCOs (” s r c ”) in

26 A Generic Meta-Model for Embedded System Models

(a)

(b)

Figure 4.6: Two different meta-models of finite state machine.

connFCOs−>forAll (e | e . kindName <> ” F ina lS ta t e ”)

−− e l i m i n a t e s edges incoming to the s t a r t i n g s t a t e s
l et connFCOs = s e l f . connectedFCOs (” dst ”) in

connFCOs−>forAll (e | e . kindName <> ” Sta r tS ta t e ”)

In the second solution presented in figure 4.6(b), states are represented by
Models. Each kind of state is associated with at least one type of port Atom.
There are two types of ports: InPort (incoming port) and OutPort (outgoing
port). In order to connect two states, first outgoing port has to be added to the
origin and incoming port has to be added to the destination. After that, ports

4.4 Embedded Systems Meta-Model 27

may be connected with Edge connection. State is associated with both InPort
and OutPort, FinalState may only contain InPorts, whereas StartState is
related only with OutPorts. Such a configuration eliminates need of using OCL,
StartState can never have incoming edges and FinalState can never be out-
going edge origin.

A finite state machine is a rather simple model of computation. However, as
shown GME allows model creator to describe it in many different ways, using
different mechanisms and techniques. Therefore, it is impossible to write an
interpreter, which would be able to interpret raw GME meta-model correctly
in all cases. Inheritance, hierarchy of objects and OCL constraints give infinite
number of possibilities in model descriptions.

In order to describe embedded system models, there is no need to use the full
GME meta-model. Our solution is to define entities specific to embedded system
models. Our model generator tool will be able to unambiguously interpret meta-
models created using the proposed entities.

4.4 Embedded Systems Meta-Model

This section is a description of our proposed entities for describing embedded
systems meta-models. There are two main aspects:

• Vertices, which is a specification of vertex types, connection rules and
model attributes,

• Architecture, which is a specification of model structure (number of start
vertices, number of graphs and nodes, etc.)

Each meta-model entity is associated with OCL constraints in order to assure
the meta-model correctness.

4.4.1 Vertices Aspect

This section describes all the entities belonging to the Vertices aspect. Figure
4.7 presents class diagram for all of the entities.

28 A Generic Meta-Model for Embedded System Models

Figure 4.7: Diagram of entities belonging to the Vertices aspect

4.4 Embedded Systems Meta-Model 29

4.4.1.1 Vertex Type

As mentioned in section 2.5, graph is a set of vertices and edges. Vertex rep-
resents the type of vertices used in a model – directed acyclic graphs are rep-
resented using only one Vertex entity, whereas Petri nets require two Vertex
types (Places and Transitions). Vertex inherits from abstract GeneralVertex
Atom. The other two classes, which inherit from GeneralVertex belong to
Architecture aspect and they will be described in section 4.4.2. In order to
enforce user to create at least one vertex type, the following OCL constraint is
used:

l et ver t = atoms (Vertex) in
i f vert−>s ize () = 0 then

fa l se
else

true
endif

There are a number of parameters characterizing vertices. First one – Prefix
is a string parameter that specifies the prefix name for the vertex type. Vertex
name in a model is a concatenation of the prefix and vertex number.

The second parameter is MaxIn. It is an integer parameter that specifies maxi-
mum number of incoming edges. This parameter cannot be negative, therefore
Vertex is associated with the following OCL constraint:

s e l f . MaxIn >= 1

IsStart and IsFinal are two Boolean parameters. They specify if vertices of
the type may be used as the starting (final) ones. E.g., in Petri net Places have
both parameters set to true, whereas transitions have both of them set to false.
Each model must contain at least one type of vertex, that may be used as the
starting vertices and one type that may be used by final vertices. In order to
enforce that requirement, two OCL constraints are defined:

−− at l e a s t one type may be used by s t a r t i n g v e r t i c e s
l et ver t = atoms (Vertex) in

ver t −> exists (v : Vertex | v . I s S t a r t = true)

−− at l e a s t one type may be used by f i n a l v e r t i c e s
l et ver t = atoms (Vertex) in

ver t −> exists (v : Vertex | v . I s F i n a l = true)

30 A Generic Meta-Model for Embedded System Models

NextVerticesTypes is a parameter that may have one of two possible values: OR
or XOR. The parameter will be described in details together with the description
of NextVertex Connection.

Image specifies bitmap name, which is used as an icon for the vertices of the
associated type. The bitmaps must be placed in icons folder, in the same
location as the meta-model.

LoopsAllowed is a Boolean parameter that specifies if self-loops are allowed
(edges with the same origin and destination vertex).

4.4.1.2 Connection Type

(a) (b)

Figure 4.8: The meta-models of (a) directed acyclic graph and (b) Petri net

In order to define which vertex type may be used as the specified type successor,
NextVertex connection is used. Figure 4.8(a) presents the simplest meta-model
of a directed acyclic graph. There is only one vertex type, therefore, all its
successors must be of the same type – this is why NextVertex connection is
a self-loop. Figure 4.8(b) is the simplest meta-model of Petri net. There are
two types of vertices – Place and Transition. Successor of Place type vertex
may only be Transition type vertex. Similarly, Transition type vertices are
predecessors of Place type vertices.

NextVertex is a directed edge associated with three parameters. MinOut and
MaxOut specify minimum and maximum number of outgoing edges for the origin
vertex type. As an example the Petri net meta-model presented in figure 4.8(b)
will be used. If user sets MinOut to 2, MaxOut to 4 for the connection between
Place and Transition (the upper one), then all Places in a model will have
from 2 to 4 edges outgoing to different Transitions. Multiplicity of connections
(number of edges between pair of the same vertices) is specified by the third
parameter Multiplicity. All three parameters, associated with NextVertex,
have to be nonnegative. Additionally Multiplicity cannot be larger than
MaxOut parameter and MinOut must be smaller or equal to MaxOut. In order
to enforce this requirement, the following OCL constraints are associated with
NextVertex connection:

4.4 Embedded Systems Meta-Model 31

−− a l l the parameters nonnegat ive
s e l f . M u l t i p l i c i t y >= 1
s e l f . MinOut >= 1
s e l f . MaxOut >= 1

−− MaxOut g r e a t e r or e q u a l to MinOut
s e l f . MaxOut >= s e l f . MinOut

−− M u l t i p l i c i t y s m a l l e r or e q u a l MaxOut
s e l f . M u l t i p l i c i t y <= s e l f . MaxOut

There are also two other constraints, that are related to NextVertex connec-
tion, but they are associated with Vertex Atom. The first one enforces speci-
fying successor type for each vertex type. The second one eliminates multiply
NextVertex connections between the same two vertex types.

−− d u p l i c a t i o n s o f the same connect ions are not a l l o w e d
l et nextBag = s e l f . bagConnectedFCOs (” s r c ” , NextVertex) in

let nextSet = s e l f . connectedFCOs (” s r c ” , NextVertex) in
nextBag −>s ize () = nextSet−>s ize ()

−− s u c c e s s o r type must be s p e c i f i e d
s e l f . connectedFCOs (” s r c ” , NextVertex)−>s ize () >= 1 or
s e l f . connectedFCOs (” s r c ” , ConnectorVertex)−>s ize () >= 1

Each vertex type may have more than one successor type. However, using
multiple types of successors makes the model ambiguous. If a type has 3 different
successor types, does it mean that it may have up to three different successors
at the same time or only one of them may be used? In order to answer this
question NextVerticesTypes parameter of Vertex Atom is introduced. If it is
set to OR than any number of successor types may be used, whereas if it is set
to XOR, only one of them may be used.

4.4.1.3 Multiple Successor or Predecessor Types

In some cases, the model structure is more complex, and hence it is not enough
to specify just one successor type. A good example is sequencing diagram for
biochips described in section 2.4. It requires more powerful mechanisms to
specify multiple predecessor/successor types. For example, predecessors of a
mixing node may be: 2 inputs, 2 mixings, 1 mixing and 1 input or 1 dilution
and 1 input. To define this type of specification, we have introduced the entity
And Atom.

32 A Generic Meta-Model for Embedded System Models

(a) (b)

Figure 4.9: Multiple successor/predecessor types

An example of multiple successor types is presented in figure 4.9(a). One vertex
type – Predecessor has 2 types of successors: Successor 1 and Successor 2. In or-
der to connect predecessor with And entity, MultipleTypeSuccessorsToVertex
Connection is defined. MultipleTypeSuccessorsToAnd Connection is used
to connect And entity with one of the successors. There are three parameters
that are associated with MultipleTypeSuccessorsToAnd Connection: user
can specify minimum and maximum number of successors of the connected
successor type as well as maximum multiplicity of the connection.

Multiple predecessor types are defined in a similar manner. An example of such
a case is presented in figure 4.9(b). Each predecessor is connected with an And
entity by a MultipleTypePredecessorsToVertex Connection. The user can
specify a maximum multiplicity, as well as the minimum and maximum number
of predecessors of the connected predecessor type. In order to connect an And en-
tity with the successor type, a MultipleTypePredecessorsToAnd Connection
is defined.

There are five OCL constraints associated with the And entity. The first one
checks if only one predecessor is defined for multiple successor types. The second
constraint checks if there is only one successor for multiple predecessor types.
Next two have a similar role, but they are triggered whenever a new connection
to And entity is added. In order to avoid undesired errors, conditions are re-
laxed (they accept 0 or 1 predecessor/successor type, whereas first two require
exactly one). The last constraint eliminates mixing different sort of connections
(MultipleTypePredecessorsToVertex with MultipleTypeSuccessorsToAnd,
MultipleTypeSuccessorsToVertex with MultipleTypePredecessorsToAnd,
etc.). The constraints are presented below.

−− only one p r e d e c e s s o r type f o r m u l t i p l e s u c c e s s o r t y p e s
l et connMultSucAnd =

s e l f . bagConnectedFCOs (MultipleTypeSuccessorsToAnd) in
let connMultSucVert =

4.4 Embedded Systems Meta-Model 33

s e l f . bagConnectedFCOs (Mult ipleTypeSuccessorsToVertex)
in

(connMultSucAnd . s ize () <> 0 implies
connMultSucVert . s ize () = 1)

−− only one s u c c e s s o r type f o r m u l t i p l e p r e d e c e s s o r t y p e s
l et connMultPredAnd =

s e l f . bagConnectedFCOs (MultipleTypePredecessorsToAnd) in
let connMultPredVert =

s e l f . bagConnectedFCOs (
Mult ipleTypePredecessorsToVertex) in

(connMultPredVert . s ize () <> 0 implies
connMultPredAnd . s ize () = 1)

−− t r i g g e r e d v e r s i o n o f the f i r s t c o n s t r a i n t
s e l f . bagConnectedFCOs (Mult ipleTypeSuccessorsToVertex) .

s ize () <= 1

−− t r i g g e r e d v e r s i o n o f the second c o n s t r a i n t
s e l f . bagConnectedFCOs (MultipleTypePredecessorsToAnd) . s ize

() <= 1

−− e l i m i n a t e s mixing d i f f e r e n t s o r t o f connec t ions
l et connMultPredAnd =

s e l f . bagConnectedFCOs (MultipleTypePredecessorsToAnd) in
let connMultSucAnd =

s e l f . bagConnectedFCOs (MultipleTypeSuccessorsToAnd) in
let connMultPredVert =

s e l f . bagConnectedFCOs (
Mult ipleTypePredecessorsToVertex) in

let connMultSucVert =
s e l f . bagConnectedFCOs (

Mult ipleTypeSuccessorsToVertex) in
(connMultPredAnd . s ize () <> 0 implies

connMultSucAnd . s ize () = 0) and
(connMultPredAnd . s ize () <> 0 implies

connMultSucVert . s ize () = 0) and
(connMultSucAnd . s ize () <> 0 implies

connMultPredAnd . s ize () = 0) and
(connMultSucAnd . s ize () <> 0 implies

connMultPredVert . s ize () = 0)

34 A Generic Meta-Model for Embedded System Models

4.4.1.4 Attributes

Each embedded system model contains different attributes. They specify differ-
ent properties, such as, process execution time, communication cost, number of
tokens. Attributes are usually integer or floating point numbers. Some model
also use string attributes as different kinds of labels. Our proposed entities con-
tain three type of attributes: an integer attribute may be also used as a Boolean
attributes, if the range of values is set from 0 to 1. Each attribute type inherits
from abstract GeneralAttribute Atom. This entity has one string parameter –
AttributeName. Attribute name must be unique and cannot be empty. Addi-
tionaly every attribute has to be associated with a vertex type or a connector.
The following constraints enforce those requirements:

−− a t t r i b u t e name cannot be empty
s e l f . AttributeName . trim () <> ””

−− a t t r i b u t e name must be unique
l et vertBag = s e l f . bagConnectedFCOs (” dst ” ,

Attr ibuteToVertex) in
let ve r tSe t = s e l f . connectedFCOs (” dst ” ,

Attr ibuteToVertex) in
let connBag =

s e l f . bagConnectedFCOs (” dst ” , AttributeToConnector)
in

let connSet =
s e l f . connectedFCOs (” dst ” , AttributeToConnector)

in
vertBag −>s ize () = vertSet−>s ize () and
connBag −>s ize () = connSet−>s ize ()

−− a t t r i b u t e must be connected to a v e r t e x type or a
connector

s e l f . connectedFCOs (” dst ” , Attr ibuteToVertex)−>s ize () >= 1
or

s e l f . connectedFCOs (” dst ” , AttributeToConnector)−>s ize ()
>=1

StringAttribute Atom contains one string field – Value, which is value of the
attribute. It is a fixed value, specified by a user, since random string attributes
are rather useless. In order to avoid empty string attributes, the following OCL
constraint is associated with StringAttribute Atom:

s e l f . Value . tr im () <> ””

4.4 Embedded Systems Meta-Model 35

Values of IntAttribute and DoubleAttribute are random in generated mod-
els. The user may specify 5 different attribute parameters. The first one is
Distribution, which may take one of the three values: Uniform, Normal or
Exponential. These three types of random number distributions are the most
widely used in embedded system models [29]. The user can also specify min-
imum and maximum value of the random attributes. Last two parameters –
mean value and variance are required only for some distributions (mean value
for exponential and normal distribution and variance for normal distribution).

There are three OCL constraints associated with IntAttribute and Double-
Attribute. The first one enforces the maximum value to be greater or equal to
the minimum value. The second one is activated only for normal and exponen-
tial distribution, when it checks if the mean value is in the range [min value,
max value]. The last constraint is checked only if normal distribution is chosen.
It checks if the variance is nonnegative. The code of the constraints is presented
below.

−− minimum v a l u e must be l e s s or e q u a l to the maximum
v a l u e

s e l f . MaxValueInt >= s e l f . MinValueInt

−− f o r normal and e x p o n e n t i a l d i s t r i b u t i o n ,
−− mean v a l u e must be in range [min ; max]
i f (s e l f . D i s t r i b u t i o n = #Normal or

s e l f . D i s t r i b u t i o n = #Exponent ia l) then
s e l f . MeanValueInt >= s e l f . MinValueInt and
s e l f . MeanValueInt <= s e l f . MaxValueInt

else
true

endif

−− f o r normal d i s t r i b u t i o n , var iance must be nonnegat ive
i f (s e l f . D i s t r i b u t i o n = #Normal) then

s e l f . Var ianceInt >= 0
else

true
endif

Attributes may be associated with either vertices or edges. In order to as-
sociate an attribute with a vertex type, AttributeToVertex Connection is
created. Attributes and edges association is slightly more complicated. The
most obvious solution is to create connection between NextVertex Connection
and GeneralAttribute Atom. However, it is impossible to associate an entity
with a connection in GME. To achieve the same effect, a new Atom, namely

36 A Generic Meta-Model for Embedded System Models

Connector, is introduced.

Figure 4.10: Integer paramiter associate with edges family

An example using Connector is presented in figure 4.10. In order to associate
an attribute with the edges family from Type 1 vertices to Type 2 vertices
Connector is added (small, black dot between two vertex types). It is then
connected to the both vertex types and to the integer parameter. Connector
Atom is associated with four different connection types: ConnectorVertex and
VertexConnector that are used for a single successor type, as well as And-
Connector and ConnectorAnd that are used to connect a vertex type with an
And Atom in case of multiple successors or predecessors.

Each Connector can have only one source, one destination and a number of as-
sociated attributes. To enforce that requirement, the following OCL constraints
are associated with the atom:

−− each connector has one source
l et vBag = s e l f . bagConnectedFCOs (VertexConnector) in

let aBag = s e l f . bagConnectedFCOs (AndConnector) in
vBag . s ize () + aBag . s ize () = 1

−− each connector has one d e s t i n a t i o n
l et vBag = s e l f . bagConnectedFCOs (ConnectorVertex) in

let aBag = s e l f . bagConnectedFCOs (ConnectorAnd) in
vBag . s ize () + aBag . s ize () = 1

4.4.2 Architecture Aspect

All the entities described so far belong to the Vertices aspect. The Architecture
aspect is focused on the structure of the generated model. It allows the user
to specify the number of start vertices, number of model nodes and number of

4.4 Embedded Systems Meta-Model 37

Figure 4.11: Diagram of entities belonging to Architecture aspect

models to be generated. The diagram of the entities belonging to this aspect is
presented in figure 4.11.

StartVertex and FinalVertex are two entities that inherit from GeneralVer-
tex (similarly to Vertex entity described in section 4.4.1.1). They represent
dummy start and final vertices. StartVertex has StartNo integer attribute,
that specifies number of starting vertices. If this parameter is set to 0, number
of start vertices is random.

Graph is an Atom that represents the model structure. The user can specify
two parameters: MeanVerticesNo, which is a mean number of vertices per gen-
erated graph and GraphsNo that specifies number of graphs to be generated.
Graph Atom is connected with StartVertex and FinalVertex by respectively:
StartEdge and FinalEdge. LoopEdge is a connection from FinalVertex to
StartVertex. If it is used, than generated graphs are cyclic, otherwise, acyclic
graphs are generated.

The user has to specify one dummy starting and final state. Also, the Graph
entity has to be defined and connected to starting and final state. To enforce
this requirement, the following OCL constraints are associated with the meta-
model:

−− s i n g l e s t a r t i n g v e r t e x
l et v e r t s = atoms (StartVertex) in

ver t −> s ize () = 1

−− s i n g l e s t a r t i n g v e r t e x
l et v e r t s = atoms (Fina lVertex) in

ver t −> s ize () = 1

38 A Generic Meta-Model for Embedded System Models

−− s i n g l e graph d e s c r i p t i o n
atoms (Graph) −> s ize () = 1

−− s i n g l e StartEdge (a s s o c i a t e d wi th S t a r t V e r t e x)
s e l f . connectedFCOs (” dst ” , StartEdge)−>s ize () = 1

−− s i n g l e FinalEdge (a s s o c i a t e d wi th S t a r t V e r t e x)
s e l f . connectedFCOs (” dst ” , FinalEdge)−>s ize () = 1

Usage of the the described meta-model, is presented in chapter 6, using several
case studies.

Chapter 5

Model Generator

An embedded system meta-model specified using the entities proposed in the
previous chapter is used as the input to the model generator. The meta-model
is created graphically using GME as described in the previous chapter. This
graphical specification is then used to generate a GME model with a random
structure and random values of attributes, according to the given specification.
The generator is able to create two other representations of the models: in DOT
format and PNG format (using Graphviz tool). It is also transformed by the
meta-model interpreter into GME meta-model of the specified model. In this
way, the meta-model is used not only to generate synthetic models, but also to
create a GME-based modeling environment. The modeling environment may
be used to create the specified models by hand, or it can load and manipulate
the generated synthetic models.

The diagram of the entire process is presented in chapter 1, in figure 1.2. The
previous chapter described the first step of the process – meta-model specifica-
tion using our proposed entities. The next step, which is construction of graphi-
cal representation of a specific model, is performed graphically by the user in the
GME environment. This chapter presents the details of the last steps performed
by GME plug-in. Section 5.1 is an overview of the Model Generator, describes
tools used to develop it and an overall architecture of the application. Section
5.2 presents details of the meta-model interpreter. Section 5.3 contains details
of the model generator, that produces models in GME, DOT and PNG format.

40 Model Generator

Last section describes how the Model Generator has been integrated with the
GME environment, as well as the GUI of the tool.

5.1 Model Generator Overview

As mentioned in section 4.2.3 GME can be extended by using plug-ins developed
in any language supporting COM or Java. Plug-ins have direct access to all
GME model entities. The whole model structure is mapped into objects and
passed to the plug-in. This GME feature is very useful when creating a model
interpreter. A user does not have to export the textual representation of a
model or perform any intermediate steps. An interpreter may be run directly
from the GME GUI, analyze the current model and perform all the required
tasks. Interpreting Model Generator as a GME plug-in seems to be the best
solution.

The Model Generator is developed in Java (JDK 6). The Java language has been
chosen, because it is a modern, object oriented language. Java programs are
more error-free than C++ applications. Automatic garbage collection protects
from memory leakage. Java arrays cannot be accessed outside theirs range.
JDK comes with huge amount of built-in libraries, support for many different
types of collections and other useful tools (like javadoc, used for automatic
documentation generation). Apart from these advantages, Java programs are
nowadays almost as fast as C++ programs. What is also important, is that
there are a lot of different, free programming environments for Java.

The source code of the application is almost 6000 lines long. There are 22
classes defined. The code is divided into 4 packages. The first one, interpreter,
contains classes related to the graph meta-model’s interpreter. Graphgenerator
package contains all the classes that are used during generating of synthetic
models. As mentioned in section 4.4.1.4, describing model attributes, there are
3 most widely used random attributes distributions: normal, exponential and
uniform. JDK contains only uniformly distributed random numbers generator.
The third application’s package, random, contains implementation of all three
kinds of random number generators. The last one, gui package, contains forms
and other classes related to the graphical user interface. The class diagram of
the entire application is presented in appendix B.

All program features have been tested using several case studies. They are
described in details in chapter 6.

5.2 Meta-Model Interpreter 41

5.2 Meta-Model Interpreter

This section provides the details of the meta-model interpreter, which takes as
input meta-models constructed using the entities presented in chapter 4. The
interpreter is responsible for extracting all the information about the embedded
application meta-model: vertex types, associated attributes and all connection
rules specified by a user. The data is then used to generate synthetic models
based on the input meta-model and to convert the meta-model to an XML
format compatible with GME. The user can register a meta-model in GME
and then open and modify generated GME models. The XML Schema, which
defines format of XML document with meta-model description is presented in
appendix A.

The core class of the interpreter is GMEInterpreter class. It implements BON-
Component interface, which contains one function: invokeEx(JBuilder build-
er, JBuilderObject focus, Collection selected, int param). The func-
tion is called by GME when a plug-in is run. It creates the builder object net-
work, which is a collection of Java objects representing Folders, Atoms, Models,
Connections, References and Sets [10].

A builder object network is not really a desired input for our Model Generator.
For example, in order to find attributes associated with a connection type, first
a connection between origin vertex type and connector must be found, then
connection from connector to a destination vertex type and finally connection
from a connector to an attribute. Moreover, vertex type and attributes are
mapped to the same type — they are both represented as Atoms.

Instead of using a builder object network, the meta-model interpreter transforms
it into a different data structure, dedicated to our solution. It has a separated
representation for the following entity types:

• attributes (string, integer or double)

• vertex types

• connection types (connecting a pair of vertex types or multiple succes-
sor/predecessor types)

The next sections describe the details of the mentioned data structure.

42 Model Generator

5.2.1 Attribute Representation

There are three types of attributes: string, integer and double. Each attribute
has a name and unique ID. The ID is used during meta-model generation in
XML format, where each meta-model element is associated with its own iden-
tifier. An XML representation of an attribute is very simple. It is one ele-
ment attrdef, with four attributes: name, which is attribute name, metaref
– a unique ID, defvalue that specifies default attribute value and valuetype,
which is attribute type name (integer, double or string).

In order to create the most general attribute representation abstract class Attri-
bute is part of interpreter package. It contains name field and toMetaXML
abstract function declaration. The function is supposed to modify a passed
Document Object Model (DOM) object, containing an XML meta-model, by
adding attributes description to associated connections or atoms.

The class is inherited by three derived classes, which are concrete type attributes
representation. StringAttribute class represents a string attribute. In the
created graph meta-model, apart from a name, only value is specified for this
kind of attribute. To keep this information, value field is created.

Two other derived classes – IntegerAttribute and DoubleAttribute are very
similar to each other. They provide the same functions and keep the same data,
but the first one uses integer data type, whereas the second one uses floating
point number representation. They keep distribution type (flags for each of the
used distributions, are defined in Attribute class, maximum, minimum and
mean attribute value, as well as attribute variance. Both classes implement
also getValue function, which returns random attribute value, depending on
the specified parameters. Value is generated by the suitable random number
generator from the random package. The random value generation process is
described in details in section 5.3, where model generator, using getValue func-
tion, is described.

5.2.2 Vertex Type Representation

Vertex type is a meta-model element which has some common properties with
connection types. They both have names and unique IDs. Moreover, they
may both be associated with different attributes. These common features of
vertex and connection types are implemented in VCType class. It contains
name and ID fields, as well as three lists, one for each attribute type. Apart
from field accessors, addAttributes method is implemented. It adds attributes

5.2 Meta-Model Interpreter 43

associated with a vertex or a connection type. The attributes are obtained
from JBuilderObject Vector, which is created by GMEInterpreter class. The
method uses id argument, to identify the connector related to a connection type
or the atom related to a vertex type. Only attributes connected to the specified
id are added to the appropriate list.

VertexType is one of the two classes that inherit from VCType class. It represents
a vertex type, therefore it has prefix, image, maxIn, isFinal, isStart,
loopsAllowed and nextTypes fields, to keep meta-model Vertex Atoms at-
tributes related. Similarly to attributes, VertexType also implements toMetaXML
function. It creates a DOM part, representing a vertex type. It is represented as
an Atom. User gets a separate entity for each vertex type. To describe them in
XML format, small sub-trees are created. A root element of an atom description
is atom element. It has three attributes: name, metaref, which is entity’s unique
id and attributes, which is a list of comma-separated attributes names. With
the last XML attribute, all the string, integer and double attributes, defined in
meta-model and described in attrdef element, are associated with a particular
vertex type.There are two mandatory children of atom element – two regnode
elements. They both have name and value attributes. The first regnode ele-
ment specifies icon used for a vertex type. The name attribute is set to icon,
whereas value attribute is a bitmap name. The second regnode element is a
flag specifying if a vertex type name should be visible. The name attribute is
set to namePosition and the value attribute is 0 or 1. Each atom element may
also have any number of constraint element children, which define constraints
associated with a vertex type. The details of constraints added to vertex types
are described in section 5.2.5.

In order to find vertex type successors and predecessors two list are added
to VertexType class. They both contain ConnectionType class objects. The
details about this class are given in the next paragraph.

5.2.3 Connection Type Representation

ConnectionType is the second class, which inherits from VCType class. It repre-
sents a connection between two different vertex types – it specifies successor/pre-
decessor type. In order to keep meta-model information about multiplicity, min-
imum and maximum number of edges, it contains three fields: multiplicity,
minOut, maxOut. It also contains two fields, specifying origin type and destina-
tion vertex type (from and to). The class is supposed to reflect NextVertex
Connection, but also all connections related to multiple successor and prede-
cessor types. GME requires different Connections entity for each pair of Atom
types, which means that vertex with e.g. three successor types requires three dif-

44 Model Generator

ferent Connection entities. However, ConnectionType has to keep information
about other ConnectionTypes that lead to a different successor or predecessor
type. This information allows generating synthetic models exactly according to
a user specification. If other successor types were not kept, then only random
successor types number would be connected, since generator would treat them
as completely unrelated entities. In order to store information about other suc-
cessor or predecessor type, ConnectionType class contains two ConnectionType
type list – otherSuc and otherPred.

ConnectionType also overrides toMetaXML function. In XML representation
of GME meta-model, all Connection entities have connection root element.
Its attributes specify name, unique id and all constraints associated with a
type. There are five connection element children: four regnode elements and
connjoint element. Attributes of Regnode element specify color, line style, and
ending styles (since it represents directed graphs edge, one end is solid, whereas
the second one is arrow). Connjoint element have two children specifying source
and destination atom types.

5.2.4 Interpreting Process

As mentioned before, GMEInterpreter class is a core class of the meta-model
interpreter. It keeps collections of all meta-model vertex and connection types.
The other information stored by the class objects are: meta-model name, mean
number of vertices per graph, number of graphs, number of starting nodes and
flag specifying if cycles are allowed. All this information is extracted from builder
object network, generated by invokeEx function. The interpreting process is
performed in three iterations through the object network.

In the first step, all the model vertices are found. All vertex type parameters
are read from atom properties and stored in a VertexType class object. Also all
the parameters associated with a type of vertex are found by addAttributes
(described in section 5.2.2). Finally, created VertexType class object is added
to a collection of all vertex types in a meta-model.

During the second iteration all connection types are found. The process is much
more complicated than the one performed in the first iteration, since there are
different Connection entities used for single and multiple successor/predecessor
types. If connection type is NextVertex then all its parameters are read and
stored in ConnectionType class object. After that origin and destination vertex
types are added and finally the object is added to the collection of all connection
types.

5.2 Meta-Model Interpreter 45

If there is an attribute added to a connection type, then ConnectorVertex and
VertexConnector connections are used. In such a case first ConnectorVertex
is found, then, by finding outgoing edges from a Connector, destination vertex
type is found and all the associated attributes are added. All this information is
stored in ConnectionType class object, which is finally added to the collection
of all connection types.

In order to find connection type with multiple successor and predecessor types,
two similar actions are performed. For that reason, only finding multiple pre-
decessor types will be described. Firstly, a connection between successor and
And entity is found. Afterwords, all outgoing connections are found. They may
lead directly to one of the predecessors or to a Connector (when there is an at-
tribute associated with a connection). Each of the connections, from a successor
to one of its predecessors, is added separately, using dedicated ConnectionType
class object (as described in two previous paragraphs). After finding all pre-
decessor types, information about other predecessors is added to each relevant
ConnectionType class object.

The last iteration through the builder object network extracts information about
graph architecture. Number of starting vertices is read from StartVertex entity
attribute. Number of graphs and mean number of vertices per graph is extracted
from Graph entity. If LoopEdge entity is found in builder object network, then
cyclesAllowed flag becomes true. Otherwise, it is set to false.

After generating all objects representing meta-model of an embedded application
model, the program can generate XML representation of the meta-model. In
order to perform this operation, toMetaXML is implemented. It creates root
element – paradigm, root folder and root model. All the meta-model entities are
added calling toMetaXML functions declared in Attribute and VCType classes.
They are all associated with one, default aspect, namely ProjectAspect.

5.2.5 Constraints Generator

In order to verify, if synthetic models are generated according to a meta-model
creator intensions, some OCL constraints are added to a generated meta-model.
All constraints are generated by ConstraintsGenerator class, added during
meta-model interpreting.

The following constraints are generated:

• number of edges outgoing from vertices of a type that cannot be used for

46 Model Generator

final vertices must be greater than zero;

• number of edges incoming to vertices of a type that cannot be used for
starting vertices must be greater than zero;

• attributes must have value from a range [min,max];

• number of edges incoming to a vertex cannot be greater than vertex type
maxIn property;

• number of edges outgoing from a vertex type, must be from range [minOut,
maxOut] specified in a related connection type;

• if nextType flag is set to XOR, then only one connection type may be
used for edges outgoing from a vertex type;

• multiplicity of an edge must be less or equal to a relevant connection type
multiplicity parameter;

• when a connection type specifies more than one vertex type successor/pre-
decessor, then all required connections, to other successor/predecessor
types, also have to go out/come in to a vertex type.

5.3 Model Generator

After the meta-model interpreting, which has built the described data structure,
we use the Model Generator to generate the synthetic models. There are three
classes related to this process: Graph, Vertex and Connection. Vertex class
represents each model node. It contains a unique name, list of incoming and
outgoing edges, as well as random attributes values. Connection class represents
each model edge. It contains references to origin and destination vertex and
attributes values. Both classes implement toXML function, which creates XML
vertex/connection representation, compatible with GME.

Graph class represents an entire model. It stores list of all model vertices and
connections. The class implements toXML, toDOT and generateRandom func-
tions. The first one creates XML representation of a model. Having meta-model
in XML representation, user can register it in GME and import models saved
in XML format. They can be later viewed and edited in GME environment.
ToDOT function creates model representation in dot format. Using Graphviz
tool this textual representation can be transformed into png graphical format.
GenerateRandom function generates a synthetic model with random attribute
values and structure. The details of this process are described in the next four
sections. The first one describes model structure generating details. The next

5.3 Model Generator 47

three sections describe generating random attribute values with different distri-
bution kinds.

5.3.1 Synthetic Model Generation Algorithm

Figure 5.1: The flowchart representing the synthetic model generation algo-
rithm.

48 Model Generator

As mentioned before, Graph class implements generateRandom function, which
creates synthetic model according to a user specification. The algorithm is quite
complex, since model may contain a number of different vertex and connection
types, not all vertex types may be used by final and starting vertices, as well
as multiple successor or predecessor types may also be defined. The flowchart
representing the algorithm is presented in figure 5.1.

The first step of the algorithm chooses randomly one of the two, equally prob-
able options: either the list of vertices, with the maximum number of available
outgoing slots is found or the list of vertices with at least one outgoing slot
available is created. The next three paragraphs describe steps performed, when
the first option is chosen. The steps performed after choosing the second op-
tion, are described later in this section. The algorithm steps are illustrated with
generation process of a directed acyclic graph model, with maximum 2 edges
incoming to a node and with 1 to 2 edges outgoing from a node. There is only
one vertex type and one connection type defined. The graphical representation
of the directed acyclic graph’s meta-model is presented in picture 5.2.

Figure 5.2: A meta-model of a directed acyclic graph, which is used to illustrate
the algorithm’s steps.

As mentioned before, when the first option is chosen, the list of vertices, with
the maximum number of available outgoing slots is found. It is done by checking
all connection types that use vertex type as an origin type. In order to avoid
favoring connection types with higher maximum number of outgoing edges, pro-
portion of available number of outgoing edges to maximum number of outgoing
edges is taken into account. With such an approach, vertex with a maximum of
2 slots and only 1 available slot is chosen, as well as the one with a maximum of
4 slots and 2 of them available, whereas vertex with a maximum of 10 slots and
4 available slots is not added to the list of vertices with the maximum number
of available outgoing slots. The exemplary model is presented in figure 5.3. The
selected nodes are marked with a gray color.

After creating the list, a random vertex is picked out and the connection type
with a maximum number of available outgoing slot is extracted. If there is
more than one connection type with the same proportion of available slots to
the maximum number of outgoing slots, then a random one is chosen. The
actions performed in this step are presented in picture 5.4.

5.3 Model Generator 49

Figure 5.3: Choosing all vertices with the maximum number of available outgo-
ing slots.

Figure 5.4: Choosing a random vertex with the maximum number of available
outgoing slots.

The next steps are repeated for each successor type, defined in a chosen con-
nection type. Firstly, a random number of new nodes is created. The number
is drawn from range [minOut,maxOut]. Then number of required predecessor
types is checked. If there is only one predecessor type, the newly created vertices
are connected to the origin (the vertex selected in the previous step) with one
or more edges. The number of edges is drawn from from range [1,multiplicity].
If there is more than one predecessor type defined for the chosen connection
type, firstly all required predecessors are searched for. If there are not enough
vertices with available outgoing slots and their type may be used by starting
vertices, missing vertices are generated. If finding or generating the entire re-
quired predecessor is impossible, then the algorithm gives up and continues from
the beginning. Otherwise, it generates edges from the selected vertex and all
related predecessors to the newly created vertices and add them to the graph
structure.

The exemplary model, after performing the described steps, is presented in
figure 5.5.

50 Model Generator

Figure 5.5: DAG model after adding two new vertices.

If the second option is chosen in the first algorithm’s step, a different process is
performed. First, lists of all vertices with available slots are created. They are
stored in a map data structure, with related ConnectionType object used as a
key. If a connection type requires more than one predecessor types, then it is
checked whether the other predecessors are available. If they don’t, the vertex
is removed from the list. When the lists of all vertices with available slots are
created, a random connection type and associated list are picked out and one
new vertex is created. The vertex type is the same as destination type of the
chosen connection type. This step of algorithm is presented in figure 5.6.

Figure 5.6: Choosing all vertices with at least one outgoing slot available.

From the list of vertices with available outgoing slots, a random number of
vertices are chosen. The number of selected nodes is from range [1,maxIn].
The result of performing this step is presented in figure 5.7.

In the next step a single node is created. It has the type specified by the

5.3 Model Generator 51

Figure 5.7: Choosing a random number of vertices from the ones with at least
one outgoing slot available.

destination type of the connection associated with the selected vertices. These
vertices are connected with edges to the newly created vertex. The exemplary
model after performing this step is presented in figure 5.8. When this step is
completed, the entire process starts from the other successor types.

Figure 5.8: The model after adding a new vertex.

When the algorithm finishes a graph generation process, it is possible that nodes,
which cannot be used as final ones, have no outgoing edges. This is fixed by
eliminateNotFinals function. The flowchart of the process for eliminating
non-final vertices without outgoing edges is presented in figure 5.9.

In the first step, it creates a list of vertices, which do not have any outgoing edge
and cannot be final ones. For each element of the list, connection type leading
to a final type vertex is used. If there is no final successor type, then random
connection type, which has no other predecessors and leads to a different vertex
type, is chosen. If there is still no connection type found, a random one, which

52 Model Generator

Figure 5.9: The flowchart of the process for eliminating non-final vertices with-
out outgoing edges.

leads to a different vertex type, is picked out.

After finding the connection type, for each successor type, the following steps
are performed. Firstly, random number from range [minOut,maxOut] is chosen
and this vertices amount is created and connected to a non-final vertex. Then,
specified predecessors are either generated (if they may be used as starting
vertices), or found in the list of all graph vertices. The process is repeated for

5.3 Model Generator 53

all successor types.

The whole elimination process is performed until there are no non-final vertices
without outgoing edges. The generated graph is acyclic, but it may be the case
that model allows self-loops or cycles. In the beginning, self-loops are added
to a model. Each graph node is checked if its vertex type allows self-loops. If
this is the case, an edge which is both starting and leading to the same node is
created, with probability equal to 0.5.

If cycles are allowed, addCycles function is executed, which is the last step
of the generation algorithm. For each final vertex, an outgoing edge is added
with probability equal to 0.5. In order to do that, firstly each connection type
outgoing from the chosen vertex is found. Afterwords, minOut number of ver-
tices with available input slots are found. If there are not enough successors,
algorithm gives up. Otherwise, it creates edges from the chosen vertex to all
selected successors.

5.3.2 Uniformly Distributed Attributes Generator

Standard Java API contains a random number generator, that produce uni-
formly distributed numbers belonging to range [0, 1] (or [0, n)). Having such a
generator, it is easy to generate uniformly distributed numbers with values from
range [min,max]. In order to do that, values from range [0, 1] (denotated as
Ui) have to be linearly transformed using the following formula [22]:

Vi = min+ (max−min)Ui (5.1)

This transformation is performed by UniformGenerator, that produce uni-
formly distributed integer and floating point numbers belonging to range [min,max],
using standard Java Random generator from java.util package.

5.3.3 Normally Distributed Attributes Generator

The second type of random numbers distribution, which is used in synthetic
models, is a normal distribution. Standard Java generator produces normally
distributed numbers with a mean value of 0 and a standard deviation equal to
1 (standard normal numbers). In order to obtain random values with different

54 Model Generator

means or standard deviations, standardizing formula is used. A normal dis-
tribution is transformed to a standard normal distribution using the following
formula [21]:

N(0, 1) =
N(µ, σ2)− µ

σ
(5.2)

The formula can be easily transformed, in order to obtain normally distributed
numbers with any standard deviation and mean values, using standard normal
variables:

N(µ, σ2) = σN(0, 1) + µ (5.3)

Normally distributed integer and floating point numbers are produced by NormalGenerator
class. The class uses nextGaussian function from Random generator, producing
standard normal numbers, and performs the transformation described in this
section.

5.3.4 Exponentially Distributed Attributes Generator

The last distribution type, which is widely used during synthetic model at-
tributes generation, is exponential distribution. Java does not provide any
function to produce this type of random variables. In exponential distribution
probability P that Xi falls in range [0, z] is described by the following equation
[22]:

P [0 < Xi < z] =
∫ z

0

p(x)dx (5.4)

In the formula p(x) – the probability density function is expressed by the for-
mula:

p(x) =
1
µ
e−x/µ (5.5)

5.4 Using the Tool 55

where µ is distribution mean value. By solving the equation, the following result
is obtained:

P [0 < Xi < z] =
∫ z

0

1
µ
e−x/µdx = 1− e−z/µ (5.6)

Probability P is a value from range [0, 1]. Having uniformly distributed number
Ui from range [0, 1], the following formula is valid:

Ui = 1− eXi/µ ⇒ Xi = −µ ln(Ui − 1) = −µ ln(U ′i) (5.7)

where U ′i is:

U ′i = Ui − 1 (5.8)

If Ui is uniformly distributed in range [0, 1], then Ui is also uniformly distributed
in this range.

Exponentially distributed random numbers generator is implemented in ExponentialGenerator
class. It uses nextDouble function, implemented by standard random Java gen-
erator, in order to generate uniformly distributed number in range [0, 1]. The
value is then transformed using formula 5.7 into an exponentially distributed
random variable.

5.4 Using the Tool

As mentioned before, the interpreter and the Model Generator is not a stand-
alone application, but it is implemented as GME plug-in. When user tries to
run the program’s jar file, error window appears with information that the tool
has to be run from GME.

The tool comes with graph.mga file, which is a graph meta-model described
in the previous chapter. Firstly, the meta-model has to be registered in GME
environment. In order to do that, user has to open the file with GME and
run MetaGME Interpreter, located on the application toolbar. All the settings
that user is asked about during the registration process, should be set to default
values. After meta-model registration, graph.mga and all other files, generated

56 Model Generator

during registration, cannot be moved. It is also important to keep icons folder
in the same directory. The folder contains bitmaps used to represent meta-
model entities. When meta-model is moved to a different directory, registration
process has to be repeated, in order to override the old settings.

After registering the graph meta-model, Model Generator has to be added to
the list of GME components. In order to do that, JavaCompRegister tool is
used. It comes with GME and it is located in %GME Root folder%/SDK/Java/
directory. All six program fields have to be filled out. Name is the tool iden-
tifier, Description is the short tool description, Menu/Tooltip is a label that
appears in GME menu. These three values may be arbitrary chosen by a user.
ClassPath is a path to the program jar file. It has to be a full path, ending
with the jar file name (by default GraphGenerator.jar). Class is the inter-
preter’s full class name, including package name – for Model Interpreter it is
interpreter.GMEInterpreter. Paradigms option should remain set to *. Af-
ter registering component in the system, it has to be activated in GME. In order
to do that, user has to run GME and choose Register Components from File
menu. In the new window that appears, user has to choose the meta-model
interpreter name and press Toggle button. After that, a new icon with ”Java
cup” symbol appears in the GME menu.

Having the meta-model and its interpreter registered, a new meta-model of an
embedded system model may be created. It is done by creating a new GME
project using graph paradigm. The project may be located in any folder. After
project creation, a root model must be added to the Root Folder (it is done
by right-click on Root Folder, choosing Insert Model option and then Graph-
Model item). The default name of the root model – NewGraphModel, should be
modified, since it is used as the generated meta-model’s name. Then the user
can specify the model structure by adding vertex types, attributes and specify-
ing connections between vertex types. Some of the constraints are checked in
real-time, during a meta-model creation. However, for some constraints, it is
impossible to choose an appropriate trigger (event firing validation). In order
to check these properties, user has to validate meta-model, when the design is
finished. It is done by choosing File menu option and then Check All option
from Check submenu. The user can also display all constraints by choosing
Display Constraints option from File menu.

After validation and eventual mistake corrections, meta-model interpreter may
be run. It is done by pressing the button with ”Java cup”, from GME menu.

The main program window is presented in figure 5.10. On the right hand-side
there is a tree of all interpreted meta-model’s elements. User can see all vertex
and connection types, associated attributes, as well as the architecture details.
On the left hand-side user can specify, what should be generated. Checking the

5.4 Using the Tool 57

Figure 5.10: Main program window.

first option causes generating GME meta-model in XML format. Checking the
second option causes generating models with random structure and saving them
in XML format, compatible with GME. In order to open generated models in
GME, user at first has to create a new GME project and register the meta-model,
generated by the tool, by pressing Add from file button. After successful project
creation, generated models may be imported using Import XML option from File
GME menu. User can also generate DOT file, with a random model description
and graphical graph representation in PNG format (requires installing Graphiz
tool).

Figure 5.11: Settings window.

Not all properties are set directly in GME. Some program settings may be

58 Model Generator

changed in Settings window, which opens after pressing Settings button. The
window is presented in figure 5.11.

The field with DOT path label specifies location of dot program, which is a
part of Graphiz tool. Output path specifies the directory, where all generated
files should be saved. By default it is set to the same directory, where the
interpreted meta-model is stored. The last property, which may be set, is a
prefix for output files. It is a string that is added in the beginning of each
generated model. Full name of generated files is concatenation of prefix, index
of generated file (always starting from zero and incrementing with one for each
next model) and file extension (xme, dot or png).

Chapter 6

Evaluation of the
Implemented Tool

The developed solution has to be verified, in order to prove that it is able
to generate the most widely used models, as well as their more complicated
modifications. For testing purposes, meta-models of task graphs, Petri net and
sequencing graph have been created. The meta-models are used as inputs for
the model generator. The generated synthetic models have been checked using
GME constraints verifier, as well by reviewing generated PNG files.

Section 6.1 contains a description of two task graph meta-models (for systems
containing homo- and heterogeneous processors). Section 6.2 presents details of
three different Petri net meta-models. Section 6.3 is an overview of sequencing
graph for biochips model. The last section presents conclusions and ways of
further tool development.

6.1 Task Graph

The meta-model of task graph is the first case study. In order to model it, only
one vertex type has to be defined. It is obvious that successor of the type is of
the same type. Cycles and self-loops are not allowed. Multiplicity of each graph

60 Evaluation of the Implemented Tool

edge should be one. Maximum number of edges outgoing from a vertex and
incoming to a vertex may be freely defined. In this case, maximum number of
incoming edges is set to 3 and there may be 2 or 3 edges incoming to each vertex.
To simulate task execution time, a double attribute is associated with the graph
vertex type. Its value has a normal distribution, with mean value equal to 2
and variance equal to 1. The graphical representation of the meta-model is
presented in picture 6.1.

Figure 6.1: Task graph meta-model.

After specification of the meta-model, generation GME meta-model and syn-
thetic models, the meta-model may be registered in GME and models may be
loaded into GME environment. A part of the generated model is presented in
figure 6.2.

Figure 6.2: A part of a task graph synthetic model.

6.1 Task Graph 61

The synthetic models are associated with automatically generated constraints,
which are described in section 5.2.5. The generated models are associated with
constraints limiting ExecTime attribute values, specifying maximum number
of edges incoming to a vertex, as well as minimum and maximum number of
edges outgoing from a vertex. The last constraint limits edges multiplicity to 1.
All constraints are correct, they always reflect meta-model specification. The
generated models are also correct, since they never violate any constraint.

The generated task graph represents a system, which is a network of homogenous
processors (execution time has the same characteristic for each node). In order
to model system containing heterogeneous processors, two approaches may be
used. The first one requires using a different tool, which transforms some task
execution times into a different scale. However, the problem may be also solved
without using any external tool. Let’s assume that the modeled system contains
two processor types. The first type is twice as fast as the second type. This
situation may be described using two vertex types: Slower and Faster. In order
to show different execution times, Slower type is associated with uniformly
distributed integer variable, which values belong to range [2, 10]. Faster type is
associated with a different attribute. Its values are also uniformly distributed,
however the values belong to range [1, 5]. Since tasks may be freely distributed
over the system, it is possible that successor of a Slower type node is a different
Slower node, a Faster node or a combination of both types. Similarly, successor
of Slower vertex type may be either a different Slower node, a Faster type
vertex or a couple of Slower and a couple of Faster nodes. In order to model this
situation, four different connection types have to be introduced: from Slower
to Slower type, from Slower to Faster type, from Faster to Faster type and
from Faster to Slower type. Since combinations of two different successor types
are allowed, NextVerticesTypes parameter is set to XOR for the both vertex
types. The graphical representation of the meta-model is presented in figure
6.3.

Figure 6.3: Meta-model of a task graph modeling a heterogeneous system.

The generated meta-model is associated with much more constraints, than the

62 Evaluation of the Implemented Tool

first simple example, since there are four connection types and two vertex types
(there are separated constraints for each of them). Apart from the constraints
similar to the previous example, a new constraint family is added – constraints
checking if there is only one connection type outgoing from each vertex (result
of using XOR flag). All constraints are generated correctly and they are associ-
ated with an appropriate vertex or connection type. Generated models are also
correct. They do not violate any constraint and they are a random combination
of two different task types. A part of the generated model, loaded into GME
environment, is presented in figure 6.4. Faster vertex type is represented by
grey circles, whereas Slower type is represented by white circles.

Figure 6.4: A part of a task graph modeling a heterogeneous system.

6.2 Petri Net

The second embedded system model, which we have used for evaluation, is the
Petri net model of computation. In order to model it, two vertex types have
to be defined: Place and Transition. The first type may be used by final and
starting vertices. Transition type can be used neither by starting nor by final
vertices. For that reason this case study allows verifying the algorithm, which
eliminates non-final type vertices without any outgoing edges.

The vertex types cannot be freely mixed together. Successor of Place type

6.2 Petri Net 63

vertex may be only Transition type vertex. Each Transition type vertex must
have Place type successor.

Figure 6.5: Simple Petri net meta-model.

The last property, which is characteristic for each Petri net and has not been
tested in the previous examples, is that it is cyclic. In order to generate such
a model, LoopEdge must be added in Architecture aspect. Similarly to task
graphs, maximum number of incoming and outgoing edges is system dependent.
For testing purposes, maximum number of edges incoming to a vertex (Transi-
tion or Place type) is set to 2 and there are 1 or 2 edges outgoing from each
vertex. The meta-model of a Petri net is presented in figure 6.5.

Figure 6.6: A part of a Petri net synthetic model.

The constraints created by the model generator are similar to the previous
cases. However, there are two new constraints, which enforce that Transition

64 Evaluation of the Implemented Tool

type vertex can be used neither by starting nor by final vertices. All the gen-
erated constraints were correct and associated with appropriate entities. Also
the algorithm eliminating not-final type vertices without any outgoing edges
works correctly – all the final states are Place type. Synthetic models are gen-
erated correctly, they do not violate any constraint. Part of a generated model
is presented in figure 6.6.

(a)

(b)

Figure 6.7: Meta-models of a marked Petri net with multiple edges represented
as: (a) parallel edges, (b) as a parameter associated with a connection type.

The created Petri net meta-model is very simple. As mentioned in section 2.2,
Petri net places are marked with tokens and there may be more than one edge
connecting a pair of the same transition and place or place and transition. Mul-
tiple edges may be presented in two different ways: as multiple, parallel edges
outgoing and coming to the same two states or an attribute associated with an
edge. In order to test multiplicity meta-model parameter and association at-
tributes with connections, two Petri net meta-models are created. In both cases
each transition is associated with an execution time and each place is associated
with token number. Meta-models of Petri nets with associated attributes are
presented in figure 6.7.

Generated models are associated with constraints analogical to the previous
Petri net example. For the meta-model, where edge multiplicity is represented
as a connection attribute, the constraints on the minimum and maximum values
are associated with a connection type (as expected). Also the other constraints

6.3 Sequencing Graph for Biochips 65

are associated with an appropriate entity. Each synthetic model successfully
passed GME validation – models do not violate any constraint. Figure 6.8
presents a part of a synthetic Petri net, where maximum multiplicity edge is
set to 2 and multiple edges are represented by parallel arrows. The picture is
not a screen shot of model imported to GME environment, but part of PNG
file generated from DOT model representation. The graphical representation of
the models, where multiplicity is represented by an integer attribute associated
with edges is similar to the figure 6.5. The only difference is that there is an
additional attribute, which may be seen in GME, in the property window of a
connection.

Figure 6.8: A part of a PNG representation of Petri net synthetic model.

6.3 Sequencing Graph for Biochips

In order to test the algorithm generating multiple successor or predecessor types,
a more advanced model must be used. As mentioned before, sequencing graphs

66 Evaluation of the Implemented Tool

are models, which may have a lot of rules specifying connection between different
node types as well as different requirements of the successor or predecessor types.

Figure 6.9: Meta-model of a sequencing graph for biochips.

In section 2.4, there is a detailed description of a sequencing graph for biochips.
It is composed of four different node types: input, dilution, mixing and detec-
tion. Therefore there are four different vertex types defined in the sequencing
graph meta-model. Only Input type may be used by starting vertices and only
Detection type nodes may be the final ones. In order to model that Mixing
vertex type may have two Mixing or two Input predecessors, two different con-
nection types are defined. They both have MinOut and MaxOut parameters set
to two. In order to present two other predecessor types: a pair of 1 mixing and
1 input or a pair of 1 dilution and 1 input AND entity has to be used. All
associated MinOut and MaxOut attributes are set to one.

Dilution type nodes may have one of four predecessor types: two Mixing type
nodes, two Input type nodes, a pair of one Input and one Mixing type node, as
well as a pair of one Input and one Dilution type node. They are modeled on

6.3 Sequencing Graph for Biochips 67

the analogical manner, as predecessors of Mixing vertex type.

The only type that may be used as a predecessor of Detection type, is Mixing
type. Each Detection type node is a successor of a single Mixing type node. In
order to model it, one more connection type has to be introduced, with MinOut
and MaxOut attributes set to one.

Only one connection type (to a single or a multiple predecessor types) may
be used, for each vertex type. In order to achieve that, NextVerticesTypes
parameter is set to XOR for all vertex types. The meta-model of a sequencing
graph for biochips is presented in figure 6.9.

Figure 6.10: A part of a sequencing graph for biochips model.

Generated models are much more complicated than the previous case studies.
There are over 60 constraints added to each model. Additionally to the ones
tested before (constraints on minimum and maximum number of outgoing edges,
edge multiplicity, single outgoing connection type, etc.), constraints enforcing
multiple predecessor types are generated. In order to test the constraints, a
generated model has been modified – some of the required predecessors were
removed. Since validation process failed in such a situation, the constraints are
correct. All the constraints are correct and, what is also very important, they
are associated with appropriate entities. Synthetic models do not violate any

68 Evaluation of the Implemented Tool

constraints – they are also generated properly. A part of a generated model,
loaded into GME environment, is presented in the figure 6.10.

6.4 Future Work

The developed solution (the generic meta-model for embedded system models
and its interpreter) is able to generate advanced, synthetic models of embedded
systems. The model generator was successfully verified by the case studies
described in the previous sections of this chapter. Although the tool is already
quite generic, it may still be extended, in order to increase its usefulness.

The current implementation is able to generate only models with a completely
random structure. However, in some situations a more precise structure is re-
quired. For example in order to model algorithms based on ”divide and conquer”
paradigm, a model must have a tree structure [4]. The other algorithms may be
modeled better using series-parallel model structure [23].

Generating diverse model structures is not a difficult task. There is a very
simple algorithm generating series-parallel graphs using recursion [25]. It starts
from two nodes A and B connected with an edge. In each algorithm step, such
a graph part is modified. The connection between two graph nodes may be
removed and changed by a connection from A to a newly created node X and a
connection from X to B (series part is created). The second possibility is adding
another connection from A to B node (parallel part is created). Although the
algorithm is very easy to implement it is very hard to use it when multiple
predecessor or successor types are used. It is also hard to guarantee a minimum
number of edges outgoing from a vertex.

Also creating tree structure is a relatively easy task. It may be achieved by
building heap structure from the nodes set [7]. However, generating heap struc-
ture is possible only when successor number is a constant, not a random value
from a given range. It is also very hard to create a heap, when multiple successor
or predecessor types are used.

In order to implement different model structures, new entities have to be added
to the Architecture meta-model aspect. A new, abstract GraphPart entity may
be introduced. The current Graph entity, as well as the entities representing
random-parallel and tree parts may inherit from it. User should be able to
freely connect the new entities together with each other, as well as connect
them to start and final dummy vertex – appropriate connections have to be
introduced. Interpreter has to be modified, in order to read and define a model

6.4 Future Work 69

structure. The structure may be stored by new classes reflecting new meta-
model entities. However, by using structure different than the random one,
user would miss some functionality, like multiple successor/predecessor types or
minimum number of outgoing edges.

70 Evaluation of the Implemented Tool

Chapter 7

Conclusions

In this thesis we have proposed, designed and implemented a generic model gen-
erator, which may be used in many different areas related to embedded system
design. The developed solution is generic, but user friendly and quite intuitive.
It is achieved by using a completely new approach to the model generators.
Current solutions concentrate on one, particular model type. User is able to
adjust it with many different kinds of arguments or complicated scripts. Most
of the tools do not have a graphical user interface, so command line parameters
is the only way of setting-up the program. In order to use a tool, the user has
to learn all parameters, their syntax and semantic. If input of a tool is an XML
file, the user has to also know the appropriate XML schema, to create a correct
input file.

We have proposed entities and attributes for describing a wide range of embed-
ded systems models. Instead of learning many different keywords and parame-
ters, a user can draw a meta-model in a graphical GME environment. The user
may define multiple vertex types, connection rules and attributes, associated
with entities. Each vertex type may be associated with multiple number of suc-
cessor or predecessor vertex types. Defining a new node type or a connection
rule is straightforward: the user just drags a suitable entity from the pallet.

After defining a meta-model, synthetic models are created by the Model Gen-
erator. We have proposed and implemented an algorithm for synthetic model

72 Conclusions

generation, which takes as the input the embedded system meta-model speci-
fied by the user. A model structure may be very simple (with single vertex and
connection type), as well as very complex, with many vertex kinds, multiple
predecessor or successor types, etc. Each vertex and connection type may be
associated with any number of attributes. Each attribute may be produced by
a random generator with uniform, exponential or normal value distribution.

The Model Generator creates not only synthetic models, but also a GME rep-
resentation of the meta-model, defined by the user. It can be used to customize
GME such that the generated models can be modified or a new model may be
created manually, in a graphical environment.

modify the synthetic models or to create a new model manually in user-friendly
GME environment.

As mentioned in the previous chapter, there are still some tool features that may
be implemented or extended. However, we believe that the tool in the current
development state may be useful and it will help at least researchers belonging to
Embedded Systems Engineering (ESE) section at Informatics and Mathematical
Modeling department of DTU. The tool has been evaluated on several embedded
system models and has been successfully used by the researchers in ESE to
generate synthetic sequencing graphs for biochemical applications.

Bibliography

[1] Metaedit+ homepage. http://www.metacase.com [cited 7 May 2009].

[2] The eclipse modeling framework (emf) overview. http://help.eclipse.
org/ganymede/index.jsp?topic=/org.eclipse.emf.doc/references/
overview/EMF.html [cited 7 May 2009], June 2005.

[3] Alexandro M. S. Adário and Sergio Bampi. Extending sequencing graphs
for reconfigurable applications modeling. In SBCCI ’01: Proceedings of the
14th symposium on Integrated circuits and systems design, pages 161–166,
Washington, DC, USA, 2001. IEEE Computer Society.

[4] V. A. F. Almeida, I. M. M. Vasconcelos, J. N. C. Árabe, and D. A. Menascé.
Using random task graphs to investigate the potential benefits of hetero-
geneity in parallel systems. In Supercomputing ’92: Proceedings of the 1992
ACM/IEEE conference on Supercomputing, pages 683–691, Los Alamitos,
CA, USA, 1992. IEEE Computer Society Press.

[5] Said Amellal and Bozena Kaminska. Scheduling of a control and data
flow graph. Circuits and Systems, ISCAS ’93, 1993 IEEE International
Symposium on, 3:1666–1669, 1993.

[6] Philippe Chrétienne, Edward G. Coffman, Jan Karel Lenstra, and Zhen
Liu, editors. Scheduling Theory and Its Applications. Wiley, New York,
1995.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, 2001.

http://www.metacase.com
http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.emf.doc/references/overview/EMF.html
http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.emf.doc/references/overview/EMF.html
http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.emf.doc/references/overview/EMF.html

74 BIBLIOGRAPHY

[8] Robert P. Dick, David L. Rhodes, and Wolf Wayne. Tgff: task graphs for
free. In Hardware/Software Codesign, 1998. (CODES/CASHE apos;98)
Proceedings of the Sixth International Workshop on, pages 97–101, 1998.

[9] Apostolos Gerasoulis and Tao Yang. On the granularity and clustering of
directed acyclic task graphs. IEEE Transactions on Parallel and Distributed
Systems, 4:686–701, 1990.

[10] Institute for Software Integrated Systems, Vanderbilt University. High-
Level Java Interface to GME, 1.0 edition, 2004.

[11] Institute for Software Integrated Systems, Vanderbilt University. GME 7
User’s Manual, 7.0 edition, 2007.

[12] Gilles Kahn. The semantics of a simple language for parallel programming.
In J. L. Rosenfeld, editor, Information Processing ’74: Proceedings of the
IFIP Congress, pages 471–475. North-Holland, New York, NY, 1974.

[13] E. A. De Kock, G. Essink, W. J. M. Smits, and P. Van Der Wolf. Yapi:
Application modeling for signal processing systems. In In Proc. 37th Design
Automation Conference (DAC’2000, pages 402–405. ACM Press, 2000.

[14] Yu kwong Kwok, Ishfaq Ahmad, and Ishfaq Ahmad. Dynamic critical-path
scheduling: An effective technique for allocating task graphs to multipro-
cessors. IEEE Transactions on Parallel and Distributed Systems, 7:506–521,
1996.

[15] Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Jason Garrett,
Charles Thomason, Greg Nordstrom, Jonathan Sprinkle, and Peter Vol-
gyesi. The Generic Modeling Environment. Nashville, TN 37235, USA,
2001.

[16] Insup Lee, Joseph Y-T. Leung, and Sang Son, editors. Handbook of Real-
Time and Embedded Systems. CRC Press, Boca Raton, FL, USA, 2007.

[17] Peter Marwedel. Embedded system design. Springer, 2006.

[18] C.L. McCreary, A. A. Khan, J. Thompson, and M.E. McArdle. A compar-
ison of heuristics for scheduling dags on multiprocessors. In in Proceedings
of the Eighth International Parallel Processing Symposium, pages 446–451,
1994.

[19] Tadao Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77:541–580, 1989.

[20] ARTEMIS Office. Strategic research agenda. Technical report, ARTEMIS
Programme, 2006.

BIBLIOGRAPHY 75

[21] Jagdish K. Patel and Campbell B. Read. Handbook of the normal distribu-
tion. Mercel Dekker, inc., 1996.

[22] Bruno R. Preiss. Data Structures and Algorithms with Object-Oriented
Design Patterns in Java. John Wiley and Sons, 1999.

[23] Robin A. Sahner and Kishor S. Trivedi. Performance and reliability analysis
using directed acyclic graphs. IEEE Trans. Softw. Eng., 13(10):1105–1114,
1987.

[24] V. Sarkar. Partitioning and scheduling parallel programs for execution on
multiprocessors. PhD thesis, Stanford, CA, USA, 1987.

[25] Berry Schoenmakers. A new algorithm for the recognition of series-parallel
graph. Technical report, Stichting Mathematisch Centrum, Amsterdam,
The Netherlands, 1995.

[26] Todor Stefanov, Claudiu Zissulescu, Alexandru Turjan, Bart Kienhuis, and
Ed Deprettere. System design using kahn process networks: The com-
paan/laura approach. In In Proceedings of the Design, Automation and
Test in Europe Conference, pages 1–6, 2004.

[27] Sander Stuijk, Marc Geilen, and Twan Basten. Sdf3: Sdf for free. In ACSD
’06: Proceedings of the Sixth International Conference on Application of
Concurrency to System Design, pages 276–278, Washington, DC, USA,
2006. IEEE Computer Society.

[28] K. Thulasiraman and M.N.S. Swamy. Graphs: Theory and Algorithms.
Wiley-Interscience, April 1992.

[29] Takao Tobita and Hironori Kasahara. A standard task graph set for fair
evaluation of multi-processor scheduling algorithms. Journal of Scheduling,
(5):379–394, 2002.

[30] Keith Vallerio. Task Graphs for Free (TGFF v3.0), April 2008.

[31] Keith S. Vallerio and Niraj K. Jha. Task graph extraction for embedded
system synthesis. In VLSID ’03: Proceedings of the 16th International
Conference on VLSI Design, pages 480–486, Washington, DC, USA, 2003.
IEEE Computer Society.

[32] Tao Xu and Krishnendu Chakrabarty. Automated design of digital mi-
crofluidic lab-on-chip under pin-count constraints. In ISPD ’08: Proceed-
ings of the 2008 international symposium on Physical design, pages 190–
198, New York, NY, USA, 2008. ACM.

76 BIBLIOGRAPHY

[33] Tao Xu and Krishnendu Chakrabarty. Broadcast electrode-addressing for
pin-constrained multi-functional digital microfluidic biochips. In DAC ’08:
Proceedings of the 45th annual conference on Design automation, pages
173–178, New York, NY, USA, 2008. ACM.

[34] Tao Yang and Apostolos Gerasoulis. Dsc: Scheduling parallel tasks on
an unbounded number of processors. IEEE Transactions on Parallel and
Distributed Systems, 5:951–967, 1994.

[35] Richard Zurawski, editor. Embedded Systems Handbook. Taylor and Francis
Group, 2006.

[36] Richard Zurawski and MengChu Zhou. Petri nets and industrial applica-
tions: A tutorial. Industrial Electronics, IEEE Transactions on, 41:567–
583, 1994.

Appendix A

GME meta-model and GME
model XML Schemas

78 GME meta-model and GME model XML Schemas

Figure A.1: XML Schema of a GME meta-model in XML format

79

Figure A.2: XML Schema of a GME model in XML format

80 GME meta-model and GME model XML Schemas

Appendix B

Class Diagram of the GME
Plug-in

B.1 Interpreter package

82 Class Diagram of the GME Plug-in

Interpreter package 83

84 Class Diagram of the GME Plug-in

B.2 Generator package

Random package 85

B.3 Random package

86 Class Diagram of the GME Plug-in

B.4 GUI package

	Abstract
	1 Introduction
	2 Embedded Systems Modeling
	2.1 Task Graphs
	2.2 Petri Nets
	2.3 Kahn Process Networks
	2.4 Sequencing Graphs
	2.5 Summary

	3 Related work
	3.1 Task Graphs for Free
	3.2 SDF For Free
	3.3 Model Extraction
	3.4 Reason for Developing a New Solution

	4 A Generic Meta-Model for Embedded System Models
	4.1 Basic Meta-Modeling Terminology
	4.2 Meta-Modeling Tools Comparison
	4.2.1 MetaEdit+
	4.2.2 The Eclipse Modeling Framework
	4.2.3 The Generic Modeling Environment

	4.3 GME Meta-Model vs. Graph Model as a Meta-Model
	4.4 Embedded Systems Meta-Model
	4.4.1 Vertices Aspect
	4.4.1.1 Vertex Type
	4.4.1.2 Connection Type
	4.4.1.3 Multiple Successor or Predecessor Types
	4.4.1.4 Attributes

	4.4.2 Architecture Aspect

	5 Model Generator
	5.1 Model Generator Overview
	5.2 Meta-Model Interpreter
	5.2.1 Attribute Representation
	5.2.2 Vertex Type Representation
	5.2.3 Connection Type Representation
	5.2.4 Interpreting Process
	5.2.5 Constraints Generator

	5.3 Model Generator
	5.3.1 Synthetic Model Generation Algorithm
	5.3.2 Uniformly Distributed Attributes Generator
	5.3.3 Normally Distributed Attributes Generator
	5.3.4 Exponentially Distributed Attributes Generator

	5.4 Using the Tool

	6 Evaluation of the Implemented Tool
	6.1 Task Graph
	6.2 Petri Net
	6.3 Sequencing Graph for Biochips
	6.4 Future Work

	7 Conclusions
	A GME meta-model and GME model XML Schemas
	B Class Diagram of the GME Plug-in
	B.1 Interpreter package
	B.2 Generator package
	B.3 Random package
	B.4 GUI package

